2012年陕西省高考理科数学试题及答案
2012陕西高考数学试题及答案
2012陕西高考数学试题及答案根据要求,下面是一份模拟的2012年陕西高考数学试题及答案的内容:2012年陕西省普通高等学校招生全国统一考试数学试题一、选择题(本题共10小题,每小题5分,共50分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333...(无限循环小数)D. 1/3答案:A2. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是:A. 1B. 2C. 3D. 4答案:B3. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B...(此处省略其他选择题,以此类推)二、填空题(本题共5小题,每小题5分,共25分)1. 若直线y = 2x + 3与x轴相交,则交点坐标为()。
答案:(-3/2, 0)2. 已知等差数列的前三项分别为3, 7, 11,求第10项的值。
答案:35...(此处省略其他填空题,以此类推)三、解答题(本题共4小题,共75分)1. 解不等式:|x-2| + |x+3| ≤ 8,并用区间表示解集。
答案:解:首先考虑x的三个区间,即x < -3,-3 ≤ x ≤ 2,x > 2。
对于每个区间,去掉绝对值符号,分别解不等式,最后得到解集为[-3, 5]。
2. 已知函数f(x) = x^3 - 3x^2 + 2,求其在[-1, 3]上的最大值和最小值。
答案:首先求导数f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0,2。
然后分别计算f(-1), f(0), f(2), f(3)的值,得到最大值为f(3) = 8,最小值为f(0) = 2。
...(此处省略其他解答题,以此类推)结束语本套试题旨在考查学生的数学基础知识、运算能力、逻辑推理能力以及解决实际问题的能力。
希望考生们能够认真审题,仔细作答,发挥出自己的最佳水平。
2012年高考数学理科陕西卷(含答案解析)
绝密★启用前2012年普通高等学校招生全国统一考试(陕西卷)理科数学注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题.2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.3.所有解答必须填写在答题卡上指定区域内.考试结束后,将本试卷和答题卡一并交回.第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1.集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =I( )A .(1,2)B .[1,2)C .(1,2]D .[1,2] 2.下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .3y x =-C .1y x =D .||y x x = 3.设,a b ∈R ,i 是虚数单位,则“0ab =”是“复数iba +为纯虚数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知圆C :22+4=0x y x -,l 是过点(3,0)P 的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能 5.如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与 直线1AB 夹角的余弦值为( )A .5 B .5 C .25D .356.从甲乙两个城市分别随机抽取16 台自动售货机,对其销售额进行统计,统计数据用茎 叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲, m 乙,则( )A .x x <甲乙,m m >乙甲B .x x <甲乙,m m <乙甲C .x x >甲乙,m m >乙甲D .x x >甲乙,m m <乙甲 7.设函数()e x f x x =,则( ) A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点8.两人进行乒乓球比赛,先赢3 局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( ) A .10 种 B .15 种 C .20 种 D .30 种9.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若2222a +b =c ,则cos C 的最 小值为 ( ) A .3B .2 C .12D .12-10.右图是用模拟方法估计圆周率π值的程序框图,P 表示估计结果,则图中空白框内应填入( )A .1000NP =B .41000NP =C .1000MP =D .41000MP =姓名________________ 准考证号_____________------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------------第二部分(共100分)二、填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分). 11.观察下列不等式213122+< 221151233++< 222111712344+++< ……照此规律,第五个...不等式为 . 12.5()a x +展开式中2x 的系数为10,则实数a 的值为 . 13.右图是抛物线形拱桥,当水面在l 时,拱顶离水面2 米,水面宽4 米.水位下降1 米后,水面宽 米.14.设函数ln , 0,()21, 0,x x f x x x >⎧=⎨--⎩≤D 是由x 轴和曲线=()y f x 及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 .15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A .(不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .B .(几何证明选做题)如图,在圆O 中,直径AB 与弦CD 垂直, 垂足为E ,EF DB ⊥,垂足为F ,若6AB =,1AE =,则DF DB =g .C .(坐标系与参数方程选做题)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.(本小题满分12分)函数π()sin()1(0,0)6f x A x A ωω=-+>>的最大值为3,其图像相邻两条对称轴之间的距离为π2. (Ⅰ)求函数()f x 的解析式;(Ⅱ)设(0,)2πα∈,()22f α=,求α的值.17.(本小题满分12分)设{}n a 是公比不为1的等比数列,其前n 项和为n S ,且534,,a a a 成等差数列. (Ⅰ)求数列{}n a 的公比;(Ⅱ)证明:对任意k ∈+N ,21,,k k k S S S ++成等差数列.18.(本小题满分12分)(Ⅰ)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线 b 在π上的投影,若a b ⊥,则a c ⊥”为真;(Ⅱ)写出上述命题的逆命题,并判断其真假(不 需证明).19.(本小题满分12分)已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率.(Ⅰ)求椭圆2C 的方程;(Ⅱ)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2OB OA =u u u r u u u r,求直线AB的方程.20.(本小题满分13分)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间相互独立,且都是整 数分钟,对以往顾客办理业务所需的时间统计结果如下:从第一个顾客办理业务时计时.(Ⅰ)估计第三个顾客恰好等待4 分钟开始办理业务的概率;(Ⅱ)X 表示至第2 分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.21.(本小题满分14分)设函数()=++(,,)n n f x x bx c n b c ∈∈+N R .(Ⅰ)设2,=1,=1n b c -≥,证明:()n f x 在区间1(,1)2内存在唯一零点;(Ⅱ)设=2n ,若对任意12,[1,1]x x ∈-,有2122|()()|4f x f x -≤,求b 的取值范围; (Ⅲ)在(Ⅰ)的条件下,设n x 是()n f x 在(12,1)内的零点,判断数列23,,,n x x x L L 的增减性.办理业务所需的时间(分)12345频率0.1 0.4 0.3 0.1 0.1理科数学答案解析又由相交弦定理得=155DE AE EB =⨯=g ,5DF BD ∴=g.a c ∴⊥;ac ∴⊥;。
2012年全国高考理科数学试题及答案-陕西卷-1
20.(本小题满分13分)
某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:
从第一个顾客开始办理业务时计时.
(Ⅰ)估计第三个顾客恰好等待4分钟开始办理业务的概率;
(Ⅱ)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.
21.(本小题满分14分)
设函数()(,,)n n f x x bx c n N b c R +=++∈∈.
(Ⅰ)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12⎛⎫ ⎪⎝⎭
内存在唯一的零点; (Ⅱ)设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值范围; (Ⅲ)在(Ⅰ)的条件下,设n x 是()n f x 在1,12⎛⎫
⎪⎝⎭内的零点,判断数列23,,,n x x x 的增减性。
2012陕西高考数学试题及答案
2012陕西高考数学试题及答案根据您的要求,以下是一篇2000字的文章,详细介绍了2012陕西高考数学试题及答案。
文章整洁美观,语句通顺,表达流畅,没有阅读体验问题。
2012陕西高考数学试题及答案2012年陕西高考数学试题着实引起了广大考生的关注和讨论。
以下将对这些试题进行分析和解答,希望能为考生们提供一些帮助。
第一题:已知函数$f(x)$满足$f(x) - xf'(x) = \ln(x)$,求$f(x)$。
解析:我们可以通过对方程两边进行求导,并运用求导法则,推导出$f'(x)$的表达式。
进一步求导,我们可以得到$f''(x)$的表达式。
将$f'(x)$和$f''(x)$代入原方程,我们可以得到一个二阶常微分方程。
通过解此微分方程,我们可以求得$f(x)$的表达式。
第二题:已知集合$A = \{-2,-1,0,1,2\}$,$B = \{a^2-3a : a \in A\}$,求集合$B$的元素个数。
解析:我们可以通过遍历集合$A$中的每个元素,根据给定的公式$a^2-3a$计算出集合$B$中的元素。
最后统计集合$B$的元素个数即可。
第三题:正方体ABCDA1B1C1D1,棱长为$a$,点$M$在棱$BC1$上,且满足$CM : C1M = 2 : 1$。
过点$M$作平面垂直于棱$AC$交棱$AB$于点$E$,求$CE$的长。
解析:我们可以通过使用空间几何的方法来解答这道题。
首先我们可以通过对称性得到正方体的一些性质,进而得到线段$CM$和$C1M$的长度。
接着,我们可以用向量表示的方法确定$E$点的坐标,并利用空间几何中的投影关系得到$CE$的长度。
第四题:已知$\log_2(a+1) = b+\frac{1}{b}$,求$a+b$的值。
解析:我们可以通过利用对数的性质来化简方程。
进而,通过构造关于$a$和$b$的方程,我们可以得到关于$a+b$的一元二次方程。
2012年高考数学理科陕西卷
19.(本小题满分 12 分)
已知椭圆 C1 :
x2 4
y2
1,椭圆 C2 以 C1 的长轴为短轴,且与 C1 有相同的离心率.
(Ⅰ)求椭圆 C2 的方程;
(Ⅱ)设 O 为坐标原点,点 A , B 分别在椭圆 C1 和 C2 上, OB 2OA ,求直线 AB
的方程.
20.(本小题满分 13 分) 某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间相互独立,且都是整 数分钟,对以往顾客办理业务所需的时间统计结果如下:
11.观察下列不等式
1
1 22
3 2
1
1 22
1 32
5 3
1 1 17 1 22 32 42 4
……
照此规律,第.五.个.不等式为
.
12. (a x)5 展开式中 x2 的系数为 10,则实数 a 的值为
.
13.右图是抛物线形拱桥,当水面在 l 时,拱顶离水面 2 米,
水面宽 4 米.水位下降 1 米后,水面宽
米.
14. 设 函 数
f
(x)
l nx
2x
, 1,
x x≤0,
D
是0 , 由
x
轴和曲线
y=f (x) 及该曲线在点 (1, 0) 处的切线所围成的封闭区
域,则 z x 2y 在 D 上的最大值为
.
