第7课时 分式方程

合集下载

第7课时分式与分式方程

第7课时分式与分式方程

第7课时 分式与分式方程
班级: 姓名: 组别: 评价:
1.掌握分式方程的概念.
2.理解分式方程产生增根的原因.
3.会列分式方程解应用题.
1.分式有无意义时求取值范围.
2.分式值为0时求未知数的值.
3.解分式方程.
4.分式的约分,通分.
5.分式的基本性质.
6. 列分式方程解应用题.
1:解分式方程:
(1)
143231=+--x x (2) 114112=---+x x x
1.同步训练P17.自我尝试1—12题(答案写在下面)
1.计算:)3
a a 3a a 3(+--·a 9a 2-= . 2.化简121112+-÷⎪⎭⎫ ⎝
⎛-+a a a a 的结果是( ) A . 1+a B . 11-a C . a
a 1- D . 1-a 3.在我市某一城市美化工程招标时,有甲乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若有甲队单独先做20天,剩下的工程由甲乙合作24天可完成.
(1)乙队单独完成这项工作需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱,还是由甲乙两队全程合作完成该工程省钱?。

第7课时:分式方程的应用1

第7课时:分式方程的应用1

第17章 分式(第7课时)姓 名:学习课题:分式方程的应用学习目标:1、学会列分式方程解应用题(列表法);2、理解检验的必要性,并会进行检验;学习重点:可化为一元一次方程的分式方程的解法。

学习难点:对应用题的理解。

学习过程:一、准备练习1、货车行驶25千米与小车行驶35千米所用的时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A 、25x =35x -20B 、25x -20=35xC 、25x =35x +20D 、25x +20=35x2、分式方程的解答,区别于整式方程的是 。

二、要点突破例1 轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.分析:如果设轮船在静水中航行的速度是x 千米/时,水流的速度是3千米/时,则轮船在顺水中航行的速度是 千米/时;轮船在顺水中航行的速度是 千米/时,先完成表格后解题。

解:设轮船在静水中航行的速度是x 千米/时,由题意得: 380+x =360-x 方程两边同乘以(x +3)(x -3),得 80(x -3)=60(x +3) 解之得:x =21 经检验,x =21是原方程的解且符合题意。

答:轮船在静水中的速度为21千米/时例2 某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?解: 分析:小结:列表法是列方程(组)解应用题的常用方法之一,把已知条件和所求未知纳入表格,从而找出各种数量之间的关系;三、自我检测1、供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.路程 速度 时间 顺水 80 x +3 380+x 逆水 60 x -3 360-x 总量 速度 时间 甲 乙2、一台电子收报机,它的译电效率相当人工译电效率的75倍,译电3 000个字比人工少用2小时28分.求这台收报机与人工每分钟译电的字数.3、某大商场家电部送货人员与销售人员人数之比为1:8,今年由于家电销售明显增多,家电部从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有多少人为送货人员和销售人员?4、甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度.5、学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?。

分式方程教学设计

分式方程教学设计

分式方程教学设计第1篇:分式方程教学设计分式方程(1)一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:检验分式方程解的原因3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要讨论的分式方程.(二)新课板书课题:板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.先由同学讨论如何解这个方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.例2.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为时。

分式方程说课稿5篇

分式方程说课稿5篇

分式方程说课稿分式方程说课稿精选5篇(一)大家好,我今天要给大家讲解一下分式方程的概念和解题方法。

分式方程是一个含有分式的等式,它的未知数出现在分母中。

学习分式方程的目的是为了解决实际问题中涉及到分式的计算。

接下来,我将按照以下四个方面来进行讲解:第一部分,首先我们来了解一下分式方程的基本概念。

分式方程是指方程中含有一个或多个分式的等式,在这个等式中,分母中的未知数被称为该分式方程的解。

第二部分,接下来我们会讲解一下如何解决含有分式的方程。

解分式方程的关键在于寻找方程中未知数的值。

首先,我们可以通过消去分母的方法将方程转化为整式方程,然后求解整式方程得到未知数的值,最后再将此值代入分母中验证。

第三部分,我将给大家演示一些具体的例题,并详细解答每一步的思路。

通过这些例题的讲解,相信大家可以更好地理解分式方程的解题方法。

第四部分,最后我将列举一些常见的分式方程的应用场景,例如时间、速度、液体的混合等,希望大家能够在实际问题中运用所学的知识解决实际问题。

通过今天的讲解,大家应该对分式方程有了更深入的了解,掌握了解决分式方程的方法,并能够应用这些知识解决实际问题。

谢谢大家!分式方程说课稿精选5篇(二)大家好,今天我将对分式的乘除法进行讲解。

在初中数学中,我们经常会遇到分式的乘除运算,因此对于这一知识点的理解和掌握十分重要。

首先,我们先回顾一下分式的乘法。

分式的乘法遵循如下的规则:两个分式相乘,就是将分子与分子相乘,分母与分母相乘。

例如,$\\frac{a}{b} \\times \\frac{c}{d} = \\frac{a \\times c}{b \\times d}$。

这个规则非常简单,只需记住分子与分子相乘,分母与分母相乘即可。

接下来,我们再来看一下分式的除法。

分式的除法可以通过乘以被除数的倒数来实现。

具体来说,将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。

例如,$\\frac{a}{b} \\div \\frac{c}{d} = \\frac{a}{b} \\times \\frac{d}{c} = \\frac{a\\times d}{b \\times c}$。

鲁教版数学八年级上册2.4《分式方程》说课稿2

鲁教版数学八年级上册2.4《分式方程》说课稿2

鲁教版数学八年级上册2.4《分式方程》说课稿2一. 教材分析鲁教版数学八年级上册2.4《分式方程》是分式方程单元的一个重要内容。

这部分内容是在学生已经掌握了分式的概念、性质、运算的基础上进行学习的,旨在让学生掌握分式方程的解法及其应用。

本节课的内容包括分式方程的定义、解法、检验及应用。

通过这部分的学习,学生能够进一步巩固分式的相关知识,提高解决实际问题的能力。

二. 学情分析在进入八年级上册之前,学生已经学习了分式的基本概念、性质和运算,对分式有一定的认识和理解。

但学生在解决实际问题时,往往对分式方程的解法混淆不清,难以将理论知识运用到实际问题中。

因此,在教学过程中,需要关注学生的认知困惑,引导学生将分式的知识与实际问题相结合,提高解决问题的能力。

三. 说教学目标1.知识与技能目标:让学生掌握分式方程的定义、解法、检验及应用,能够熟练解决实际问题中的分式方程。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习意识,使学生感受到数学在生活中的重要作用。

四. 说教学重难点1.教学重点:分式方程的定义、解法、检验及应用。

2.教学难点:分式方程的解法,如何将实际问题转化为分式方程,并运用相关知识解决。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发引导的教学方法,让学生在探究中发现问题、分析问题、解决问题。

2.教学手段:利用多媒体课件、黑板、粉笔等教学工具,直观展示分式方程的过程,提高学生的学习兴趣。

六. 说教学过程1.导入新课:通过复习分式的相关知识,引出分式方程的概念,激发学生的学习兴趣。

2.自主学习:让学生自主探究分式方程的定义、解法、检验,培养学生自主学习的能力。

3.合作交流:学生分组讨论,分享学习心得,互相解答疑惑,提高学生的合作意识。

4.启发引导:教师针对学生的认知困惑进行讲解,引导学生运用分式方程解决实际问题。

中考复习第7课时分式方程课件

中考复习第7课时分式方程课件

当堂检测
第7课时 点 聚 焦
考点1 分式方程的解法
2 1 1.把分式方程 = 转化为一元一次方程时,方程两 x+4 x 边需同乘( D ) A.x B.2x C.x+4 D.x(x+4) 1 2 2.方程 - =0的根是( D ) x- 2 x- 1 A.x=-3 B.x=0 C.x=2 D.x=3 x+m 2 3.若关于x的方程 + =2有增根,则m的值 x-2 2-x 是 0 .
考点聚焦 豫考探究 当堂检测
第7课时┃ 分式方程
解 析
(1)相等关系:甲工程队铺设350米所用的天数=乙
工程队铺设250米所用的天数;(2)不等关系:完成该项工程 的工期不超过10天.

