2016学年江苏省盐城市亭湖区南洋中学七年级(上)数学期中试卷带参考答案
江苏省盐城市 七年级(上)期中数学试卷(含答案)
七年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.-3相反数是()A. 13B. −3 C. −13D. 32.甲数比乙数的2倍大3,若乙数为x,则甲数为()A. 2x−3B. 2x+3C. 12x−3 D. 12x+33.下列说法正确的是()A. 平方是它本身的数只有0B. 立方是它本身的数是±1C. 倒数是它本身的数是±1D. 绝对值是它本身的数是正数4.下列每组中的两个代数式,属于同类项的是()A. 12m3n与−8nm3 B. 0.5a2b与0.5a2cC. 3abc与3abD. 12x2y与23xy25.下列一组数:2.7,-312,π2,0.6⋅,0.080080008.其中是无理数的有()A. 0个B. 1个C. 2个D. 3个6.在式子0、-a、-3x2y、x+13、1x中,单项式的个数为()A. 3个B. 4个C. 5个D. 6个7.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256.通过观察,用你所发现的规律得出227的末位数是()A. 2B. 4C. 6D. 88.现有四种说法:①-a表示负数;②若|x|=-x,则x≤0;③几个有理数相乘,当负因数有奇数个时,积为负;④200x2y3是5次单项式.其中正确个数()A. 3个B. 2个C. 1个D. 0个二、填空题(本大题共10小题,共30.0分)9.单项式−x2yz3的系数为______ .10.比较大小:-56______ -34(填“>”、“=”、“<”号).11.太阳的半径约为696000千米,这个数据用科学记数法表示为______ 千米.12.若-12x3y n-1与3x m+1y是同类项,则m-n= ______ .13.某服装原价为a元,降价10%后的价格为______元.14.一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则点A所表示的数是______ .15.若代数式x-2y-1的值是2,则代数式3x-6y+2值是______ .16.小红在计算31+m的值时,误将“+”号看成“-”号,结果得10,那么31+m的值应为______ .17.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有______ 根小棒.18.设记号<x>表示大于x的最小整数,例如:[3)=4,[-1.2)=-1,则下列结论中正确的是______ .(填写所有正确结论的序号)①[-2.1)+[4.3)=3;②[x)-x的最大值是1;③[x)-x的最小值是0;④存在一个数x,使[x)-x=0.5成立.三、计算题(本大题共3小题,共28.0分)19.计算:(1)-10-(-16)+(-24)(2)6÷(-2)×12(3)(12+14-15)×20(4)-14+(-2)2-|2-5|+6×(12-1 3)20.计算:(1)2a-5b+3a+b(2)3(2a2b-ab2)-4(ab2-3a2b)21.2015年8月7日夜22点左右,甘肃舟曲发生特大山洪泥石流灾害,甘肃消防总队迅即出动兵力支援灾区.在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,最先从A地出发,最后停留在B地,约定向东为正方向,当天的航行路程依次记录如下(单位:千米):-11,-9,+18,-2,+13,+4,+12,-7.(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)直接写出在救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?四、解答题(本大题共8小题,共68.0分)22.先化简,再求值:3(x-y)-2(x+y)+2,其中x=-1,y=2.23.已知x+y=15,xy=-12.求代数式(x+3y-3xy)-2(xy-2x-y)的值.24.如图,在边长为a厘米的正方形内,截去两个以正方形的边为直径的半圆.问:(1)图中阴影部分的周长为多少厘米?(2)当a=4时,图中阴影部分的面积为多少平方厘米?(结果保留π)25.四人做传数游戏:甲任报一个数传给乙,乙把这个数减1传给丙,丙再把所得的数的绝对值传给丁,丁把所听到的数减1报出答案:(1)如果甲报的数为x,则乙报的数为x-1,丙报的数为______ ,丁报的数为______ ;(2)若丁报出的答案为2,则甲报的数是多少?26.芳芳妈妈买了一块正方形地毯,地毯上有“※”组成的图案,观察局部有如此规律:芳芳数※的个数的方法是用“L”来划分,从右上角的1个开始,一层一层往外数,第一层1个,第二层3个,第三层5个,…,这样她发现了连续奇数求和的方法.1=121+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52通过阅读上段材料,请完成下列问题:(1)1+3+5+7+9+…+27+29= ______ .(2)1+3+5+7+9+…+(2n-1)+(2n+1)= ______ .(3)13+15+17+…+97+99= ______ .(4)0到200之间,所有能被3整除的奇数的和为______ .27.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察图形,并探究下列问题:(1)在第4个图中,共有白色瓷砖______ 块;在第n个图中,共有白色瓷砖______ 块;(2)在第4个图中,共有瓷砖______ 块;在第n个图中,共有瓷砖______ 块;(3)如果每块黑瓷砖25元,白瓷砖30元,铺设当n=10时,共需花多少钱购买瓷砖?28.某学生用品销售商店中,书包每只定价20元,水性笔每支定价5元.现推出两种优惠方法:①按定价购1只书包,赠送1支水性笔;②购书包、水性笔一律按9折优惠.小丽和同学需买4只书包,水性笔x支(不少于4支).(1)若小丽和同学按方案①购买,需付款______ 元:(用含x的代数式表示并化简)若小丽和同学按方案②购买,需付款______ 元.(用含x的代数式表示并化简)(2)若x=10,则小丽和同学按方案①购买,需付款______ 元;若小丽和同学按方案②购买,需付款______ 元.(3)现小丽和同学需买这种书包4只和水性笔12支,请你设计一种最合算的购买方案.29.如图:在数轴上点A表示数a,点B示数b,点C表示数c,b是最小的正整数,且a、c满足|a+2|+(c-6)2=0.(1)a+c= ______ .(2)若将数轴折叠,使得点A与点B重合,则点C与数______ 表示的点重合.(3)若点A与点D之间的距离表示为AD,点B与点D之间的距离表示为BD,请在数轴上找一点D,使AD=2BD,则点D表示的数是______ ;(4)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和2个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.则AB= ______ ,AC= ______ .(用含t的代数式表示)(5)在(4)的条件下,若2AC-m×AB的值不随着时间t的变化而改变,试确定m 的值.(不必陈述理由)答案和解析1.【答案】D【解析】解:-3相反数是3.故选:D.根据只有符号不同的两个数互为相反数解答.本题主要考查了互为相反数的定义,熟记定义是解题的关键.2.【答案】B【解析】解:根据题意,得甲数为2x+3.故选B.已知乙数为x,根据甲数=2×乙数+3,直接代入可列式表示甲数.此类问题属于简单题型,只要根据题意中的关系直接列式表示即可.3.【答案】C【解析】解:A、平方是它本身的数有0和1,故A错误;B、立方是它本身的数是±1和0,故B错误;C、倒数是它本身的数是±1,故C正确;D、绝对值是它本身的数是正数和0,故D错误.故选:C.依据有理数的乘方法则、立方根、绝对值的性质、倒数的定义进行判断即可.本题主要考查的是有理数的乘方法则、立方根、绝对值的性质、倒数的定义,熟练掌握相关知识是解题的关键.4.【答案】A【解析】解:A、所含字母相同且相同字母的指数也相同,故A正确;B、字母不同不是同类项,故B错误;C、字母不同不是同类项,故C错误;D、相同字母的指数不同,故D错误;故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.5.【答案】B【解析】解:是无理数,故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.【答案】A【解析】解:0、-a、-3x2y、、中,单项式为:0、-a、-3x2y,故单项式的个数的个数为3.故选:A.直接利用单项式的定义分析得出答案.此题主要考查了单项式,正确把握单项式的定义是解题关键.7.【答案】D【解析】解:由题意可知,末位数字每4个算式是一个周期,末位分别为2,4,8,6,∵27÷4=6…3,∴227的末位数字与23的末位数字相同,为8.故选D.观察可知,末位数字每4个算式是一个周期,末位分别为2,4,8,6.把27除以4余数为2,所以227的末位数字与23的末位数字相同,为8.本题考查的是尾数的特征,根据题意找出尾数的规律是解答此题的关键.8.【答案】B【解析】解:①-a表示负数,当a是负数时,-a就是正数,所以①不对;②若|x|=-x,x一定为负数或0,则x≤0,所以②正确;③几个不等于0的有理数相乘,当负因数有奇数个时,积为负,所以③不对;④200x2y3是5次单项式.所以④正确.故选B.根据负数的定义判断①;根据绝对值的定义判断②;根据有理数乘法法则判断③;根据单项式的次数的定义判断④.此题主要考查了负数,绝对值,有理数乘法法则,单项式的次数的定义,是基础题,掌握定义是解题的关键.9.【答案】-13【解析】解:∵单项式的数字因数是-,∴此单项式的系数是-.故答案为:-.根据单项式系数的定义进行解答即可本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.10.【答案】<【解析】解:-=-,-=-,∵,∴-<-故答案为:<两个负数相比较,绝对值越大的数,反而越小.本题考查有理数的比较,涉及负数比较的方法.11.【答案】6.96×105【解析】解:696000=6.96×105,故答案为:6.96×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】0【解析】解:3=m+1,n-1=1,m=2,n=2,∴m-n=0,故答案为:0如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.本题考查同类项的概念,涉及代入求值问题.13.【答案】(1-10%)a【解析】解:降价10%后的价格为:(1-10%)a元.故答案为:(1-10%)a.由已知可知,降价10%后的价格为原价的(1-10%),即(1-10%)a元.此题考查的知识点是列代数式,关键是确定降价后价格与原价格的关系.14.【答案】±7【解析】解:一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则这个数的绝对值是7,则A表示的数是:±7.故答案是:±7.一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则这个数的绝对值是7,据此即可判断.本题考查了绝对值的定义,根据实际意义判断A的绝对值是7是关键.15.【答案】11【解析】解:∵x-2y-1=2,∴x-2y=3∴原式=3(x-2y)+2=3×3+2=11故答案为:11将所求代数式进行适当的变形后,将x-2y-1=2整体代入即可求出答案.本题考查代数式求值,涉及整体的思想.16.【答案】52【解析】解:根据题意得:31-m=10,即m=21,则31+m=31+21=52,故答案为:52.根据题意列出方程,求出方程的解得到m的值,即可求出31+m的值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.