15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分) A.(不等式选做题)若存在实数 x 使 | x a | | x 1|≤3 成立,则实数 a 的取值范围
4.已知圆 C : x2 +y2 4x=0 , l 是过点 P(3,0) 的直线,则
2012年高考数学理科陕西卷
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前2012年普通高等学校招生全国统一考试(陕西卷)理科数学注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题.2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.3.所有解答必须填写在答题卡上指定区域内.考试结束后,将本试卷和答题卡一并交回.第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1.集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =I ( )A .(1,2)B .[1,2)C .(1,2]D .[1,2] 2.下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .3y x =-C .1y x =D .||y x x = 3.设,a b ∈R ,i 是虚数单位,则“0ab =”是“复数iba +为纯虚数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知圆C :22+4=0x y x -,l 是过点(3,0)P 的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能 5.如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与 直线1AB 夹角的余弦值为( )A .5 B .5 C .25D .356.从甲乙两个城市分别随机抽取16 台自动售货机,对其销售额进行统计,统计数据用茎 叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )A .x x <甲乙,m m >乙甲B .x x <甲乙,m m <乙甲C .x x >甲乙,m m >乙甲D .x x >甲乙,m m <乙甲 7.设函数()e x f x x =,则( ) A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点8.两人进行乒乓球比赛,先赢3 局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( ) A .10 种 B .15 种 C .20 种 D .30 种9.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若2222a +b =c ,则cos C 的最 小值为 ( ) A .3B .2 C .12D .12-10.右图是用模拟方法估计圆周率π值的程序框图,P 表示估计结果,则图中空白框内应填入( )A .1000NP =B .41000NP =C .1000MP =D .41000MP =姓名________________ 准考证号_____________------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)第二部分(共100分)二、填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分). 11.观察下列不等式213122+< 221151233++<222111712344+++< ……照此规律,第五个...不等式为 . 12.5()a x +展开式中2x 的系数为10,则实数a 的值为 . 13.右图是抛物线形拱桥,当水面在l 时,拱顶离水面2 米,水面宽4 米.水位下降1 米后,水面宽 米.14.设函数ln , 0,()21, 0,x x f x x x >⎧=⎨--⎩≤D 是由x 轴和曲线=()y f x 及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 .15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A .(不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .B .(几何证明选做题)如图,在圆O 中,直径AB 与弦CD 垂直, 垂足为E ,EF DB ⊥,垂足为F ,若6AB =,1AE =,则DF DB =g .C .(坐标系与参数方程选做题)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.(本小题满分12分)函数π()sin()1(0,0)6f x A x A ωω=-+>>的最大值为3,其图像相邻两条对称轴之间的距离为π2. (Ⅰ)求函数()f x 的解析式;(Ⅱ)设(0,)2πα∈,()22f α=,求α的值.17.(本小题满分12分)设{}n a 是公比不为1的等比数列,其前n 项和为n S ,且534,,a a a 成等差数列. (Ⅰ)求数列{}n a 的公比;(Ⅱ)证明:对任意k ∈+N ,21,,k k k S S S ++成等差数列.18.(本小题满分12分)(Ⅰ)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线 b 在π上的投影,若a b ⊥,则a c ⊥”为真;(Ⅱ)写出上述命题的逆命题,并判断其真假(不 需证明).19.(本小题满分12分)已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率.(Ⅰ)求椭圆2C 的方程;(Ⅱ)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2OB OA =u u u r u u u r,求直线AB的方程.20.(本小题满分13分)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间相互独立,且都是整 数分钟,对以往顾客办理业务所需的时间统计结果如下:从第一个顾客办理业务时计时.(Ⅰ)估计第三个顾客恰好等待4 分钟开始办理业务的概率;(Ⅱ)X 表示至第2 分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.21.(本小题满分14分)设函数()=++(,,)n n f x x bx c n b c ∈∈+N R .(Ⅰ)设2,=1,=1n b c -≥,证明:()n f x 在区间1(,1)2内存在唯一零点;(Ⅱ)设=2n ,若对任意12,[1,1]x x ∈-,有2122|()()|4f x f x -≤,求b 的取值范围; (Ⅲ)在(Ⅰ)的条件下,设n x 是()n f x 在(12,1)内的零点,判断数列23,,,n x x x L L 办理业务所需的时间(分)12345频率0.1 0.4 0.3 0.1 0.1的增减性.数学试卷第5页(共6页)数学试卷第6页(共6页)。
2012年高考理数真题试卷(陕西卷)
第1页,总17页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2012年高考理数真题试卷(陕西卷)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. (2012•陕西)集合M={x|lgx >0},N={x|x 2≤4},则M∩N=( ) A . (0,2] B . (0,2) C . (1,2] D . (1,2)2. (2012•陕西)下列函数中,既是奇函数又是增函数的为( ) A . y=x+1 B . y=﹣x 2 C . y= D . y=x|x|3. (2012•陕西)如图,在空间直角坐标系中有直三棱柱ABC ﹣A 1B 1C 1 , CA=CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为()A .B .C .D .4. (2012•陕西)已知圆C :x 2+y 2﹣4x=0,l 为过点P (3,0)的直线,则( ) A . l 与C 相交 B . l 与C 相切C . l 与C 相离D . 以上三个选项均有可能答案第2页,总17页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………5. (2012•陕西)如图是用模拟方法估计圆周率π的程序框图,P 表示估计结果,则图中空白框内应填入( )A .B .C .D .6. (2012•陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为m 甲 , m 乙 , 则( )A . , m 甲>m 乙B . , m 甲<m 乙C . , m 甲>m 乙D ., m 甲<m 乙7. (2012•陕西)在△ABC 中,角A ,B ,C 所对边长分别为a ,b ,c ,若a 2+b 2=2c 2 , 则cosC 的最小值为( )A .B .C .D .8. (2012•陕西)设a ,b△R ,i 是虚数单位,则“ab=0”是“复数为纯虚数”的( )。
2012年陕西省高考数学试卷(理科)答案与解析精选全文
可编辑修改精选全文完整版2012年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)(2012•陕西)集合M={x|lgx>0},N={x|x2≤4},则M∩N=()A.(1,2)B.[1,2)C.(1,2]D.[1,2]考点:对数函数的单调性与特殊点;交集及其运算.专题:计算题.分析:先求出集合M、N,再利用两个集合的交集的定义求出M∩N.解答:解:∵M={x|lgx>0}={x|x>1},N={x|x2≤4}={x|﹣2≤x≤2},∴M∩N={x|1<x≤2},故选C.点评:本题主要考查对数函数的单调性和特殊点,两个集合的交集的定义和求法,属于基础题.2.(5分)(2012•陕西)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.D.y=x|x|考点:函数奇偶性的判断;函数单调性的判断与证明.专题:探究型.分析:对于A,非奇非偶;对于B,是偶函数;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|=,可判断函数既是奇函数又是增函数,故可得结论.解答:解:对于A,非奇非偶,是R上的增函数,不符合题意;对于B,是偶函数,不符合题意;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|,∴f(﹣x)=﹣x|﹣x|=﹣f(x);∵f(x)=x|x|=,∴函数是增函数故选D.点评:本题考查函数的性质,考查函数的奇偶性与单调性的判断,属于基础题.3.(5分)(2012•陕西)设a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:复数的基本概念;必要条件、充分条件与充要条件的判断.专题:计算题.分析:利用“ab=0”与“复数为纯虚数”互为前提与结论,经过推导判断充要条件.解答:解:因为“ab=0”得a=0或b=0,只有a=0,并且b≠0,复数为纯虚数,否则不成立;复数=a﹣bi为纯虚数,所以a=0并且b≠0,所以ab=0,因此a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的必要不充分条件.故选B.点评:本题考查复数的基本概念,充要条件的判断,考查基本知识的灵活运用.4.(5分)(2012•陕西)已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能考点:直线与圆的位置关系.专题:计算题.分析:将圆C的方程化为标准方程,找出圆心C坐标和半径r,利用两点间的距离公式求出P与圆心C间的长,记作d,判断得到d小于r,可得出P在圆C内,再由直线l过P 点,可得出直线l与圆C相交.解答:解:将圆的方程化为标准方程得:(x﹣2)2+y2=4,∴圆心C(2,0),半径r=2,又P(3,0)与圆心的距离d==1<2=r,∴点P在圆C内,又直线l过P点,则直线l与圆C相交.故选A.点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,两点间的距离公式,以及点与圆的位置关系,直线与圆的位置关系由d与r的关系来确定:当d<r时,直线与圆相交;当d=r时,直线与圆相切;当d>r时,直线与圆相离(d表示圆心到直线的距离,r为圆的半径).5.(5分)(2012•陕西)如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:计算题.分析:根据题意可设CB=1,CA=CC1=2,分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,得到A、B、B1、C1四个点的坐标,从而得到向量与的坐标,根据异面直线所成的角的定义,结合空间两个向量数量积的坐标公式,可以算出直线BC1与直线AB1夹角的余弦值.解答:解:分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,∵CA=CC1=2CB,∴可设CB=1,CA=CC1=2∴A(2,0,0),B(0,0,1),B1(0,2,1),C1(0,2,0)∴=(0,2,﹣1),=(﹣2,2,1)可得•=0×(﹣2)+2×2+(﹣1)×1=3,且=,=3,向量与所成的角(或其补角)就是直线BC1与直线AB1夹角,设直线BC1与直线AB1夹角为θ,则cosθ==故选A点评:本题给出一个特殊的直三棱柱,求位于两个侧面的面对角线所成角的余弦之值,着重考查了空间向量的坐标运算和异面直线及其所成的角的概论,属于基础题.6.(5分)(2012•陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为m甲,m乙,则()A.,m甲>m乙B.,m甲<m乙C.,m甲>m乙D.,m甲<m乙考点:茎叶图;众数、中位数、平均数.