(1)设甲工程队每天能铺设x米,则乙工程队每天
能铺设(x-20)米. 350 250 根据题意得 x = ,解得x=70. x-20 经检验x=70是原分式方程的解. 答:甲、乙工程队每天分别能铺设70米和50米.
完成此项工程需1.5x天. 1 1 1 根据题意,得x+ = , 1.5x 36 解得x=60, 经检验,知x=60是方程的解且符合题意. 1.5x=90. 故甲、乙两公司单独完成此项工程,各需60天,90天.
考点聚焦
豫考探究
当堂检测
第7课时┃ 分式方程
变式题 [2011· 济宁] 某市在道路改造过程中,需要铺设 一条长为1000米的管道,决定由甲、乙两个工程队来完成这 一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工 程队铺设350米所用的天数与乙工程队铺设250米所用的天数 相同. (1)甲、乙工程队每天各能铺设多少米? (2)如果要求完成该项工程的工期不超过10天,那么为两 工程队分配工程量(以百米为单位)的方案有几种?请你帮助 设计出来.

备战九年级中考数学一轮复习第7课 分式方程的解法及应用(全国通用)

备战九年级中考数学一轮复习第7课 分式方程的解法及应用(全国通用)

(1+50%)x km/h,依题意,得:25
解得 x=50,
x
x
30
50%
x
6 60
经检验,x=50是原方程的解,且符合题意, ∴(1+50%)x=75.
答:走路线B的平均速度为75 km/h.
A组 10.(202X·南京)方程 x x 1 的解是__x___14___.
x 1 x 2
11.(202X·广州)方程
1
2
4 x2
4
1.
解:方程两边都乘(x2-4),得 x+2-4=x2-4, 解得x1=2,x2=-1 检验:当x=2时,x2-4=0, ∴x=2不是原分式方程的解 当x=-1时,x2-4≠0, ∴原分式方程的解为x=-1.
考点2 分式方程的应用
8.【例4】(广东中考)某品牌瓶装饮料每箱价格26元,某商店
2.(202X·抚顺)随着快递业务的发展,某快递公司为快递员更换
了快捷的交通工具,公司投递快件的能力由每周3 000件提高到
4 200件,平均每人每周比本来多投递80件,若快递公司的快递
员人数不变,求本来平均每人每周投递快件多少件?设本来平
均每人每周投递快件x件,根据题意可列方程为( D )
A.3000 4200 x x 80
50%)x元/件,
依题意,得: 7200
1+50%
x
3200 x
40,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
∴(1+50%)x=60,32x0080, Nhomakorabea7200
1 50%
x
120
答:甲商品的进价为60元/件,乙商品的进价为40元/件,购
进甲商品120件,购进乙商品80件.