【答案】5n+1【解析】解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…∴第n个图案中有5n+n-(n-1)=5n+1根小棒.故答案为:5n+1.由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒.此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.18.【答案】①②④【解析】解:①根据[x)表示大于x的最小整数可得,[-2.1)+[4.3)=-2+5=3,故①正确;②根据[x)表示大于x的最小整数可得,当x是整数时,[x)-x的最大值是1,故②正确;③根据[x)表示大于x的最小整数可得,[x)>x,故[x)-x的最小值不等于0,故③错误;最小值是0;④根据[x)表示大于x的最小整数可得,当x为0.5的奇数倍时,[x)-x=0.5成立,故④正确.故答案为:①②④.根据[x)表示大于x的最小整数,可得[3)=4,[-1.2)=-1,据此对各说法进行判断即可.本题主要考查了有理数大小的比较,解题的关键是运用[x)表示大于x的最小整数进行计算求解.19.【答案】解:(1)原式=-10+16-24=-18;(2)原式=6×(-12)×12=-32;(3)原式=10+5-4=11;(4)原式=-1+4-3+3-2=1.【解析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)原式=5a-4b;(2)原式=6a2b-3ab2-4ab2+12a2b=18a2b-7ab2.【解析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)由题意得:-11-9+18-2+13+4+12-7=18,则B在A的东边18千米;(2)由题意得:11,20,2,4,9,13,25,18,则最远处离出发点25千米;(3)根据题意得:(11+9+18+2+13+4+12+7)×0.5-29=9(升).【解析】(1)由记录的数据相加得到结果,即可作出判断;(2)求出每次里出发点的距离,取其最大即可;(3)求出各数绝对值之和,算出耗油量,即可确定出剩下的油.此题考查了正数与负数,弄清题意是解本题的关键.22.【答案】解:3(x-y)-2(x+y)+2=3x-3y-2x-2y+2=x-5y+2,∵x=-1,y=2,∴原式=(-1)-5×2+2=-9.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的加减的应用,解此题的关键是得出原式=x-5y+2,主要考查学生的计算和化简能力.23.【答案】解:∵x+y=15,xy=-12,∴(x+3y-3xy)-2(xy-2x-y)=x+3y-3xy-2xy+4x+2y=5x+5y-5xy=5(x+y)-5xy=5×15-5×(-12)=3.5.【解析】先去括号,再合并同类项,变形后整体代入,即可求出答案.本题考查了整式的加减的应用,用了整体代入思想,即把x+y和xy当作一个整体来代入.24.【答案】解:(1)阴影部分的周长=πa+2a;(2)阴影部分的面积=a2-πr2=42-π×22=16-4π.【解析】(1)根据图形可知阴影部分的周长等于1个圆的周长+正方形的两条边长;(2)依据阴影部分的面积=正方形的面积减去1个圆的面积求解即可.本题主要考查的是列代数式和求代数式的值,熟练掌握圆的面积公式和周长公式是解题的关键.25.【答案】|x-1|;|x-1|-1【解析】解:(1)根据题意,甲报的数为x,则乙报的数为x-1,丙报的数为|x-1|,丁报的数为|x-1|-1,故答案为:|x-1|,|x-1|-1;(2)设甲为x,则|x-1|-1=2,解得:x=4或x=-2.所以甲报的数是4或者-2.(1)根据题意,丙所报的数为|x-1|,利用丁把所听到的数减1可得到丁最后所报的数;(2)设给定代数式的值求x,相当于解x的一元一次方程.本题考查了列代数式,关键是把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来.26.【答案】225;(n+1)2;2464;3267【解析】解:(1)1+3+5+7+9+…+27+29=152=225;(2)1+3+5+…+(2n-1)+(2n+1)=(n+1)2.(3)13+15+17+…+97+99=()2-()2=2500-36=2464;(4)由题意得,所有奇数的和=3+3×3+3×5+…+3×65,=3×(1+3+5+…+65),=3×()2,=3×1089,=3267;故答案为:(1)225;(2)(n+1)2;(3)2464;(4)3267.(1)观察不难发现,从1开始的连续奇数的和等于首尾两个数的和的一半的平方,然后计算即可得解;(3)用从1开始到99的奇数的和减去从1开始到11的奇数的和,列式计算即可得解;(2)利用(1)(3)的计算方法类比计算即可得解;(4)根据题意列式算式,然后提取3,再利用(1)的计算方法进行计算即可得解.本题是对数字变化规律的考查,观察出从1开始的连续奇数的和等于首尾两个计算的和的一半的平方是解题的关键.27.【答案】20;n(n+1);42;(n+2)(n+3)【解析】解:图形发现:第1个图形中有白色瓷砖1×2块,共有瓷砖3×4块;第2个图形中有白色瓷砖2×3块,共有瓷砖4×5块;第3个图形中有白色瓷砖3×4块,共有瓷砖5×6块;…(1)第4个图形中有白色瓷砖4×5=20块,第n个图形中有白色瓷砖n(n+1)块;故答案为:20,n(n+1);(2)在第4个图中,共有瓷砖6×7=42块瓷砖,第n个图形共有瓷砖(n+2)(n+3)块;(3)当n=10时,共有白色瓷砖110块,黑色瓷砖46块,110×30+46×25=4450元.(1)通过观察发现规律,第4个图中共有白色瓷砖4×5块,共有6×7块瓷砖;(2)将上面的规律写出来即可;(3)求出当n=10时黑色和白色瓷砖的个数,然后计算总费用即可.此题主要考查学生对图形变化类这个知识点的理解和掌握,此题有一定拔高难度,属于难题,解答此题的关键是通过观察和分析,找出其中的规律.28.【答案】5x+60;4.5x+72;110;117【解析】解:(1)按方案①购买花费:5x+60(元);按方案②购买花费:4.5x+72(元);故答案为:5x+60;4.5x+72;(2)当x=10时,5x+60=50+60=110,4.5x+72=45+72=117,故答案为:110;117;(3)运用方案①购买4个书包,得到免费4支水性笔,再运用方案②购买8支水性笔,这样共用去80+8×5×0.9=116(元).(1)根据两种优惠方案列式子即可;(2)将x=10代入,分别计算即可;(3)哪种方案花费少,那么这种方案就合理.本题考查了列代数式以及代数式求值的知识,解答本题的关键是仔细审题,得出两种方案下需要的花费.29.【答案】4;-7;0或4;2t+3;3t+8【解析】解:(1)∵|a+2|+(c-6)2=0,∴a+2=0,c-6=0,解得a=-2,c=6,∴a+c=-2+6=4,故答案为:4;(2)∵b是最小的正整数,∴b=1,∵(-2+1)÷2=-0.5,∴6-(-0.5)=6.5,-0.5-6.5=-7,∴点C与数-7表示的点重合,故答案为:-7;(3)设点D表示的数为x,则若点D在点A的左侧,则-2-x=2(1-x),解得x=4(舍去);若点D在A、B之间,则x-(-2)=2(1-x),解得x=0;若点D在点B在右侧,则x-(-2)=2(x-1),解得x=4,综上所述,点D表示的数是0或4,故答案为:0或4;(4)∵点A表示-2,点B表示1,点C表示6,∴运动前,AB=3,AC=8,∴运动后,AB=t+3+t=2t+3,AC=t+8+2t=3t+8,故答案为:2t+3,3t+8;(5)m的值为3.由(4)可得,2AC-m×AB=2(4t+8)-m×(3t+3)=(6-2m)t+16-3m,∵2AC-m×AB的值不随着时间t的变化而改变,∴6-2m=0,即m=3.(1)根据|a+2|+(c-6)2=0,利用非负数的性质求得a,c的值即可;(2)根据轴对称的性质,可得对称点离对称轴的距离相等,据此计算即可;(3)设点D表示的数为x,分三种情况讨论即可得到点D表示的数是0或4;(4)由(4)可得,2AC-m×AB=(6-2m)t+16-3m,根据2AC-m×AB的值不随着时间t的变化而改变,可得t前面的系数为0,求得m的值即可.本题主要考查了数轴及数轴上两点间的距离公式的运用,解题的关键是利用数轴的特点能求出两点间的距离.解题时注意分类思想的运用.。
苏教版七年级数学上册第一学期期中考试试卷及答案
(第6题)B AC 苏教版七年级数学上册第一学期期中考试试卷(考试时刻100分钟,试卷总分100分)一、选择题(每小题2分,共12分)1.若是向东走3 km 记作+3 km ,那么向西走5 km 记作( )A .-5 kmB .-2 kmC .+5 kmD .+8 km2.拒绝“餐桌浪费”,迫在眉睫.据统计全国每一年浪费食物总量约50 000 000 000千克,那个数据用科学计数法表示为( )A .110.510⨯千克B .95010⨯千克C .9510⨯千克D . 10510⨯千克.3.下列各式中结果为负数的是( )A .(3)--B .2(3)-C .3--D .3- 4.设边长为a 的正方形的面积为2.下列关于a 的三种说法:①a 是无理数;②a 能够用数轴上的一个点来表示;③0<a <1.其中,所有正确的序号是 ( ) A .①② B .①③ C .②③ D .①②③5.下列关于单项式-352xy 的说法中,正确的是( ) A .系数是25-,次数是3 B .系数是25-,次数是4 C .系数是5-,次数是4 D .系数是5-,次数是36.如图,数轴上的A 、B 、C 三点所表示的数别离为a 、b 、c ,点A 与点C 到点B 的距离相等,若是||a >||c >||b ,那么该数轴的原点O 的位置应该在( )A .点A 的左侧B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 二、填空题(每小题2分,共20分) 7.13的相反数是 ,倒数是 .8.比较大小:109- 1110-.9.用代数式表示“m 与n 积的平方”: .10.数轴上点A 表示-1,到点A 距离3个单位长度的点B 所表示的数是_________. 11.若是x -y =3,m +n =2,则 (y +m )-(x -n )的值是 . 12.若单项式n y ax 275与457y ax m -的差仍是单项式,则n m 2-=_________.13.某超市的苹果价钱如图所示,试说明代数式100-的实际意义 .14.如图所示2014年11月份的日历,在日历上任意圈出一个竖列..上相邻的3个数.若是被圈出的三个数的和为51,则这三个数中最后一天为2014年11月 号.15.用黑白两种颜色正方形的纸片按黑色纸片数慢慢加l 的规律拼成一列图案:……第一个 第二个 第三个 …… 第n个图案中有白色纸片 张.16.如图所示的运算程序中,若开始输入的x 值为32,咱们发觉第一次输出的结果为16,第二次输出的结果为8,…,则第2014次输出的结果为 .三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明进程或演算步骤)17.计算(每题5分,共15分)(1))16()7(1723-+---; (2)123(24)(1)238-⨯--; (3)4211(10.4)(2)63⎡⎤---÷⨯--⎣⎦.19.(5分) 化简:2(2x 2-9x ) -3(3x 2+4x -1) .20.(5分) 先化简,再求值:)4(3)32(2722222ab b a ab b a b a ---+,其中2-=a ,21=b .苹果:元/斤(第13题)x 21 输出输入xx +3x 为偶数x 为奇数(第16题)(第14题)21.(6分)已知10箱苹果,以每箱15千克为标准,超过15千克的千克数记为正数,不足15千克的千克数记为负数,称重记录如下:+,-,+,-,-,+,0,-,+,- (1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为±千克,则这10箱有几箱不符合标准的?22.