导数的应用求函数的最值、单调性等-三年高考(2015-2017)数学(理)试题分项版解析

合集下载

近三年高考数学用导数求函数的单调性

近三年高考数学用导数求函数的单调性

近三年高考数学用导数求函数的单调性、最值及与之有关方程的真题
近三年高考数学导数与不等式、函数零点相结合大纲考点要求:
1.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题;
2.会利用导数解决某些简单的实际问题.
其实,很多童鞋的原因,无外乎上课听不懂、下课学不会,没有掌握正确的学习方法,陷入无论多努力,就是学不会的恶性循环怪圈!
添加学姐微信(xkbvip00521),朋友圈里有更多学科知识,学习方法,以及学霸学习心得等等。

如果你有高中学习上的困惑,对大学和高考感到无望,都可以来找学姐。

还可免费领取“高考漏洞视频,高中九大科目知识考点,以及学霸满分笔记”,统统可以带回家去学习哦。

专题训练--利用导数求单调区间、极值、最值

专题训练--利用导数求单调区间、极值、最值

利用导数求函数的单调性、极值 、最值一.求单调区间的步骤①求定义域;①求导函数f ′(x );①解方程f ′(x )=0;④分区间;⑤列表定导数正负得单调区间. 二.求极值的步骤(同上) 极值的定义:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ①如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. 三.求函数最值的步骤①求极值;①求[a ,b ]端点的函数值f (a )、f (b );①比较极值与端点函数值的大小,得最值.考向一 求单调区间【例题】求下列函数的单调区间:(1)3()23f x x x =-; (2)2()ln f x x x =-. (3))f (x )=2x -x 2. 【练习】1.函数 f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)2.函数f (x )=x -ln x 的单调递减区间为( )A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)①(1,+∞) 3.函数f (x )=x +eln x 的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R4.函数y =4x 2+1x 的单调增区间为________.【答案】()12,+∞ 5.函数f (x )=x ·e x -e x+1的单调增区间是________.【答案】 (e -1,+∞)6.已知函数f (x )=x ln x ,则f (x )的单调减区间是________.【答案】()0,1e7.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调增区间是_______.()-π,-π2和()0,π28. 函数f (x )=(x-3)e x 的单调递增区间是 。

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.【答案】(1)当时, 取得极大值为;当时, 取得极小值为.(2)a的取值范围是.【解析】(1)遵循“求导数,求驻点,讨论驻点两侧导数值符号,确定极值”.(2)根据= ,得到△= = .据此讨论:①若a≥1,则△≤0,此时≥0在R上恒成立,f(x)在R上单调递增 .计算f(0),,得到结论.②若a<1,则△>0,= 0有两个不相等的实数根,不妨设为.有.给出当变化时,的取值情况表.根据f(x1)·f(x2)>0, 解得a>.作出结论.试题解析:(1)当时,,∴.令="0," 得. 2分当时,, 则在上单调递增;当时,, 则在上单调递减;当时,, 在上单调递增. 4分∴当时, 取得极大值为;当时, 取得极小值为. 6分(2)∵= ,∴△= = .①若a≥1,则△≤0, 7分∴≥0在R上恒成立,∴ f(x)在R上单调递增 .∵f(0),,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点. 9分②若a<1,则△>0,∴= 0有两个不相等的实数根,不妨设为.∴.当变化时,的取值情况如下表:x x(x,x)x++11分∵,∴.∴=.同理. ∴.令f(x1)·f(x2)>0, 解得a>.而当时,, 13分故当时, 函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是. 14分【考点】应用导数研究函数的极值、单调性及函数的图象,分类讨论思想.2.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值3.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)min=f(1)=0,∴a≤0,故a最大值为0.4.已知函数,是函数的导函数,且有两个零点和(),则的最小值为()A.B.C.D.以上都不对【答案】B【解析】,由题意,当或时,,当时,,因此的最小值是,选B.【考点】函数的极值与最值.5.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是______.【答案】(,2)【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2.7.设函数f(x)=x e x,则().A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点【答案】D【解析】∵f(x)=x e x,∴f′(x)=e x+x e x=e x(1+x).∴当f′(x)>0时,则x>-1,函数y=f(x)是增函数,同理可求,x<-1时函数f(x)为减函数.∴x=-1时,函数f(x)取得极小值.8.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.9.若函数在区间内有极值,则实数的取值范围是 .【答案】【解析】因为函数在区间内有极值,所以导数在区间内必有零点,于是.【考点】1.导数的公式与法则;2.函数的零点.10.某人进行了如下的“三段论”推理:如果,则是函数的极值点,因为函数在处的导数值,所以是函数的极值点.你认为以上推理的 ( ) A.大前提错误B.小前提错误C.推理形式错误D.结论正确【答案】A【解析】本题中,如果,则是函数的极值点是错误的.若是函数的极值点,则函数在的左右两侧异号,而否则尽管有,都不能说明是函数的极值点.如,其导数,函数在上是增函数.所以不是函数的极值点.因此本题是大前提错误.【考点】推理与证明、导数、函数的极值11.在处有极小值,则实数为 .【答案】1【解析】由得,又在处有极小值,故,解得或,当时,有,函数在单调递增,在单调递减,故在处有极小值;当时,有,函数在单调递增,在单调递减,故在处有极大值.综上可知.【考点】利用导数处理函数的极值12.已知函数.(1)当时,求函数的极值;(2)求函数的单调区间.【答案】(1),无极大值;(2)见解析.【解析】(1)先找到函数的定义域,在定义域内进行作答,在条件下求出函数的导函数,根据函数的单调性与导数的关系,判断函数的极值;(2)先求出函数的导函数,其导函数中含有参数,所以要进行分类讨论,对分三种情况,,进行讨论,分别求出每种情况下的函数的单调增区间和单调减区间.试题解析:(1)函数的定义域是, 1分当时,,所以在上递减,在上递增,所以函数的极小值为,无极大值; 4分(2)定义域, 5分①当,即时,由,得的增区间为;由,得的减区间为; 7分②当,即时,由,得的增区间为和;由,得的减区间为; 9分③当,即时,由,得的增区间为和;由,得的减区间为; 11分综上,时,的增区间为,减区间为;时,的增区间为和,减区间为;时,的增区间为和,减区间为. 13分【考点】1、对数函数的定义域;2、含参数的分类讨论思想;3、函数的单调性与导数的关系;4、解不等式;5、求函数的极值.13.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.14.已知函数,当时取得极小值,则等于()A.B.C.D.【答案】D【解析】由,解得,当;当;当,故在处取得最小值,即,则,所以,故选D.【考点】导数的极值点求法,导数的极值求解.15.对于三次函数,给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”。