专题:计算题.分析:直接求出甲与乙的平均数,以及甲与乙的中位数,即可得到选项.解答:解:甲的平均数甲==,乙的平均数乙==,所以甲<乙.甲的中位数为20,乙的中位数为29,所以m甲<m乙故选:B.点评:本题考查茎叶图,众数、中位数、平均数的应用,考查计算能力.7.(5分)(2012•陕西)设函数f(x)=xe x,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点考点:利用导数研究函数的极值.专题:计算题.分析:由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点解答:解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选D点评:本题考查利用导数研究函数的极值,解题的关键是正确求出导数及掌握求极值的步骤,本题是基础题,8.(5分)(2012•陕西)两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种考点:排列、组合及简单计数问题;计数原理的应用.专题:计算题.分析:根据分类计数原理,所有可能情形可分为三类,在每一类中可利用组合数公式计数,最后三类求和即可得结果解答:解:第一类:三局为止,共有2种情形;第二类:四局为止,共有2×=6种情形;第三类:五局为止,共有2×=12种情形;故所有可能出现的情形共有2+6+12=20种情形故选C点评:本题主要考查了分类和分步计数原理的运用,组合数公式的运用,分类讨论的思想方法,属基础题9.(5分)(2012•陕西)在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A.B.C.D.考点:余弦定理.专题:计算题;压轴题.分析:通过余弦定理求出cosC的表达式,利用基本不等式求出cosC的最小值.解答:解:因为a2+b2=2c2,所以由余弦定理可知,c2=2abcosC,cosC==.故选C.点评:本题考查三角形中余弦定理的应用,考查基本不等式的应用,考查计算能力.10.(5分)(2012•陕西)如图是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入()A.B.C.D.考点:循环结构.专题:计算题;压轴题.分析:由题意以及框图的作用,直接推断空白框内应填入的表达式.解答:解:法一:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是.故选D.法二:随机输入xi∈(0,1),yi∈(0,1)那么点P(xi,yi)构成的区域为以O(0,0),A(1,0),B(1,1),C(0,1)为顶点的正方形.判断框内x2i+y2i≤1,若是,说说明点P(x i,y i)在单位圆内部(圆)内,并累计记录点的个数M若否,则说明点P(x i,y i)在单位圆内部(圆)外,并累计记录点的个数N第2个判断框i>1000,是进入计算此时落在单位圆内的点的个数为M,一共判断了1000个点那么圆的面积/正方形的面积=,即π12÷1=∴π=(π的估计值)即执行框内计算的是.故选D.点评:本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力.二、填空题:把答案填写在答题卡相应的题号后的横线上(本大题共5小题,每小题5分,共25分)11.(5分)(2012•陕西)观察下列不等式:,,…照此规律,第五个不等式为1+++++<.考点:归纳推理.专题:探究型.分析:由题设中所给的三个不等式归纳出它们的共性:左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方,右边分式中的分子与不等式序号n 的关系是2n+1,分母是不等式的序号n+1,得出第n个不等式,即可得到通式,再令n=5,即可得出第五个不等式解答:解:由已知中的不等式1+,1++,…得出左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,故可以归纳出第n个不等式是1+…+<,(n≥2),所以第五个不等式为1+++++<故答案为:1+++++<点评:本题考查归纳推理,解题的关键是根据所给的三个不等式得出它们的共性,由此得出通式,本题考查了归纳推理考察的典型题,具有一般性12.(5分)(2012•陕西)(a+x)5展开式中x2的系数为10,则实数a的值为1.考点:二项式系数的性质.专题:计算题.分析:直接利用二项式定理的展开式的通项公式,求出x2的系数是10,得到方程,求出a 的值.解答:解:(a+x)5展开式中x2的系数为,因为(a+x)5展开式中x2的系数为10,所以=10,解得a=1,故答案为:1.点评:本题考查二项式定理系数的性质,考查计算能力.13.(5分)(2012•陕西)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为2米.考点:抛物线的应用.专题:计算题;压轴题.分析:先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=﹣3代入抛物线方程求得x0进而得到答案.解答:解:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,﹣2)代入x2=my,得m=﹣2∴x2=﹣2y,代入B(x0,﹣3)得x0=,故水面宽为2m.故答案为:2.点评:本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.14.(5分)(2012•陕西)设函数,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x﹣2y在D上的最大值为2.考点:利用导数研究曲线上某点切线方程;简单线性规划.专题:计算题;压轴题.分析:先求出曲线在点(1,0)处的切线,然后画出区域D,利用线性规划的方法求出目标函数z的最大值即可.解答:解:当x>0时,f′(x)=,则f′(1)=1,所以曲线y=f(x)及该曲线在点(1,0)处的切线为y=x﹣1,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域如下图阴影部分.z=x﹣2y可变形成y=x﹣,当直线y=x﹣过点A(0,﹣1)时,截距最小,此时z最大.最大值为2.故答案为:2.点评:本题主要考查了线性规划,以及利用导数研究函数的切线,同时考查了作图的能力和分析求解的能力,属于中档题.15.(5分)(2012•陕西)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是﹣2≤a≤4.B.(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF•DB=5.C.(坐标系与参数方程)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为.考点:绝对值不等式的解法;直线与圆相交的性质;与圆有关的比例线段;简单曲线的极坐标方程.专题:计算题;作图题;压轴题.分析:A;利用表示数轴上的x到a的距离加上它到1的距离,它的最大值等于3,作图可得实数a的取值范围.B;利用相交弦定理AE•EB=CE•ED,AB⊥CD可得DE=;在Rt△EDB中,由射影定理得:DE2=DF•DB=5,即得答案;C;将直线与圆的极坐标方程化为普通方程分别为:x=,(x﹣1)2+y2=1,从而可得相交弦长.解答:解:A.∵存在实数x使|x﹣a|+|x﹣1|≤3成立,而|x﹣a|+|x﹣1|表示数轴上的x到a的距离加上它到1的距离,又最大值等于3,由图可得:当表示a的点位于AB之间时满足|x﹣a|+|x﹣1|≤3,∴﹣2≤a≤4,故答案为:﹣2≤a≤4.B;∵AB=6,AE=1,由题意可得△AEC∽△DEB,DE=CE,∴DE•CE=AE•EB=1×5=5,即DE=.在Rt△EDB中,由射影定理得:DE2=DF•DB=5.故答案为:5.C;∵2ρcosθ=1,∴2x=1,即x=;又圆ρ=2cosθ的普通方程由ρ2=2ρcosθ得:x2+y2=2x,∴(x﹣1)2+y2=1,∴圆心(1,0)到直线x=的距离为,∴相交弦长的一半为=,∴相交弦长为.故答案为:.点评:本题A考查绝对值不等式的解法,绝对值的意义,求出|x﹣a|+|x﹣1|的最大值是3是解题的关键,考查作图与理解能力,属于中档题.本题B考查与圆有关的比例线段,掌握相交弦定理与射影定理是解决问题的关键,而C着重简单曲线的极坐标方程,化普通方程是关键,属于中档题.三、解答题16.(12分)(2012•陕西)函数(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式;(2)设,则,求α的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的恒等变换及化简求值.专题:三角函数的图像与性质.分析:(1)通过函数的最大值求出A,通过对称轴求出周期,求出ω,得到函数的解析式.(2)通过,求出,通过α的范围,求出α的值.解答:解:(1)∵函数f(x)的最大值为3,∴A+1=3,即A=2,∵函数图象相邻两条对称轴之间的距离为,=,T=π,所以ω=2.故函数的解析式为y=2sin(2x﹣)+1.(2)∵,所以,∴,∵∴,∴,∴.点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的恒等变换及化简求值,考查计算能力.17.(12分)(2012•陕西)设{a n}是公比不为1的等比数列,其前n项和为S n,且a5,a3,a4成等差数列.(1)求数列{a n}的公比;(2)证明:对任意k∈N+,S k+2,S k,S k+1成等差数列.考点:等比数列的通项公式;等差数列的性质.专题:综合题.分析:(1)设{a n}的公比为q(q≠0,q≠1),利用a5,a3,a4成等差数列结合通项公式,可得,由此即可求得数列{a n}的公比;(2)对任意k∈N+,S k+2+S k+1﹣2S k=(S k+2﹣S k)+(S k+1﹣S k)=a k+2+a k+1+a k+1=2a k+1+a k+1×(﹣2)=0,从而得证.解答:(1)解:设{a n}的公比为q(q≠0,q≠1)∵a5,a3,a4成等差数列,∴2a3=a5+a4,∴∵a1≠0,q≠0,∴q2+q﹣2=0,解得q=1或q=﹣2∵q≠1,∴q=﹣2(2)证明:对任意k∈N+,S k+2+S k+1﹣2S k=(S k+2﹣S k)+(S k+1﹣S k)=a k+2+a k+1+a k+1=2a k+1+a k+1×(﹣2)=0∴对任意k∈N+,S k+2,S k,S k+1成等差数列.点评:本题考查等差数列与等比数列的综合,熟练运用等差数列的性质,等比数列的通项是解题的关键.18.(12分)(2012•陕西)(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真.(2)写出上述命题的逆命题,并判断其真假(不需要证明)考点:向量语言表述线面的垂直、平行关系;四种命题;向量语言表述线线的垂直、平行关系.专题:证明题.分析:(1)证法一:做出辅助线,在直线上构造对应的方向向量,要证两条直线垂直,只要证明两条直线对应的向量的数量积等于0,根据向量的运算法则得到结果.证法二:做出辅助线,根据线面垂直的性质,得到线线垂直,根据线面垂直的判定定理,得到线面垂直,再根据性质得到结论.(2)把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.解答:证明:(1)证法一:如图,过直线b上任一点作平面α的垂线n,设直线a,b,c,n对应的方向向量分别是,则共面,根据平面向量基本定理,存在实数λ,μ使得,则=因为a⊥b,所以,又因为a⊂α,n⊥α,所以,故,从而a⊥c证法二如图,记c∩b=A,P为直线b上异于点A的任意一点,过P做PO⊥π,垂足为O,则O∈c,∵PO⊥π,a⊂π,∴直线PO⊥a,又a⊥b,b⊂平面PAO,PO∩b=P,∴a⊥平面PAO,又c⊂平面PAO,∴a⊥c(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于α),c 是直线b在π上的投影,若a⊥c,则a⊥b,逆命题为真命题点评:本题考查用向量的方法证明线线垂直,利用线面垂直的判定和性质证明线线垂直,考查命题的逆命题的写法,本题是一个综合题目,是一个中档题.19.(12分)(2012•陕西)已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(1)求出椭圆的长轴长,离心率,根据椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,即可确定椭圆C2的方程;(2)设A,B的坐标分别为(x A,y A),(x B,y B),根据,可设AB的方程为y=kx,分别与椭圆C1和C2联立,求出A,B的横坐标,利用,即可求得直线AB的方程.解答:解:(1)椭圆的长轴长为4,离心率为∵椭圆C2以C1的长轴为短轴,且与C1有相同的离心率∴椭圆C2的焦点在y轴上,2b=4,为∴b=2,a=4∴椭圆C2的方程为;(2)设A,B的坐标分别为(x A,y A),(x B,y B),∵∴O,A,B三点共线,且点A,B不在y轴上∴设AB的方程为y=kx将y=kx代入,消元可得(1+4k2)x2=4,∴将y=kx代入,消元可得(4+k2)x2=16,∴∵,∴=4,∴,解得k=±1,∴AB的方程为y=±x点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是掌握椭圆几何量关系,联立方程组求解.20.(13分)(2012•陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:办理业务所需的时间(分)1 2 3 4 5频率0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:综合题;压轴题.分析:(1)设Y表示顾客办理业务所需的时间,用频率估计概率,可得Y的分布列,A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟,由此可求概率;(2)确定X所有可能的取值,求出相应的概率,即可得到X的分布列及数学期望.