(6分)如图,长方形内有两个四分之一圆.(1) 用代数式表示阴影部份的面积;(2) 当a =10,b =4时,阴影部份的面积是多少(π取值为?23.(7分)(南京青奥会期间,某数学爱好小组调查了奥运村某个体水果店经销香蕉情形,每千克进价元,售价元,8月16日至8月20日经销情形如下表:日期 16日 17日 18日 19日 20日 购进(kg ) 55 50 50 55 50 售出(kg ) 51 38 51 损耗(kg )52126(1)若8月15日晚库存为0,则8月16日晚库存 kg ;(2)从8月18日这一天的香蕉经销情形看,规定赚钱为正,当天是赚钱仍是赔钱?说明理由;(3)青奥会期间8月16日至8月20日,该个体户卖香蕉共赚了多少钱?24.(7分)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长别离是a 、b 、c ,其中a 、b 是直角边.正方形的边长别离是a 、b .ab① bc a(1)将4个完全一样的直角三角形和2个小正方形组成一个大正方形(如图②).用两种不同的方式列代数式表示图②中的大正方形面积: 方式一: ; 方式二: ;(2)观看图②,试写出222(),,2,a b a ab b +这四个代数式之间的等量关系; (3)利用你发觉的结论,求:299769979+⨯+的值.25.(7分)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费.....满必然金额后,按下表取得相应的返还金额.注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.依照上述促销方案,顾客在该商场购物能够取得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,取得的优惠额为1000⨯(1-80%)+60=260(元). (1)购买一件标价为1600元的商品,顾客取得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(x >1250)的商品,那么该顾客取得的优惠额为多少?(用含有x的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(x >1250)的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为 元.苏教版七年级数学上册第一学期期中考试试卷参考答案一、选择题(每小题2分,共12分)二、填空题(每小题2分,共20分)7.31-;3 8. < 9.(mn )2 10. –4或2 11. -1 12. –6 13. 用100元买每斤元的苹果x 斤余下的钱 14. 24 15. 3n +1 16. 2 三、解答题(本大题共9小题,共68分)17.(1)解:原式23-177-16 =+……………………………………3分-3 = ……………………………………5分(2)解:原式153242424238=-⨯+⨯+⨯ ……………………………………3分12409=-++ ……………………………………4分37= ……………………………………5分(3)解:原式3135=--⨯⨯(46-) ……………………………………2分3135=--⨯⨯(2-) ……………………………………3分1=--(185-) ……………………………………4分135= ……………………………………5分 18.(1)解: 463x x -=- ……………………………………2分22x = ……………………………………4分 1x = ……………………………………5分(2)解:6-3(1x +)2=(2x -) ……………………………………1分6-3342x x -=- ……………………………………2分1x -= ……………………………………4分 1x =- ……………………………………5分19.解:原式=4x 2-18x -9x 2-12x +3 ……………………………………3分=-5x 2-30x +3 ……………………………………5分20.解:原式22222746123a b a b ab a b ab =+--+ ……………………………………2分223a b ab =-- ……………………………………3分 当2-=a ,21=b 时, 原式=-(2-)212⨯3-⨯(2-)⨯(12)2 ……………………………………4分1432=-⨯-⨯(2-)14⨯322=-+12=- ……………………………………5分21.解:(1) (++(—+(++(—+(—+( ++0+(—+(++(— = (千克)……………………………………………………………………………………………2分因此,这10箱苹果的总质量为15×10+ =(千克) ……………………………4分(2)这10箱有2箱不符合标准. ………………………………………………………6分 22.解:(1)22b ab π-……………………………………………………………….3分(2) ………………………………………………………….6分 23.(1)5.5 kg ……………………………………………2分(2)当天赚钱因为38 6.5247⨯=元 4.550225⨯=元则247>225,因此当天赚钱. ……………………………………………4分(3)(5055505550++++)-(44.5513850.551++++)-(521260++++)0=因此该个体户最后一天香蕉全数售完. ……………………………………………5分 (44.5513850.551++++) 6.5⨯-(5055505550++++) 4.5⨯357.5=元 答:该个体户卖香蕉共赚了357.5元钱. ……………………………………………7分 24.(1)(a b +)2;222a ab b ++ ……………………………………………2分(2)(a b +)2=222a ab b ++ ……………………………………………4分(3)解:299769979+⨯+22997299720133=+⨯⨯+=(9973+)2210001000000== ……………………………………………7分(专门说明:本题第(1)问的添法不唯一,只要两种不同的方式填写正确均得2分) 25.解:(1)标价为1600元的商品按80%的价钱出售,消费金额为1440元,消费金额1440元在1000﹣1500之间,返还金额为100元, 则顾客取得的优惠额是:1600×(1﹣80%)+100=420(元)………………………………2分 (2)当1000<0.81500x ≤时,(0.2100x +)元;……………………………………………3分当0.8x >1500时,(0.2150x +)元; ……………………………………………4分(3)2000 (当1250<x ≤1875时,+100+500×=650,得x=2250不合题意;当x>1875时,+150+500×=650,得x=2000符合)……………………………………………7分。
苏教版七年级数学上学期期中试题和试卷答案
苏教版七年级数学上学期期中试题和试卷答案最新苏教版七年级数学上学期期中试题和试卷答案此套最新苏教版七年级数学上学期期中试题和试卷答案由绿色圃中小学教育网整理,所有试卷与初中七年级数学苏教版教材大纲同步,试卷供大家免费使用下载打印,转载前请注明出处。
因为试卷复制时一些内容如图片之类没有显示,需要下载的老师、家长们可以到本帖子二楼(往下拉)下载WORD编辑的DOC附件使用!如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!试卷内容预览:苏教版七年级数学期中测试卷一、选择题(本题20分,每题2分)题号 1 2 3 4 5 6 7 8 9 10 答案1.计算(-2)2的结果是A.0B.-2C.4D.-82.下列各数中,正数有A.2个B.3个C.4个D.5个3.与a-b互为相反数的是A.a+bB.a-bC.-b-aD.b-a4.下列运算正确的是A.5x-2x=3B.xy 2-x 2y=0C.a 2 +a 2 =a 4D.5.若n为整数,则2n+1是A.奇数B.偶数C.素数D.合数6.若与是同类项,则、的取值为A.m=2,n=3B.m=4,n=2C.m=3,n=3D.7.已知,则a的值为A.6B.-2C.6或-2D.-6或28.有理数a、b在数轴上的位置如图示,则A.a+b0B.a+b0C.a-b=0D.a-b0m=4,n=3 9.已知x、y互为相反数,a、b互为倒数,m 的绝对值是3.则的值为A.12B.10C.9D.1110.已知a+b=4,c-d=-3,则(b+c)-(d-a)的值为A.7B.-7C.1D.-1二、填空题(本题20分,每空2分)11.用代数式表示:比a的3倍大2的数____________.12.用科学记数法表示:380500=_____________.13.单项式的系数是.14.如果一个数的平方等于它的绝对值,那么这个数是__________.15.比较大小: ______ .16.绝对值大于2而小于5的整数之和是_______________.17.当x=-2时,代数式3x+2x 2-1与代数式x 2-3x的差是__________.18.已知代数式值是4,则代数式的值是_____________.19.观察下更算式:1+3=2 2,1+3+5=3 2,1+3+5+7=4 2,1+3+5+7+9=5 2…………,请你猜测1+3+5+……+2n-1=________________.20.在数1、2、3、4、……、2021、2021的每个数字前添上“+”或“-”,使得算出的结果是一个最小的非负数,请写出符合条件的式子:________________.三、解答题(9大题,共60分) 21.计算(本题24分)感谢您的阅读,祝您生活愉快。
苏教版七年级上册数学期中试卷及答案.docx
2015-2016学年第一学期初一数学期中模拟试卷(分值: 100 分;考试用时: 120 分钟 . )一、:(本共 10 小,每小 2 分,共 20 分)1.如图,检测 4 个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A .B .C. D .答 2.下列法中,正确的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯要()A.正数和数称有理数;B.互相反数的两个数之和零;不 C.如果两个数的相等,那么两个数一定相等;D.0 是最小的有理数;号内 3.已知实数 a,b 在数轴上的位置如图所示,下列结论错误的是()考A . |a|< 1< |b|B . 1<﹣ a< b C. 1< |a|< b D .﹣ b< a<﹣ 1名姓4.下列各式成立的班是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ()封A.a b c a (b c); B.a b c a (b c);C.a b c a (b c);D.a b c d a c b d ;密5 .用代数式表示“m的3倍与n的差的平方”,正确的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.3m n 2 ;B.3m n 2;C.3m n2;D.m3n26.下列法正确的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ()A . a 一定是 数;B .一个数的 一定是正数;C .一个数的平方等于 36, 个数是6;D .平方等于本身的数是和 1;7. 下 列 各 式 的 算 果 正 确 的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A. 2x 3 y 5xy ;B. 5x 3x 2 x 2 ;C. 7 y 2 5y 22 ; D. 9a 2b 4ba 2 5a 2 b ;8.已 知 a 2b 3, 9 2a 4b的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A .0B . 