高考数学利用导数研究函数的单调性极值最值教师用书理

高考数学利用导数研究函数的单调性极值最值教师用书理

第6讲 高考中导数的综合运用第1课时 利用导数研究函数的单调性、极值、最值题型一| 利用导数研究函数的单调性已知函数f (x )=x +ax+ln x (a ∈R ).(1)求函数f (x )的单调区间;(2)若函数f (x )在(1,+∞)上单调递增,求a 的取值范围.[解题指导] ――→就a 的取值讨f x――→→[解] (1)函数f (x )=x +a x+ln x 的定义域为(0,+∞),1分f ′(x )=1-a x 2+1x =x 2+x -ax 2. 2分①当Δ=1+4a ≤0,即a ≤-14时,得x 2+x -a ≥0,则f ′(x )≥0.∴函数f (x )在(0,+∞)上单调递增.3分 ②当Δ=1+4a >0,即a >-14时,令f ′(x )=0,得x 2+x -a =0,解得x 1=-1-1+4a 2<0,x 2=-1+1+4a2. 4分(ⅰ)若-14<a ≤0,则x 2=-1+1+4a2≤0.∵x ∈(0,+∞),∴f ′(x )>0,∴函数f (x )在(0,+∞)上单调递增. 6分(ⅱ)若a >0,则x ∈⎝ ⎛⎭⎪⎫0,-1+1+4a 2时,f ′(x )<0;x ∈⎝⎛⎭⎪⎫-1+1+4a 2,+∞时,f ′(x )>0.∴函数f (x )在区间⎝ ⎛⎭⎪⎫0,-1+1+4a 2上单调递减,在区间⎝ ⎛⎭⎪⎫-1+1+4a 2,+∞上单调递增. 8分综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,-1+1+4a 2,单调递增区间为⎝⎛⎭⎪⎫-1+1+4a 2,+∞. 10分(2)由题意知,f ′(x )≥0在(1,+∞)上恒成立, 即x 2+x -a ≥0在(1,+∞)上恒成立,11分令g (x )=x 2+x -a =⎝ ⎛⎭⎪⎫x +122-14-a ,则g (x )>2-a ,从而2-a ≥0,∴a ≤2. 12分 当a =2时,f ′(x )>0在(1,+∞)上恒成立,13分因此实数a 的取值范围是(-∞,2]. 14分 【名师点评】 1.研究函数的单调性,必须优先考虑函数的定义域. 2.根据函数的单调性求参数取值范围的思路: (1)求f ′(x );(2)将单调性转化为f ′(x )≥0或f ′(x )≤0恒成立问题求解,要注意“=”是否可以取到,应加以检验.已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中g (x )的函数图象在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.[解] (1)依题意得g (x )=ln x +ax 2+bx ,则g ′(x )=1x+2ax +b .4分由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴得g ′(1)=1+2a +b =0,∴b =-2a -1. 6分(2)由(1)得g ′(x )=2ax 2-a +x +1x=ax -x -x.7分∵函数g (x )的定义域为(0,+∞),∴当a =0时,g ′(x )=-x -1x. 8分由g ′(x )>0得0<x <1,由g ′(x )<0得x >1,即函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当a >0时,令g ′(x )=0得x =1或x =12a , 10分若12a <1,即a >12,由g ′(x )>0得x >1或0<x <12a ,由g ′(x )<0得12a <x <1, 即函数g (x )在⎝ ⎛⎭⎪⎫0,12a ,(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫12a ,1上单调递减;12分若12a >1,即0<a <12,由g ′(x )>0得x >12a 或0<x <1,由g ′(x )<0得1<x <12a ,即函数g (x )在(0,1),⎝ ⎛⎭⎪⎫12a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,12a 上单调递减;若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0,即函数g (x )在(0,+∞)上单调递增.13分综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1)上单调递增,在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎭⎪⎫12a ,+∞上单调递增;当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝ ⎛⎭⎪⎫12a ,1上单调递减,在(1,+∞)上单调递增. 14分题型二| 利用导数研究函数的极值、最值已知函数f (x )=ax +b xe x,a ,b ∈R ,且a >0. (1)若a =2,b =1,求函数f (x )的极值;(2)设g (x )=a (x -1)e x-f (x ),①当a =1时,对任意x ∈(0,+∞),都有g (x )≥1成立,求b 的最大值;②设g ′(x )为g (x )的导函数.若存在x >1,使g (x )+g ′(x )=0成立,求ba的取值范围.[解] (1)当a =2,b =1时,f (x )=⎝⎛⎭⎪⎫2+1x e x,定义域为(-∞,0)∪(0,+∞).1分所以f ′(x )=x +x -x2e x. 2分令f ′(x )=0,得x 1=-1,x 2=12.3分列表:由表知f (x )的极大值是f (-1)=e -1,f (x )的极小值是f ⎝ ⎛⎭⎪⎫12=4 e. 6分(2)①因为g (x )=(ax -a )e x-f (x )=⎝⎛⎭⎪⎫ax -b x-2a e x ,当a =1时,g (x )=⎝⎛⎭⎪⎫x -b x-2e x.7分因为g (x )≥1在x ∈(0,+∞)上恒成立,所以b ≤x 2-2x -xe x 在x ∈(0,+∞)上恒成立. 8分记h (x )=x 2-2x -x ex (x >0),则h ′(x )=x -x+ex.9分当0<x <1时,h ′(x )<0,h (x )在(0,1)上是减函数;当x >1时,h ′(x )>0,h (x )在(1,+∞)上是增函数. 10分 所以h (x )min =h (1)=-1-e -1. 所以b 的最大值为-1-e -1.11分②因为g (x )=⎝⎛⎭⎪⎫ax -b x -2a e x ,所以g ′(x )=⎝⎛⎭⎪⎫b x 2+ax -bx-a e x. 12分由g (x )+g ′(x )=0,得⎝⎛⎭⎪⎫ax -b x-2a e x +⎝ ⎛⎭⎪⎫b x2+ax -b x-a e x=0,整理得2ax 3-3ax 2-2bx +b =0.13分若存在x >1,使g (x )+g ′(x )=0成立,等价于存在x >1,2ax 3-3ax 2-2bx +b =0成立. 14分因为a >0,所以b a =2x 3-3x 22x -1.设u (x )=2x 3-3x22x -1(x >1),则u ′(x )=8x ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -342+316x -2.15分因为x >1,u ′(x )>0恒成立,所以u (x )在(1,+∞)上是增函数,所以u (x )>u (1)=-1, 所以ba >-1,即b a的取值范围为(-1,+∞). 16分 【名师点评】 1.函数f (x )在x =x 0处取得极值的判断方法: 求得导数f ′(x )后,检验f ′(x )在x =x 0左右的符号, (1)左正右负⇔f (x )在x =x 0处取极大值; (2)左负右正⇔f (x )在x =x 0处取极小值.2.由不等式恒成立求参数取值范围,一般有两个解题思路:(1)分离参数;(2)不分离参数,二者都将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )⇔a ≥f (x )max ,a ≤f (x )⇔a ≤f (x )min .已知函数f (x )=x -12ax 2-ln(1+x ),其中a ∈R .(1)若x =2是f (x )的极值点,求a 的值; (2)求f (x )的单调区间;(3)若f (x )在[0,+∞)上的最大值是0,求a 的取值范围.【导学号:19592018】[解] (1)f ′(x )=x-a -axx +1,x ∈(-1,+∞). 2分依题意,得f ′(2)=0,解得a =13. 4分经检验,a =13时,符合题意. 6分(2)①当a =0时,f ′(x )=xx +1,x ∈(-1,+∞).故f (x )的单调增区间是(0,+∞),单调减区间是(-1,0).7分②当a >0时,令f ′(x )=0,得x 1=0,x 2=1a-1.当0<a <1时,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝⎛⎭⎪⎫0,a-1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫a-1,+∞;当a =1时,f (x )的单调减区间是(-1,+∞);当a >1时,-1<x 2<0,f (x )与f ′(x )的变化情况如下:∴f (x )的单调增区间是⎝ ⎛⎭⎪⎫a -1,0,单调减区间是⎝⎛⎭⎪⎫-1,a-1和(0,+∞).9分③当a <0时,f (x )的单调增区间是(0,+∞),单调减区间是(-1,0). 综上,当a ≤0时,f (x )的单调增区间是(0,+∞),单调减区间是(-1,0);当0<a <1时,f (x )的单调增区间是⎝⎛⎭⎪⎫0,1a-1,单调减区间是(-1,0)和⎝ ⎛⎭⎪⎫1a -1,+∞;当a =1时,f (x )的单调减区间是(-1,+∞);当a >1时,f (x )的单调增区间是⎝ ⎛⎭⎪⎫1a -1,0,单调减区间是⎝⎛⎭⎪⎫-1,1a-1和(0,+∞).10分(3)由(2)知a ≤0时,f (x )在(0,+∞)上单调递增,由f (0)=0知不合题意.12分当0<a <1时,f (x )在(0,+∞)的最大值是f ⎝⎛⎭⎪⎫1a -1,由1a-1>0,f (x )在区间⎝ ⎛⎭⎪⎫0,1a-1上递增可知,f ⎝ ⎛⎭⎪⎫1a-1>f (0)=0,不合题意. 14分当a ≥1时,f (x )在(0,+∞)上单调递减,可得f (x )在[0,+∞)上的最大值是f (0)=0符合题意.即f (x )在[0,+∞)上的最大值是0时,a 的取值范围是[1,+∞). 16分题型三| 利用导数解决生活中的实际问题(2016·苏北四市期末)如图,OA 是南北方向的一条公路,OB 是北偏东45°方向的一条公路,某风景区的一段边界为曲线C .为方便游客观光,拟过曲线C 上某点P 分别修建与公路OA ,OB 垂直的两条道路PM ,PN ,且PM ,PN 的造价分别为5万元/百米,40万元/百米.建立如图6-1所示的平面直角坐标系xOy ,则曲线C 符合函数y =x +42x2(1≤x ≤9)模型,设PM =x ,修建两条道路PM ,PN 的总造价为f (x )万元.(题中所涉及长度单位均为百米)图6-1(1)求f (x )的解析式;(2)当x 为多少时,总造价f (x )最低?并求出最低造价.[解] (1)在题图直角坐标系中,因为曲线C 的方程为y =x +42x2(1≤x ≤9),且PM =x ,所以点P 坐标为⎝ ⎛⎭⎪⎫x ,x +42x 2, 1分直线OB 的方程为x -y =0, 2分则点P 到直线x -y =0的距离为⎪⎪⎪⎪⎪⎪x -⎝⎛⎭⎪⎫x +42x 22=⎪⎪⎪⎪⎪⎪42x 22=4x2, 4分又PM 的造价为5万元/百米,PN 的造价为40万元/百米,则两条道路总造价为f (x )=5x +40·4x2=5⎝ ⎛⎭⎪⎫x +32x 2(1≤x ≤9). 8分(2)因为f (x )=5x +40·4x2=5⎝ ⎛⎭⎪⎫x +32x 2(1≤x ≤9),所以f ′(x )=x 3-x 3, 10分令f ′(x )=0,得x =4,列表如下:所以当x =4时,函数f (x )有最小值,最小值为f (4)=5⎝ ⎛⎭⎪⎫4+42=30. 12分 即当x =4时,总造价最低,为30万元. 14分 注:利用三次均值不等式f (x )=5⎝ ⎛⎭⎪⎫x +32x 2=5⎝ ⎛⎭⎪⎫x 2+x 2+32x 2≥5×338=30,当且仅当x 2=x 2=32x2,即x =4时等号成立,照样给分.【名师点评】 利用导数解决优化问题的五个步骤: (1)审题设未知数;(2)结合题意列出函数关系式; (3)确定函数的定义域; (4)在定义域内求极值; (5)下结论.(2016·苏州模拟)如图6-2(1)是一段半圆柱形水渠的直观图,其横断面如图6-2(2)所示,其中C 为半圆弧的中点,渠宽AB 为2米.(1)当渠中水深CD 为0.4米时,求水面的宽度;(2)若把这条水渠改挖(不准填土)成横断面为等腰梯形的水渠,且使渠的底面与地面平行,则当改挖后的水渠底宽为多少时,所挖出的土量最少?(1) (2)图6-2[解] (1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴,建立如图所示的直角坐标系xOy , 1分因为AB =2米,所以半圆的半径为1米,则半圆的方程为x 2+y 2=1(-1≤x ≤1,y ≤0). 3分 因为水深CD =0.4米,所以OD =0.6米, 4分 在Rt △ODM 中,DM =OM 2-OD 2=1-0.62=0.8(米).所以MN =2DM =1.6米,故沟中水面宽为1.6米. 6分(2)为使挖掉的土最少,等腰梯形的两腰必须与半圆相切,设切点为P (cos θ,sinθ)⎝ ⎛⎭⎪⎫-π2<θ<0是圆弧BC 上的一点,过P 作半圆的切线得如图所示的直角梯形OCFE ,得切线EF 的方程为x cos θ+y sin θ=1.令y =0,得E ⎝ ⎛⎭⎪⎫1cos θ,0,令y =-1,得F ⎝⎛⎭⎪⎫1+sin θcos θ,-1. 8分设直角梯形OCFE 的面积为S 1,则横断面的面积为S =2S 1, 则S =(CF +OE )·OC =⎝⎛⎭⎪⎫1cos θ+1+sin θcos θ×1=2+sin θcos θ⎝ ⎛⎭⎪⎫-π2<θ<0. 10分S ′=cos θcos θ-+sin θ-sin θcos 2θ=1+2sin θcos 2θ,令S ′=0,解得θ=-π6,当-π2<θ<-π6时,S ′<0,函数单调递减;当-π6<θ<0时,S ′>0,函数单调递增.所以θ=-π6时,面积S 取得最小值,最小值为 3. 12分此时CF =1+sin ⎝ ⎛⎭⎪⎫-π6cos ⎝ ⎛⎭⎪⎫-π6=33,即当渠底宽为233米时,所挖的土最少. 14分命题展望从近几年的高考试题来看,以实际问题为背景,考查学生的建模能力以及应用导数解决最优化问题的能力成为江苏高考的一个热点,2017年仍是命题方向,应引起足够的重视.(2015·江苏高考)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连结两条公路的山区边界的直线型公路.记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l .如图6-3所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米.以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy .假设曲线C 符合函数y =ax 2+b(其中a ,b 为常数)模型.图6-3(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度. [解] (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入y =ax 2+b ,得⎩⎪⎨⎪⎧a25+b =40,a400+b =2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.4分(2)①由(1)知,y =1 000x2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎪⎫t ,1 000t2.设在点P 处的切线l 交x ,y 轴分别于A ,B 两点,y ′=-2 000x,则l 的方程为y -1 000t 2=-2 000t3(x -t ), 6分由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝⎛⎭⎪⎫0,3 000t 2.故f (t )=⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3 000t 22 =32t 2+4×106t4,t ∈[5,20]. 8分②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t5. 令g ′(t )=0,解得t =10 2. 10分 当t ∈(5,102)时,g ′(t )<0,g (t )是减函数;当t ∈(102,20)时,g ′(t )>0,g (t )是增函数. 12分 从而,当t =102时,函数g (t )有极小值,也是最小值,所以g (t )min =300,此时f (t )min =15 3. 13分 故当t =102时,公路l 的长度最短,最短长度为153千米. 14分 [阅卷心语]易错提示 (1)导数的几何意义不明,导致l 的方程求解错误; (2)运算能力弱,对g (t )求导失分严重.防范措施 (1)函数y =f (x )在x =x 0处的导数即为过该点曲线切线的斜率. (2)熟记导数的基本运算法则及常用的x α,a x,ln x 的导数.1.设函数f (x )=x -2e x-k (x -2ln x )(k 为实常数,e =2.718 28…是自然对数的底数). (1)当k =1时,求函数f (x )的最小值;(2)若函数f (x )在区间(0,4)内存在三个极值点,求k 的取值范围. [解] (1)由函数f (x )=exx2-(x -2ln x )(x >0),可得f ′(x )=x -x-x2x 3. 1分因为当x >0时,e x>x 2.理由如下:要使x >0时,e x >x 2,只要x >2ln x ,设φ(x )=x -2ln x ,φ′(x )=1-2x =x -2x,2分于是当0<x <2时,φ′(x )<0;当x >2时,φ′(x )>0.即φ(x )=x -2ln x 在x =2处取得最小值φ(2)=2-2ln 2>0,即x >0时,x >2ln x , 所以e x -x 2>0, 4分 于是当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以函数f (x )在(0,2)上为减函数,(2,+∞)上为增函数.所以f (x )在x =2处取得最小值f (2)=e24-2+2ln 2. 6分(2)因为f ′(x )=x -x-kx2x 3=x -⎝ ⎛⎭⎪⎫e xx 2-k x,当k ≤0时,exx2-k >0,所以f (x )在(0,2)上单调递减,(2,4)上单调递增,不存在三个极值点,所以k >0.7分又f ′(x )=x -x-kx2x 3=x -⎝ ⎛⎭⎪⎫e xx 2-k x,令g (x )=exx 2,得g ′(x )=e2x -x 3,8分易知g (x )在(0,2)上单调递减,在(2,+∞)上单调递增,在x =2处取得极小值, 得g (2)=e 24,且g (4)=e416, 10分于是可得y =k 与g (x )=e xx 2在(0,4)内有两个不同的交点的条件是k ∈⎝ ⎛⎭⎪⎫e 24,e 416.11分设y =k 与g (x )=exx2在(0,4)内有两个不同交点的横坐标分别为x 1,x 2,则有0<x 1<2<x 2<4,下面列表分析导函数f ′(x )及原函数f (x ):11,在(2,x 2)上单调递减,在(x 2,4)上单调递增,13分 所以f (x )在区间(0,4)上存在三个极值点.即函数f (x )在(0,4)内存在三个极值点的k 的取值范围是⎝ ⎛⎭⎪⎫e 24,e 416. 14分 2.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大. [解] (1)因为蓄水池侧面的总成本为100×2πrh =200πrh (元), 1分 底面的总成本为160πr 2元,所以蓄水池的总成本为(200πrh +160πr 2)元. 2分 根据题意得200πrh +160πr 2=12 000π,所以h =15r (300-4r 2), 3分从而V (r )=πr 2h =π5(300r -4r 3). 4分由h >0,且r >0可得0<r <53, 5分 故函数V (r )的定义域为(0,53). 6分 (2)由(1)知V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2). 8分令V ′(r )=0,解得r 1=5,r 2=-5(因为r 2=-5不在定义域内,舍去). 10分 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 12分由此可知,V (r )在r =5处取得最大值,此时h =8.即当r =5,h =8时,该蓄水池的体积最大. 14分。