2019-2020年中考数学复习考点精练:第7课时 一元二次方程及其应用

2019-2020年中考数学复习考点精练:第7课时 一元二次方程及其应用

2019-2020年中考数学复习考点精练:第7课时一元二次方程及其应用命题点1 解一元二次方程(近3年39套卷,2015年考查3次,2014年考查3次,2013 年考查3次)1. (2015徐州20(1)题5分)解方程:x2-2x-3=0.2. (2014徐州20(1)题5分)解方程:x2+4x-1=0.3. (2014泰州17(2)题6分)解方程:2x2-4x-1=0.命题点2 一元二次方程根的判别式及根与系数的关系(近3年39套卷,2015年考查6次,2014年考查6次,2013年考查5次)1. (2014苏州7题3分)下列关于x的方程有实数根的是()A.x2-x+1=0B.x2+x+1=0C. (x-1)(x+2)=0D. (x-1)2+1=02. (2015连云港6题3分)已知关于x的方程x2-2x+3k=0有两个不相等的实数根,则k的取值范围是()A. k<13B.k>-13C. k<13且k≠0 D. k>-13且k≠03. (2013镇江8题2分)写一个你喜欢的实数m的值_______,使关于x的一元二次方程x2-x+m=0有两个不相等的实数根.4. (2015南通12题3分)已知方程2x2+4x-3=0的两根分别为x1和x2,则x1+x2的值等于_______.5. (2015南京12题2分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m 的值是________.6. (2015镇江9题2分)关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是________.7. (2015徐州13题3分)已知关于x的方程x2x-k=0有两个相等的实数根,则k的值为_________.8. (2014扬州17题3分)已知a、b是方程x2-x-3=0的两个根,则代数式2a3+b2+3a2-11a-b+5的值为.9. (2015泰州18题8分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.命题点3 一元二次方程的应用(近3年39套卷,2015年考查2次,2014年考查1次, 2013年考查3次)1. (2013南京14题2分)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:__________.第1题图2. (2014南京22题8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长.已知该养殖户第1年的可变成本为2.6万元.设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为_______万元;(2)如果该养殖户第3年的养殖成本....为7.146万元,求可变成本平均每年增长的百分率x.3. (2013连云港23题10分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能...等于48 cm2.”他的说法对吗?请说明理由.4. (2015淮安26题10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售. (1)若将这种水果每斤的售价降低x元,则每天的销售是_______斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?【答案】命题点1 解一元二次方程 1. 解:因式分解得:(x +1)(x -3)=0,…………………………………………………………(3分)即x +1=0或x -3=0,…………………………………………………………………………(4分)解得:x 1=-1 ,x 2=3.……………………………………………………………………………(5分)2. 解:原式可化为(x 2+4x +4-4)-1=0,即(x +2)2=5,…………………………………(3分)两边开方得,x +2=4分)解得x 1x 2.…………………………………………………………………(5分)3. 解:这里a =2,b =-4,c =-1,……………………………………………………………(2分)∵b 2-4ac =16+8=24,…………………………………………………………………………(4分)∴x =424b a -±±=.即x 1,x 2=22-.…………………………………………………………………(6分)命题点2 一元二次方程根的判别式及根与系数的关系1. C 【解析】A .b 2-4ac =(-1)2-4×1×1=-3<0,方程没有实数根,所以A 选项错误;B .b 2-4ac =12-4×1×1=-3<0,方程没有实数根,所以B 选项错误;C .x -1=0或x +2=0,则x 1=1,x 2=-2,所以C 选项正确;D .(x -1)2+1=0,方程左边为正数,方程右边为0,所以方程没有实数根,所以D 选项错误.2. A 【解析】∵方程x 2-2x +3k =0有两个不相等的实数根,∴b 2-4ac >0,即(-2)2-4×3k >0,解得k <13. 3. 0(答案不唯一)【解析】根据题意得:b 2-4ac =1-4m >0,解得:m <14,则m 可以为0,答案不唯一. 4. -2【解析】本题考查了一元二次方程根与系数的关系,∵a =2,b =4,c =-3,∴x 1+x 2=ba=-2. 5. 3,-4【解析】由题意及一元二次方程根与系数的关系知x 1x 2=3,得另一根为3,再由x 1+x 2=-m ,得m =-4.6. a >0【解析】本题考查了一元二次方程根的判别式,本题中的判别式b 2-4ac =-4a ,∵方程没有实数根,则-4a <0,∴a >0.7. -3【解析】本题考查了一元二次方程根的判别式,由于方程有两个相等的实数根,则)2-4×1×(-k )=0,解得k =-3.8. 23【解析】∵a ,b 是方程x 2-x -3=0的两个根,∴a 2-a -3=0,b 2-b -3=0,即a 2=a +3,b 2=b +3,∴2a 3+b 2+3a 2-11a -b +5=2a (a +3)+b +3+3(a +3)-11a -b +5=2a 2-2a +17=2(a +3)-2a +17=2a +6- 2a +17=23. 9. 解:(1)∵a =1,b =2m ,c =m 2-1,……………………………………………………………(1分)∴b 2-4ac =(2m )2-4×1×(m 2-1)=4>0,………………………………………………………(3分)∴方程x 2+2mx +m 2-1=0有两个不相等的实数根;…………………………………………(4分)(2)∵x 2+2mx +m 2-1=0有一个根是3,∴32+2m ×3+m 2-1=0,…………………………………………………………………………(6分)解得,m =-4或m =-2.…………………………………………………………………………(8分)命题点3 一元二次方程的应用1. (x +1)2=25(本题答案不唯一)【解析】解法一:分割法,如解图①,将图形分割成两个长方形,由题意,x (x +1)+x ×1=24即x 2+2x =24,∴x 2+2x -24=0.解法二:补图法,如解图②,将图形补成一个正方形,由题意,(x +1)2-1=24,∴(x +1)2=25.第1题解图2.4分)(2)【思路分析】由题意,等量关系为第三年养殖成本4+2.6(1+x )2万元等于7.146万元,可解方程得结论.解:根据题意,得4+2.6(1+x )2=7.146.解方程,得x 1=0.1,x 2=-2.1(不合题意,舍去). 答:可变成本平均每年增长的百分率是10%.……………………………………………(8分)3. (1)【思路分析】设剪成的较短的一段为x cm ,较长的一段就为(40-x )cm .就可以分别表示出这两个正方形的面积,根据两个正方形的面积之和等于58 cm 2建立方程求出其解即可.解:设剪成的较短的一段为xcm ,较长的一段则为(40-x ) cm ,由题意,得:(4x )2+(404x -)2=58, ………………………………………………………………………………………………(2分)解得:x 1=12,x 2=28,当x =12时,较长的为40-12=28 cm ,………………………………………………………(3分)当x =28时,较长的为40-28=12<28(舍去),…………………………………………(4分)∴较短的一段为12 cm ,较长的一段为28 cm .……………………………………………(5分)(2)【思路分析】设剪成的较短的一段为m cm ,较长的一段则为(40-m ) cm .就可以分别表示出这两个正方形的面积,根据两个正方形的面积之和等于48 cm 2建立方程,如果方程有解就说明小峰的说法错误,否则正确.解:设剪成的较短的一段为m cm ,较长的一段则为(40-m ) cm ,由题意,得: (4m )2+(404m -)2=48,……………………………………………………………………(7分)变形为:m 2-40m +416=0, ∵b 2-4ac =(-40)2-4×416=-64<0, ∴原方程无实数根,…………………………………………………………………………(9分)∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.……………………(10分)4. (1)【思路分析】因为售价每降低0.1元,每天可多售出20斤,售价降低x 元,每天可多售出20×0.1x 斤,每天销售量为100+20×0.1x =(200x +100)(斤). 解:200x +100;………………………………………………………………………………(2分)(2)【思路分析】根据:每天销售利润=(原销售价-成本价-销售价降低部分)×每天销售量,建立方程求解.解:根据题意,得(200x+100)(4-2-x)=300,………………………………………………………………(4分)整理,得2x2-3x+1=0,………………………………………………………………………(6分)(x-1)(2x-1)=0,解得x1=1,x2=0.5,…………………………………………………………………………(8分)当x=0.5时,每天销售量为200×0.5+100=200<260,不合题意,舍去.………………(9分)答:销售这种水果要想每天销售盈利300元,张阿姨需将每斤销售价降低1元.……(10分)2019-2020年中考数学复习考点精练:第8课时分式方程及其应用命题点1 解分式方程(近3年39套卷,2015年考查5次,2014年考查7次,2013年考查9次)解分式方程考查的题型有选择题、填空题和解答题,其中以解答题为主,所给的分式方程有3种形式:①等号两边均为分式;②等号左边为分式,等号右边为常数项或分式与常数项的和或差;③等号左边为两个分式或常数项与分式,等号右边为常数项.1. (2015淮安9题3分)方程1x-3=0的解是__________.2. (2015宿迁12题3分)方程3x-22x-=0的解为________.3. (2015镇江19(1)题5分)解方程:3+4xx-=12.4. (2015南通19(2)题5分)解方程12x=1+5x.5. (2014苏州22题6分)解分式方程:2311xx x+=--.6. (2014连云港19题6分)解方程21322x x x-+=--.7. (2013泰州18题8分)解方程:22 222222x x xx x x x++--=--.命题点2 分式方程的应用(近3年39套卷,2015年考查3次,2014年考查2次,2013年考查2次)1. (2015苏州22题6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?2. (2015扬州24题10分)扬州建城2500年之际,为了加速美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?3. (2013扬州24题10分)某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况.(Ⅰ)九(1)班班长说:“我们班捐款总额为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总额也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.4. (2015连云港23题10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.【答案】命题点1 解分式方程1. x=13【解析】去分母得1-3x=0,移项得-3x=-1,系数化成1得x=13,因为x=13≠0,所以x =13是方程1x-3=0的解. 2. x =6【解析】给分式方程两边同时乘以x (x -2),得3(x -2)-2x =0,解得x =6,经检验x =6是原分式方程的根.3. 解:去分母,得6+2x =4-x ,……………………………………………………………(2分)解得x =-23,……………………………………………………………………………………(4分) 经检验,x =-23是原方程的解.所以,原方程的解为x =-23.………………………………………………………………(5分)4. 解:方程两边同时乘以2x (x +5),得x +5=6x ,………………………………………(2分) 解得x =1,……………………………………………………………………………………(3分) 检验:当x =1时,2x (x +5)≠0,……………………………………………………………(4分) 所以,原分式方程的解为x =1.………………………………………………………………(5分)5. 解:去分母得:x -2=3x -3, ………………………………………………………………(2分)解得:x =12,…………………………………………………………………………………(4分) 经检验x =12是分式方程的解.∴原分式方程的解为x =21. ………………………………………………………………(6分)6. 【思路分析】按照解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数 化为1求解.在去分母时,不要漏掉乘常数项,最后检验.解:去分母,得 2+3(x -2)=-(1-x ),……………………………………………………(2分) 去括号,得2+3x -6=-1+x , 移项,得3x -x =-1+6-2, 合并同类项,得2x =3,系数化为1,得x =32.………………………………………………………………………(4分) 检验:将x =32代入公分母x -2中,得x -2=32-2=-12≠0,……………………………(5分)∴原分式方程的解为x =32.…………………………………………………………………(6分)7. 解:方程两边同时乘以x (x -2)得:(2x +2)(x -2)-x (x +2)=x 2-2,……………(2分) 化简得:-4x =2,解得:x=-12,………………………………………………………………………………(4分)检验:把x=-12代入x(x-2)=54≠0,…………………………………………………(6分)故方程的解是:x=-12 .……………………………………………………………………(8分)命题点2 分式方程的应用1. 【思路分析】根据相等关系“甲做60面彩旗与乙做50面彩旗所用时间相等”列出方程求解,注意不能忘记检验.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗,…………………………(1分)根据题意,得6050x+=50x,………………………………………………………………(3分)解方程,得x=25,…………………………………………………………………………(4分)经检验,x=25是分式方程的解,∴x+5=30.……………………………………………………………………………………(5分)答:甲每小时做30面彩旗,乙每小时做25面彩旗.……………………………………(6分)2. 【思路分析】本题基本的关系是工作量除以工作效率即为工作的时间,关键的等量关系就是实际比原计划提前两天完成,理顺这两个关系即可,但注意解出分式方程的根后要进行验根.解:设原计划每天栽树x棵.………………………………………………………………(1分)根据题意,得1200x-(1120)20%x+=2,……………………………………………………(5分)解得x=100,………………………………………………………………………………(7分)经检验,x=100是原方程的解,…………………………………………………………(9分)答:原计划每天栽树100棵.………………………………………………………………(10分)3. 【思路分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:1200x-(1120)20%x+=8,解此方程即可求得答案.解:设九(1)班人均捐款数为x元,则九(2)班人均捐款数为(1+20%)x元,…(1分)由题意,得1200x-(1120)20%x+=8,………………………………………………………(5分)解得x =25,…………………………………………………………………………………(7分) 经检验,x =25是原分式方程的解,………………………………………………………(8分) 九(2)班的人均捐款数为:(1+20%)x =30.……………………………………………(9分) 答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.………………………(10分)4.(1)【信息梳理】设每张门票的原定票价为x 元,解:设每张门票的原定票价为x 元.……………………………………………………(1分) 由题意得:6000480080x x =-, 解得:x=400,经检验,x =400是原方程的解.答:每张门票的原定票价为400元.………………………………………………………(5分)(2)【信息梳理】设平均每次降价的百分率为y ,由(1)知原定票价为400元.解:设平均每次降价的百分率为y .由题意得:400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去),答:平均每次降价10%.……………………………………………………………………(10分)。