3C .6D .99 . 已 知式 1 x a 1 y 3与 3xy 4b是 同, 那 么 a 、 b 的 分2是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ()A .a 2;B .a2 ;C . a2 ; D . a2;b 1b1b1b 110.下 列 比大 小 正 确 的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A .54;B . 2121 ;C . 10182;D .7272;6 52 33 3二、填空 :(本 共 10 小 ,每小2 分,共 20 分)11. -2 1的相反数是 _______,倒数是 ________.212. 絮 的直径 0. 0000105m , 直径用科学 数法表示 m 13. 若方程 a 3 x a 2 7 0 是一个一元一次方程, a 等于.14. 若 a 和 b 互 相反数, c 和 d 互 倒数, a b 2011的 是 .2010cd15.若x y 3 , xy 4 .3x 2 (4xy 3y) =_________.16. 有理数a、b、c在数上的位置如所示,a b 2a c_______.17.如下所示是算机程序算,若开始入果是 . x 1 ,最后出的18.已知当x1,代数式ax3bx 5 的-9,那么当x1,代数式 ax3 bx 5 的_______.19. 一副羽毛球拍按价提高40%后价,然后再打八折出,果仍能利 15 元,求副羽毛球拍的价,幅羽毛球拍的价x 元,依意列出的方程.20.如,的周 4 个位,数每个数字之的距离 1 个位,在的 4 等分点分上 0、1、 2、 3,先周上表示数字 0 的点与数上表示- 1 的点重合,再将数按逆方向在上(如周上表示数字 3 的点与数上表示- 2 的点重合⋯),数上表示- 2013 的点与周上表示数字的点重合.三、解答:(本大共 12 小,共 60 分)21.(本分 4 分)在数上表示下列各数,并用“<”号把它按照从小到大的序排列.3, 1 , 1.5, 0, 2 ,31;2按照从小到大的序排列.22.算:(本共 4 小,每小 4 分,共 16 分)(1)( 2) ( 3) ( 1) ( 6);(2)(24)(315 ) ;468(3)2211324 1 5;255(4)31682313224323.(本分 4 分)已知:a=3,b2 4 , ab0 ,求 a b 的.24.化或求:(本共 2 小,每小 4 分,共 8 分)(1)a2(3a2b2 )3(a22b2 ) ;(2)已知 : ( x3)2y 20,求代数式2 x2( x22xy 2y 2 ) 2( x2xy 2y 2 )的 .25.解方程:(本共 2 小,每小 4 分,共 8 分)(1)3x 2 2x 5 5 x 3 x ;(2)135x3x 5 ;3226.(本分 6 分)“* ”是定的一种运算法: a b a2 b .(1) 求5 1 的;(2)若 4 x 24x ,求x的.327. (本分 6 分)小黄同学做一道“已知两个多式A、 B,算 2A B ”,小黄将 2A B 看作 A2B,求得果是 C .若 B2x23x 3,C =9x22x7,你帮助小黄求出2A B 的正确答案.28.(本 6 分)已知: A=2a2+3ab-2a-1,B=-a2+ab-1⑴求 4A- (3A-2B) 的;⑵若 A+ 2B 的与a的取无关,求b的.29.(本 4 分)察下列算式:①1 3 22341;②2432891;③354215 161;④ _____________________;⋯⋯⋯⋯(1)请你按以上规律写出第 4 个算式;(2)把这个规律用含字母 n 的式子表示出来..30.(本题满分8 分)如图①所示是一个长为2m ,宽为 2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①.方法②;(3)观察图②,你能写出m n 2, m n 2, mn 这三个代数式之间的等量关系吗?答: .(4)根据( 3)题中的等量关系,解决如下问题:若 a b 6, ab 4 ,则求 a b 2的值.31.(本题 6 分) A、B 两地分别有水泥 20 吨和 30 吨, C、D 两地分别需要水泥 15 吨和 35 吨;已知从 A、 B 到 C、D 的运价如下表:到 C地到 D地A 地B 地每吨元每吨元1510每吨元每吨元129⑴若从 A 地运到 C地的水泥为x吨,则用含x的式子表示从 A 地运到 D 地的水泥为 _________吨,从 A 地将水泥运到 D 地的运输费用为_________元.⑵用含 x 的代数式表示从A、B两地运到C、D两地的总运输费,并化简该式子 .⑶当 用545 元 水泥 如何运 配?32.( 8 分)在左 的日 中, 用一个正方形任意圈出二行二列四个数,如若在第二行第二列的那个数表示 a ,其余各数分b ,c ,d .如( 1)分 用含 a 的代数式表示 b , c , d 三个数.( 2)求 四个数的和(用含 a 的代数式表示,要求合并同 化 )( 3) 四个数的和会等于 51 ?如果会, 算出此 a 的 ,如果不会, 明理由.(要求列方程解答)参考答案一、 :(每小2 分)号 1 234 5 6 7 8 9 10答案CBACADDBBA二、填空 :(每小 2 分)11. 21, 2 ;12. 1.05 - 5;14.-2011;15.27 ;16. a b c ;× 10 ;13.-3 2517.-9 ;18.19 ;19. x 1 40%0.8 x15 ;20.0 ;三、解答 :21. 画数 略 (2 分);用“ ”号 接: 3121.5 01 3 ⋯⋯22 分;22. 算:( 1)原式 =-2-3-1+6 ⋯⋯( 1 分)=0⋯⋯ 4 分;(2)原式 = 243 241245⋯⋯1 分46 818 4 15⋯⋯2分;29⋯⋯4分;(3)原式 = 41645 1 ⋯⋯1分;22542161⋯⋯3分;521⋯⋯4分;5(4)原式 =3 1 664281⋯⋯1 分2747⋯⋯4分;23. 解得a 3, b 2 ⋯⋯1分;求得a3或a3⋯⋯2 分;b2b2解得 a b5⋯⋯4分;24. (1)解:原式 =a23a2b23a26b2⋯⋯2分;5a27b2⋯⋯4分.(2)解得x 3,y 2⋯⋯ 1 分;将代数式化得x2 2 y2⋯⋯2分;当 x 3 ,y 2,原式=-17⋯⋯4分.25.解方程:(1)解:3x4x 105x15x ⋯⋯2分; 5x 5 ⋯⋯3分; x1⋯4分.(2)6 2 35x 3 3x5⋯⋯ 1 分;解得x15⋯⋯3分.26.(1)26;(3 分);( 2)16 x 24x (5分); x6;(6分).327.解:根据意得:A2B C,即 A 2 2 x23x 39x22x7 ,∴ A5x28x13⋯⋯⋯⋯⋯⋯⋯⋯ 4分;2A B 2 5x28x 132x23x 3 8x219x29 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分;28. 解:⑴ 4A-(3A - 2B)⑵若 A+ 2B 的与a的取无关,=A +2B ⋯1/5ab - 2a + 1 与 a 的取 无关 . ⋯ 4/∵A =2a 2+3ab -2a -1,B =- a 2+ ab -1 即:(5 b -2) a +1 与 a 的取无关∴原式= A + 2B ∴5b -2= 0⋯5/22=2a + 3ab -2a -1+ 2( -a +ab -1) ∴b =29. (1) 4 6 52 1⋯⋯1 分;(2) n n 2 (n 1)21⋯⋯ 4 分;30. (1) mn ⋯⋯ 2 分;( 2) m n24mn ⋯⋯ 1 分; m n2⋯⋯ 1 分;224mn ⋯2 分;(3) m nm n2a 24ab 20 ⋯⋯ 2 分; (4) a b b31. 解:⑴ (20 x) ,12(20 x) ⋯2/⑵15 x12(20 x) 10(15 x) 9(15 x)= 2x 525⋯ 4/⑶ 2 x 525=545x 10⋯5/答: A 地运到 C 地 10 吨, A 地运到 D 地 10 吨,B 地运到C 地 5 吨,B 地运到D 地 25 吨. ⋯6/32.( 1)在第二行第二列的数a , 其余3 个数分 是 ba 7 ,c a 8,d a 1 ;( 3 分)(2) a b c d =4a 16 ;(2 分)(3)假 四个数的和等于 51,由( 2)知4a16 51,解得 a 16 .∵3416 3不是正整数,不合 意.故 四个数的和不会等于51.(3 分)4。
盐城市七年级上学期期中数学试卷
盐城市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016七下·藁城开学考) 在数0,2,﹣3,﹣1.2中,属于负整数的是()A . 0B . 2C . ﹣3D . ﹣1.22. (2分)(2017·桂林) 2011的倒数是()A .B . 2011C . ﹣2011D . ﹣3. (2分) 6912的相反数是()A . ﹣6912B .C . ﹣1269D . ﹣4. (2分)下列各式不是整式的是()A . 3x2+5yB . x2﹣2xy﹣y2C . 4D .5. (2分)已知单项式﹣2a2m+3b5与3a5bm﹣2n的和是单项式,则(m+n)2005=()A . 1B . ﹣1C . 0D . 0或16. (2分)第29届北京奥运会火炬接力活动历时130天,传递行程约为137 000km。
用科学记数法表示137000是A .B .C .D .7. (2分) (2018七上·翁牛特旗期末) 若数轴上的点A,B分别与有理数a、b对应,则下列关系正确的是()A . a<bB . ﹣a<bC . |a|<|b|D . ﹣a>﹣b8. (2分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A . (a+b)2=a2+2ab+b2B . (a-b)2=a2-2ab+b2C . a2-b2=(a+b)(a-b)D . (a+2b)(a-b)=a2+ab+b2二、填空题 (共10题;共11分)9. (1分) (2020七上·海曙期末) 若关于 x 的多项式的值与 x 的取值无关,则 a-b 的值是________10. (1分) (2017七上·张掖期中) 的系数是________.11. (1分) (2016七上·嵊州期末) 在实数:1,﹣,,,π,3.1313313331…(两个1之间一次多一个3)中,无理数有________个.12. (1分) (2017七上·宁城期末) “y的3倍与5的和的相反数”是________.13. (1分) (2018七上·宜兴月考) 如果x<0,且|x|=4,则x-1=________.14. (1分) (2016七上·高安期中) 比较大小: ________ .15. (1分) (2017七上·温江期末) 在如图所示的运算流程中,若输入的数x=﹣4,则输出的数y=________.16. (1分) (2020七上·越城期末) 甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下________颗球.17. (1分) (2019七上·溧水期末) 若x2-2x+1的值是3,则5-2x2+4x的值是________.18. (2分)观察下列各数﹣,,﹣,,…,按照这样的规律,写出的第6个数是________,第7个数是________.三、解答题 (共10题;共89分)19. (10分) (2017七上·新疆期末) 计算:(1)(﹣12)﹣(﹣20)+(﹣8)﹣15;(2) |﹣|×(﹣4)2+(﹣)×32.20. (10分) (2016七上·芦溪期中) 已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长;(2)当a=2,b=3时,求此三角形的周长.21. (5分) (2016八上·桑植期中) 已知分式:A= ,B= ,其中x≠±2.学生甲说A与B 相等,乙说A与B互为倒数,丙说A与B互为相反数,她们三个人谁的结论正确?