高中数学根据导数求函数的最值问题解题技巧总结

高中数学根据导数求函数的最值问题解题技巧总结

高中数学根据导数求函数的最值问题解题技巧总结在高中数学中,求函数的最值问题是经常出现的一类问题,对于这类问题我们可以通过求导数的方法来解决。

下面是一些关于根据导数求函数最值问题的解题技巧的总结。

1. 确定函数的定义域在解决函数的最值问题之前,我们需要确定函数的定义域。

定义域是指函数在实数范围内的取值范围。

确定定义域的同时,我们也要考虑函数是否连续以及是否存在间断点等因素。

2. 求函数的一阶导数为了求函数的最值,我们需要先求出函数的一阶导数。

对于一元函数而言,我们可以使用导数的定义或者常见的求导法则来求出一阶导数。

一阶导数能够反映函数的变化趋势以及函数的增减性质。

3. 找出导数为零的点接下来,我们需要找出函数的一阶导数为零的点,即导数为零的临界点。

这些点也称为函数的驻点。

通过求解导数为零的方程,我们可以得到函数取得极值的可能点。

4. 判断临界点的性质在找出函数的驻点之后,我们需要进一步判断这些点的性质。

根据导数的符号变化,我们可以判断驻点是极大值点还是极小值点。

通常我们可以通过求解导数的二阶导数,来判断驻点的性质。

5. 极值与最值的关系在有限闭区间上,函数的极大值和极小值统称为最值。

通过比较极值点的函数值,我们可以确定函数的最大值和最小值。

同时,我们还需要考虑函数在定义域的两端是否存在最值。

6. 综合应用求解问题除了在抽象的函数图像上求解最值问题,我们还可以将最值问题与实际问题相结合。

通过建立函数模型,并利用导数的知识来解决实际问题。

这样可以提升我们对于求解最值问题的能力和灵活性。

通过以上的技巧,我们能够更加高效地解决高中数学中根据导数求函数最值问题。

同时,在实际应用中,我们也需要不断的进行练习和思考,熟练掌握这些技巧,从而更好地应对各种求解最值问题的场景。

高中数学根据导数求函数的最值问题解题技巧总结

高中数学根据导数求函数的最值问题解题技巧总结

高中数学根据导数求函数的最值问题解题技巧总结在高中数学中,根据导数求函数的最值是一个常见的考点。

这类问题要求我们通过求函数的导数,找到函数的极大值或极小值点,从而确定函数的最值。

下面我将总结一些解题技巧,帮助高中学生和他们的父母更好地应对这类问题。

一、寻找函数的极值点在解决根据导数求函数最值问题时,首先需要找到函数的极值点。

一般来说,函数的极值点就是函数的导数等于零的点,即函数的驻点。

我们可以通过以下步骤来找到函数的极值点:1. 求函数的导数。

根据问题给出的函数,我们可以先对其求导数。

例如,对于函数f(x),我们可以求得它的导函数f'(x)。

2. 解方程f'(x) = 0。

将求得的导函数f'(x)置零,解方程求得函数的驻点。

这些驻点就是函数的极值点。

需要注意的是,有时候函数的极值点可能还存在于函数的定义域的边界处,所以我们还需要将边界处的点也考虑进去。

二、判断极值点的性质找到函数的极值点后,我们需要进一步判断这些点的性质,即确定它们是极大值点还是极小值点。

这里有两种常见的方法:1. 使用导数的符号表。

我们可以通过绘制导数的符号表来判断极值点的性质。

具体做法是,在函数的定义域上选择几个代表性的点,代入导数f'(x)的值,然后根据导数的正负确定函数在这些点附近的增减性。

如果导数从正变负,那么这个点就是极大值点;如果导数从负变正,那么这个点就是极小值点。

2. 使用二阶导数。

二阶导数可以帮助我们更准确地判断极值点的性质。

具体做法是,求得函数的二阶导数f''(x),然后将极值点代入二阶导数。

如果二阶导数大于零,那么这个点就是极小值点;如果二阶导数小于零,那么这个点就是极大值点。

三、举一反三根据导数求函数的最值问题不仅仅局限于求解极值点,还可以应用到其他类型的函数中。

下面举一个例子来说明。

例题:求函数f(x) = x^3 - 3x^2 + 2x的最大值和最小值。

利用导数求解函数的单调性与最值问题

利用导数求解函数的单调性与最值问题

利用导数求解函数的单调性与最值问题在微积分学中,导数是一个重要的概念,它被应用于许多实际问题的解决中。

本文将重点讨论如何利用导数来求解函数的单调性及最值问题。

1. 导数的定义导数描述了函数f(x)在某一点x处的变化率。

它的定义为:f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δx其中Δx表示x的增量,f(x+Δx)-f(x)表示y的增量,f'(x)表示函数f(x)在点x处的导数。