解答:解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布如下:Y 1 2 3 4 5P 0.1 0.4 0.3 0.1 0.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22(2)X所有可能的取值为:0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=0.1×0.1=0.01;所以X的分布列为X 0 1 2P 0.5 0.49 0.01EX=0×0.5+1×0.49+2×0.01=0.51.点评:本题考查概率的求解,考查离散型随机变量的分布列与期望,解题的关键是明确变量的取值与含义.21.(14分)(2012•陕西)设函数f n(x)=x n+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=﹣1,证明:f n(x)在区间内存在唯一的零点;(2)设n=2,若对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,求b的取值范围;(3)在(1)的条件下,设x n是f n(x)在内的零点,判断数列x2,x3,…,x n的增减性.考点:数列与函数的综合;根的存在性及根的个数判断.专题:函数的性质及应用.分析:(1)根据fn()f n(1)=(﹣)×1<0,以及f n(x)在区间内单调递增,可得f n(x)在区间内存在唯一的零点.(2)当n=2,由题意可得函数f2(x)在[﹣1,1]上的最大值与最小值的差M≤4,分当>1时、当﹣1≤﹣<0时、当0≤﹣≤1 时三种情况,分别求得b的取值范围,再取并集,即得所求.(3)证法一:先求出f n(x n)和f n+1(x n+1)的解析式,再由当x n+1∈时,f n(x n)=0=f n+1(x n+1)=+x n+1﹣1<+x n+1﹣1=f n(x n+1),且f n(x)在区间内单调递增,故有x n<x n+1,从而得出结论.证法二:设x n是f n(x)=x n+x﹣1在内的唯一零点,由f n+1(x n)f n+1(1)<0可得f n+1(x)的零点在(x n,1)内,从而有x n<x n+1(n≥2),由此得出结论.解答:解:(1)由于n≥2,b=1,c=﹣1,fn(x)=x n+bx+c=x n+x﹣1,∴f n()f n(1)=(﹣)×1<0,∴f n(x)在区间内存在零点.再由f n(x)在区间内单调递增,可得f n(x)在区间内存在唯一的零点.(2)当n=2,函数f2(x)=x2+bx+c,对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,故函数f2(x)在[﹣1,1]上的最大值与最小值的差M≤4.当>1时,即b>2或b<﹣2时,M=|f2(﹣1)﹣f2(1)|=2|b|>4,这与题设相矛盾.当﹣1≤﹣<0时,即0<b≤2时,M=f2(1)﹣=≤4 恒成立.当0≤﹣≤1 时,即﹣2≤b≤0时,M=f2(﹣1)﹣=≤4 恒成立.综上可得,﹣2≤b≤2.(3)证法一:在(1)的条件下,x n是f n(x)=x n+x﹣1在内的唯一零点,则有f n(x n)=+x n﹣1=0,f n+1(x n+1)=+x n+1﹣1=0.当x n+1∈时,f n(x n)=0=f n+1(x n+1)=+x n+1﹣1<+x n+1﹣1=f n (x n+1).由(1)知,f n(x)在区间内单调递增,故有x n<x n+1,故数列x2,x3,…,x n单调递增数列.证法二:设x n是f n(x)=x n+x﹣1在内的唯一零点,f n+1(x n)f n+1(1)=(+x n﹣1)×1=+x n﹣1<+x n﹣1=0,故f n+1(x)的零点在(x n,1)内,∴x n<x n+1(n≥2),故数列x2,x3,…,x n单调递增数列.点评:本题主要考查方程的根的存在性及个数判断,树立与函数的综合,体现了分类讨论、化归与转化的数学思想,属于难题.。
2012年陕西省高考数学试卷(理科)答案与解析
2012年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)(2012•陕西)集合M={x|lgx>0},N={x|x2≤4},则M∩N=()A.(1,2)B.[1,2)C.(1,2]D.[1,2]考点:对数函数的单调性与特殊点;交集及其运算.专题:计算题.分析:先求出集合M、N,再利用两个集合的交集的定义求出M∩N.解答:解:∵M={x|lgx>0}={x|x>1},N={x|x2≤4}={x|﹣2≤x≤2},∴M∩N={x|1<x≤2},故选C.点评:本题主要考查对数函数的单调性和特殊点,两个集合的交集的定义和求法,属于基础题.2.(5分)(2012•陕西)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.D.y=x|x|考点:函数奇偶性的判断;函数单调性的判断与证明.专题:探究型.分析:对于A,非奇非偶;对于B,是偶函数;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|=,可判断函数既是奇函数又是增函数,故可得结论.解答:解:对于A,非奇非偶,是R上的增函数,不符合题意;对于B,是偶函数,不符合题意;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|,∴f(﹣x)=﹣x|﹣x|=﹣f(x);∵f(x)=x|x|=,∴函数是增函数故选D.点评:本题考查函数的性质,考查函数的奇偶性与单调性的判断,属于基础题.3.(5分)(2012•陕西)设a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:复数的基本概念;必要条件、充分条件与充要条件的判断.专题:计算题.分析:利用“ab=0”与“复数为纯虚数”互为前提与结论,经过推导判断充要条件.解答:解:因为“ab=0”得a=0或b=0,只有a=0,并且b≠0,复数为纯虚数,否则不成立;复数=a﹣bi为纯虚数,所以a=0并且b≠0,所以ab=0,因此a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的必要不充分条件.故选B.点评:本题考查复数的基本概念,充要条件的判断,考查基本知识的灵活运用.4.(5分)(2012•陕西)已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能考点:直线与圆的位置关系.专题:计算题.分析:将圆C的方程化为标准方程,找出圆心C坐标和半径r,利用两点间的距离公式求出P与圆心C间的长,记作d,判断得到d小于r,可得出P在圆C内,再由直线l过P 点,可得出直线l与圆C相交.解答:解:将圆的方程化为标准方程得:(x﹣2)2+y2=4,∴圆心C(2,0),半径r=2,又P(3,0)与圆心的距离d==1<2=r,∴点P在圆C内,又直线l过P点,则直线l与圆C相交.故选A.点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,两点间的距离公式,以及点与圆的位置关系,直线与圆的位置关系由d与r的关系来确定:当d<r时,直线与圆相交;当d=r时,直线与圆相切;当d>r时,直线与圆相离(d表示圆心到直线的距离,r为圆的半径).5.(5分)(2012•陕西)如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:计算题.分析:根据题意可设CB=1,CA=CC1=2,分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,得到A、B、B1、C1四个点的坐标,从而得到向量与的坐标,根据异面直线所成的角的定义,结合空间两个向量数量积的坐标公式,可以算出直线BC1与直线AB1夹角的余弦值.解答:解:分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,∵CA=CC1=2CB,∴可设CB=1,CA=CC1=2∴A(2,0,0),B(0,0,1),B1(0,2,1),C1(0,2,0)∴=(0,2,﹣1),=(﹣2,2,1)可得•=0×(﹣2)+2×2+(﹣1)×1=3,且=,=3,向量与所成的角(或其补角)就是直线BC1与直线AB1夹角,设直线BC1与直线AB1夹角为θ,则cosθ==故选A点评:本题给出一个特殊的直三棱柱,求位于两个侧面的面对角线所成角的余弦之值,着重考查了空间向量的坐标运算和异面直线及其所成的角的概论,属于基础题.6.(5分)(2012•陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为m甲,m乙,则()A.,m甲>m乙B.,m甲<m乙C.,m甲>m乙D.,m甲<m乙考点:茎叶图;众数、中位数、平均数.专题:计算题.分析:直接求出甲与乙的平均数,以及甲与乙的中位数,即可得到选项.解答:解:甲的平均数甲==,乙的平均数乙==,所以甲<乙.甲的中位数为20,乙的中位数为29,所以m甲<m乙故选:B.点评:本题考查茎叶图,众数、中位数、平均数的应用,考查计算能力.7.(5分)(2012•陕西)设函数f(x)=xe x,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点考点:利用导数研究函数的极值.专题:计算题.分析:由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点解答:解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选D点评:本题考查利用导数研究函数的极值,解题的关键是正确求出导数及掌握求极值的步骤,本题是基础题,8.(5分)(2012•陕西)两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种考点:排列、组合及简单计数问题;计数原理的应用.专题:计算题.分析:根据分类计数原理,所有可能情形可分为三类,在每一类中可利用组合数公式计数,最后三类求和即可得结果解答:解:第一类:三局为止,共有2种情形;第二类:四局为止,共有2×=6种情形;第三类:五局为止,共有2×=12种情形;故所有可能出现的情形共有2+6+12=20种情形故选C点评:本题主要考查了分类和分步计数原理的运用,组合数公式的运用,分类讨论的思想方法,属基础题9.(5分)(2012•陕西)在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A.B.C.D.考点:余弦定理.专题:计算题;压轴题.分析:通过余弦定理求出cosC的表达式,利用基本不等式求出cosC的最小值.解答:解:因为a2+b2=2c2,所以由余弦定理可知,c2=2abcosC,cosC==.故选C.点评:本题考查三角形中余弦定理的应用,考查基本不等式的应用,考查计算能力.10.(5分)(2012•陕西)如图是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入()A.B.C.D.考点:循环结构.专题:计算题;压轴题.分析:由题意以及框图的作用,直接推断空白框内应填入的表达式.解答:解:法一:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是.故选D.法二:随机输入xi∈(0,1),yi∈(0,1)那么点P(xi,yi)构成的区域为以O(0,0),A(1,0),B(1,1),C(0,1)为顶点的正方形.判断框内x2i+y2i≤1,若是,说说明点P(x i,y i)在单位圆内部(圆)内,并累计记录点的个数M若否,则说明点P(x i,y i)在单位圆内部(圆)外,并累计记录点的个数N第2个判断框i>1000,是进入计算此时落在单位圆内的点的个数为M,一共判断了1000个点那么圆的面积/正方形的面积=,即π12÷1=∴π=(π的估计值)即执行框内计算的是.故选D.点评:本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力.二、填空题:把答案填写在答题卡相应的题号后的横线上(本大题共5小题,每小题5分,共25分)11.(5分)(2012•陕西)观察下列不等式:,,…照此规律,第五个不等式为1+++++<.考点:归纳推理.专题:探究型.分析:由题设中所给的三个不等式归纳出它们的共性:左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方,右边分式中的分子与不等式序号n 的关系是2n+1,分母是不等式的序号n+1,得出第n个不等式,即可得到通式,再令n=5,即可得出第五个不等式解答:解:由已知中的不等式1+,1++,…得出左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,故可以归纳出第n个不等式是1+…+<,(n≥2),所以第五个不等式为1+++++<故答案为:1+++++<点评:本题考查归纳推理,解题的关键是根据所给的三个不等式得出它们的共性,由此得出通式,本题考查了归纳推理考察的典型题,具有一般性12.(5分)(2012•陕西)(a+x)5展开式中x2的系数为10,则实数a的值为1.考点:二项式系数的性质.专题:计算题.分析:直接利用二项式定理的展开式的通项公式,求出x2的系数是10,得到方程,求出a 的值.解答:解:(a+x)5展开式中x2的系数为,因为(a+x)5展开式中x2的系数为10,所以=10,解得a=1,故答案为:1.点评:本题考查二项式定理系数的性质,考查计算能力.13.(5分)(2012•陕西)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为2米.考点:抛物线的应用.专题:计算题;压轴题.分析:先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=﹣3代入抛物线方程求得x0进而得到答案.