为什么?22. (5分) (2019七上·东莞期中) 先合并同类项:3x2y-4xy2-3+5x2y+2xy2+5,再计算,其中x= ,y=323. (5分)(2017·福田模拟) 计算:|﹣9|+(﹣3)0﹣(﹣)﹣2+ sin45°.24. (15分) (2019七上·天台月考) 某食品厂计划平均每天生产200袋食品,但是由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超过计划量记为正):星期一星期二星期三星期四星期五星期六星期日+5-1-7+11-9+5+6(1)根据记录的数据可知该厂星期二生产食品多少袋?(2)根据记录的数据可知产量最多的一天比产量最少的一天多生产食品多少袋?(3)根据记录的数据可知该厂本周实际共生产食品多少袋?25. (7分) (2016七上·丹徒期中) 如图,在边长为a cm的正方形内,截去两个以正方形的边长a cm为直径的半圆,(结果保留π)(1)图中阴影部分的周长为________ cm.(2)图中阴影部分的面积为________ cm2.(3)当a=4时,求出阴影部分的面积.26. (7分) (2016七下·盐城开学考) 某学校准备组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为400元/人,同时两旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客七五折优惠;而乙旅行社是免去一位带队老师的费用,其余游客八折优惠.(1)如果设参加旅游的老师共有x(x>10)人,则甲旅行社的费用为________元,乙旅行社的费用为________元;(用含x的代数式表示)(2)假如某校组织17名教师到杭州旅游,该校选择哪一家旅行社比较优惠?请说明理由.27. (10分) (2020七上·丹江口期末) 对于任意四个有理数,我们规定:,例如:,根据上述规定解决下列问题:(1)计算;(2)若有理数对,求的值.28. (15分) (2018七上·涟源期中) 如图所示,在数轴上有三个点A,B,C,回答下列问题:(1) A,C两点间的距离是多少?(2)若点E与点B的距离是8,则E点表示的数是什么?(3)若F点与A点的距离是,请你求出F点表示的数是多少?(用字母a表示)参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共89分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。
苏科版七年级上册数学《期中考试卷》含答案
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题2分,共16分)1.0.5-倒数是( )A. 0.5B. 2C. -2D. 12- 2.下列各题中合并同类项,结果正确的是( )A 222347a a a +=B. 222236a a a +=C. 532xy xy -=D. 336235a a a += 3.在下列五个数中:23,0,2π,1.3,-1.212212221…(两个1之间依次多一个2)有理数个数为( ) A. 4 B. 3 C. 2 D. 14.若代数式a 2+2b 的值为4,则代数式3a 2+6b-3的值为( )A. 3B. -9C. -3D. 95.我市某文具店进行促销活动,决定将单价为a 元的笔记本降价10%销售,降价后的销售价为( )A. 10%aB. a -10%C. (1-10%)aD. (1+10%)a 6.a ,b 是有理数,且|a |=-a ,|b |=b ,|a |>|b |,用数轴上的点来表示a ,b ,正确的是( )A. B. C. D. 7.无论a 取什么值,下列哪个代数式的值一定是正的?( )A. 21a +B. 8a +C. 2(3)a +D. 3100a + 8.一家商店以每包a 元的价格进了20包甲种茶叶,又以每包b 元的价格买进30包乙种茶叶(a <b),如果以每包2a b +元的价格卖出这两种茶叶,则卖完后,这家商店( ) A. 赚了B. 赔了C. 不赔不赚D. 不能确定赚或赔 二、填空题(每小题2分,共20分)9.-12的相反数为_______,-12的绝对值等于_______. 10.据报道,春节期间微信红包收发高达3280000000次,数字3280000000用科学记数法表示为___________. 11.比较大小,用“<”“>”或“=”连接:(1)-|23-| ___-(34-); (2)-3.14___-|-π|. 12.若312a x y -与223bx y -的和仍是单项式,则-a b =_________. 13.袋装牛奶的标准质量为100克,现抽取袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)代号① ② ③ ④ ⑤ 质量-2 +4 -1 +5 -6其中,质量最接近标准的是__________号(填写序号).14.定义一种新的运算“*”,并且规定:a*b =a 2-2b .则(-3)*(-1)=_______.15.如图,用代数式表示图中阴影部分的面积为___________________.16.已知x =5,y =4,且x >y ,则x -y =_________.17.已知2a +b =23,a +2b =25,则代数式a +b =________.18.如图所示的运算程序中,若开始输入的x 值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为_________.三、计算题(每小题4分,共16分)19.(1)14―25+12―17;(2)113()(60)234--+⨯-; (3)54(25)(32)45-÷⨯÷-; (4)22123(3)6⎡⎤--⨯--⎣⎦. 四、计算与化简(20题每小题5分,21题6分,共16分)20.化简下列各式:(1)324576x y x y -+---+;(2)4(32)3(52)x y y x ----.21.化简求值22225(3)4(3),2, 3.a b ab ab a b a b ---+=-=其中,五、解答题(共32分)22.列式计算:已知三角形的第一条边长为5a +3b ,第二条边比第一条边短2a -b,第三条边比第二条边短a -b .(1)求第二条边长;(2)求这个三角形的周长.23.用同样大小两种不同颜色的正方形纸片,按下图方式拼正方形.…第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有25小正方形;……(1)根据上面发现我们可以猜想:1+3+5+7+…+(2n -1)的结果(用含n 的代数式表示);(2)请根据你的发现计算:① 1+3+5+7+ (99)② 101+103+105+ (199)24.某市为鼓励居民节约用水,采用分段计费方法按月计算每户家庭的水费,月用水量不超过30立方米时,按2元/立方米计费;月用水量超过30立方米时,其中的30立方米仍按2元/立方米收费,超过部分按2.5元/立方米计费.设每户家庭月用水量为x立方米.(1)当x不超过30时,应收多少水费(用x的代数式表示);当x超过30时,应收多少水费(用x的代数式表示);(2)小明家四月份用水20立方米,五月份用水36立方米,请帮小明计算一下他家这两个月一共应交多少元水费?25.阅读材料:如图(1),在数轴上A示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.解决问题:如图(2),数轴上点A表示的数是-4,点B表示的数是2,点C表示的数是6.(1)若数轴上有一点D,且AD=3,求点D表示的数;(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.求点A表示的数(用含t的代数式表示),BC等于多少(用含t的代数式表示).(3)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.答案与解析一、选择题(每小题2分,共16分)1.0.5-的倒数是( )A. 0.5B. 2C. -2D. 12- 【答案】C【解析】【分析】根据倒数的定义解答即可.【详解】∵-0.5×(-2)=1, ∴0.5-的倒数是是-2.故选C.【点睛】本题考查了倒数的定义,熟知乘积是1 的两个数互为倒数是解题的关键.2.下列各题中合并同类项,结果正确的是( )A. 222347a a a +=B. 222236a a a +=C. 532xy xy -=D. 336235a a a += 【答案】A【解析】【分析】原式各项合并得到结果,即可做出判断.【详解】A 、3a 2+4a 2=7a 2,正确;B 、2a 2+3a 2=5a 2,错误;C 、5xy-3xy=2xy ,错误;D 、原式不能合并,错误,故选A .【点睛】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.3.在下列五个数中:23,0,2π,1.3,-1.212212221…(两个1之间依次多一个2)有理数个数为( ) A. 4B. 3C. 2D. 1【答案】B【解析】【分析】根据有理数的定义、无理数的定义进行判断即可得解.【详解】在23,0,2,1.3,-1.212212221…(两个1之间依次多一个2)中,有理数有23,0,1.3,有理数的个数是3个.故选B.【点睛】本题考查了实数,主要利用了有理数和无理数定义,熟记概念是解题的关键.4.若代数式a2+2b的值为4,则代数式3a2+6b-3的值为( )A. 3B. -9C. -3D. 9【答案】D【解析】【分析】3a2+6b可看为a2+2b的3倍.【详解】3a2+6b-3=3(a2+2b)-3=12-3=9.故选D【点睛】此题主要考查了代数式求值,将待求的式子前两项提取3整体出现a2+2b是解本题的关键.5.我市某文具店进行促销活动,决定将单价为a元的笔记本降价10%销售,降价后的销售价为( )A. 10%aB. a-10%C. (1-10%)aD. (1+10%)a【答案】C【解析】【分析】根据题意可以求得降价后的销售价格,本题得以解决.【详解】由题意可得,降价后的销售价为:(1-10%)a,故选C.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.6.a,b是有理数,且|a|=-a,|b|=b,|a|>|b|,用数轴上的点来表示a,b,正确的是( )A. B. C. D.【答案】A【解析】分析:根据绝对值的定义和数轴的定义解答此题即可.详解:|a|=-a,|b|=b,|a|>|b|,∴a≤0,b≥0,|a|>|b|,故选A .点睛:此题考查了数轴的知识,解答本题的关键是理解数轴上各点的大小关系,掌握原点左边的数小于0,原点右边的数大于0.7.无论a 取什么值,下列哪个代数式的值一定是正的?( )A. 21a +B. 8a +C. 2(3)a +D. 3100a + 【答案】A【解析】【分析】讨论每个选项后,作出判断.注意平方数和绝对值都可是非负数.【详解】A 、无论a 是何值,代数式a 2+1的值都是正数,符合题意;B 、当a=-8时,代数式8a +的值为0,0不是正数,不符合题意;C 、当a=-3时,代数式(a+3)2的值为0,0不是正数,不符合题意;D 、当x≤-10时,代数式3100a +的值小于等于0,,不符合题意.故选A .【点睛】注意0既不是正数,也不是负数.平方数和绝对值都可以为0,也可以为正数.8.一家商店以每包a 元的价格进了20包甲种茶叶,又以每包b 元的价格买进30包乙种茶叶(a <b),如果以每包2a b +元的价格卖出这两种茶叶,则卖完后,这家商店( ) A. 赚了B. 赔了C. 不赔不赚D. 不能确定赚或赔 【答案】B【解析】【分析】 根据题意知商店获得的利润为2a b +×(20+30)-20a-30b=5(a-b ),由a<b 知5(a-b)<0,可得答案. 【详解】该商店一共购进茶叶50包,若每包以2a b +元的价格卖出, 则共收入50×2a b +=25(a +b )元;购进两种茶叶共花费:20a +30b ;25(a +b )−(20a +30b )=25a +25b −20a −30b =5a −5b =5(a −b )∵a <b ,即a −b <0,所以5(a −b )<0即卖完后,这家商店赔了.