七年级数学人教课标(上册)专题7 分式与分式方程

七年级数学人教课标(上册)专题7 分式与分式方程

分式与分式方程一.选择题1.(2015•淄博第10题,4分)若关于x 的方程+=2的解为正数,则m 的取值范围是( )A . m <6B .m >6C . m <6且m ≠0D . m >6且m ≠8考点: 分式方程的解..分析: 先得出分式方程的解,再得出关于m 的不等式,解答即可. 解答: 解:原方程化为整式方程得:2﹣x ﹣m =2(x ﹣2), 解得:x =2﹣, 因为关于x 的方程+=2的解为正数,可得:,解得:m <6,因为x =2时原方程无解, 所以可得,解得:m ≠0. 故选C .点评: 此题考查分式方程,关键是根据分式方程的解法进行分析. 2、(2015•四川自贡,第3题4分)方程-=+2x 10x 1的解是( ) A .1或-1 B .-1 C .0 D .1 考点:解分式方程、分式方程的解.分析:解分式方程关键是去分母化为整式方程来解,但整式方程的解不一定是分式方程的解,要注意代入最简公分母验根(代入最简公分母后所得到值不能为0).略解:去分母:-=2x 10,解得:,==-12x 1x 1;把,==-12x 1x 1代入+=x 10后知=-x 1不是原分式方程的解,原分式方程的解=x 1.故选D .3. (2015•浙江金华,第2题3分)要使分式1x 2+有意义,则x 的取值应满足【 】A . x 2=-B . x 2≠-C . x 2>-D . x 2≠- 【答案】D .【考点】分式有意义的条件.【分析】根据分式分母不为0的条件,要使1x 2+在实数范围内有意义,必须x 20x 2+≠⇒≠-.故选D .5. (2015•四川省内江市,第5题,3分)函数y =+中自变量x 的取值范围是( )A . x ≤2B .x ≤2且x ≠1 C . x <2且x ≠1 D . x ≠1考点: 函数自变量的取值范围..分析: 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答: 解:根据二次根式有意义,分式有意义得:2﹣x ≥0且x ﹣1≠0, 解得:x ≤2且x ≠1. 故选:B .点评: 本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6. (2015•浙江省绍兴市,第6题,4分)化简xx x -+-1112的结果是A . 1+xB .11+x C . 1-x D . 1-x x考点:分式的加减法.. 专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣===x +1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.(2015·南宁,第12题3分)对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程{}xx x x Max 12,+=-的解为( ).(A )21- (B )22- (C )2121-+或 (D )121-+或 考点:解分式方程.. 专题:新定义.分析:根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可. 解答:解:当x <﹣x ,即x <0时,所求方程变形得:﹣x =,去分母得:x 2+2x +1=0,即x =﹣1;当x >﹣x ,即x >0时,所求方程变形得:x =,即x 2﹣2x =1,解得:x =1+或x =1﹣(舍去),经检验x =﹣1与x =1+都为分式方程的解.故选D .点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8. (2015山东济宁,8,3分)解分式方程时,去分母后变形正确的为( )A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D . 2-(x +2)=3(x -1) 【答案】D 【解析】试题分析: 根据分式方程的特点, 原方程化为:,去分母时,两边同乘以x-1,得:.故选D考点:分式方程的去分母9. (2015•浙江衢州,第18题6分)先化简,再求值:,其中.【答案】解:原式=,当时,原式=【考点】分式的化简求值.【分析】将被除式因式分解,除法变乘法,约分化简,最后代求值即可. 10.(2015•甘肃武威,第20题4分)先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.11.(2015•广东佛山,第17题6分)计算:﹣.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣==.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.(2015•广东广州,第19题10分)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.考点:分式的化简求值;一元一次不等式组的整数解.分析:(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.解答:解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.点评:(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.13、(2015·湖南省常德市,第7题3分)分式方程23122xx x+=--的解为:A、1B、2C、13D、0【解答与分析】这是分式方程的解法:答案为A14.(2015·湖南省益阳市,第6题5分)下列等式成立的是()A.+=B.=C.=D.=﹣考点:分式的混合运算.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D 、原式==﹣,错误,故选C点评: 此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(2015·湖南省衡阳市,第4题3分)若分式的值为0,则的值为( ).A .2或-1B .0C .2D .-1二.填空题1.(2015·湖北省孝感市,第11题3分)分式方程351+=x x 的解是 ☆ . 考点:解分式方程.. 专题:方程思想.分析:观察可得最简公分母是x (x +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x (x +3),得 x +3=5x , 解得x =.检验:把x =代入x (x +3)=≠0.∴原方程的解为:x =. 故答案为:x =.点评:考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2015·湖南省衡阳市,第16题3分)方程的解为.[w*ww~. ^3、(2015·湖南省常德市,第10题3分)若分式211xx-+的值为0,则x=【解答与分析】这其实就分式方程的解法:211xx-+=0,解之得答案为:x=14.(2015•江苏无锡,第12题2分)化简得.考点:约分.分析:首先分别把分式的分母、分子因式分解,然后约去分式的分子与分母的公因式即可.解答:解:==故答案为:.点评:此题主要考查了约分问题,要熟练掌握,解答此题的关键是要明确:①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.5.(2015•广东梅州,第16题5分)若=+,对任意自然数n都成立,则a= ,b﹣;计算:m=+++…+= .考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a 与b的值即可;原式利用拆项法变形,计算即可确定出m的值.解答:解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(2015•广东佛山,第12题3分)分式方程的解是3 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2015•甘肃武威,第12题3分)分式方程的解是 x =2 .考点: 解分式方程.分析:观察可得最简公分母是x (x +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答: 解:方程的两边同乘x (x +3),得 2(x +3)=5x , 解得x =2.检验:把x =2代入x (x +3)=10≠0,即x =2是原分式方程的解. 故原方程的解为:x =2. 故答案为:x =2. 点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根. 8.(2015·南宁,第14题3分)要使分式11-x 有意义,则字母x 的取值范围是 .点:分式有意义的条件..分析:分式有意义,分母不等于零.解答:解:依题意得 x ﹣1≠0,即x ≠1时,分式有意义.故答案是:x ≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零; (2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.9.(2015·贵州六盘水,第14题4分)已知0654≠==ab c ,则a c b +的值为 .考点:比例的性质..分析:根据比例的性质,可用a 表示b 、c ,根据分式的性质,可得答案.解答:解:由比例的性质,得 c =a ,b =A .===.故答案为:.点评:本题考查了比例的性质,利用比例的性质得出a 表示b 、c 是解题关键,又利用了分式的性质.10. (2015·河南,第16题8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .【分析】解答本题应从运算顺序入手,先将括号里通分,能因式分解的进行因式分解,然后将除法变乘法,最后约分化简成最简分式后,将a ,b 的值代入求解.解:原式=abba b a b a -÷--)(22)(……………………………………………………(4分) =b a abb a -⋅-2 =2ab.……………………………………………………(6分)当1,1a b ==时,原式=22152)15(15=-=-+)(.…………(8分)11. (2015·黑龙江绥化,第14题 分)若代数式6265x 2-+-x x 的值等于0 ,则x =_________.考点:分式的值为零的条件..分析:根据分式的值为零的条件可以求出x 的值.解答:解:由分式的值为零的条件得x 2﹣5x +6=0,2x ﹣6≠0,由x 2﹣5x +6=0,得x =2或x =3, 由2x ﹣6≠0,得x ≠3, ∴x =2, 故答案为2.点评:本题考查了分式值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.(2015•广东省,第12题,4分)分式方程321=+x x 的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x , 解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .13.(2015•广东梅州,第15题,3分)若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311 m . 考点:分式的加减法.. 专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a 与b 的值即可;原式利用拆项法变形,计算即可确定出m 的值. 解答:解:=+=,可得2n (a +b )+a ﹣b =1,即,解得:a =,b =﹣;m =(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(2015•安徽省,第14题,5分)已知实数a 、b 、c 满足a +b =ab =c ,有下列结论: ①若c ≠0,则 1 a + 1b =1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 (把所有正确结论的序号都选上). 考点:分式的混合运算;解一元一次方程..分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a +b =ab ≠0,∴+=1,此选项正确;②∵a =3,则3+b =3b ,b =,c =,∴b +c =+=6,此选项错误;③∵a =b =c ,则2a =a 2=a ,∴a =0,abc =0,此选项正确;④∵a 、b 、c 中只有两个数相等,不妨a =b ,则2a =a 2,a =0,或a =2,a =0不合题意,a =2,则b =2,c =4,∴a +b +c =8,此选项正确. 其中正确的是①④. 故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.15.(2015•甘肃兰州,第17题,4分)如果k fed c b a ===(0≠++f d b ),且)(3f d be c a ++=++,那么k =_____【 答 案 】3【考点解剖】本题考查比例的基本性质【解答过程】因为k f e d c b a ===,且0≠++f d b ,所以fd b ec a f ed c b a k ++++====,而)(3f d b e c a ++=++,即3=++++fd b ec a ,所以3=k 。