解答:解:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,﹣2)代入x2=my,得m=﹣2∴x2=﹣2y,代入B(x0,﹣3)得x0=,故水面宽为2m.故答案为:2.点评:本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.14.(5分)(2012•陕西)设函数,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x﹣2y在D上的最大值为2.考点:利用导数研究曲线上某点切线方程;简单线性规划.专题:计算题;压轴题.分析:先求出曲线在点(1,0)处的切线,然后画出区域D,利用线性规划的方法求出目标函数z的最大值即可.解答:解:当x>0时,f′(x)=,则f′(1)=1,所以曲线y=f(x)及该曲线在点(1,0)处的切线为y=x﹣1,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域如下图阴影部分.z=x﹣2y可变形成y=x﹣,当直线y=x﹣过点A(0,﹣1)时,截距最小,此时z最大.最大值为2.故答案为:2.点评:本题主要考查了线性规划,以及利用导数研究函数的切线,同时考查了作图的能力和分析求解的能力,属于中档题.15.(5分)(2012•陕西)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是﹣2≤a≤4.B.(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF•DB=5.C.(坐标系与参数方程)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为.考点:绝对值不等式的解法;直线与圆相交的性质;与圆有关的比例线段;简单曲线的极坐标方程.专题:计算题;作图题;压轴题.分析:A;利用表示数轴上的x到a的距离加上它到1的距离,它的最大值等于3,作图可得实数a的取值范围.B;利用相交弦定理AE•EB=CE•ED,AB⊥CD可得DE=;在Rt△EDB中,由射影定理得:DE2=DF•DB=5,即得答案;C;将直线与圆的极坐标方程化为普通方程分别为:x=,(x﹣1)2+y2=1,从而可得相交弦长.解答:解:A.∵存在实数x使|x﹣a|+|x﹣1|≤3成立,而|x﹣a|+|x﹣1|表示数轴上的x到a的距离加上它到1的距离,又最大值等于3,由图可得:当表示a的点位于AB之间时满足|x﹣a|+|x﹣1|≤3,∴﹣2≤a≤4,故答案为:﹣2≤a≤4.B;∵AB=6,AE=1,由题意可得△AEC∽△DEB,DE=CE,∴DE•CE=AE•EB=1×5=5,即DE=.在Rt△EDB中,由射影定理得:DE2=DF•DB=5.故答案为:5.C;∵2ρcosθ=1,∴2x=1,即x=;又圆ρ=2cosθ的普通方程由ρ2=2ρcosθ得:x2+y2=2x,∴(x﹣1)2+y2=1,∴圆心(1,0)到直线x=的距离为,∴相交弦长的一半为=,∴相交弦长为.故答案为:.点评:本题A考查绝对值不等式的解法,绝对值的意义,求出|x﹣a|+|x﹣1|的最大值是3是解题的关键,考查作图与理解能力,属于中档题.本题B考查与圆有关的比例线段,掌握相交弦定理与射影定理是解决问题的关键,而C着重简单曲线的极坐标方程,化普通方程是关键,属于中档题.三、解答题16.(12分)(2012•陕西)函数(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式;(2)设,则,求α的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的恒等变换及化简求值.专题:三角函数的图像与性质.分析:(1)通过函数的最大值求出A,通过对称轴求出周期,求出ω,得到函数的解析式.(2)通过,求出,通过α的范围,求出α的值.解答:解:(1)∵函数f(x)的最大值为3,∴A+1=3,即A=2,∵函数图象相邻两条对称轴之间的距离为,=,T=π,所以ω=2.故函数的解析式为y=2sin(2x﹣)+1.(2)∵,所以,∴,∵∴,∴,∴.点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的恒等变换及化简求值,考查计算能力.17.(12分)(2012•陕西)设{a n}是公比不为1的等比数列,其前n项和为S n,且a5,a3,a4成等差数列.(1)求数列{a n}的公比;(2)证明:对任意k∈N+,S k+2,S k,S k+1成等差数列.考点:等比数列的通项公式;等差数列的性质.专题:综合题.分析:(1)设{a n}的公比为q(q≠0,q≠1),利用a5,a3,a4成等差数列结合通项公式,可得,由此即可求得数列{a n}的公比;(2)对任意k∈N+,S k+2+S k+1﹣2S k=(S k+2﹣S k)+(S k+1﹣S k)=a k+2+a k+1+a k+1=2a k+1+a k+1×(﹣2)=0,从而得证.解答:(1)解:设{a n}的公比为q(q≠0,q≠1)∵a5,a3,a4成等差数列,∴2a3=a5+a4,∴∵a1≠0,q≠0,∴q2+q﹣2=0,解得q=1或q=﹣2∵q≠1,∴q=﹣2(2)证明:对任意k∈N+,S k+2+S k+1﹣2S k=(S k+2﹣S k)+(S k+1﹣S k)=a k+2+a k+1+a k+1=2a k+1+a k+1×(﹣2)=0∴对任意k∈N+,S k+2,S k,S k+1成等差数列.点评:本题考查等差数列与等比数列的综合,熟练运用等差数列的性质,等比数列的通项是解题的关键.18.(12分)(2012•陕西)(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真.(2)写出上述命题的逆命题,并判断其真假(不需要证明)考点:向量语言表述线面的垂直、平行关系;四种命题;向量语言表述线线的垂直、平行关系.专题:证明题.分析:(1)证法一:做出辅助线,在直线上构造对应的方向向量,要证两条直线垂直,只要证明两条直线对应的向量的数量积等于0,根据向量的运算法则得到结果.证法二:做出辅助线,根据线面垂直的性质,得到线线垂直,根据线面垂直的判定定理,得到线面垂直,再根据性质得到结论.(2)把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.解答:证明:(1)证法一:如图,过直线b上任一点作平面α的垂线n,设直线a,b,c,n 对应的方向向量分别是,则共面,根据平面向量基本定理,存在实数λ,μ使得,则=因为a⊥b,所以,又因为a⊂α,n⊥α,所以,故,从而a⊥c证法二如图,记c∩b=A,P为直线b上异于点A的任意一点,过P做PO⊥π,垂足为O,则O∈c,∵PO⊥π,a⊂π,∴直线PO⊥a,又a⊥b,b⊂平面PAO,PO∩b=P,∴a⊥平面PAO,又c⊂平面PAO,∴a⊥c(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于α),c 是直线b在π上的投影,若a⊥c,则a⊥b,逆命题为真命题点评:本题考查用向量的方法证明线线垂直,利用线面垂直的判定和性质证明线线垂直,考查命题的逆命题的写法,本题是一个综合题目,是一个中档题.19.(12分)(2012•陕西)已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(1)求出椭圆的长轴长,离心率,根据椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,即可确定椭圆C2的方程;(2)设A,B的坐标分别为(x A,y A),(x B,y B),根据,可设AB的方程为y=kx,分别与椭圆C1和C2联立,求出A,B的横坐标,利用,即可求得直线AB的方程.解答:解:(1)椭圆的长轴长为4,离心率为∵椭圆C2以C1的长轴为短轴,且与C1有相同的离心率∴椭圆C2的焦点在y轴上,2b=4,为∴b=2,a=4∴椭圆C2的方程为;(2)设A,B的坐标分别为(x A,y A),(x B,y B),∵∴O,A,B三点共线,且点A,B不在y轴上∴设AB的方程为y=kx将y=kx代入,消元可得(1+4k2)x2=4,∴将y=kx代入,消元可得(4+k2)x2=16,∴∵,∴=4,∴,解得k=±1,∴AB的方程为y=±x点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是掌握椭圆几何量关系,联立方程组求解.20.(13分)(2012•陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:办理业务所需的时间(分)1 2 3 4 5频率0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:综合题;压轴题.分析:(1)设Y表示顾客办理业务所需的时间,用频率估计概率,可得Y的分布列,A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟,由此可求概率;(2)确定X所有可能的取值,求出相应的概率,即可得到X的分布列及数学期望.解答:解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布如下:Y 1 2 3 4 5P 0.1 0.4 0.3 0.1 0.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22(2)X所有可能的取值为:0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=0.1×0.1=0.01;所以X的分布列为X 0 1 2P 0.5 0.49 0.01EX=0×0.5+1×0.49+2×0.01=0.51.点评:本题考查概率的求解,考查离散型随机变量的分布列与期望,解题的关键是明确变量的取值与含义.21.(14分)(2012•陕西)设函数f n(x)=x n+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=﹣1,证明:f n(x)在区间内存在唯一的零点;(2)设n=2,若对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,求b的取值范围;(3)在(1)的条件下,设x n是f n(x)在内的零点,判断数列x2,x3,…,x n的增减性.考点:数列与函数的综合;根的存在性及根的个数判断.专题:函数的性质及应用.分析:(1)根据fn()f n(1)=(﹣)×1<0,以及f n(x)在区间内单调递增,可得f n(x)在区间内存在唯一的零点.(2)当n=2,由题意可得函数f2(x)在[﹣1,1]上的最大值与最小值的差M≤4,分当>1时、当﹣1≤﹣<0时、当0≤﹣≤1 时三种情况,分别求得b的取值范围,再取并集,即得所求.(3)证法一:先求出f n(x n)和f n+1(x n+1)的解析式,再由当x n+1∈时,f n(x n)=0=f n+1(x n+1)=+x n+1﹣1<+x n+1﹣1=f n(x n+1),且f n(x)在区间内单调递增,故有x n<x n+1,从而得出结论.证法二:设x n是f n(x)=x n+x﹣1在内的唯一零点,由f n+1(x n)f n+1(1)<0可得f n+1(x)的零点在(x n,1)内,从而有x n<x n+1(n≥2),由此得出结论.解答:解:(1)由于n≥2,b=1,c=﹣1,fn(x)=x n+bx+c=x n+x﹣1,∴f n()f n(1)=(﹣)×1<0,∴f n(x)在区间内存在零点.再由f n(x)在区间内单调递增,可得f n(x)在区间内存在唯一的零点.(2)当n=2,函数f2(x)=x2+bx+c,对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,故函数f2(x)在[﹣1,1]上的最大值与最小值的差M≤4.当>1时,即b>2或b<﹣2时,M=|f2(﹣1)﹣f2(1)|=2|b|>4,这与题设相矛盾.当﹣1≤﹣<0时,即0<b≤2时,M=f2(1)﹣=≤4 恒成立.当0≤﹣≤1 时,即﹣2≤b≤0时,M=f2(﹣1)﹣=≤4 恒成立.综上可得,﹣2≤b≤2.(3)证法一:在(1)的条件下,x n是f n(x)=x n+x﹣1在内的唯一零点,则有f n(x n)=+x n﹣1=0,f n+1(x n+1)=+x n+1﹣1=0.当x n+1∈时,f n(x n)=0=f n+1(x n+1)=+x n+1﹣1<+x n+1﹣1=f n (x n+1).由(1)知,f n(x)在区间内单调递增,故有x n<x n+1,故数列x2,x3,…,x n单调递增数列.证法二:设x n是f n(x)=x n+x﹣1在内的唯一零点,f n+1(x n)f n+1(1)=(+x n﹣1)×1=+x n﹣1<+x n﹣1=0,故f n+1(x)的零点在(x n,1)内,∴x n<x n+1(n≥2),故数列x2,x3,…,x n单调递增数列.点评:本题主要考查方程的根的存在性及个数判断,树立与函数的综合,体现了分类讨论、化归与转化的数学思想,属于难题.。
2012年陕西高考数学试题(理数)
(2)证明:对任意 k ∈ N + , S k +2 ,
S k , S k +1 成等差数列.
【答案】 2 6 【解析】建立如图所示的直角坐标系,使拱桥的顶点 O 的坐标为(0,0) , 设 l 与抛物线的交点为 A、B,根据题意知 A(-2,-2) ,B(2,-2) 设抛物线的解析式为 y = ax 2 ,则有 − 2 = a × (− 2) ,∴ a = − ∴抛物线的解析式为 y = −
2a1 (1 − q k ) 1− q =
,
证法二:对任意 k ∈ N + , 2S k =
Sk + 2 + Sk +1 =
a1 (1 − q k + 2 )
1− q
+
a1 (1 − q k +1 )
1− q
a1 ( 2 − q k + 2 − q k +1 )
1− q
,
2S k − ( S k + 2 + S k +1 ) =
【解析】观察不等式的左边发现,第 n 个不等式的左边= 1 +
右边=
2(n + 1) − 1 1 1 1 1 1 11 ,所以第五个不等式为 1 + 2 + 2 + 2 + 2 + 2 < . n +1 2 3 4 5 6 6
.