故选B.【点睛】本题主要考查列代数式的能力及整式的化简,理解题意列出商店获取利润的代数式是解题的关键.二、填空题(每小题2分,共20分)9.-12的相反数为_______,-12的绝对值等于_______. 【答案】 (1). 12 (2). 12 【解析】【分析】分别根据相反数的概念及绝对值的性质进行解答即可.详解】-12与12只有符号相反, ∴-12的相反数等于12, ∵-12<0, ∴|-12|=12. 故答案为12;12. 【点睛】本题考查的是相反数的概念及绝对值的性质,熟知以上知识是解答此题的关键.10.据报道,春节期间微信红包收发高达3280000000次,数字3280000000用科学记数法表示为___________.【答案】93.2810【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将3280000000用科学记数法表示为3.28×109. 故答案为3.28×109. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.比较大小,用“<”“>”或“=”连接:(1)-|23-| ___-(34-); (2)-3.14___-|-π|. 【答案】 (1). < (2). >【解析】【分析】(1)先化简,然后根据正数大于负数即可判断;(2)先化简,然后再求绝对值,最后根据两个负数比较大小,绝对值大的反而小即可比较.【详解】(1)∵-|-23|=-23<0,-(-34)=34>0, ∴-|-23|<-(-34); (2)∵-|-π|=-π,|-3.14|=3.14,|-π|=π,且3.14<π,∴-314>-|-π|,故答案为(1)<;(2)>.【点睛】本题考查的是有理数的大小比较,熟知两负数比较大小的法则是解答此题的关键.12.若312a x y -与223bx y -的和仍是单项式,则-a b =_________. 【答案】-1【解析】【分析】利用已知得出两个单项式是同类项,进而得出a,b 的值即可得出答案. 【详解】∵单项式312a x y -与223bx y -的和仍是单项式, ∴a=2,b=3,则a b -=-1,故答案为-1.【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键.13.袋装牛奶的标准质量为100克,现抽取袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)其中,质量最接近标准的是__________号(填写序号).【答案】③【解析】【分析】根据表中数据求出每袋的质量,选出和100克比较接近的即可;也可以根据-2,+4,-1,+5,-6直接得出答案.【详解】∵①的质量是100-2=98(克),②的质量是100+4=104(克),③的质量是100-1=99(克),④的质量是100+5=105(克),⑤的质量是100-6=94(克),∴最接近100克的是③,故答案为③.【点睛】本题考查了正数和负数的应用,解此题的关键是理解题意.14.定义一种新的运算“*”,并且规定:a*b=a2-2b.则(-3)*(-1)=_______.【答案】11【解析】分析】根据题中的新定义运算的方法列出所求算式,计算即可得到结果.【详解】(-3)*(-1)=(-3)2-2×(-1)=9+2=11.故答案为11.【点睛】此题考查了有理数的混合运算,弄清题中的新定义运算的方法是解本题的关键.15.如图,用代数式表示图中阴影部分面积为___________________.【答案】212ab b π-【解析】 阴影部分的面积等于长方形的面积减去两个小扇形的面积差.长方形的面积是ab ,两个扇形的圆心角是90∘,∴这两个扇形是分别是半径为b 的圆面积的四分之一. ∴2211242ab b ab b ππ-⨯=- . 【点睛】本题考查了列代数式,由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积长方形的面积-2个14圆的面积是解题的关键. 16.已知x =5,y =4,且x >y ,则x -y =_________.【答案】1或9【解析】【分析】根据绝对值的代数意义分别求出x 与y 的值,然后根据x >y 得到满足题意的x 与y 的值,代入所求的式子中计算即可.【详解】∵|x|=5,|y|=4,∴x=±5,y=±4, 又∵x >y,∴x=5,y=4或x=5,y=-4,则x-y=5-4=1,或x-y=5-(-4)=9.故答案1或9.【点睛】此题考查了有理数的减法,绝对值的代数意义,掌握绝对值的代数意义是解本题的关键,注意不要漏解.17.已知2a+b=23,a+2b=25,则代数式a+b=________.【答案】16【解析】【分析】把两式相加,得到3a+3b=48,即可求解.【详解】2a+b=23①,a+2b=25②,①+②,得3a+3b=48,即3(a+b)=48,得a+b=16,故答案为16【点睛】此题考查了代数式求值,把a+b看作一个整体是解题的关键.18.如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为_________.【答案】2【解析】【分析】把x=64代入程序中计算,以此类推得到一般性规律,即可确定出第2018次输出的结果.【详解】把x=64代入得:12×64=32,把x=32代入得:12×32=16,把x=16代入得:12×16=8,把x=8代入得:12×8=4,把x=4代入得:12×4=2,把x=2代入得:12×2=1,把x=1代入得:1+3=4, 以此类推,∵(2018-3)÷3=671…2,∴第2018次输出的结果为2,故答案为:2.【点睛】此题考查了代数式求值,弄清题中的程序框图是解本题的关键.三、计算题(每小题4分,共16分)19.(1)14―25+12―17; (2)113()(60)234--+⨯-; (3)54(25)(32)45-÷⨯÷-; (4)22123(3)6⎡⎤--⨯--⎣⎦. 【答案】(1)-16;(2)5;(3)12;(4)-3. 【解析】【分析】(1)把正数负数分别结合计算即可;(2)运用乘法分配律计算可得;(3)先把除法转化成乘法,再根据有理数的乘法法则计算即可.(4)先算乘方和括号里面的,再算乘法,最后算减法即可.【详解】(1)14―25+12―17=14+12―25―17=26―42=-16; (2)()11360234⎛⎫--+⨯- ⎪⎝⎭=()()()113 6060603020234⎛⎫-⨯--⨯-+⨯-=+ ⎪⎝⎭-45=5; (3)()()54253245-÷⨯÷-=()4414411 2525553255322⎛⎫-⨯⨯⨯-=⨯⨯⨯= ⎪⎝⎭; (4)()2212336⎡⎤--⨯--⎣⎦=-4-16⨯(3-9)= -4-16⨯(-6)=-4+1=-3 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.四、计算与化简(20题每小题5分,21题6分,共16分)20.化简下列各式:(1)324576x y x y -+---+;(2)4(32)3(52)x y y x ----.【答案】(1)-8x-5y+2;(2)-6x-7y.【解析】【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【详解】(1)324576x y x y -+---+=()()()352746x x y y --+-+-+=-8x-5y+2;(2)()()432352x y y x ----=-12x+8y-15y+6x=(-12x+6x) +(8y-15y)=-6x-7y .【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号. 21.化简求值22225(3)4(3),2, 3.a b ab ab a b a b ---+=-=其中,【答案】54.【解析】【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】原式=15a 2b ﹣5ab 2+4ab 2﹣12a 2b =3a 2b ﹣ab 2,当a =﹣2,b =3时,原式=36+18=54.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题(共32分)22.列式计算:已知三角形的第一条边长为5a +3b ,第二条边比第一条边短2a -b,第三条边比第二条边短a -b .(1)求第二条边长;(2)求这个三角形的周长.【答案】(1)3a +4b ;(2)10a +12b【解析】【分析】(1)根据题意即可列出第二条边的长度;(2)根据题意列出第三条边的长度,然后即可求出三角形的周长.【详解】(1) 5a +3b -(2a -b)= 5a +3b -2a +b = 3a +4b ;(2)5a+3b+(3a+4b)+(3a+4b)-(a-b)=5a+3b+3a+4b+3a+4b-a+b= 10a+12b【点睛】本题考查整式的加减,涉及列代数式,属于基础题型.23.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.…第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有25小正方形;……(1)根据上面的发现我们可以猜想:1+3+5+7+…+(2n-1)的结果(用含n的代数式表示);(2)请根据你的发现计算:① 1+3+5+7+ (99)② 101+103+105+ (199)【答案】(1)2n,①2500,②7500.【解析】【分析】(1)直接分别解各数据得出答案;(2)①利用(1)规律求出答案;②由以上规律可得原式可看作是1002-502.【详解】第(1)个图形中有1=12个正方形;第(2)个图形有1+3=4=22个小正方形;第(3)个图形有1+3+5=9=32个小正方形;第(4)个图形有1+3+5+7=16=42小正方形;……第n个图形有1+3+5+…+(2n-1)=n2小正方形;(1)1+3+5+…+(2n-1)=n2;(2)① 1+3+5+7+…+99=502=2500;②101+103+105+…+199=(1+3+5+7+…+199)+( 1+3+5+7+…+99)=1002-502=7500.【点睛】此题主要考查了图形的变化类,正确得出数字之间变化规律是解题关键.24.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过30立方米时,按2元/立方米计费;月用水量超过30立方米时,其中的30立方米仍按2元/立方米收费,超过部分按2.5元/立方米计费.设每户家庭月用水量为x立方米.(1)当x不超过30时,应收多少水费(用x的代数式表示);当x超过30时,应收多少水费(用x的代数式表示);(2)小明家四月份用水20立方米,五月份用水36立方米,请帮小明计算一下他家这两个月一共应交多少元水费?【答案】(1)2x,60+2.5(x-30)或2.5x-15;(2)这两个月一共应交115元水费【解析】【分析】(1)因为月用水量不超过30m3时,按2元/m3计费,所以当0≤x≤30时,水费为是2x;因为月用水量超过30m3时,其中的30m3仍按2元/m3收费,超过部分按 2.5元/m3计费,所以当x>30时,水费为:2×30+2.5(x-30)=2.5x-15;(2)由题意可得:因为四月份用水20立方米,所以用2x计算水费;五月份用水36立方米,所以用(2.5x-15)计算用水量.【详解】(1)月用水量不超过30立方米时水费为:2x元,月用水量超过30立方米时水费为:60+2.5(x-30)=2.5x-15;(2)当x=20时,2x=2×20=40,x-=⨯-=当x=36时,2.515 2.5361575答:这两个月一共应交115元水费【点睛】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.25.阅读材料:如图(1),在数轴上A示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.解决问题:如图(2),数轴上点A表示的数是-4,点B表示的数是2,点C表示的数是6.(1)若数轴上有一点D,且AD=3,求点D表示的数;(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.求点A表示的数(用含t的代数式表示),BC等于多少(用含t的代数式表示).(3)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-7或-1, (2)-4-t t+4 (3)不变,理由见解析.【解析】【分析】(1)设D表示的数为a,由绝对值的意义容易得出结果;(2)分别表示出t秒后A、B、C分别对应的数,再求AC即可;(3)表示出BC和AB,再相减即可得出结论.【详解】(1)设D表示的数为a,∵AD=3,∴|-4-a|=3,解得:a=-7或-1;(2)将点A向左移动t个单位长度,则移动后的点表示的数为-4-t;将点B和点C分别向右运动2t和3t个单位长度,则移动后的点表示的数分别为2+2t,6+3t;则BC=(6+3t)-(2+2t)=t+4;(3)AB=(2+2t)-(-4-t)=3t+6,3BC-AB=3(t+4)-(3t+6)=6,故3BC-AB的值不随时间t的变化而改变.【点睛】此题考查了数轴,掌握数轴上两点之间的距离求解方法是解决问题的关键.。