2. 求解单调性问题当函数f(x)单调递增时,其导数f'(x)>0;当函数f(x)单调递减时,其导数f'(x)<0。

因此,我们可以利用导数的正负性来判断函数的单调性。

例如,对于函数f(x)=x^2,在x>0时它单调递增,而在x<0时它单调递减。

我们可以通过求导得到它的导数:f'(x) = 2x当x>0时,f'(x)>0;当x<0时,f'(x)<0。

因此,函数f(x)=x^2在x>0时单调递增,在x<0时单调递减。

3. 求解最值问题函数f(x)在x处取得最大值或最小值,等价于在点x处的导数为0,或者在点x处的导数不存在。

因此,求解函数f(x)的最值问题,我们需要先求出它的导数f'(x),然后令f'(x)=0求出x的值,即可得到函数f(x)的极值点。

最后,再对这些极值点进行比较,就可以确定函数f(x)的最大值和最小值。

例如,对于函数f(x)=x^3-3x+5,我们可以先求出它的导数:f'(x) = 3x^2-3令f'(x)=0,解得x=±1。

这两个点即为函数f(x)的极值点。

我们还需要判断它们是否是函数的最值点。

当x=1时,f''(x)=6>0,说明f(x)在x=1处取得极小值;当x=-1时,f''(x)=-6<0,说明f(x)在x=-1处取得极大值。

导数的应用-单调性、极值与最值10大题型

导数的应用-单调性、极值与最值10大题型

导数的应用-单调性、极值与最值10大题型导数与函数是高中数学的核心内容,高考中经常在函数、导数与不等式等模块的知识交汇处命题,形成层次丰富的各类题型,常涉及的问题有利用导数解决函数的单调性、极值和最值;与不等式、数列、方程的根(或函数的零点),三角函数等问题。

此类问题体现了分类讨论、数形结合、转化与化归等数学思想,重点考查学生的数形结合能力,处理综合性问题的能力和运算求解能力。

本题考试难度大,除了方法与技巧的训练,考生在复习中要注意强化基础题型的解题步骤,提高解题熟练度。

一、导数与函数的单调性相关问题及解决方法1、求函数单调区间的步骤(1)确定函数()f x 的定义域;(2)求()f x '(通分合并、因式分解);(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.2、已知函数的单调性求参数(1)函数()f x 在区间D 上单调增(单减)⇒)(00)(≤≥'x f 在区间D 上恒成立;(2)函数()f x 在区间D 上存在单调增(单减)区间⇒)(00)(<>'x f 在区间D上能成立;(3)已知函数()f x 在区间D 内单调⇒)(x f '不存在变号零点(4)已知函数()f x 在区间D 内不单调⇒)(x f '存在变号零点3、含参函数单调性讨论依据:(1)导函数有无零点讨论(或零点有无意义);(2)导函数的零点在不在定义域或区间内;(3)导函数多个零点时大小的讨论。

二、利用导数求函数极值的方法步骤(1)求导数()f x ';(2)求方程()0f x '=的所有实数根;(3)观察在每个根x 0附近,从左到右导函数()f x '的符号如何变化.①如果()f x '的符号由正变负,则0()f x '是极大值;②如果由负变正,则0()f x '是极小值.③如果在()0f x '=的根x =x 0的左右侧()f x '的符号不变,则不是极值点.三、函数的最值与极值的关系1、极值是对某一点附近(即局部)而言,最值时对函数的定义区间[,]a b 的整体而言;2、在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);3、函数()f x 的极值点不能是区间的端点,而最值点可以是区间的端点;4、对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得。

导数在函数的单调性、_ 极值、最值中的应用

导数在函数的单调性、_ 极值、最值中的应用
一个极值点,那么只要根据实际意义判 定是最大值还是最小值即可,不必再与 端点的函数值比较.
基础知识
题型分类
思想方法
练出高分
归纳总结
1.注意定义域优先的原则,求函数的单调区间
和极值点必须在函数的定义域内进行.

误 2.求函数最值时,不可想当然地认为极值点就

是最值点,要通过认真比较才能下结论.


3.解题时要注意区分求单调性和已知单调性的
故 函 数 f (x) 的 单 调 递 增 区 间 为 (0, e) , 单 调 递 减 区 间 为 (e, ) . ( Ⅱ ) 因 为 e 3 π , 所 以 e ln 3 e ln π , π ln e π ln 3 , 即 ln 3e ln πe , ln eπ ln 3π . 于是根据函数 y ln x , y ex , y πx 在定义域上单调递增,可
基础知识
题型分类
思想方法
练出高分
高考赏析
(2014.湖北高考)(本小题满分 14 分)
π 为圆周率, e 2.718 28 为自然对数的底数.
(Ⅰ)求函数fBiblioteka (x)ln x x
的单调区间;
(Ⅱ)求 e3 , 3e , eπ , πe , 3π , π3 这 6 个数中的最大数
与最小数。
基础知识
题型分类
基础知识
题型分类
思想方法
练出高分
要点梳理
2.求可导函数极值的步骤
(1)求导数 f′(x); (2)求方程 f′(x)=0 的所有实数根;
(3)考察在每个根 x0 附近,从左到右,导函数 f′(x)的符号 如何变化.如果 f′(x)的符号由正变负,则 f(x0)是极大值 ; 如果 f′(x)的符号由负变正,则 f(x0)是 极小值 .

高考数学专题:导数的应用(单调性、最值、极值)

高考数学专题:导数的应用(单调性、最值、极值)

高考数学专题:导数的应用(单调性、最值、极值)热点一 利用导数研究函数的单调性【方法总结】求可导函数单调区间的一般步骤和方法(1)确定函数f (x )的定义域.(2)求f ′(x ),令f ′(x )=0,求出它们在定义域内的一切实数根.(3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间.(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性.2.若函数21()f x x ax x =++在1(,)2+∞是增函数,则a 的取值范围是( ) A .[1,0]- B .[1,)-+∞ C .[0,3] D .[3,)+∞ 3.函数y=12x 2-㏑x 的单调递减区间为 ( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞) 4.设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .5.设函数()ln f x x ax =-,()x g x e ax =-,其中a 为实数.(1)若()f x 在(1,)+∞上是单调减函数,且()g x 在(1,)+∞上有最小值,求a 的取值范围;A DC B(2)若()g x 在(1,)-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论.6.7.已知函数()32=33 1.f x x ax x +++(I )当-2a =()f x 的单调性;(II )若[)2,x ∈+∞时,()0f x ≥,求a 的取值范围.8.已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.9.已知函数21()1x x f x e x -=+. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.10.已知a ∈R,函数3()42f x x ax a =-+ (1)求f(x)的单调区间。

利用导数求函数的单调性和极值

利用导数求函数的单调性和极值

利用导数求函数的单调性和极值函数的单调性和极值是数学中一个常见的问题,利用导数可以很方便地求解。

导数可以告诉我们函数在某一点的变化情况,从而推断函数的单调性和极值。

本文将介绍如何利用导数求函数的单调性和极值。

1. 导数的定义首先,我们需要了解导数的定义。

对于一元函数y = f(x),其导数可以通过以下公式求得:f'(x) = lim(h->0) [f(x+h)-f(x)]/h其中,f'(x)表示函数f(x)在x处的导数,h表示一个无穷小的增量。

导数可以理解为函数在某一点上的变化速率。

2. 利用导数求函数的单调性函数的单调性是指函数在某个区间上的变化趋势。

利用导数可以判断函数在某个区间上的单调性。

若在区间(a, b)上,对于任意的x1, x2∈(a, b),当x1<x2时,若f'(x1)>0,则f(x1)<f(x2),函数单调递增;若f'(x1)<0,则f(x1)>f(x2),函数单调递减。

例如,函数f(x) = x^2,在定义域(-∞, +∞)上处处可导。

对于任意的x1, x2∈(-∞, +∞),都有f'(x) = 2x。

当x1<x2时,若x1>0,则函数f(x)的导数f'(x)大于0,因此f(x)在正数区间上单调递增。

若x1<0,则f'(x)小于0,因此f(x)在负数区间上单调递减。

3. 利用导数求函数的极值函数的极值包括极大值和极小值。

利用导数可以判断函数的极值点。

首先,我们需要找出函数f(x)的导数f'(x)。

然后,求导函数f'(x)的零点,即f'(x)=0的解x。

这些解x处的函数值f(x)即为函数的极值点。

例如,函数f(x) = x^3 - 3x。

首先求导数,f'(x) = 3x^2 - 3。

然后将f'(x) = 0,求解得x=±1。

专题10三角函数图象与性质三年高考(20152017)数学(理)试题(无答案)

专题10三角函数图象与性质三年高考(20152017)数学(理)试题(无答案)

专题10 三角函数图象与性质-三年高考(2015-2017)数学(理)试题1.【2017课标1,理9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 22.【2017课标3,理6】设函数f (x )=cos (x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 3.【2017天津,理7】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=4.【2016高考新课标1卷】已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( ) (A )11 (B )9 (C )7 (D )55.【2016年高考四川理数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度6.【2015高考山东,理3】要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数sin 4y x =的图象()(A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 7.【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为()A .5B .6C .8D .108.【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 9.【2015高考新课标1,理8】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈(D)13(2,2),44k k k Z -+∈10.【2016高考浙江理数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期() A .与b 有关,且与c 有关B .与b 有关,但与c 无关 C .与b 无关,且与c 无关D .与b 无关,但与c 有关 11.【2016年高考北京理数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >)个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则()A.12t =,s 的最小值为6πB.t =,s 的最小值为6πC.12t =,s 的最小值为错误!未找到引用源。