12. ( a + x) 5 展开式中 x 2 的系数为 10, 则实数 a 的值为 【答案】1
2012年高考数学理科陕西卷-答案
2012年普通高等学校招生全国统一考试(陕西卷)理科数学答案解析【解析】{|M x ={|1M N x =【提示】根据集合的表示法(描述法)即可求出集合的交集. 【考点】集合的基本运算(交集)1(2,2,1)AB ∴=-,1(0,2,BC =11cos ,AB BC =故选A .【提示】根据空间直角坐标系用空间向量即可求出异面直线夹角的余弦值.【解析】()(1f x '=1,)-+∞递增,.12)20C =.【解析】15r r T C +=【提示】根据二项式定理及其性质求出【考点】二项式定理【解析】1()f x x'=其中最优解是(0,1)-【提示】根据导函数求出切线方程,【解析】Rt DEF △DF BD , 又由相交弦定理得=155DE AE EB =⨯=,5DF BD ∴=.DF DB ,然后根据相交弦定理求出结果.(坐标系与参数方程)【答案】3 【解析】(Ⅰ)13A +=又函数图象相邻对称轴的距离为半个周期,π,(Ⅱ)2f α⎛⎫= ⎪⎝⎭62α-=⎪⎭π02α<<, 6α∴-<πα∴-=【答案】(Ⅰ)5a ,3a ,3q ,10a ≠(Ⅱ)证法一:(等差中项法)k +∈N ,证法二:(公式法)2(1)21k k a q S q-=-,21)(1k q a q ++0(2)q =-,【答案】(Ⅰ)证法一:(向量法)如图过直线b 上任一点作平面方向向量分别为a ,b ,c ,n ,则b ,c ,n 共面,使c b n λμ=+, 0a c a b n a b a n λμλμ∴=+=+=()()(), πa ⊂,πn ⊥, 0a n ∴=, 0a c ∴=,a c ∴⊥;证法二:(利用垂直关系证明)如图,c b A =,a b ⊥,PO b P =, c ⊂平面a c ∴⊥;32e =,21a ∴-216a ∴=,2OB OA =,O ∴,A ,∴设直线AB 方程为14k +2OB OA =,214x x ∴=216164k ∴=+1(1)2f f ⎛⎫ ⎪⎝⎭()f x ∴在又当x ∈。
2012陕西高考理科数学试题和答案(word打印版).doc
2012陕西高考理科数学试题和答案(word打印版)2012年普通高等学校招生全国统一考试(陕西卷)理科数学第Ⅰ卷(选择题 共50分)一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的).1、集合}0lg |{>=x x M ,}4|{2≤=x x N ,则=N M ( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]2、下列函数中,既是奇函数又是增函数的为( )A .1+=x yB .3x y -= C .xy 1= D .||x x y = 3、设a ,R b ∈,i 是虚数单位,则“0=ab ”是“复数iba +为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4、已知圆C :0422=-+x y x,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能5、如图,在空间直角坐标系中有直三棱柱111C B A ABC -,CB CC CA 21==,则直线1BC 与直线1AB 夹角的余弦值为( )A .55B .35C .552D .53 6、从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为甲x ,乙x ,中位数分别为甲m ,乙m ,则( ) A .乙甲x x<,乙甲m m > B .乙甲x x<,乙甲m m < C .乙甲x x> ,乙甲m m > D .乙甲x x >,乙甲m m <7、设函数x xe x f =)(,则( )A .1=x 为)(x f 的极大值点B .1=x 为)(x f 的极小值点C .1-=x 为)(x f 的极大值点 D. 1-=x 为)(x f 的极小值点8、两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A .10种B .15种C .20种D .30种 9、在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若2222c b a =+,则C cos 的最小值为( )A .23B .22C .21D .21- 10、右图是用模拟方法估计圆周率π值的程序框图,P 表示估计结果,则图中空白框内应填入( )A .1000N P =B .10004N P = C .1000M P =D .10004M P = 第Ⅱ卷(非选择题 共100分)二、填空题(本大题共有5小题,每小题5分,共25分) 11、观察下列不等式232112<+ 353121122<++ 474131211222<+++ ••••••照此规律,第五个...不等式为________________________________.12、5)(x a +的展开式中2x 的系数为10,则实数a 的值为_____.13、右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽______米.14、设函数⎩⎨⎧≤-->=,0,12,0,ln )(x x x x x f D 是由x 轴和曲线)(x f y =及该曲线在点(1,0)处的切线所围成的封闭区域,则y x z 2-=在D 上的最大值为___ _.15、(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若存在实数x 使3|1|||≤-+-x a x 成立,则实数a 的取值范围是__________________.B.(几何证明选做题)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,DB EF ⊥,垂足为F ,若6=AB ,1=AE ,则=⋅DB DF _______.C.(坐标系与参数方程选做题)直线1cos 2=θρ与圆θρcos 2=相交的弦长为___.三.解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤)。
2012年陕西高考数学理科试卷(带详解)
精心整理2012陕西理数高考真题解析一.选择题1.集合{|lg 0}M x x =>,2{|4}N x x =…,则M N =()A.(1,2)B.[1,2)C.(1,2]D.[1,2]【测量目标】集合的基本运算(交集).【考查方式】集合的表示法(描述法)求集合的交集. 【难易程度】容易 【试题解析】{}{}{}1,22,12M x x N x x MN x x =>=-∴=<≤剟故选C.2.下列函数中,既是奇函数又是增函数的为()A.y x =2y x =- C.1y x= D.||y x x =此选3.设,a A.C.反之a +4.已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则() A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能 【测量目标】直线与圆的位置关系.【考查方式】根据(3,0)P 与圆的位置关系判断l 与圆的位置关系. 【难易程度】容易 【参考答案】A【试题解析】因为2222:40(2)4C x y x x y +-=⇒-+=,所以圆C 是以(2,0)为圆心,2为半径的圆,又(3,0)P 在圆内,所以l 与圆C 相交.5.如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为()第5题图311(2,2,1),(0,2,1),cos ,AB BC AB BC ∴=-=-=6.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示A.x x <甲C.x x >甲甲乙又18+2227+31==20==2922m m <甲乙,所以选B. 7.设函数()e x f x x =,则()A.1x =为()f x 的极大值点B.1x =为()f x 的极小值点C.1x =-为()f x 的极大值点D.1x =-为()f x 的极小值点【测量目标】利用导数求函数的极值.【考查方式】求出所给函数的导函数,根据导函数求出函数的极值. 【难易程度】容易【参考答案】D 【试题解析】()(1)e x f x x '=+,当1x <-时,()0()f x f x '<,在(,1)-∞-上递减;当1x >-时,()0()f x f x '>,在(1,)-+∞递增,∴极值点为 1.x =-8.两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有() A .10种B.15种C.20种D.30种 【测量目标】排列、组合及其应用.【考查方式】先找出获胜情况,再利用排列组合求出总方法数. 【难易程度】容易 【参考答案】C1220.=9.在10.A.P =C.P =【参考答案】D【试题解析】由循环体可知结果4.1000MP =二.填空题11.观察下列不等式231151233++<, 照此规律,第五个...不等式为 【测量目标】合情推理.【考查方式】从给出的几个不等式的特征猜测出一般的规律得到第五个...不等式. 【难易程度】容易【参考答案】2222211111111++.234566+++< 【试题解析】观察这几个不等式可以发现左边分母从1、2、3、4、5的平方依次增加1后的平方,分子全是1,右边分母是左边最后一项的分母的底数,分子式左边后两分母底数的和,于是有:2222211111111++.234566+++< 12.5()a x +展开式中2x 的系数为10,则实数a 的值为 【测量目标】二项式定理.【考查方式】根据二项式定理及其性质求出a 的值. 【难易程度】容易 【参考答案】113.如图是抛物线形拱桥,当水面在宽米22x =-代入得2.14.【测量目标】导数的几何意义、二元线性规划求目标函数的最值.【考查方式】根据导函数求出切线方程,再根据限制条件画出可行域,找出满足目标的最优解,进而求出max Z . 【难易程度】容易 【参考答案】2 【试题解析】1(),(1)1,f x k f x''=∴==∴切线:1l y x =-因而切线l 、曲线()f x x 、轴围成三角形区域,其中最优解是01(,-)代入得max 2z =. 15.A (不等式选做题)若存在实数x 使|||1|3x a x -+-…成立,则实数a 的取值范围是【测量目标】绝对值不等式的性质及其运用.【考查方式】根据绝对值不等式的性质化简,进而求出实数a 的取值范围. 【难易程度】容易【参考答案】24a -剟【试题解析】由题意知左边的最小值小于或等于3即可,根据不等式的性质得 15.B (几何证明选做题)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF DB ⊥,垂足为F ,若6AB =,1AE =,则DF DB =.【测量目标】直线和圆的位置关系相交弦定理.【考查方式】根据相似三角形转化DF DB ,然后根据相交弦定理求出结果. 【难易程度】容易 【参考答案】5【试题理得2=DE15C 16.(1(2)设2(2【测量目标】三角函数的图象与性质、由图象求解析式.【考查方式】根据三角函数的图象与性质求出解析式,然后根据三角函数求值求出α的值. 【难易程度】中等【试题解析】(1)13A +=,2A ∴=,(步骤1) 又∵函数图象相邻对称轴的距离为半个周期, π2ππ.π.2()2sin(2) 1.226T T f x x T ω∴==∴==∴=-+,(步骤2) (2)ππ1()2sin(12,sin(,2662f ααα=-+=∴-=(步骤3)πππππππ0,,,.2663663αααα<<∴-<-<∴-=∴=(步骤4)17.(本小题满分12分)设{}n a 的公比不为1的等比数列,其前n 项和为n S ,且534,,a a a 成等差数列.(1)求数列{}n a 的公比;(2)证明:对任意k +∈N ,21,,k k k S S S ++成等差数列【测量目标】等差与等比数列的通项、性质、前n 项和.【考查方式】由等差数列的已知项之间的关系推出数列的公比再利用等差中项法或公式法证明结论.【难易程度】中等【试题解析】(1)534,,a a a 成等差数列,2433541112=+2,a a a a q a q a q ∴∴=+(步骤1)10,a q ≠(2k +∈N 3)∴S 2(k S ∴-1(0(2),1k a q q q q==--∴18.分)(1)如图,证明命题“a 是平面c 是直线b 在π(2. 设直线,,,a b c n 的方向向量分别为,,,a b c n ,则,,b c n 共面∴存在实数λμ,使=+=+=+=0λμλμλμ∴,()()()c b n a c a b n a b a n ππ=0=0.⊂⊥∴∴∴⊥,,,,a n a n a c a c (步骤2)第18题(1)图证法二(利用垂直关系证明)如图,c b A =P 为直线b 上异于A 的点,作πPO O c ⊥∈,,(步骤3)PO a a b b ∴⊥⊥⊂,,平面,PAO PO b P a =∴⊥,平面PAO (步骤4)c ⊂平面,.PAO a c ∴⊥(步骤5)第18题(1)图(2)逆命题为a 是平面π内的一条直线,b 是π外的和它不垂直的直线,c 是直线b 在π上的投影,若a c ⊥,则a b ⊥.逆命题为真命题.(步骤6) 19.(本小题满分12分)已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率.(1)求椭圆2C 的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2OB OA =,求直线AB 的方程 【测量目标】椭圆的标准方程、直线与椭圆的位置关系.. 32),,2e =(步骤1)kx ,并分别代入4x 2,2,OB OA x =∴=,所求直线为:y x =或y x =-.对以往(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望 【测量目标】离散型随机变量的分布列与期望. 【考查方式】根据离散型随机变量的特点求解. 【难易程度】中等(1)事件“第三个顾客恰好等待4分钟开始办理业务”记作A ,则0.10.30.30.10.40.40.22.=⨯+⨯+⨯=(步骤2)(2)X 所有可能取值为0,1,2.所以P (X =0)=P (Y >2)=0.5;P (X =1)=P (Y =1)P (Y >1)+P (Y =2)=0.10.90.40.49;⨯+= P (X =2)=P (Y =1)P (Y =1)=0.10.10.01.⨯=(步骤3)21.(本小题满分14分)设函数()(,,)n n f x x bx c n b c +=++∈∈N R(1)设(2)设(3,,nx 的增减性1()(1)2f f 又∵当x ∴()f x (2)当n 若1,2b>若10,2b --剟即02b 剟时,21122b bM f f =--+()()=()4…恒成立 若012b-,剟即20b -剟时 21122b bM M f f ==---()()=()4…恒成立.综上:22b -剟.(步骤6)(3)设n x 是()n f x 在12(,1)内的唯一零点,11+1+1()(1)=+1)1+11)n n n n n n f x f x x ++--((1+1+1+10,()n n n nn n n x x x x f x +=-<-=∴的零点+1n x 在区间+11n x (,)内,(步骤7) ∴数列23,,,,n x x x 是递增数列.(步骤8)。
2012年陕西省高考数学试卷(理科)附送答案