苏科版数学七年级上册《期中考试试题》含答案解析
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.2-的相反数是( )A. 2-B. 2C. 12D. 12- 2.数轴上的点所表示的数一定是( )A. 整数B. 有理数C. 无理数D. 有理数或无理数 3.下列各式中,互为相反数的是( )A. 2(3)-和23-B. 2(3)-和23C. 3(2)-和32-D. 3|2|-和32- 4.餐桌边的一蔬一饭实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费食物总量折合粮食约54300000000千克,此数据用科学计数法表示为( )A. 95.4310⨯B. 954.310⨯C. 105.4310⨯D. 110.54310⨯5.下列各单项式中,与43a b 是同类项的为A. 43aB. 3abC. 4a bD. 323a b 6.在代数式:23473223a b ab a a m π+--,,,,,,中,单项式有( ) A. 1个 B. 2个 C. 3个 D. 4个7.多项式43235x x x -+-的次数和常数项分别是A. 4和5B. 1和5C. 1和5-D. 4和5-8.甲、乙两地相距m 千米,小明从甲地开车去往乙地,原计划驾车每小时行驶x 千米,由于道路畅通,小明实际每小时行40千米(x <40),小明实际从甲地到乙地所需时间比原计划减少( ) A. 40m 小时 B. m x小时 C. (m x -40m )小时 D. (40m -m x )9.当1x =-时,代数式31ax bx ++的值为2019-,则当1x =时,代数式31ax bx ++的值为( )A. -2018B. 2019C. -2020D. 202110.若计算机按如图所示程序工作,若输入的数是1,则输出的数是( )A -63 B. 63C. -639D. 639二、填空题11.股票上涨100点记作+100点,那么如果下跌50点则记作:__________.12.14-的绝对值是_____,倒数是______. 13.比较大小(用“>”“=”“<”连接):(2)--_____3--.14.数轴上的点A 表示-3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是 个单位长度.15.如图,将长和宽分别是a,b 的长方形纸片的四个角都剪去一个边长为x 的正方形.用含a,b,x 的代数式表示纸片剩余部分的面积为______.16.单项式﹣223x y 的系数是_____,次数是_____. 17.如果()224-30x y ++=,那么y x 的值为_____.18.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4.则-2019应排在A ,B ,C ,D ,E 中______的位置.三、解答题19.计算(1)()2317622+-+-- (2)()116212⎛⎫÷-⨯- ⎪⎝⎭(3)221.5 3.5()55⨯-⨯- (4)221(13)10(3)⎡⎤⎡⎤---⨯-+-⎣⎦⎣⎦20.化简(1)223x y x y -++(2)()()2225223a a a a a +---21.先化简,再求值:22222135262x y xy x y x y xy ⎡⎤⎛⎫-+-++ ⎪⎢⎥⎝⎭⎣⎦,其中2,1x y ==-. 22.若代数式45a b +的值是-3,则代数式()()43222a b a b +--的值是多少?23.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“-”表示出库)+31,-31,-16,+35,-38,-20(1)经过这6天,仓库里的货品是______(填“增多了”或“减少了”)(2)经过这6天,仓库管理员结算发现仓库还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?24.小王家新买的一套住房的建筑平面图如图所示(单位:米).(1)这套住房的建筑总面积是多少平方米?(用含a ,b ,c 的式子表示)(2)若a=10,b=4,c=7,试求出小王家这套住房的具体面积.(3)地面装修要铺设瓷砖,公司报价是:客厅地面每平方米240元,卧室地面每平方米220元,厨房地面每平方米180元,卫生间地面每平方米150元.在(2)的条件下,小王一共要花多少钱?(4)这套住房的售价为每平方米15000元,购房时首付款为房价的40%,余款向银行申请贷款,在(2)的条件下,小王家购买这套住房时向银行申请贷款的金额是多少元?25.如图A 在数轴上对应的数为-2.(1)点B 在点A 右边距离A 点4个单位长度,则点B所对应的数是_____.(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A 运动到-6的点处时,求A 、B 两点间的距离.(3)在(2)的条件下,现A 点静止不动,B 点以原速沿数轴向左运动,经过多长时间A 、B 两点相距4个单位长度.26.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x 1,x 2,x 3,称为数列x 1,x 2,x 3,计算1x ,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的价值.例如,对于数列2,-1,3,因为22=,2(1)122+-=,2(1)3433+-+=,所以数列2,-1,3的价值为12. 小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列-1,2,3的价值为12;数列3,-1,2的价值为1:…经过研究,小丁发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为12.根据以上材料,回答下列问题: (1)数列4,3,-2的价值为______.(2)将“4,3,-2”这三个数按照不同的顺序排列,可得到若干个数列,求这些数列的价值的最小值(请写出过程并作答).(3)将3,-8,a(a>1)这三个数按照不同顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a 的值为_______ (直接写出答案).答案与解析一、选择题1.2-的相反数是( )A. 2-B. 2C. 12D. 12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .2.数轴上的点所表示的数一定是( )A. 整数B. 有理数C. 无理数D. 有理数或无理数【答案】D【解析】【分析】根据数轴上的点所表示的数与实数一一对应即可判断.【详解】解:∵数轴上的点所表示的数与实数一一对应,实数分为有理数和无理数∴数轴上的点所表示的数一定是有理数或无理数.故选D【点睛】有理数和无理数合在一起,才能填满整个数轴,所以实数与数轴上的点一一对应,即每一个实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示实数.数形结合思想是解答此题的关键.3.下列各式中,互为相反数的是( )A. 2(3)-和23-B. 2(3)-和23C. 3(2)-和32-D. 3|2|-和32- 【答案】A【解析】【分析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确;B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.4.餐桌边的一蔬一饭实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费食物总量折合粮食约54300000000千克,此数据用科学计数法表示为( )A. 95.4310⨯B. 954.310⨯C. 105.4310⨯D. 110.54310⨯ 【答案】C【解析】【分析】科学计数法的表示形式为10n a ⨯ 的形式,其中110a ≤<,此题是绝对值较大的数,因此n 等于整数位-1,根据此规则解答.【详解】解:∵54300000000的整数位11,所∴n=10∴54300000000=5.43×1010故选C【点睛】本题考查科学计数法,掌握较大的数字用科学计数法形式表示时,其a 值和n 值的确定方法是解答此题的关键.5.下列各单项式中,与43a b 是同类项的为A. 43aB. 3abC. 4a bD. 323a b 【答案】C【解析】分析】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.【详解】由同类项的定义可知,43a b 中,a 的指数是4,b 的指数是1.A 、a 的指数是1,不含字母b ,故与 43a b 不是同类项,B 、a 的指数是1,b 的指数是1;故与43a b 不是同类项,C 、a 的指数是4,b 的指数是1;故与43a b 是同类项,D 、a 的指数是3,b 的指数是2.故与43a b 不是同类项,故选C .【点睛】本题考查了同类项的知识,注意判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.在代数式:23473223a b ab a a m π+--,,,,,,中,单项式有( ) A. 1个B. 2个C. 3个D. 4个 【答案】C【解析】【分析】根据单项式是整式的一种,像数字和字母的乘积,单独一个数或单独一个字母也是单项式,依据定义判断.【详解】解:根据定义-4,2a b + ,3ab ,7a 2-3a ,2π属于整式,其中-4, ,3ab ,2π属于单项式,2a b + ,7a 2-3a 属于多项式.故选C【点睛】本题考查整式和单项式的概念,明确判断单项式所具备的条件是解答此题的关键.7.多项式43235x x x -+-的次数和常数项分别是A. 4和5B. 1和5C. 1和5-D. 4和5- 【答案】D【解析】【分析】根据多项式中常数项及多项式的次数的定义即可求解.【详解】∵多项式43x 2x 3x 5-+-中,最高项的次数是4,∴这个多项式的次数是4,∵多项式43x 2x 3x 5-+-中,-5不含字母,∴常数项是-5,∴多项式43x 2x 3x 5-+-的次数和常数项分别是4和-5,故选D.【点睛】本题考查多项式的次数和常数项的定义,多项式里次数最高项的次数,叫做这个多项式的次数,不含字母的项叫做常数项,熟练掌握定义是解题关键.8.甲、乙两地相距m 千米,小明从甲地开车去往乙地,原计划驾车每小时行驶x 千米,由于道路畅通,小明实际每小时行40千米(x <40),小明实际从甲地到乙地所需时间比原计划减少( ) A. 40m 小时 B. m x小时 C. (m x -40m )小时 D. (40m -m x ) 【答案】C【解析】【分析】将原计划的时间减去实际需要的时间,就可以得出小明从甲地到乙地所减少的时间.