高考数学利用导数研究函数的单调性、极值与最值问题(解析版)题型一:利用导数研究函数的单调性

高考数学利用导数研究函数的单调性、极值与最值问题(解析版)题型一:利用导数研究函数的单调性

题型一:利用导数研究函数的单调性1、讨论函数的单调性(或区间)1.已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R . (1)讨论函数的单调性;【答案】(1)答案见解析;(2)0a ≤.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-= 当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增. (2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x 在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.2.已知函数32()f x x x mx =+-.(1)若函数()f x 在2x =处取到极值,求曲线()y f x =在(1,())f x 处的切线方程;(2)讨论函数()f x 的单调性.【答案】(1)113y x =--;(2)()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 【详解】(1)依题意,2()32f x x x m '=+-,(2)1240f m '=+-=,解得16m =,经检验,16m =符合题意;故32()16f x x x x =+-,2()3216f x x x '=+-,故(1)21614f =-=-,(1)11f '=-,故所求切线方程为1411(1)y x +=--,即113y x =--;(2)依题意2()32f x x x m '=+-,412m ∆=+,若0∆,即13m -时,()0f x ',()f x 在R 上单调递增;若0∆>,即13m >-时,令()0,f x x '===令12x x == 故当()1,x x ∈-∞时,()0f x '>,当()12,x x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>,故函数()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 3.已知函数()ln a f x x x=+(a 为常数) (1)讨论函数()f x 的单调性;【答案】(1)0a ≤时,(0,)+∞递增,0a >时,在(0,)a 递减,(,)a +∞递增;【详解】(1)函数定义域是(0,)+∞,221()a x a f x x x x-'=-=, 0a ≤时,()0f x '>恒成立,()f x 在(0,)+∞上是增函数;0a <时,0x a <<时,()0f x '<,()f x 递减,x a >时,()0f x '>,()f x 递增.2、根据函数的单调性求参数的取值范围1.已知函数321()23f x ax x x =+-+,其中a R ∈. (1)若函数()f x 恰好有三个单调区间,求实数a 的取值范围;【答案】(1)()()1,00,a ∈-+∞; 【详解】(1)由321()23f x ax x x =+-+,得2()21f x ax x '=+-. ∵()f x 存在三个单调区间∴()0f x '=有两个不相等的实数根,即2210ax x .∴00a ≠⎧⎨∆>⎩,即0440a a ≠⎧⎨+>⎩,故()()1,00,a ∈-+∞.2.已知函数()321f x x ax =++,a R ∈. (1)讨论函数()f x 的单调区间;(2)若函数()f x 在区间2,03⎛⎫- ⎪⎝⎭内是减函数,求a 的取值范围; (3)若函数()f x 的单调减区间是2,03⎛⎫- ⎪⎝⎭,求a 的值. 【答案】(1)答案见解析(2)[)1,+∞(3)1(1) 由题意知,22()323()3a f x x ax x x '=+=+, 当0a =时,2()30f x x '=≥恒成立,所以()f x 的单调递增区间是()-∞+∞,; 当0a >时,令2()0()(0)3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(),(0)3a -∞-+∞,,,单调递减区间为2(0)3a -,, 当0a <时,令2()0(0)()3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(0)()3a -∞-+∞,,,,单调递减区间为2(0)3a -,; (2)由(1)知,当0a >时,有22(0)(0)33a -⊆-,,,所以2233a -≤-, 解得1a ≥,即a 的取值范围为[1)+∞,; (3)由(1)知,当0a >时,有22(0)(0)33a -=-,,,所以2233a -=-, 解得1a =.3.已知函数()3f x x ax =-+,a R ∈(1)若()f x 在)1,⎡+∞⎣上为单调减函数,求实数a 取值范围;【答案】(1)3a ≤;(2)最大值为0,最小值为16-.【详解】解:(1)因为()3f x x ax =-+,则()'23f x x a =-+.依题意得()'230f x x a =-+≤在[)1,x ∈+∞恒成立,∴23a x ≤在[)1,x ∈+∞恒成立. 因为当1≥x 时,233x ≥,所以 3a ≤.(2)当12a =时,()312f x x x =-+,()()()'2312322f x x x x =-+=-+-,令'0f x 得[]123,0x =∉-,22x =-,所以当32x -<<-时,()'0f x <,()f x 单调递减,当20x -<<时,()'>0f x ,()f x 单调递增,又()327369f -=-=-,()282416f -=-=-,()00f =.∴()f x 在[]3,0-上最大值为0,最小值为16-.。

专题06 导数的几何意义—三年高考(2015-2017)数学(理)真题分项版解析(原卷版)

专题06 导数的几何意义—三年高考(2015-2017)数学(理)真题分项版解析(原卷版)

1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =2. 【2016年四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1, P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)3.【2016课标3,理数】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________.4.【2014广东理10】曲线25+=-x e y 在点()0,3处的切线方程为 .5.【2014江苏,理11】在平面直角坐标系xoy 中,若曲线2b y ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += .6.【2017山东,理20】已知函数,,其中是自然对数的底数.(Ⅰ)求曲线在点()(),f ππ处的切线方程;(Ⅱ)令,讨论的单调性并判断有无极值,有极值时求出极值.()22cos f x x x =+()()cos sin 22x g x e x x x =-+-2.71828e =()y f x =()()()()h x g x af x a R =-∈()h x7.【2017北京,理19】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.8.【2016年高考北京理数】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.9.【2014福建,理20】已知函数()ax e x f x-=(a 为常数)的图象与y 轴交于点A ,曲线()x f y =在点A 处的切线斜率为-1.(I )求a 的值及函数()x f 的极值;(II )证明:当0>x 时,x e x <2;(III )证明:对任意给定的正数c ,总存在0x ,使得当()∞+∈,0x x ,恒有x ce x <2.10.【2014重庆理,第20题】已知函数22()(,,)x x f x ae be cx a b c R -=--∈的导函数'()f x 为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -.(Ⅰ)确定,a b 的值;(Ⅱ)若3c =,判断()f x 的单调性; (Ⅲ)若()f x 有极值,求c 的取值范围.。

第六讲-导数的简单应用1利用导数研究函数的单调性、极值与最值问题

第六讲-导数的简单应用1利用导数研究函数的单调性、极值与最值问题

令h′(x)=0,得x=±1.
所以函数h(x)的单调递增区间为(-∞,-1),(1,+∞),
单调递减区间为(-1,1).
由于h(-2)=-53,h(1)=-53,所以h(-2)=h(1).
专题一 第六讲 第一课时 第19页
金版教程 ·大二轮复习 ·数学 ·理
热点探究悟道 建模规范答题 专题知能提升
金版教程 ·大二轮复习 ·数学 ·理
f′(x)>0,函数f(x)单调递增,
热点探究悟道 建模规范答题 专题知能提升
当x∈-1k,+∞时,f′(x)<0,函数f(x)单调递减. (2)由(1)知,若k>0,则当且仅当-1k≤-1,
即k≤1时,函数f(x)在区间(-1,1)内单调递增;
若k<0,则当且仅当-
专题一 第六讲 第一课时 第10页
金版教程 ·大二轮复习 ·数学 ·理
热点探究悟道 建模规范答题 专题知能提升
真题演练
1. [2014·课标全国卷Ⅱ]已知函数f(x)=ex-e-x-2x.
(1)讨论f(x)的单调性;
(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值.
金版教程 ·大二轮复习 ·数学 ·理
热点探究悟道 建模规范答题 专题知能提升
专题一 集合、常用逻辑用语、函数 与导数、不等式
专题一 第六讲 第一课时 第1页
金版教程 ·大二轮复习 ·数学 ·理
热点探究悟道 建模规范答题 专题知能提升
第六讲 高考中的导数综合应用(解答题型)
专题一 第六讲 第一课时 第2页
专题一 第六讲 第一课时 第27页
金版教程 ·大二轮复习 ·数学 ·理
热点探究悟道 建模规范答题 专题知能提升

专题07 导数的应用求函数的最值、单调性等-三年高考20

专题07 导数的应用求函数的最值、单调性等-三年高考20

【2017年】1.【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.1 【答案】A 【解析】试题分析:由题可得12121()(2)(1)[(2)1]x x x f x x a ex ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e -=--,故21()(2)x f x x x e-'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减所以()f x 极小值为()111(111)1f e -=--=-,故选A 。

【考点】函数的极值;函数的单调性2.【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为0x ,且图象在0x 两侧附近连续分布于轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数)('x f 的正负,得出原函数)(x f 的单调区间. 3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。

(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<。

【答案】(1)1a =;(2)证明略。

【解析】试题解析:(1)()f x 的定义域为()0,+∞。

设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥。

专题07导数的应用求函数的最值、单调性等—三年高考(2015-2017)数学(理)真题分项版解析(原

专题07导数的应用求函数的最值、单调性等—三年高考(2015-2017)数学(理)真题分项版解析(原

专题07导数的应用求函数的最值、单调性【2017年】1. 【2017课标II ,理11】若x= -2是函数f (x) = (x2+ax—1)e x」的极值点,贝U f (x)的极小值为()- 3 3A. -1B. -2e「C.5e「D.12. 【2017浙江,7】函数y=f(x)的导函数y = f'(x)的图像如图所示,贝U函数y=f(x)的图像可能是⑴求a;2 _ J2⑵证明:f(x)存在唯一的极大值点x0,且e <f(x0)<2 。