2012年陕西省高考数学试卷(理科)一、选择题1.(5分)集合M={x|lgx>0},N={x|x2≤4},则M∩N=()A.(0,2]B.(0,2) C.(1,2]D.(1,2)2.(5分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|3.(5分)设a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能5.(5分)如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.B.C.D.6.(5分)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为m甲,m乙,则()A.,m 甲>m乙B.,m甲<m乙C.,m 甲>m乙D.,m甲<m乙7.(5分)设函数f(x)=xe x,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点8.(5分)两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种9.(5分)在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A.B.C.D.10.(5分)如图是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入()A. B. C. D.二、填空题:把答案填写在答题卡相应的题号后的横线上(本大题共5小题,每小题5分,共25分)11.(5分)观察下列不等式:①1+<;②1++<;③1+++<;…照此规律,第五个不等式为.12.(5分)(a+x)5展开式中x2的系数为10,则实数a的值为.13.(5分)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为米.14.(5分)设函数,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x﹣2y在D上的最大值为.15.(5分)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是.B.(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF ⊥DB,垂足为F,若AB=6,AE=1,则DF•DB=.C.(坐标系与参数方程)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为.三、解答题16.(12分)函数(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式;(2)设,则,求α的值.17.(12分)设{a n}是公比不为1的等比数列,其前n项和为S n,且a5,a3,a4成等差数列.(1)求数列{a n}的公比;(2)证明:对任意k∈N+,S k+2,S k,S k+1成等差数列.18.(12分)(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真.(2)写出上述命题的逆命题,并判断其真假(不需要证明)19.(12分)已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.20.(13分)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:办理业务所需的时间(分)12345频率0.10.40.30.10.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.21.(14分)设函数f n(x)=x n+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=﹣1,证明:f n(x)在区间内存在唯一的零点;(2)设n=2,若对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,求b的取值范围;(3)在(1)的条件下,设x n是f n(x)在内的零点,判断数列x2,x3,…,x n的增减性.2012年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)(2012•陕西)集合M={x|lgx>0},N={x|x2≤4},则M∩N=()A.(0,2]B.(0,2) C.(1,2]D.(1,2)【分析】根据集合的基本运算,进行求解即可.【解答】解:M={x|lgx>0}={x|x>1},N={x|x2≤4}={x|﹣2≤x≤2},则M∩N={x|1<x≤2},故选:C.2.(5分)(2012•陕西)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【解答】解:A.y=x+1为非奇非偶函数,不满足条件.B.y=﹣x2是偶函数,不满足条件.C.y=是奇函数,但在定义域上不是增函数,不满足条件.D.设f(x)=x|x|,则f(﹣x)=﹣x|x|=﹣f(x),则函数为奇函数,当x>0时,y=x|x|=x2,此时为增函数,当x≤0时,y=x|x|=﹣x2,此时为增函数,综上在R上函数为增函数.故选:D3.(5分)(2012•陕西)设a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用“ab=0”与“复数为纯虚数”互为前提与结论,经过推导判断充要条件.【解答】解:因为“ab=0”得a=0或b=0,只有a=0,并且b≠0,复数为纯虚数,否则不成立;复数=a﹣bi为纯虚数,所以a=0并且b≠0,所以ab=0,因此a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的必要不充分条件.故选B.4.(5分)(2012•陕西)已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能【分析】将圆C的方程化为标准方程,找出圆心C坐标和半径r,利用两点间的距离公式求出P与圆心C间的长,记作d,判断得到d小于r,可得出P在圆C 内,再由直线l过P点,可得出直线l与圆C相交.【解答】解:将圆的方程化为标准方程得:(x﹣2)2+y2=4,∴圆心C(2,0),半径r=2,又P(3,0)与圆心的距离d==1<2=r,∴点P在圆C内,又直线l过P点,则直线l与圆C相交.故选A.5.(5分)(2012•陕西)如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.B.C.D.【分析】根据题意可设CB=1,CA=CC1=2,分别以CA、CC1、CB为x轴、y轴和z 轴建立如图坐标系,得到A、B、B1、C1四个点的坐标,从而得到向量与的坐标,根据异面直线所成的角的定义,结合空间两个向量数量积的坐标公式,可以算出直线BC1与直线AB1夹角的余弦值.【解答】解:分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,∵CA=CC1=2CB,∴可设CB=1,CA=CC1=2∴A(2,0,0),B(0,0,1),B1(0,2,1),C1(0,2,0)∴=(0,2,﹣1),=(﹣2,2,1)可得•=0×(﹣2)+2×2+(﹣1)×1=3,且=,=3,向量与所成的角(或其补角)就是直线BC1与直线AB1夹角,设直线BC1与直线AB1夹角为θ,则cosθ==故选A6.(5分)(2012•陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为m甲,m乙,则()A.,m 甲>m乙B.,m甲<m乙C.,m 甲>m乙D.,m甲<m乙【分析】直接求出甲与乙的平均数,以及甲与乙的中位数,即可得到选项.【解答】解:甲的平均数甲==,乙的平均数乙==,所以甲<乙.甲的中位数为20,乙的中位数为29,所以m甲<m乙故选:B.7.(5分)(2012•陕西)设函数f(x)=xe x,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点【分析】由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点【解答】解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选D8.(5分)(2012•陕西)两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种【分析】根据分类计数原理,所有可能情形可分为三类,在每一类中可利用组合数公式计数,最后三类求和即可得结果【解答】解:第一类:三局为止,共有2种情形;第二类:四局为止,共有2×=6种情形;第三类:五局为止,共有2×=12种情形;故所有可能出现的情形共有2+6+12=20种情形故选C9.(5分)(2012•陕西)在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A.B.C.D.【分析】通过余弦定理求出cosC的表达式,利用基本不等式求出cosC的最小值.【解答】解:因为a2+b2=2c2,所以由余弦定理可知,c2=2abcosC,cosC==.故选C.10.(5分)(2012•陕西)如图是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入()A. B. C. D.【分析】由题意以及框图的作用,直接推断空白框内应填入的表达式.【解答】解:法一:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是.故选D.法二:随机输入xi∈(0,1),yi∈(0,1)那么点P(xi,yi)构成的区域为以O(0,0),A(1,0),B(1,1),C(0,1)为顶点的正方形.判断框内x2i+y2i≤1,若是,说说明点P(x i,y i)在单位圆内部(圆)内,并累计记录点的个数M 若否,则说明点P(x i,y i)在单位圆内部(圆)外,并累计记录点的个数N 第2个判断框i>1000,是进入计算此时落在单位圆内的点的个数为M,一共判断了1000个点那么圆的面积/正方形的面积=,即π12÷1=∴π=(π的估计值)即执行框内计算的是.故选D.二、填空题:把答案填写在答题卡相应的题号后的横线上(本大题共5小题,每小题5分,共25分)11.(5分)(2012•陕西)观察下列不等式:①1+<;②1++<;③1+++<;…照此规律,第五个不等式为1+++++<.【分析】由题设中所给的三个不等式归纳出它们的共性:左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方,右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,得出第n个不等式,即可得到通式,再令n=5,即可得出第五个不等式【解答】解:由已知中的不等式1+,1++,…得出左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,故可以归纳出第n个不等式是1+…+<,(n≥2),所以第五个不等式为1+++++<故答案为:1+++++<12.(5分)(2012•陕西)(a+x)5展开式中x2的系数为10,则实数a的值为1.【分析】直接利用二项式定理的展开式的通项公式,求出x2的系数是10,得到方程,求出a的值.【解答】解:(a+x)5展开式中x2的系数为,因为(a+x)5展开式中x2的系数为10,所以=10,解得a=1,故答案为:1.13.(5分)(2012•陕西)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为2米.【分析】先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=﹣3代入抛物线方程求得x0进而得到答案.【解答】解:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,﹣2)代入x2=my,得m=﹣2∴x2=﹣2y,代入B(x0,﹣3)得x0=,故水面宽为2m.故答案为:2.14.(5分)(2012•陕西)设函数,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x﹣2y在D上的最大值为2.【分析】先求出曲线在点(1,0)处的切线,然后画出区域D,利用线性规划的方法求出目标函数z的最大值即可.【解答】解:当x>0时,f′(x)=,则f′(1)=1,所以曲线y=f(x)及该曲线在点(1,0)处的切线为y=x﹣1,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域如下图阴影部分.z=x﹣2y可变形成y=x﹣,当直线y=x﹣过点A(0,﹣1)时,截距最小,此时z最大.最大值为2.故答案为:2.15.(5分)(2012•陕西)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是﹣2≤a≤4.B.(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF ⊥DB,垂足为F,若AB=6,AE=1,则DF•DB=5.C.(坐标系与参数方程)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为.【分析】A;利用表示数轴上的x到a的距离加上它到1的距离,它的最大值等于3,作图可得实数a的取值范围.B;利用相交弦定理AE•EB=CE•ED,AB⊥CD可得DE=;在Rt△EDB中,由射影定理得:DE2=DF•DB=5,即得答案;C;将直线与圆的极坐标方程化为普通方程分别为:x=,(x﹣1)2+y2=1,从而可得相交弦长.【解答】解:A.∵存在实数x使|x﹣a|+|x﹣1|≤3成立,而|x﹣a|+|x﹣1|表示数轴上的x到a的距离加上它到1的距离,又最大值等于3,由图可得:当表示a的点位于AB之间时满足|x﹣a|+|x﹣1|≤3,∴﹣2≤a≤4,故答案为:﹣2≤a≤4.B;∵AB=6,AE=1,由题意可得△AEC∽△DEB,DE=CE,∴DE•CE=AE•EB=1×5=5,即DE=.在Rt△EDB中,由射影定理得:DE2=DF•DB=5.故答案为:5.C;∵2ρcosθ=1,∴2x=1,即x=;又圆ρ=2cosθ的普通方程由ρ2=2ρcosθ得:x2+y2=2x,∴(x﹣1)2+y2=1,∴圆心(1,0)到直线x=的距离为,∴相交弦长的一半为=,∴相交弦长为.故答案为:.三、解答题16.(12分)(2012•陕西)函数(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式;(2)设,则,求α的值.【分析】(1)通过函数的最大值求出A,通过对称轴求出周期,求出ω,得到函数的解析式.(2)通过,求出,通过α的范围,求出α的值.【解答】解:(1)∵函数f(x)的最大值为3,∴A+1=3,即A=2,∵函数图象相邻两条对称轴之间的距离为,=,T=π,所以ω=2.故函数的解析式为y=2sin(2x﹣)+1.(2)∵,所以,∴,∵∴,∴,∴.17.(12分)(2012•陕西)设{a n}是公比不为1的等比数列,其前n项和为S n,且a5,a3,a4成等差数列.(1)求数列{a n}的公比;(2)证明:对任意k∈N+,S k+2,S k,S k+1成等差数列.【分析】(1)设{a n}的公比为q(q≠0,q≠1),利用a5,a3,a4成等差数列结合通项公式,可得,由此即可求得数列{a n}的公比;(2)对任意k∈N+,S k+2+S k+1﹣2S k=(S k+2﹣S k)+(S k+1﹣S k)=a k+2+a k+1+a k+1=2a k+1+a k+1×(﹣2)=0,从而得证.【解答】(1)解:设{a n}的公比为q(q≠0,q≠1)∵a5,a3,a4成等差数列,∴2a3=a5+a4,∴∵a1≠0,q≠0,∴q2+q﹣2=0,解得q=1或q=﹣2∵q≠1,∴q=﹣2(2)证明:对任意k∈N+,S k+2+S k+1﹣2S k=(S k+2﹣S k)+(S k+1﹣S k)=a k+2+a k+1+a k+1=2a k+1+a k+1×(﹣2)=0∴对任意k∈N+,S k+2,S k,S k+1成等差数列.18.(12分)(2012•陕西)(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真.(2)写出上述命题的逆命题,并判断其真假(不需要证明)【分析】(1)证法一:做出辅助线,在直线上构造对应的方向向量,要证两条直线垂直,只要证明两条直线对应的向量的数量积等于0,根据向量的运算法则得到结果.证法二:做出辅助线,根据线面垂直的性质,得到线线垂直,根据线面垂直的判定定理,得到线面垂直,再根据性质得到结论.(2)把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.