分式方程教案

分式方程教案

分式方程教案分式方程教案「篇一」关于分式方程的应用的教案范本关于分式方程的应用的教案范本教学目标1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的.方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。

教学重点和难点重点:列分式方程解应用题。

难点:根据题意,找出等量关系,正确列出方程。

教学过程设计一、复习例解方程:(1)2x+xx+3=1; (2)15x=2×15 x+12;(3)2(1x+1x+3)+x-2x+3=1。

解 (1)方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以 x=6。

检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。

(2)方程两边都乘以x(x+12),约去分母,得15(x+12)=30x。

解这个整式方程,得x=12。

检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。

(3)整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1。

即 2x+xx+3=1。

方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3)。

分式方程教案「篇二」一、教学目标1.知识与技能能掌握解分式方程的步骤,会如何解分式方程2.过程与方法通过一步步引导,使学生掌握解分式方程其实是转化为整式方程求解后验证解是否成立个一个过程。

3.情感、态度与价值观探求新知是一个将新知与旧知如何建模链接的过程,边探索,边完成这个过程。

二、重点与难点1.重点分式方程的解法2、难点分式方程转化整式方程时的理论依据及具体步骤三、学情分析及课前反思本节课的学习前,学生已经熟练掌握解整式方程的求解,等式的基本性质,分式的运算。

因此只需要点一下,应该就可以顺利过渡。

教师的任务是如何能恰当地点一下,并让学生知其所以然。

四、重难点突破1、前面复习时复习分式的性质要详尽并板书2、不按照传统的顺序,给出题目后马上给出整式方程,引起学生的学习兴趣。

分式方程优质课ppt课件

分式方程优质课ppt课件

④结论 :确定分式方程的解.
精选ppt课件
24
首页 上页 下页 返回
1、你学到了哪些知识? 要注意什么问题?
2、在学习的过程 中 你有什么体会?
精选ppt课件
25
首页 上页 下页 返回
作业
课本《黄冈经典教程练与测》 16.3分式方程
精选ppt课件
26
首页 上页 下页 返回
精选ppt课件
27
首页 上页 下页 返回
所以,x=4是原方程的根.
精选ppt课件
9
首页 上页 下页 返回
探究分式方程的解法
2、归 纳 上述解分式方程的过程,实质上是将
方程的两边乘以同一个整式,约去分母, 把分式方程转化为整式方程来解.所乘的 整式通常取方程中出现的各分式的最简公 分母.
请动手做一做:
12 解方程:
x 1 x 1 2 精选ppt课件
7
首页 上页 下页 返回
探究分式方程的解法
1、思 考 : 怎样解分式方程呢?
100 60 v20 20v
1)、回顾一下一元一次方程时是怎么去分母 的,从中能否得到一点启发?
2)有没有办法可以去掉分式方程的分母把它 转化为整式方程呢?
精选ppt课件
8
首页 上页 下页 返回
温故知新 例题讲解
x 1 x
17
首页 上页 下页 返回
3、解分式方程一般需要哪几个步骤?
①去分母,化为整式方程:
⑴把各分母分解因式;
⑵找出各分母的最简公分母;
⑶方程两边各项乘以最简公分母;
②解整式方程. ③检验.
必须检验
把未知数的值代入最简公分母,看结果是不 是零,若结果不是0,说明此根是原方程的根; 若结果是0,说明此根是原方程的增根,必须 舍去

【名师面对面】2015中考数学总复习 第2章 第7讲 分式方程课件

【名师面对面】2015中考数学总复习 第2章 第7讲 分式方程课件
1.5倍,这样加工同样多的零件就少用10 小时.采用新工艺前、 后每小时分别加工多少个零件?
设采用新工艺前每小时加工 x 个零件,则采用新工艺后 1200 1200 每小时加工 1.5x 个零件,根据题意得 - =10,解得 x 1.5x x=40,经检验,x=40 是原方程的解且符合实际意义, ∴1.5x=60, 则采用新工艺前、 后每小时分别加工 40 个、 60 个零件
第7讲 分式方程
1.理解分式方程的概念.
2.会解可化为一元一次方程的分式方程,知道解
分式方程的基本思想是把分式方程化为整式方程.
3.了解解分式方程产生增根的原因.
4.会列分式方程解决实际问题.
中考中多以选择题、填空题、解答题的形式考查 以下几点: 1.直接考查分式方程的概念,以及解可化为一 元一次方程的分式方程. 2.找分式方程中各分式的最简公分母,将分式
列分式方程解决实际问题关键是找到“等量关系”, 将实际问题抽象为方程问题.求得结果后需要检验, 一是检验求得的根是否是原分式方程的根;二是根 据具体问题的实际意义,检验其合理性.
【解析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9) 元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2) 设剩余的T恤衫每件售价y元,由利润=售价-进价,根据第二批的销
售利润不低于650元,可列不等式求解.
4500 4950 解:(1)设第一批 T 恤衫每件进价是 x 元,由题意得 = ,解得 x= x x+9 90,经检验 x=90 是分式方程的解,符合题意,则第一批 T 恤衫每件的进价是 90 元 4950 (2)设剩余的 T 恤衫每件售价 y 元,由(1)知,第二批购进 =50(件),由 99 4 1 题意得 120×50× +y×50× -4950≥650,解得 y≥80,则剩余的 T 恤衫每件 5 5 售价至少要 80 元