4. 【2017课标3,理21】已知函数f (x )= x-1—aln x.(1) 若f (x )芝0,求a的值;(2) 设m为整数,且对于任意正整数n’’1+l |''1十二)*1十上)<^,求m的最小值..2 . 22. 2n15. 【2017浙江,20】(本题满分15分)已知函数f(x)= (x-J2x—1 ) e ( x Z—)2(I )求f(x)的导函数;1 、. 一(口)求f(x)在区间[—,+00)上的取值范围.26. 【2017江办,20】已知函数f(x)=x +ax +bx+1(a》0,b v R)有极值,且导函数f (x)的极值点是f (x)的零点.(极值点是指函数取极值时对应的自变量的值)(1) 求b关于a的函数关系式,并写出定义域;(2) 证明:bS-3a;(3) 若f(x) , f f(x)这两个函数的所有极值之和不小于_7,求a的取值范围.2【2016年】1. 【2016高考江苏卷】(本小题满分16分)已知函数f(x)=a x b x(a 0,b .0,a=1,b = 1).c, 1设a = 2, b =—2 .(1)求方程f(x) = 2的根;(2)若对任意x^R,不等式f (2x)占mf(x)-6恒成立,求实数m的最大值;(3)若0 <a <1,b>1,函数g(x)= f (x )—2有且只有1个零点,求ab的值。

三年高考(2015-2017)高考数学试题分项版解析 专题07 导数的应用求函数的最值、单调性等 理

三年高考(2015-2017)高考数学试题分项版解析 专题07 导数的应用求函数的最值、单调性等 理

专题07 导数的应用求函数的最值、单调性等【2017年】1.【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.1 【答案】A 【解析】试题分析:由题可得12121()(2)(1)[(2)1]x x x f x x a ex ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e -=--,故21()(2)x f x x x e -'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减所以()f x 极小值为()111(111)1f e-=--=-,故选A 。

【考点】函数的极值;函数的单调性2.【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D 【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为0x ,且图象在0x 两侧附近连续分布于轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数)('x f 的正负,得出原函数)(x f 的单调区间. 3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。

(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<。

【答案】(1)1a =;(2)证明略。

【解析】试题解析:(1)()f x 的定义域为()0,+∞。

利用导数求函数的单调区间、极值和最值

利用导数求函数的单调区间、极值和最值

精锐教育学科教师辅导讲义讲义编号4\X 2°,f(xj,X3X 4X 5一职%) f(a)二、利用导数求函数的极值1、极大值—般地,设函数f (x )在点X 附近有定义,如果对X 附近的所有的点,都有f(x)<f(X ),就说f(X )是函数的一0000个极大值,记作y =f Q 丿,x 是极大值点+极大值°°2、极小值—般地,设函数f (x )在X 附近有定义,如果对X 附近的所有的点,都有f(x)〉f(X)就说f(X )是函数f (x )0000的一个极小值,记作y=f Q ),x 是极小值点+极小值°°3、极大值与极小值统称为极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值+请注意以下几点:〔i 〕极值是一个局部概念•由定义,极值只是某个点的函数值与它附近点的函数值比拟是最大或最小•并不意味着它在函数的整个的定义域内最大或最小.〔ii 〕函数的极值不是唯一的•即一个函数在某区间上或定义域内极大值或极小值可以不止一个.〔iii 〕极大值与极小值之间无确定的大小关系•即一个函数的极大值未必大于极小值,如以下图所示,X 是极大值1点,X 是极小值点,而f (x )〉f (x ).441〔iv 〕函数的极值点一定岀现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点+4、判别fQ)是极大、极小值的方法:假设X 满足f'(X )二0,且在X 的两侧f (X )的导数异号,那么X 是f (X )的极值点,f Q)是极值,并且如果f '(x )00000在X 两侧满足“左正右负",那么X 是f (X )的极大值点,f Q 丿是极大值;如果f '(x )在X 两侧满足“左负右正",0/\000那么X 是f (X )的极小值点,fQ 丿是极小值.005、求可导函数f (x )的极值的步骤: (1) 确定函数的定义区间,求导数f'(x )・ (2) 求方程f'(x )二0的根.(3) 用函数的导数为0的点,顺次将函数的定义区间分成假设干小开区间,并列成表格•检查f'(x )在方程根左右的值的符号,如a例17、 果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值. 例16、求y =x3-4x +4的极值.31兀函数f (x )=a sin x +3sin3x 在x =-处具有极值,求a 的值.例18、y =a ln x +bx 2+x 在x =1和x =2处有极值,求a 、b 的值.例10、函数f (x )=x 3-3a x 2-9a 2x+a3(1)设a=1,求函数f (x )的极值;〔2〕a>4,且当a e 11,4a ]时,f'(x )<12a 恒成立,试确定a 的取值X 围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2017年】1.【2017课标II ,理11】若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.1 【答案】A 【解析】试题分析:由题可得12121()(2)(1)[(2)1]x x x f x x a ex ax e x a x a e ---'=+++-=+++-因为(2)0f '-=,所以1a =-,21()(1)x f x x x e -=--,故21()(2)x f x x x e-'=+-令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减所以()f x 极小值为()111(111)1f e -=--=-,故选A 。

【考点】函数的极值;函数的单调性2.【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为0x ,且图象在0x 两侧附近连续分布于轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数)('x f 的正负,得出原函数)(x f 的单调区间. 3.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。

(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<。

【答案】(1)1a =;(2)证明略。

【解析】试题解析:(1)()f x 的定义域为()0,+∞。

设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥。

因为()()10,0g g x =≥,因()'10g =,而()()1','11g x a g a x=-=-,得1a =。

若1a =,则()1'1g x x=-。

当01x <<时,()'0g x <,()g x 单调递减; 当1x >时,()'0g x >,()g x 单调递增。

所以1x =是()g x 的极小值点,故()()10g x g ≥= 综上,1a =。

(2)由(1)知()2ln f x x x x x =--,()'22ln f x x x =--。

设()22ln h x x x =--,则()1'2h x x=-。

当10,2x ⎛⎫∈ ⎪⎝⎭时,()'0h x <;当1,2x ⎛⎫∈+∞⎪⎝⎭时,()'0h x >, 所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2⎛⎫+∞⎪⎝⎭单调递增。

又()20h e->,102h ⎛⎫< ⎪⎝⎭,()10h =, 所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点0x ,在1,2⎡⎫+∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()0h x >;当()0,1x x ∈时,()0h x <, 当()1,x ∈+∞时,()0h x >。

因为()()'f x h x =,所以0x x =是()f x 的唯一极大值点。

由()0'0f x =得()00ln 21x x =-,故()()0001f x x x =-。

由()00,1x ∈得()014f x <。

因为0x x =是()f x 在(0,1)的最大值点,由()10,1e -∈,()1'0f e -≠得()()120f x f e e -->=。

所以()2202ef x --<<。

【考点】利用导数研究函数的单调性;利用导数研究函数的极值4.【2017课标3,理21】已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n 2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【答案】(1)1a =; (2) 【解析】试题分析:(1)由原函数与导函数的关系可得x =a 是()f x 在()0,+x ∈∞的唯一最小值点,列方程解得1a =;(2)利用题意结合(1)的结论对不等式进行放缩,求得2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,结合231111112222⎛⎫⎛⎫⎛⎫+++> ⎪⎪⎪⎝⎭⎝⎭⎝⎭可知实数m 的最小值为 试题解析:解:(1)()f x 的定义域为()0,+∞.①若0a ≤,因为11=-+2<022f aln ⎛⎫ ⎪⎝⎭,所以不满足题意; ②若>0a ,由()1a x a f 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x =a 是()f x 在()0,+x ∈∞的唯一最小值点.由于()10f =,所以当且仅当a =1时,()0f x ≥.故a =1. (2)由(1)知当()1,x ∈+∞时,1ln 0x x -->. 令112n x =+得11ln 122n n ⎛⎫+< ⎪⎝⎭.从而 221111111ln 1ln 1ln 1112222222n n n ⎛⎫⎛⎫⎛⎫++++++<+++=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .故2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. 而231111112222⎛⎫⎛⎫⎛⎫+++> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为. 【考点】导数研究函数的单调性;导数研究函数的最值;利用导数证明不等式5.【2017浙江,20】(本题满分15分)已知函数f (x )=(x e x -(12x ≥). (Ⅰ)求f (x )的导函数;(Ⅱ)求f (x )在区间1[+)2∞,上的取值范围. 【答案】(Ⅰ)xe x x xf ----=)1221)(1()(';(Ⅱ)0,1212e -]. 【解析】试题分析:(Ⅰ)利用求导法则及求导公式,可求得)(x f 的导数;(Ⅱ)令0)('=x f ,解得1=x 或25,进而判断函数)(x f 的单调区间,结合区间端点值求解函数)(x f 的取值范围.试题解析:(Ⅰ)因为所以=.(Ⅱ)由解得或.因为))又,所以f (x )在区间)上的取值范围是.【考点】导数的应用6.【2017江苏,20】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求关于的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求的取值范围.【答案】(1)3a >(2)见解析(3)36a <≤【解析】解:(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3ax =-时,()f x '有极小值23a b -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+. 因为()f x 有极值,故()=0f x '有实根,从而231(27a )039a b a -=-≤,即3a ≥. 3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;3a >时,()=0f x '有两个相异的实根1=3a x -,2=3a x -+.列表如下故()f x 的极值点是12,x x . 从而3a >,因此2239a b a=+,定义域为(3,)+∞.因为3a >,所以>(g g因此2>3b a .(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a -=-+,所以213()=9h a a a -+,3a >. 因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤.因此a 的取值范围为(36],.【考点】利用导数研究函数单调性、极值及零点【2016年】1.【2016高考江苏卷】(本小题满分16分)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠. 设12,2a b ==. (1)求方程()2f x =的根;(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。