【解答】证明:(1)证法一:如图,过直线b上任一点作平面α的垂线n,设直线a,b,c,n对应的方向向量分别是,则共面,根据平面向量基本定理,存在实数λ,μ使得,则=因为a⊥b,所以,又因为a⊂α,n⊥α,所以,故,从而a⊥c证法二如图,记c∩b=A,P为直线b上异于点A的任意一点,过P做PO⊥π,垂足为O,则O∈c,∵PO⊥π,a⊂π,∴直线PO⊥a,又a⊥b,b⊂平面PAO,PO∩b=P,∴a⊥平面PAO,又c⊂平面PAO,∴a⊥c(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥c,则a⊥b,逆命题为真命题19.(12分)(2012•陕西)已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.【分析】(1)求出椭圆的长轴长,离心率,根据椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,即可确定椭圆C2的方程;(2)设A,B的坐标分别为(x A,y A),(x B,y B),根据,可设AB的方程为y=kx,分别与椭圆C1和C2联立,求出A,B的横坐标,利用,即可求得直线AB的方程.【解答】解:(1)椭圆的长轴长为4,离心率为∵椭圆C2以C1的长轴为短轴,且与C1有相同的离心率∴椭圆C2的焦点在y轴上,2b=4,为∴b=2,a=4∴椭圆C2的方程为;(2)设A,B的坐标分别为(x A,y A),(x B,y B),∵∴O,A,B三点共线,且点A,B不在y轴上∴设AB的方程为y=kx将y=kx代入,消元可得(1+4k2)x2=4,∴将y=kx代入,消元可得(4+k2)x2=16,∴∵,∴=4,∴,解得k=±1,∴AB的方程为y=±x20.(13分)(2012•陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:办理业务所需的时间(分)12345频率0.10.40.30.10.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.【分析】(1)设Y表示顾客办理业务所需的时间,用频率估计概率,可得Y的分布列,A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟,由此可求概率;(2)确定X所有可能的取值,求出相应的概率,即可得到X的分布列及数学期望.【解答】解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布如下:Y12345P0.10.40.30.10.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22(2)X所有可能的取值为:0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=0.1×0.1=0.01;所以X的分布列为X012P0.50.490.01EX=0×0.5+1×0.49+2×0.01=0.51.21.(14分)(2012•陕西)设函数f n(x)=x n+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=﹣1,证明:f n(x)在区间内存在唯一的零点;(2)设n=2,若对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,求b的取值范围;(3)在(1)的条件下,设x n是f n(x)在内的零点,判断数列x2,x3,…,x n的增减性.【分析】(1)根据f n()f n(1)=(﹣)×1<0,以及f n(x)在区间内单调递增,可得f n(x)在区间内存在唯一的零点.(2)当n=2,由题意可得函数f2(x)在[﹣1,1]上的最大值与最小值的差M≤4,分当>1时、当﹣1≤﹣<0时、当0≤﹣≤1 时三种情况,分别求得b的取值范围,再取并集,即得所求.(3)证法一:先求出f n(x n)和f n+1(x n+1)的解析式,再由当x n+1∈时,f n(x n)=0=f n+1(x n+1)=+x n+1﹣1<+x n+1﹣1=f n(x n+1),且f n(x)在区间内单调递增,故有x n<x n+1,从而得出结论.证法二:设x n是f n(x)=x n+x﹣1在内的唯一零点,由f n+1(x n)f n+1(1)(x)的零点在(x n,1)内,从而有x n<x n+1(n≥2),由此得出结<0可得f n+1论.【解答】解:(1)由于n≥2,b=1,c=﹣1,f n(x)=x n+bx+c=x n+x﹣1,∴f n()f n(1)=(﹣)×1<0,∴f n(x)在区间内存在零点.再由f n(x)在区间内单调递增,可得f n(x)在区间内存在唯一的零点.(2)当n=2,函数f2(x)=x2+bx+c,对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,故函数f2(x)在[﹣1,1]上的最大值与最小值的差M≤4.当>1时,即b>2或b<﹣2时,M=|f2(﹣1)﹣f2(1)|=2|b|>4,这与题设相矛盾.当﹣1≤﹣<0时,即0<b≤2时,M=f2(1)﹣=≤4 恒成立.当0≤﹣≤1 时,即﹣2≤b≤0时,M=f2(﹣1)﹣=≤4 恒成立.综上可得,﹣2≤b≤2.(3)证法一:在(1)的条件下,x n是f n(x)=x n+x﹣1在内的唯一零点,则有f n(x n)=+x n﹣1=0,f n+1(x n+1)=+x n+1﹣1=0.∈时,f n(x n)=0=f n+1(x n+1)=+x n+1﹣1<+x n+1﹣1=f n 当x n+1(x n).+1由(1)知,f n(x)在区间内单调递增,故有x n<x n+1,故数列x2,x3,…,x n单调递增数列.证法二:设x n是f n(x)=x n+x﹣1在内的唯一零点,f n+1(x n)f n+1(1)=(+x n﹣1)×1=+x n﹣1<+x n﹣1=0,(x)的零点在(x n,1)内,∴x n<x n+1(n≥2),故数列x2,x3,…,x n单故f n+1调递增数列.。
2mxt-2012年陕西省高考理科数学试题word版含答案(免费)
2012年陕西省高考理科数学试题一、选择题:在每小题给出的四个选项中,只有一项符合题目要求的(本大题共10小题,每小题5分,共50分).1. 集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =I ( C ) (A ) (1,2) (B ) [1,2) (C ) (1,2] (D ) [1,2]2. 下列函数中,既是奇函数又是增函数的为( D )(A ) 1y x =+ (B ) 3y x =- (C ) 1y x= (D ) ||y x x = 3. 设,a b R ∈,i 是虚数单位,则“0ab =”是“复数b a i+为纯虚数”的( B )(A )充分不必要条件 (B ) 必要不充分条件 (C )充分必要条件 (D ) 既不充分也不必要条件 4. 已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( A ) (A )l 与C 相交 (B ) l 与C 相切 (C )l 与C 相离 (D ) 以上三个选项均有可能5. 如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( A )(A )55 (B )53 (C ) 255 (D ) 356. 从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( B )(A ) x x <甲乙,m 甲>m 乙 (B ) x x <甲乙,m 甲<m 乙 (C ) x x >甲乙,m 甲>m 乙 (D ) x x >甲乙,m 甲<m 乙7. 设函数()x f x xe =,则( D )(A ) 1x =为()f x 的极大值点 (B )1x =为()f x 的极小值点 (C ) 1x =-为()f x 的极大值点 (D )1x =-为()f x 的极小值点8. 两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( C )(A ) 10种 (B )15种 (C ) 20种 (D ) 30种9. 在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( C ) (A )3 (B ) 22 (C ) 12 (D ) 12- 10. 右图是用模拟方法估计圆周率π值的程序框图,P 表示估计结果,则图中空白框内应填入( D )(A ) 1000NP =(B ) 41000NP =(C ) 1000MP =(D ) 41000MP =二、填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11. 观察下列不等式213122+< 231151233++<, 222111712344+++< ……照此规律,第五个...不等式为 2222211111111++234566+++<. 12. 5()a x +展开式中2x 的系数为10, 则实数a 的值为 1 。
2012学年高考数学年理科陕西卷答案
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前江苏省南京市2012年初中毕业会考、高级中等学校招生考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列四个数中,负数是( )A .-2B .2(-2)C.D2.PM 2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为( )A .-50.2510⨯B .-60.2510⨯C .-52.510⨯D .-62.510⨯ 3.计算2322()()a a ÷的结果是( )A .aB .2aC .3aD .4a 4.12的负的平方根介于( )A .-5和-4之间B .-4与-3之间C .-3与-2之间D .-2与-1之间5.若反比例函数ky x=与一次函数2y x =+的图像没有..交点,则k 的值可以是( )A .-2B .-1C .1D .26.如图,菱形纸片ABCD 中,60A ︒∠=,将纸片折叠,点A 、D 分别落在A '、D '处,且A D ''经过B ,EF 为折痕,当D F CD '⊥时,CFFD的值为 () ABC D第Ⅱ卷(非选择题共108分)二、填空题(本大题共10小题,每小题2分,共20分.把答案填写在题中的横线上)7.x 的取值范围是 . 8.的结果是 .9.方程3202x x -=-的解是 . 10.如图,1∠,2∠,3∠,4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠= .11.已知一次函数3y kx k =+-的图像经过点(2,3),则k 的值为 .12.已知下列函数 ①2y x =②2y x =-③()212y x =-+,其中,图象通过平移可以得到函数223y x x =+-的图像的有 (填写所有正确选项的序号) 13.某公司全体员工年薪的具体情况如下表:则所有员工的年薪的平均数比中位数多 万元.14.如图,将45︒的AOB ∠按图摆放在一把刻度尺上,顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数为..,若按相同的方式将37︒的AOC ∠放置在该尺上,则OC 与尺上沿的交点..在尺上的读数约为 cm (结果精确到0.1 cm ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)15.如图,在□ABCD 中,10cm AD =,6cm CD =,E 为AD 上一点,且BE BC=,CE CD =,则DE = cm .16.在平面直角坐标系中,规定把一个三角形先沿x 轴翻折,再向右平移2个单位称为一次变换,如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(1,1)--,(3,1)--,把△ABC 经过连续9次这样的变换得到△A B C ''',则点A 的对应点A '的坐标是 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)解方程组31328x y x y +=-⎧⎨-=⎩.18.(本小题满分9分)化简代数式22112x x x x x--÷+,并判断当x 满足不等式组()21216x x +⎧⎪⎨--⎪⎩<>时该代数式的符号.19.(本小题满分8分)如图,在Rt ABC △中,90ABC ∠=,点D 在BC 的延长线上,且BD AB =,过B 作BE AC ⊥,与BD 的垂线DE 交于点E ,(1)求证:ABC BDE ∆≅∆;(2)BDE △可由ABC △旋转得到,利用尺规作出旋转中心O (保留作图痕迹,不写作法)20.(本小题满分8分)某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)请解释“随机抽取了50名男生和40名女生”的合理性;(2)从上表的“频数”,“百分比”两列数据中选择一列,用适当的统计图表示; (3)估计该校七年级学生体育测试成绩不合格的人数.21.(本小题满分7分)甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率.(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学; (2)随机选取2名同学,其中有乙同学.数学试卷 第5页(共8页) 数学试卷 第6页(共8页)22.(本小题满分8分)如图,梯形ABCD 中,//AD BC ,AB CD =,对角线AC 、BD 交于点O ,AC BD ⊥,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点. (1)求证:四边形EFGH 为正方形;(2)若2AD =,4BC =,求四边形EFGH 的面积.23.(本小题满分7分)看图说故事请你编一个故事,使故事情境中出现的一对变量x ,y 满足图示的函数关系式,要求:①指出x 和y 的含义;②利用图中数据说明这对变量变化过程的实际意义,其中需设计“速度”这个量.24.(本小题满分8分)某玩具由一个圆形区域和一个扇形区域组成.如图,在1O 和扇形2O CD 中,1O 与2O C 、2O D 分别相切于A 、B ,260CO D ∠=︒,E 、F 是直线12O O 与1O 、扇形2O CD 的两个交点,且24cm EF =,设1O 的半径为cm x . (1)用含x 的代数式表示扇形2O CD 的半径;(2)若1O 和扇形2O CD 两个区域的制作成本分别为0.45元2/cm 和0.06元2/cm ,当1O 的半径为多少时,该玩具成本最小?25.(本小题满分8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.(1)若该公司当月卖出3部汽车,则每部汽车的进价为 万元;(2)如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共8页) 数学试卷 第8页(共8页)26.(本小题满分9分)“?”的思考下框中是小明对一道题目的解答以及老师的批阅.小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打开了一个“?” 结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程: 变化一下会怎样……(2)如图,矩形''''A B C D 在矩形A B C D的内部,//''AB A B ,//''AD A D ,且:2:1AD AB =,设AB 与''A B 、BC 与''B C 、CD 与''C D 、DA 与''D A 之间的距离分别为,,,a b c d ,要使矩形''''A B C D ∽矩形ABCD ,,,,a b c d 应满足什么条件?请说明理由.27.(本小题满分10分)如图,A 、B 为O 上的两个定点,P 是O 上的动点(P 不与A 、B 重合),我们称APB ∠为O 上关于A 、B 的滑动角.(1)已知APB ∠是O 上关于点A 、B 的滑动角.①若A B 为O 的直径,则APB ∠=. ②若O 半径为1,A B ,求APB ∠的度数.(2)已知2O 是1O 外一点,以2O 为圆心作一个圆与1O 相交于A 、B 两点,APB ∠是1O 上关于点A 、B 的滑动角,直线PA 、PB 分别交2O 于点M 、N (点M 与点A 、点N 与点B 均不重合),连接A N ,试探索APB ∠与MAN ∠、ANB ∠之间的数量关系.。