第7讲 一元一次方程及分式方程

第7讲 一元一次方程及分式方程

()
A.1
B.0
C.2
D.-2
解析 方程两边同乘以x-1,得x-2(x-1)=m,
解得x=2-m,
∵关于 x 的分式方程x-x 1-2=x-m 1无解, ∴x=2-m=1,解得:m=1.
答案 A
课前必读 知识梳理 对接中考 易错防范
步步高中考总复习Βιβλιοθήκη 对接点四:一元一次方程和分式方程的应用 常考角度:1.能利用列方程解应用题的七个步骤解决应用 题; 2.掌握实际问题中的一些等量关系.
步步高中考总复习
第七讲 一元一次方程及分式方程
课前必读 知识梳理 对接中考 易错防范
步步高中考总复习
考纲要求
1.了解方程、一元一次方程及分式方程的概念; a
2.理解方程解的概念;
b
3.了解解分式方程产生增根的原因;
b
4.会解一元一次方程;
c
5.会解可化为一元一次方程的分式方程(方程中的 c
分式不超过两个);
[正解] A
课前必读 知识梳理 对接中考 易错防范
步步高中考总复习
易错点2:忽略隐含条件 辨识:解分式方程时,“分母不为零”这个隐含条件往往 被忽略. 【例题 2】 (2012·兰州)关于 x 的分式方程x-m 1+1-3 x=1 的
解为正数,则 m 的取值范围是________.
课前必读 知识梳理 对接中考 易错防范
课前必读 知识梳理 对接中考 易错防范
步步高中考总复习
易错点1:解法错误 辨识:解法错误主要有: (1)去分母时漏乘; (2)去括号时,括号前是“-”号时,括号内的项忘记变号; (3)移项忘记变号; (4)解分式方程忘记检验.
课前必读 知识梳理 对接中考 易错防范

2020中考数学一轮复习基础考点(课件+新题练及答案)第二单元 方程(组)与不等式3.第7课时 分式方程

2020中考数学一轮复习基础考点(课件+新题练及答案)第二单元  方程(组)与不等式3.第7课时  分式方程

第二单元方程(组)与不等式(组)第7课时 分式方程点对点·课时内考点巩固50分钟1.(2019益阳)解分式方程x 2x -1+21-2x=3时,去分母化为一元一次方程,正确的是( ) A. x +2=3 B. x -2=3C. x -2=3(2x -1)D. x +2=3(2x -1)2.(2019哈尔滨)方程23x -1=3x的解为( ) A. x =311B. x =113C. x =37D. x =733.(2019成都)分式方程x -5x -1+2x=1的解为( ) A. x =-1 B. x =1C. x =2D. x =-24. 2019年10月1日,在慷慨激昂的歌声中,“壮阔三秦”彩车缓缓驶过天安门广场,向新中国成立70周年献礼,彩车的底座由陕西某公司承接,其中甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A. 120x =150x -8B. 120x +8=150x C.120x -8=150x D. 120x =150x +8 5.(2019黄石)分式方程:4x 2-4x -1x -4=1的解为________. 6.方程6(x +1)(x -1)+x x -1=1的解为________.7.(2019凉山州)方程2x -1x -1+21-x 2=1的解是________. 8.已知x =2是关于x 的方程2mx -1+11-x=2的解,则m =________. 9.(全国视野创新题推荐·2019江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A -B -C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:__________________.第9题图10.某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的54倍,购进数量比第一次少了30支,则该商店第一次购进的铅笔,每支的进价是________元.11.(2019烟台)若关于x 的分式方程3x x -2-1=m +3x -2有增根,则m 的值为________. 12.(2018达州)若关于x 的分式方程x x -3+3a 3-x=2a 无解,则a 的值为________. 13.解方程:4x x -3-2=x 3-x.14.(2019毕节)解方程:1-x -32x +2=3x x +1.15.(2019南京)解方程x x -1-1=3x 2-1.16.解分式方程:x +2x -2+1x +2=1.17.(2019广安)解分式方程:x x -2-1=4x 2-4x +4.18.(2019西工大附中模拟)解方程:x x +2=1x -1+1.19.(2019西安铁一中模拟)解方程:32x +1-22x -1=x +14x 2-1.20.(2019云南)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.21.(2019南通)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.点对线·板块内考点衔接2分钟1.(2019遂宁)关于x 的方程k 2x -4-1=x x -2的解为正数,则k 的取值范围是( ) A. k >-4 B. k <4C. k >-4且k ≠4D. k <4且k ≠-4参考答案第7课时 分式方程点对点·课时内考点巩固1. C 【解析】去分母,即方程两边同乘最简公分母,∵该分式方程的最简公分母为2x -1,∴方程两边同乘2x -1,得x -2=3(2x -1).2. C 【解析】去分母得,2x =9x -3,∴x =37.经检验,x =37是原分式方程的根. 3. A 【解析】方程两边同乘x (x -1),得x (x -5)+2(x -1)=x (x -1),去括号,得x 2-5x +2x -2=x 2-x ,即-2x =2,解得x =-1.经检验,x =-1是原分式方程的解.4. D5.x =-1 【解析】分式方程两边同乘x (x -4)得4-x =x 2-4x ,整理得x 2-3x -4=0,解得x 1=4,x 2=-1,检验:当x =4时,x (x -4)=0,当x =-1时,x (x -4)≠0,∴x =-1是原分式方程的解.6.x =-7 【解析】分式方程两边同时乘(x +1)(x -1),去括号得6+x (x +1)=(x +1)(x -1),6+x 2+x =x 2-1,移项、合并同类项得x =-7,经检验,x =-7是原分式方程的解.7.x =-2 【解析】原分式方程可化为2x -1x -1-2(x +1)(x -1)=1,去分母得(2x -1)(x +1)-2=(x +1)(x -1),解得x 1=1,x 2=-2,经检验x 1=1是增根,x 2=-2是原分式方程的解,∴原方程的解为x =-2.8.56 【解析】将x =2代入2mx -1+11-x =2,得22m -1-1=2,解得m =56,经检验,m =56是方程22m -1-1=2的解. 9.6x +61.2x =11 【解析】依题意,小明通过AB 段和BC 段的时间可以分别表示为6x 秒、61.2x秒,故可列方程为6x +61.2x=11. 10. 4 【解析】设第一次购进的铅笔的单价为x 元,则第二次购进的铅笔的单价为54x 元,根据题意列方程有600x -60054x =30,解得x =4.经检验,x =4是原分式方程的解,且符合实际意义. 11. 3 【解析】去分母,得3x -(x -2)=m +3,去括号,得3x -x +2=m +3,合并同类项,得2x =m +1,∴m =2x -1.∵原分式方程有增根,∴x =2.∴m =2x -1=2×2-1=3.12. 1或12【解析】原分式方程去分母得x -3a =2a (x -3),整理得(2a -1)x =3a ,当整式方程无解时,有两种情况:① 2a -1=0,解得a =12;②当x =3时,分式方程无解,∴3(2a -1)=3a ,解得a =1,故当分式方程无解时,a 的值为1或12. 13.解:方程两边同乘(x -3),得4x -2(x -3)=-x ,移项、合并同类项,得3x =-6,解得x =-2.检验:x =-2时,x -3≠0,∴x =-2是原分式方程的解.14.解:方程两边同乘(2x +2),得2x +2-(x -3)=6x ,去括号,得2x +2-x +3=6x ,移项、合并同类项,得5x =5,系数化为1,得x =1.检验:当x =1时,2x +2≠0,∴x =1是原分式方程的解.15.解:方程两边同乘(x -1)(x +1),得x (x +1)-(x -1)(x +1)=3.解得x =2.检验:当x =2时,(x -1)(x +1)≠0.∴x =2是原分式方程的解.16.解:方程两边同乘(x +2)(x -2),得(x +2)2+(x -2)=(x +2)(x -2),去括号,得x 2+4x +4+x -2=x 2-4,移项、合并同类项,得5x =-6,解得x =-65, 检验:当x =-65时,(x +2)(x -2)≠0, ∴x =-65是原分式方程的解. 17.解:方程两边同乘(x -2)2,得x (x -2)-(x -2)2=4,解得x =4,检验:当x =4时,(x -2)2≠0,∴x =4是原分式方程的解.18.解:方程两边同乘(x +2)(x -1),得x (x -1)=(x +2)+(x +2)(x -1),去括号,得x 2-x =x +2+x 2+x -2,移项、合并同类项,得-3x =0,解得x =0,检验:当x =0时,(x +2)(x -1)≠0,∴x =0是原分式方程的解.19.解:方程两边同乘(2x +1)(2x -1),得3(2x -1)-2(2x +1)=x +1,去括号,得6x -3-4x -2=x +1,移项、合并同类项,得x =6,检验:当x =6时,(2x +1)(2x -1)≠0,∴x =6是原分式方程的解.20.解:设甲校师生所乘大巴车的平均速度为x km/h ,则乙校师生所乘大巴车的平均速度为1.5 x km/h.根据题意得240x -2701.5x=1. 解得x =60,经检验,x =60是原分式方程的解,且符合实际.∴1.5x =90.答:甲、乙两所学校师生所乘大巴车的平均速度分别为60 km/h 和90 km/h.21.解:设每套《三国演义》的价格为x 元,列方程,得3200x =2×2400x +40. 解得x =80.经检验,x =80是原分式方程的解,且符合实际.答:每套《三国演义》的价格为80元.点对线·板块内考点衔接1. C 【解析】方程两边同时乘2x -4可得,k -(2x -4)=2x ,整理可得x =k +44,∴⎩⎨⎧k +44>0k +44≠2,解得k >-4且k ≠4,故选择C .。