【答案】(1)①0 ②4(2)1 【解析】试题解析:(1)因为12,2a b ==,所以()22x xf x -=+. ①方程()2f x =,即222xx-+=,亦即2(2)2210x x -⨯+=,所以2(21)0x -=,于是21x =,解得0x =.②由条件知2222(2)22(22)2(())2xxx x f x f x --=+=+-=-.因为(2)()6f x mf x ≥-对于x R ∈恒成立,且()0f x >,所以2(())4()f x m f x +≤对于x R ∈恒成立.而2(())44()4()()f x f x f x f x +=+≥=,且2((0))44(0)f f +=, 所以4m ≤,故实数m 的最大值为4.(2)因为函数()()2g x f x =-只有1个零点,而00(0)(0)220g f a b =-=+-=, 所以0是函数()g x 的唯一零点.因为'()ln ln x xg x a a b b =+,又由01,1a b <<>知ln 0,ln 0a b <>, 所以'()0g x =有唯一解0ln log ()ln b aax b=-. 令'()()h x g x =,则''22()(ln ln )(ln )(ln )xxxxh x a a b b a a b b =+=+,从而对任意x R ∈,'()0h x >,所以'()()g x h x =是(,)-∞+∞上的单调增函数, 于是当0(,)x x ∈-∞,''0()()0g x g x <=;当0(,)x x ∈+∞时,''0()()0g x g x >=.因而函数()g x 在0(,)x -∞上是单调减函数,在0(,)x +∞上是单调增函数. 下证00x =. 若00x <,则0002x x <<,于是0()(0)02xg g <=, 又log 2log 2log 2(log 2)220a a a a g a b a =+->-=,且函数()g x 在以02x 和log 2a 为端点的闭区间上的图象不间断,所以在2x 和log 2a 之间存在()g x 的零点,记为1x . 因为01a <<,所以log 20a <,又02x <,所以10x <与“0是函数()g x 的唯一零点”矛盾. 若00x >,同理可得,在02x和log 2a 之间存在()g x 的非0的零点,矛盾.因此,00x =. 于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =. 考点:指数函数、基本不等式、利用导数研究函数单调性及零点2.【2016高考天津理数】(本小题满分14分)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈, (I)求)(x f 的单调区间;(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41. 【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)详见解析 【解析】试题分析:(Ⅰ)先求函数的导数:a x x f --=2)1(3)(',再根据导函数零点是否存在情况,分类讨论:①当0a ≤时,有()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,存在三个单调区间(Ⅱ)由题意得3)1(20ax =-,计算可得00(32)()f x f x -=再由)()(01x f x f =及单调性可得结论(Ⅲ)实质研究函数)(x g 最大值:主要比较(1),(1)f f -,|(|f f 的大小即可,分三种情况研究①当3a ≥时,33120331a a +≤<≤-,②当334a ≤<时,3321233133103321aa a a +≤<+<-<≤-,③当304a <<时,23313310<+<-<aa . 试题解析:(Ⅰ)解:由b ax x x f ---=3)1()(,可得a x x f --=2)1(3)('.当变化时,)('x f ,)(x f 的变化情况如下表:所以)(x f 的单调递减区间为)331,331(aa +-,单调递增区间为)331,(a --∞,),331(+∞+a. (Ⅱ)证明:因为)(x f 存在极值点,所以由(Ⅰ)知0>a ,且10≠x ,由题意,得0)1(3)('200=--=a x x f ,即3)1(20a x =-, 进而b ax a b ax x x f ---=---=332)1()(00300. 又b a ax x a b x a x x f --+-=----=-32)1(38)22()22()23(000300 )(33200x f b a x a =---=,且0023x x ≠-,由题意及(Ⅰ)知,存在唯一实数满足)()(01x f x f =,且01x x ≠,因此0123x x -=,所以3201=+x x ;(Ⅲ)证明:设)(x g 在区间]2,0[上的最大值为M ,},max{y x 表示y x ,两数的最大值.下面分三种情况同理: (1)当3≥a 时,33120331aa +≤<≤-,由(Ⅰ)知,)(x f 在区间]2,0[上单调递减,所以)(x f 在区间]2,0[上的取值范围为)]0(),2([f f ,因此|}1||,21max{||})0(||,)2(max{|b b a f f M ----== |})(1||,)(1max{|b a a b a a +--++-=⎩⎨⎧<++--≥+++-=0),(10),(1b a b a a b a b a a ,所以2||1≥++-=b a a M .所以)(x f 在区间]2,0[上的取值范围为)]331(),331([a f a f -+,因此 |}392||,392max{||})331(||,)331(max{|b a a ab a a a a f a f M -----=-+= |})(392||,)(392max{|b a a a b a a a +-+--= 414334392||392=⨯⨯⨯≥++=b a a a . (3)当430<<a 时,23313310<+<-<aa ,由(Ⅰ)和(Ⅱ)知, )331()3321()0(a f a f f +=-<,)331()3321()2(a f a f f -=+>, 所以)(x f 在区间]2,0[上的取值范围为)]2(),0([f f ,因此|}21||,1max{||})2(||,)0(max{|b a b f f M ----== |})(1||,)(1max{|b a a b a a +--++-=41||1>++-=b a a .综上所述,当0>a 时,)(x g 在区间]2,0[上的最大值不小于41. 考点:导数的运算,利用导数研究函数的性质、证明不等式 【名师点睛】1.求可导函数单调区间的一般步骤(1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.3.(本小题满分14分)设函数f (x )=(x -1)e x -kx 2(k ∈R ). (1)当k =1时,求函数f (x )的单调区间; (2)当k ∈1,12⎛⎤⎥⎝⎦时,求函数f (x )在0,k ]上的最大值M . 【答案】(1)详见解析 (2)详见解析 【解析】(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =xe x -2x =x (e x -2), 令f ′(x )=0,得x 1=0,x 2=ln 2, 当x 变化时,f ′(x ),f (x )的变化如下表:(2)f ′(x )=e x +(x -1)e x -2kx =xe x -2kx =x (e x -2k ), 令f ′(x )=0,得x 1=0,x 2=ln (2k ), 令g (k )=ln (2k )-k ,k ∈1,12⎛⎤ ⎥⎝⎦, 则g ′(k )=1k -1=1k k-≥0, 所以g (k )在1,12⎛⎤⎥⎝⎦上单调递增. 所以g (k )≤ln 2-1=ln 2-lne <0. 从而ln (2k )<k ,所以ln (2k )∈(0,k ). 所以当x ∈(0,ln (2k ))时,f ′(x )<0; 当x ∈(ln (2k ),+∞)时,f ′(x )>0; 所以M =max {f (0),f (k )}=max {-1,(k -1)e k -k 3}. 令h (k )=(k -1)e k -k 3+1, 则h ′(k )=k (e k -3k ),令φ(k )=e k -3k ,则φ′(k )=e k -3≤e -3<0. 所以φ(k )在1,12⎛⎤⎥⎝⎦上单调递减,而12ϕ⎛⎫⎪⎝⎭·φ(1)=32⎫⎪⎭(e -3)<0, 所以存在x 0∈1,12⎛⎤⎥⎝⎦使得φ(x 0)=0,且当k ∈01,2x ⎛⎫⎪⎝⎭时,φ(k )>0, 当k ∈(x 0,1)时,φ(k )<0,所以φ(k )在01,2x ⎛⎫ ⎪⎝⎭上单调递增,在(x 0,1)上单调递减.因为17>028h ⎛⎫= ⎪⎝⎭,h (1)=0, 所以h (k )≥0在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当k =1时取得“=”. 综上,函数f (x )在0,k ]上的最大值M =(k -1)e k -k 3. 【考点定位】本题考查导数的应用,属于拔高题其中最大的一个是最大值,最小的一个是最小值.4.【2016高考新课标3理数】设函数()cos 2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .(Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.【答案】(Ⅰ)'()2sin 2(1)sin f x a x a x =---;(Ⅱ)2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩;(Ⅲ)见解析. 【解析】试题分析:(Ⅰ)直接可求()f x ';(Ⅱ)分1,01a a ≥<<两种情况,结合三角函数的有界性求出A ,但须注意当01a <<时还须进一步分为110,155a a <≤<<两种情况求解;(Ⅲ)首先由(Ⅰ)得到|()|2|1|f x a a '≤+-,然后分1a ≥,110,155a a <≤<<三种情况证明. 试题解析:(Ⅰ)'()2sin 2(1)sin f x a x a x =---. (Ⅱ)当1a ≥时,'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =因此,32A a =-.………4分当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--.令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14at a -=时,()g t 取得极小值,极小值为221(1)61()1488a a a a g a a a--++=--=-.令1114a a --<<,解得13a <-(舍去),15a >.又1(1)(17)|()||(1)|048a a a g g a a --+--=>,所以2161|()|48a a a A g a a-++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩. ………9分(Ⅲ)由(Ⅰ)得'|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-.当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=. 当115a <<时,131884a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,所以'|()|2f x A ≤. 考点:1、三角恒等变换;2、导数的计算;3、三角函数的有界性.5.【2016高考浙江理数】(本小题15分)已知3a ≥,函数F (x )=min{2|x −1|,x 2−2ax +4a −2}, 其中min{p ,q }=,>p p q q p q.≤⎧⎨⎩,,(I )求使得等式F (x )=x 2−2ax +4a −2成立的x 的取值范围; (II )(i )求F (x )的最小值m (a ); (ii )求F (x )在区间0,6]上的最大值M (a ).【答案】(I )[]2,2a ;(II )(i )()20,3242,2a m a a a a ⎧≤≤+⎪=⎨-+->+⎪⎩;(ii )()348,342,4a a a a -≤<⎧M =⎨≥⎩. 【解析】试题分析:(I )分别对1x ≤和1x >两种情况讨论()F x ,进而可得使得等式()2F 242x x ax a =-+-成立的的取值范围;(II )(i )先求函数()21f x x =-,()2242g x x ax a =-+-的最小值,再根据()F x 的定义可得()F x 的最小值()m a ;(ii )分别对02x ≤≤和26x ≤≤两种情况讨论()F x 的最大值,进而可得()F x 在区间[]0,6上的最大值()a M .试题解析:(I )由于3a ≥,故当1x ≤时,()()()22242212120x ax a x x a x -+---=+-->, 当1x >时,()()()22422122x ax a x x x a -+---=--.所以,使得等式()2F 242x x ax a =-+-成立的的取值范围为[]2,2a .(II )(i )设函数()21f x x =-,()2242g x x ax a =-+-,则()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即()20,3242,2a m a a a a ⎧≤≤+⎪=⎨-+->+⎪⎩(ii )当02x ≤≤时,()()()(){}()F max 0,22F 2x f x f f ≤≤==,当26x ≤≤时,()()()(){}{}()(){}F max 2,6max 2,348max F 2,F 6x g x g g a ≤≤=-=.所以,()348,342,4a a a a -≤<⎧M =⎨≥⎩. 考点:1、函数的单调性与最值;2、分段函数;3、不等式.6.【2016年高考四川理数】(本小题满分14分) 设函数f (x )=ax 2-a -ln x ,其中a ∈R. (Ⅰ)讨论f (x )的单调性;(Ⅱ)确定a 的所有可能取值,使得11()xf x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).【答案】(Ⅰ)当x∈0,(时,'()f x <0,()f x 单调递减;当x∈+)∞时,'()f x >0,()f x 单调递增;(Ⅱ)1[,)2a ??.【解析】试题分析:(Ⅰ)对()f x 求导,对进行讨论,研究'()f x 的正负,可判断函数的单调性;(Ⅱ)要证明不等式11()x f x e x->-在(1,)+∞上恒成立,基本方法是设11()()()(1)x h x f x e x x -=--?,当1x >时,1211()2e x h x ax x x-¢=-+-,'()0h x =的解不易确定,因此结合(Ⅰ)的结论,缩小的范围,设()g x =111e x x --11x x e xxe ---,并设()s x =1e x x --,通过研究()s x 的单调性得1x >时,()0g x >,从而()0f x >,这样得出0a ≤不合题意,又102a <<时,()f x 的极小值点1x =>,且)(1)0f f <=,也不合题意,从而12a ≥,此时考虑1211()2e x h x ax x x -¢=-+-得'()h x 2111x x x x>-+-0>,得此时()h x 单调递增,从而有()(1)0h x h >=,得出结论.试题解析:(I )2121'()20).ax f x ax x x x -=-=>( 0a ≤当时,'()f x <0,()f x 在0+∞(,)内单调递减. 0a >当时,由'()f x =0,有x =此时,当x ∈(时,'()f x <0,()f x 单调递减; 当x ∈+)∞时,'()f x >0,()f x 单调递增.所以()s x 在区间1+)∞(,内单调递增. 又由(1)s =0,有()s x >0, 从而当1x >时,()f x >0.当0a ≤,1x >时,()f x =2(1)ln 0a x x --<. 故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >.当12a <<由(I )有(1)0f f <=,从而0g >, 所以此时()f x >()g x 在区间1+)∞(,内不恒成立. 当12a ³时,令()()()(1)h x f x g x x =-?, 当1x >时,3212222111112121()2e 0xx x x x h x ax x x x x x x x x --+-+¢=-+->-+-=>>,因此,()h x 在区间(1,)+?单调递增.又因为(1)=0h ,所以当1x >时,()()()0h x f x g x =->,即()()f x g x >恒成立. 综上,1[,)2a ??.考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.【2015年】1.【2015新课标1理12】设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则的取值范围是( ) (A)-32e ,1)(B)-32e ,34)(C)32e ,34)(D)32e,1)【答案】D【解析】设()g x =(21)x e x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)xg x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,max [()]g x =12-2e-,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤<1,故选D.【考点定位】本题主要通过利用导数研究函数的图像与性质解决不等式成立问题2.【2015课标2理12】设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的的取值范围是()A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞ 【答案】A【解析】记函数()()f x g x x =,则''2()()()xf x f x g x x-=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的的取值范围是(,1)(0,1)-∞- ,故选A . 【考点定位】导数的应用、函数的图象与性质.3.【2015陕西理12】对二次函数2()f x ax bx c =++(为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是()A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上 【答案】A【解析】若选项A 错误时,选项B 、C 、D 正确,()2f x ax b '=+,因为是()f x 的极值点,是()f x 的极值,所以()()1013f f '=⎧⎪⎨=⎪⎩,即203a b a b c +=⎧⎨++=⎩,解得:23b a c a =-⎧⎨=+⎩,因为点()2,8在曲线()y f x =上,所以428a b c ++=,即()42238a a a+⨯-++=,解得:5a =,所以10b =-,8c =,所以()25108f x x x =-+,因为()()()21511018230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以选项A 错误,选项B 、C 、D 正确,故选A . 【考点定位】1、函数的零点;2、利用导数研究函数的极值.【名师点晴】本题主要考查的是函数的零点和利用导数研究函数的极值,属于难题.解题时一定要抓住重要字眼“有且仅有一个”和“错误”,否则很容易出现错误.解推断结论的试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行4.【2015天津理11】曲线2y x =与直线y x =所围成的封闭图形的面积为.【答案】16【解析】在同一坐标系内作出两个函数的图象,解议程组2y x y x ⎧=⎨=⎩得两曲线的交点坐标为(0,0),(1,1),由图可知峡谷曲线所围成的封闭图形的面积()1122300111236S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰.【考点定位】定积分几何意义与定积分运算.5.【2015高考新课标2,理21】(本题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围. 【答案】(Ⅰ)详见解析;(Ⅱ)[1,1]-. 【解析】(Ⅰ)'()(1)2mx f x m e x =-+.若0m ≥,则当(,0)x ∈-∞时,10mx e -≤,'()0f x <;当(0,)x ∈+∞时,10mx e -≥,'()0f x >.若0m <,则当(,0)x ∈-∞时,10mx e ->,'()0f x <;当(0,)x ∈+∞时,10mx e -<,'()0f x >.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12()()1f x f x e -≤-的充要条件是:(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩即1,1,mm e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①,设函数()1t g t e t e =--+,则'()1t g t e =-.当0t <时,'()0g t <;当0t >时,'()0g t >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单调性,()0g m >,即1m e m e ->-;当1m <-时,()0g m ->,即1m e m e -+>-.综上,m 的取值范围是[1,1]-.【考点定位】导数的综合应用.6.【2015高考山东,理21】设函数()()()2ln 1f x x a x x =++-,其中a R ∈.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若()0,0x f x ∀>≥成立,求的取值范围.【答案】(I ):当0a <时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点; 当89a >时,函数()f x 在()1,-+∞上有两个极值点; (II )的取值范围是[]0,1. 【解析】函数()()()2ln 1f x x a x x =++-的定义域为()1,-+∞()2121211ax ax af x ax a x x ++-'=+-=++令()221g x ax ax a =++-,()1,x ∈-+∞(1)当0a =时,()10g x =>,()0f x '>在()1,-+∞上恒成立 所以,函数()f x 在()1,-+∞上单调递增无极值;(2)当0a >时,()()28198a a a a a ∆=--=-①当809a <≤时,0∆≤,()0g x ≥ 所以,()0f x '≥,函数()f x 在()1,-+∞上单调递增无极值; ②当89a >时,0∆> 设方程2210ax ax a ++-=的两根为1212,(),x x x x <因为1212x x +=- 所以,1211,44x x <->- 由()110g -=>可得:111,4x -<<-(3)当0a <时,0∆> 由()110g -=>可得:11,x <-当()21,x x ∈-时,()()0,0g x f x '>>,函数()f x 单调递增; 当()2,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减; 因此函数()f x 有一个极值点. 综上:当0a <时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点; 当89a >时,函数()f x 在()1,-+∞上有两个极值点;(2)当819a <≤时,由()00g ≥,得20x ≤ 所以,函数()f x 在()0,+∞上单调递增,又()00f =,所以,()0,x ∈+∞时,()0f x >,符合题意; (3)当1a >时,由()00g <,可得20x > 所以()20,x x ∈时,函数()f x 单调递减; 又()00f =所以,当()20,x x ∈时,()0f x <不符合题意; (4)当0a <时,设()()ln 1h x x x =-+ 因为()0,x ∈+∞时,()11011x h x x x '=-=>++ 所以()h x 在()0,+∞上单调递增, 因此当()0,x ∈+∞时,()()00h x h >= 即:()ln 1x x +<可得:()()()221f x x a x x ax a x <+-=+-当11x a>-时,()210ax a x +-< 此时,()0,f x <不合题意. 综上所述,的取值范围是[]0,1【考点定位】1、导数在研究函数性质中的应用;2、分类讨论的思想.7.【2015高考安徽,理21】设函数2()f x x ax b =-+. (Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求24a z b =-满足D 1≤时的最大值.【答案】(Ⅰ)极小值为24a b -;(Ⅱ)00||||D a a b b =-+-;(Ⅲ)1.【解析】(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值.②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值. ③当22a -<<,在(,)22ππ-内存在唯一的0x ,使得02sin x a =. 02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(Ⅱ)22x ππ-≤≤时,00000|(sin )(sin )||()sin |||||f x f x a a x b b a a b b -=-+-≤-+-,当00()()0a a b b --≥时,取2x π=,等号成立,当00()()0a a b b --<时,取2x π=-,等号成立,由此可知,函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值为00||||D a a b b =-+-.(Ⅲ)D 1≤,即||||1a b +≤,此时201,11a b ≤≤-≤≤,从而214a zb =-≤. 取0,1a b ==,则||||1a b +≤,并且214a z b =-=. 由此可知,24a zb =-满足条件D 1≤的最大值为1.【考点定位】1.函数的单调性、极值与最值;2.绝对值不等式的应用.8.【2015高考重庆,理20】 设函数()()23xx axf x a R e +=∈(1)若()f x 在0x =处取得极值,确定的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在[)3,+∞上为减函数,求的取值范围。

相关文档
最新文档