《分式方程》教案(高效课堂)2022年人教版数学精品

《分式方程》教案(高效课堂)2022年人教版数学精品

分式方程一、教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检 验一个数是不是原方程的增根. 二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根. 三、、课堂引入1.回忆一元一次方程的解法,并且解方程163242=--+x x 2.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程vv -=+206020100.像这样分母中含未知数的方程叫做分式方程. 五、例题讲解[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化 为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便. [分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根. 六、随堂练习解方程 (1)623-=x x (2)1613122-=-++x x x (3)114112=---+x x x (4)22122=-+-x xx x 七、课后练习1.解方程(1)01152=+-+x x (2) xx x 38741836---=- (3)01432222=---++x x x x x (4) 4322511-=+-+x x2.X 为何值时,代数式xx x x 231392---++的值等于2? 八、答案:六、(1)x=18 (2)原方程无解 (3)x=1 (4)x=54 七、1. (1) x=3 (2) x=3 (3)原方程无解 (4)x=1 2. x=23 课后反思:15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .D CA BD CAB所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,• 再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DC A BD CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题.(二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P .EDCABPDC A B∴∠4=∠ACD.∴DE=EC.同理可证:AE=DE.∴AE=C E.板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。

安徽省2014年中考数学专题复习课件 第7课时 分式方程

安徽省2014年中考数学专题复习课件 第7课时 分式方程

2)=0 的未知数取值, 因此该分式方程的增根可能是 1 或-2, 故选 D.
3 x1=-1,x2=3. 3.方程 x-2= 的解是______________ x
皖考解读 考点聚焦 皖考探究 当堂检测
第7课时┃ 分式方程
4.[2012· 临沂] 某工厂加工某种产品,机器每小时加工 产品的数量比手工每小时加工产品的数量的 2 倍多 9 件.若 加工 1800 件这样的产品, 机器加工所用的时间是手工加工所 3 用时间的 倍.求手工每小时加工产品的数量. 7 设手工每小时加工产品 x 件,则机器每小时加 解 工产品(2x+9)件. 1800 3 1800 根据题意,得 × = . x 7 2x+9 解这个方程,得 x=27. 经检验,x=27 是原分式方程的解. 答:手工每小时加工产品 27 件.
皖考解读
考点聚焦
皖考探究
当堂检测
第7课时┃ 分式方程
考点3 分式方程的应用
列分式方程解应用题的一般步骤 审清题意,分清题中的已知量、未知量. 设未知数,设其中某个未知量为x,并注意单位. 根据题意寻找等量关系列方程. 解方程. 既要检验方程的解是否适合方程,又要检验是否符 合实际问题. 写出答案(包括单位).
皖考解读 考点聚焦 皖考探究 当堂检测
第7课时┃ 分式方程
解 析
(1)相等关系:甲工程队铺设 350 米所用的天数
=乙工程队铺设 250 米所用的天数. (2)不等关系:完成该项工程的工期不超过 10 天.
皖考解读
考点聚焦
皖考探究
当堂检测
第7课时┃ 分式方程
(1)设甲工程队每天能铺设 x 米,则乙工程队每天能铺设 350 250 (x-20)米.根据题意得: = .解得 x=70. x x-20 检验:x=70 是原分式方程的解. 答:甲、乙工程队每天分别能铺设 70 米和 50 米. (2)设分配给甲工程队 y 米,则分配给乙工程队(1000-y)米.

2025年九年级中考数学一轮复习课件:第7讲分式方程

2025年九年级中考数学一轮复习课件:第7讲分式方程
可列方程是( C )


-50=


B.


+50=


D.
A.
C.


-50=




+50=


16.[工作量问题](2024·达州)甲、乙两人各自加工120个零件,甲由于个人原因没有和
乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追上乙的进度,加工的速度是
( B )

=0.75
A.0.98×5=0.75x
B.
C.0.75×5=0.98x

D.
=0.98


20.(2023·呼和浩特)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,
甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速
C.m<3
D.m<3且m≠-2
B)
分式方程的根或增根
考查角度1:根据分式方程的根求值


6.已知x=3是分式方程

=2的解,那么实数k的值为(


A.-1
B.0
C.1
D.2


7.若关于x的分式方程 =
有解,则字母a的取值范围是(


A.a=5或a=0
B.a≠0
C.a≠5
D )
D.a≠5且a≠0
两名程序操作员各输入一遍,比较两人的输入是否一致,本次操作需输入2 640个数
据.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.这两名操作员每分钟各
能输入多少个数据?设乙每分钟能输入x个数据,根据题意列方程正确的是( D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-5-
20. (本题 8 分)小明的妈妈上周三在自选商场花 10 元钱买了几瓶酸奶,周六再去买时, 正巧遇上商场搞酬宾活动,同样的酸奶,每瓶比周三便宜 0.5 元,结果小明的妈妈只比 上次多花了 2 元钱,却比上次多买了 50%的酸奶,她上周三买了几瓶酸奶?
21. (本题 6 分)码头工人以每天 30 吨的速度往一艘轮船上装载货物,把轮船装载完毕恰 好用了 8 天时间. (1)轮船到达目的地后开始卸货,卸货速度 v(单位:吨/天)与卸货时间 t(单位:天) 之间有怎样的函数关系?请写出函数关系式. (2)原计划若干天卸载完这批货物,但由于后一批货物要提前 2 天到达,则实际每天卸 货数量比原计划每天多 20%,恰好按时卸载完毕,求原计划每天卸载多少货物?
中考效能测试
一、选择题(每题 3 分,共 24 分) 1.(09 广西柳州)分式方程 A. x 0
1 2 的解是( 2x x 3
C. x 2
) D. x 3 ) D. -3 )
B. x 1
1 2 1 2.若分式 2 + - 的值为零,则 x 为( x -1 x+1 x-1 A. 2 B. -2 C. -1
x+2 m 3.关于 x 的方程 = 产生增根,则 m 的值及增根 x 的值分别为( x+3 x+3 A. m=-1,x=-3 B. m=1,x=-3 C. m=-1,x=3
D. m=1,x=3
4.(09 泰安)某服装厂准备加工 400 套运动装,在加工完 160 套后,采用了新技术,使得工 作效率比原计划提高了 20%, 结果共用了 18 天完成任务, 问计划每天加工服装多少套? 在这个问题中,设计划每天加工 x 套,则根据题意可得方程为( A. )
24. (本题 8 分)某开发公司生产的 960 件新产品需要精加工后才能投放市场.现有甲、乙 两个工厂都想加工这批产品, 已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品 2 多用 20 天, 而甲工厂每天加工的数量是乙工厂每天加工数量的 , 公司需付甲工厂加工费用 3 每天 80 元,需付乙工厂加工费用每天 120 元. (1)甲、乙两个工厂每天各能加工多少件新产品? (2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作 完成,在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 10 元的午餐 补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.
1 26 的解为 ; x 5 1 1 (2)请猜想:关于 x 的方程 x 的解为 x1 a,x2 (a 0) ; x a 1 26 (3)下面以解方程 x 为例,验证(1)中猜想结论的正确性. x 5
(1)请猜想:方程 x 解:原方程可化为 5x 26 x 5 .
3(x>5) ,则 x 的值是 1 1 15.若 x+ =3,则 x2+ 2=__________. x x a+b 3+2 1 16.对于任意不相等的两个数 a, b, 定义一种运算※如下: a※b= , 如 3※2= .若 12※x= , a-b 3-2 2 则 x= . .
三、解答题(本题满分 52 分) 2x x 17. (本题 5 分)解分式方程: = +1. x+1 x-1
3000 2400 12 x x
(1)
解得: x 50 . 经检验 x 50 是原方程的解. (2)
答:甲同学每分钟打字 50 个,乙同学每分钟打字 38 个. (3) (1)请从(1) 、 (2) 、 (3)三个步骤说明李明同学的解答过程是否正确,若有不正确的步 骤改正过来. (2)请你用直接设未知数列方程的方法解决这个问题.
22. (本题 6 分) (09 滨州)观察下列方程及其解的特征:
1 2 的解为 x1 x2 1; x 1 5 1 (2) x 的解为 x1 2,x2 ; x 2 2 1 10 1 (3) x 的解为 x1 3,x2 ; x 3 3
(1) x …… 解答下列问题: ……
13.某县为提高水资源的利用效率,在各住户家内安装了循环用水装置,经测算原来 b 天用 水 n 吨,现在这些水可多用 4 天,现在每天比原来少用水 吨.
14.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长 度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和
中考热点难点突破
12 3x-1 3x+1 例 1. 解方程: 2 = - . 9x -1 3x+1 3x-1 分析:解分式方程,要掌握好去分母、约分、整式的乘法、常用公式、去括号、合并同 类项等细节,最后别忘记验根.解这类问题要注意去括号后的符号确定,以及整式的乘法中
-1-
漏乘细节上. 解:方程两边同乘 9x2-1,得 12=(3x-1)2-(3x+1)2, 解得 x=-1. 检验:x=-1 时,9x2-1≠0, 所以 x=-1 是原分式方程的解. 例 2. 甲、乙两地相距 50 千米,A 骑自行车从甲地到乙地,出发 3 小时 20 分钟后,B 骑摩托车也从甲地去乙地.已知 B 的速度是 A 的速度的 3 倍,结果两人同时到达乙地.求 A、B 两人的速度. 分析:此题是典型的追及问题,其中的等量关系为甲、乙两人所走的路程相等,所以只 要表示出各自行走的路程,然后令它们相等就可以了.题中还要注意的问题是甲、乙两人所 走的时间, 在乙追及甲的过程中, 甲依然在走, 除了先走的时间外, 又走了同乙一样的时间, 所以甲走了这两个时间之和. 解:设 A 的速度为 x 千米/时,则 B 的速度为 3x 千米/时,依题意可得 50 50 10 = + , x 3x 3 解得:x=10. 经检验 x=10,是原分式方程的解. 答:A 的速度为 10 千米/时,则 B 的速度为 30 千米/时. 例 3.(09 孝感市)关于 x 的方程 A.a>-1 C.a<-1 分析:对于方程
第 7 课时 分式方程
基础知识回放
考点 1 分式方程的解法 1.①中含有未知数的方程叫做分式方程. 2.解分式方程的基本思想是通过“去分母”,即方程两边同乘②,化为整式方程. 3.分式方程可能产生③,所以必须验根.验根有两种方法:一是将整式方程得到的解 代入原方程进行检验.二是可把解得的根直接代人最简公分母中,如果不使公分母等于 0, 就是原方程的根;如果使公分母等于 O,就是原方程的增根,必须舍去. 4.用去分母法解分式方程的一般步骤: ⑴去分母,将分式方程两边同时乘以一个最简公分母,把分式方程转化为整式方程; ⑵解所得的整式方程 ⑶验根做答. 5.增根即是使原分式方程的分母为 O 的值. 温馨提示: ⑴ 解分式方程比解整式方程的步骤多一步检验, 这种检验不是检查解题过 程中是否有失误,而是检查是否有增根;⑵分式方程的增根是所得整式方程的根,但不是分 式方程的根; ⑶解分式方程产生增根的原因是将分式方程进行去分母造成的。 根据等式性质, 等式两边都乘以(或除以)同一个不为零的数(或整式) ,所得的结果仍是等式。这就是说, 等式两边不能乘以(或除以)零。但去分母过程中,因为事先一般不知道这个整式的值是否 为零,如果在方程两边同时乘以的整式为零,就是方程产生增根了;⑷分式方程的增根必须 满足两个条件: 第一是由分式方程化成整式方程的根; 第二能使分式方程的最简公分母为零。 考点 2 列分式方程解应用题 列分式方程与解其它方程类似.步骤可分为:审题、设未知数、列方程、解方程、检验 并写出答案.注意:要结合实际问题,看此解在实际问题中是否有意义.
2
-6-
(下面请大家用配方法写出解此方程的详细过程)
23. (本题 8 分) (’09 新疆维吾尔自治区)甲、乙两同学学习计算机打字,甲打一篇 3000 字的文章与乙打一篇 2400 字的文章所用的时间相同.已知甲每分钟比乙每分钟多打 12 个字,问甲、乙两人每分钟各打多少个字? 李明同学是这样解答的: 设甲同学打印一篇 3 000 字的文章需要 x 分钟, 根据题意,得
7.某工地调来 72 人参加挖土和运土,已知 3 人挖出的土 1 人恰好能全部运走,怎样调配劳 动力才能使挖出的土能及时运走且不窝工?设派 x 人挖土,其余人运土,列方程为: 72-x 1 x x (1) = ; (2)72-x= ; (3)x+3x=72; (4) =3. x 3 3 72-x 其中所列方程正确的有( A. 1 个 B. 2 个 ) C. 3 个 D. 4 个
160 400 18 x (1 20%) x
160 400 160 18 x 20 % x
B.
160 400 160 18 x (1 20%) x 400 400 160 18 x (1 20%) x
C.
D.
5.甲、乙、丙三个数依次相差 1,若乙数的倒数与丙的倒数的两倍之和与甲数的倒数的 3 倍
-4-
谐.例如,三根弦长度之比是 15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将 分别发出很调和的乐声 do 、m i 、 so .研究 15 、 12 、 10 这三个数的倒数发现:
1 1 1 1 .我们称 15、12、10 这三个数为一组调和数.现有一组调和数:x、5、 12 15 10 12
-2-
所以-a-1>0, 解得 a<-1. ∵ 该方程是分式方程,考虑 x≠1, ∴ -a-1≠1, ∴ a≠-2, ∴ a<-1 且 a≠-2.故选 D. a 4-x 例 4. 如果关于 x 的方程 +2= 有增根,则 a 的值是多少? x-3 x-3 分析:本题考察分式方程增根的性质,可先将分式方程化为整式方程,再将增根代入化 简后的整式方程。所谓增根是使方程的分母为零的未知数的值。 解:去分母,得: a 2( x 3) 4 x ,依题意 x 3是增根。 把 x 3代入整式方程,得 a 1
18. (本题 5 分)阅读思考题 3x+1 2x 解方程: 2 = 2 x -1 x -1 解:方程两边都乘以 x2-1,得 2x=3x+1 解这个方出来,并把它改正.
相关文档
最新文档