【详解】可先求出原计划从甲地到乙地所需的时间,即m x 小时,再求每小时行40千米所需要的时间,即40m 小时, 故小明从甲地到乙地所需时间比原来减少:m x -40m (小时), 故选C .【点睛】本题考查了列代数式,找到所求的量的等量关系,列出代数式是解决问题的关键.9.当1x =-时,代数式31ax bx ++的值为2019-,则当1x =时,代数式31ax bx ++的值为( )A. -2018B. 2019C. -2020D. 2021 【答案】D【解析】【分析】根据题意可求得a+b=2020,再代入a+b+1中即可求值.【详解】解:根据题意,得-a-b+1=-2019∴a+b=2020当x=1时,ax3+bx+1=a+b+1=2020+1=2021∴当x=1时,代数式ax3+bx+1的值为2021故选D【点睛】本题考查代数式求值,整体代入思想是解答此题关键.10.若计算机按如图所示程序工作,若输入的数是1,则输出的数是( )A. -63B. 63C. -639D. 639【答案】C【解析】【分析】把x=1代入计算程序得(1-8)×9=-63,把-63再次代入计算程序得(-63-8)×9=--639.【详解】解:当x=1时,(1-8)×9=-63∵-63<100∴当x=-63时,(-63-8)×9=-639.故选C【点睛】本题考查程序流程图和有理数混合运算,读懂图形和正确运用有理数混合运算法则是解答此题的关键.二、填空题11.股票上涨100点记作+100点,那么如果下跌50点则记作:__________.【答案】-50点.【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:根据题意,正数表示上涨,所以负数表示下跌,所以下跌50点应记作-50点.所以答案是:-50点.【点睛】本题考查正负数的意义,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.14-的绝对值是_____,倒数是______.【答案】(1)1 4(2)-4【解析】【分析】依据负数的绝对值等于它的相反数,a(a≠0)的倒数为可求解.【详解】解:∵1-4的绝对值是1-4的相反数,1-4的相反数是14,∴1-4的绝对值是14;1-4的倒数是-4.故答案为14,-4【点睛】本题考查有理数的相关概念,正确把握绝对值的代数定义,及相反数的定义,倒数定义是解决此题的关键.13.比较大小(用“>”“=”“<”连接):(2)--_____3--.【答案】>【解析】【分析】根据相反数和绝对值的定义,及正数大于负数比较2与-3的大小,即可解答此题.【详解】解:-(-2)=2,--3=-3∵2>-3∴-(-2)> --3.故答案为>【点睛】熟练掌握有理数比较大小的法则是解答此题的关键.14.数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是个单位长度.【答案】1【解析】本题考查的是数轴的运用先根据题意得到将点A 经过两次移动之后所得到的点即可得到结果.点A 表示,将点A 先向右移动7个单位长度得到,再向左移动5个单位长度得到,到原点的距离是个单位长度.15.如图,将长和宽分别是a,b 的长方形纸片的四个角都剪去一个边长为x 的正方形.用含a,b,x 的代数式表示纸片剩余部分的面积为______.【答案】ab ﹣4x 2【解析】【分析】可利用原矩形的面积减去剪去的4个正方形的面积来计算剩余图形的面积;接着根据矩形以及正方形的面积公式,即可得到结果.【详解】由已知可得原矩形的面积为ab ,剪去的4个正方形面积为4x 2,故剩余部分的面积为ab-4x 2.【点睛】本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.16.单项式﹣223x y 的系数是_____,次数是_____. 【答案】 (1). 23- (2). 3 【解析】【分析】 由于单项式中数字因数叫做单项式的系数,所有字母的指数和是单项式的次数,由此即可求解. 【详解】解:单项式223x y -的系数是23-,次数是3, 故答案为23-,3. 【点睛】此题主要考查了单项式的系数及其次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.17.如果()224-30x y ++=,那么y x 的值为_____. 【答案】-8【解析】【分析】根据两个非负数相加得0,则每个加数均为0,解2x+4=0,和y-3=0得出x,y 值,代入结论即可求解.【详解】解:∵()224-30x y ++=∴(2x+4)2=0,3y =0∴2x+4=0,y-3=0∴x=-2,y=3∴y x =(-2)3=-8故答案为-8【点睛】如果若干个非负数的和为0,那么这若干个非负数都必为零是解答此题的通法.18.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4.则-2019应排在A ,B ,C ,D ,E 中______的位置.【答案】C【解析】【分析】根据题中图形布列规律得出每个峰的封顶位置数的绝对值规律为5n-1,第奇数个峰的峰顶位置数为正数,第偶数个峰的峰顶位置数为负数,因为2019=404×5-1,即可判断-2019位于第404个峰的峰顶位置.【详解】解:∵峰1,峰2,峰3,…的峰顶位置数分别是4,-9,14,…∴第n 个峰的峰顶位置数的绝对值为5n-1,第奇数个峰的峰顶位置数为正数,第偶数个峰的峰顶位置数为负数∵2019=2020-1=404×5-1∴-2019位于第404个峰C 位置.故答案为C【点睛】此题考查图形的变化规律,观察出每个峰的其中一个位置的数字变化规律是解答此题的关键.三、解答题19.计算(1)()2317622+-+-- (2)()116212⎛⎫÷-⨯- ⎪⎝⎭(3)221.5 3.5()55⨯-⨯- (4)221(13)10(3)⎡⎤⎡⎤---⨯-+-⎣⎦⎣⎦【答案】(1)-10;(2)36;(3)2;(4)-1【解析】【分析】(1)根据有理数加减法混合运算顺序,加减法为同级运算,同级运算从左向右的顺序依次计算;(2)根据有理数乘除法混合运算顺序,乘除法为同级运算,同级运算从左向右的顺序依次计算;(3)运用乘法分配律进行简便计算;(4)依据先算乘方,再算乘除,有括号先算进行计算.【详解】解:(1)()2317622+-+--=()2317622+-+-=1222-=10-;(2)()116212⎛⎫÷-⨯- ⎪⎝⎭=()()12216⨯-⨯- =()()66-⨯-=36;(3)221.5 3.5()55⨯-⨯- =221.5+3.555⨯⨯ =()2 1.5+3.55⨯=255⨯ =2;(4)221(13)10(3)⎡⎤⎡⎤---⨯-+-⎣⎦⎣⎦=[]()1(2)109---⨯-+=1×1 =1-.【点睛】本题考查有理数的混合运算,熟练掌握有理数的混合运算顺序是解答此题的关键.20.化简(1)223x y x y -++(2)()()2225223a a a a a +---【答案】(1)4x;(2)4a 2+4a【解析】【分析】(1)根据合并同类项法则进行解答;(2)原式去括号再合并即可得到结果.【详解】解:(1)223x y x y -++=()()223x x y y ++-=4x ; (2)()()2225223a a a a a +---=2225226a a a a a +--+=()()22252+2+6a a aa a +-- =244a a +.【点睛】本题考查了整式的加减,熟练掌握两大法则,即去括号法则和合并同类项法则是解此题的关键. 21.先化简,再求值:22222135262x y xy x y x y xy ⎡⎤⎛⎫-+-++ ⎪⎢⎥⎝⎭⎣⎦,其中2,1x y ==-. 【答案】xy 2+1, 3【解析】【分析】先根据整式的加减法法则把原式进行化简,再把x 和y 的值代入进行计算即可. 【详解】解:22222135262x y xy x y x y xy ⎡⎤⎛⎫-+-++ ⎪⎢⎥⎝⎭⎣⎦=()2222235216x y xy x y x y xy -+-++=()222235316x y xy x y xy -+-+=222235316x y xy x y xy --++=21xy +当2,1x y ==-时原式=2×(-1)2+1=3.【点睛】本题考查了整式的加减及化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解答此题的关键.22.若代数式45a b +的值是-3,则代数式()()43222a b a b +--的值是多少?【答案】-6【解析】【分析】将代数式()()43222a b a b +--通过去括号,合并同类项进行化简,再将45=-3a b +变形为810=-6a b +代入即可.【详解】解:()()43222a b a b +--=12842a b a b +-+=8a 10b +∵45=-3a b +∴810=-6a b +∴原式=-6即()()43222a b a b +--的值为-6.【点睛】本题考查代数式求值问题,整体代入是解答此题的途径.23.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“-”表示出库)+31,-31,-16,+35,-38,-20(1)经过这6天,仓库里的货品是______(填“增多了”或“减少了”)(2)经过这6天,仓库管理员结算发现仓库还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?【答案】(1)减少了;(2)499吨;(3)855元.【解析】【分析】(1)将所有数据相加即可作出判断,若为正,则说明增多了,若为负,则说明减少了;(2)结合(1)的答案即可作出判断;(3)计算出所有数据的绝对值之和,然后根据进出的装卸费都是每吨5元,可得出这6天要付的装卸费.【详解】(1)31-31-16+35-38-20=-39∵-39<0∴经过这6天,仓库里的货品是减少了;(2)由(1)得,这6天减少了39吨,则6天前仓库里有货品460+39=499(吨);(3)+31+3116++35+38+20=31+31+16+35+38+20=171吨则装卸费为:171×5=855元.答:这6天要付855元装卸费.【点睛】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,表示具有相反意义的量.24.小王家新买的一套住房的建筑平面图如图所示(单位:米).(1)这套住房的建筑总面积是多少平方米?(用含a,b,c的式子表示)(2)若a=10,b=4,c=7,试求出小王家这套住房的具体面积.(3)地面装修要铺设瓷砖,公司报价是:客厅地面每平方米240元,卧室地面每平方米220元,厨房地面每平方米180元,卫生间地面每平方米150元.在(2)的条件下,小王一共要花多少钱?(4)这套住房的售价为每平方米15000元,购房时首付款为房价的40%,余款向银行申请贷款,在(2)的条件下,小王家购买这套住房时向银行申请贷款的金额是多少元?【答案】(1)(8a+2b+5c)平方米;(2)123平方米;(3)26300元;(4)1107000元.【解析】【分析】(1)将客厅、卧室、厨房、卫生间的面积相加即可;(2)将数值代入(1)中求得的代数式即可;(3)分别计算出客厅、卧室、厨房、卫生间所需的费用,再求和即可;(4)根据(2)中计算得到的具体面积,根据“贷款数=单价×面积×(1-首付比例)”,通过计算即可求解.【详解】解:(1)由题意可得,这套住房的建筑面积是:(1+5+2)a+5c+2b=8a+2b+5c即这套住房的建筑面积是(8a+2b+5c)平方米;(2)当a=10,b=4,c=7时8a+2b+5c=8×10+2×4+5×7=123平方米即若a=10,b=4,c=7,小王家这套住房的具体面积是123平方米;(3)客厅面积为(1+5+2-3)a=5a=5×10=50平方米,50×240=12000元;卧室面积为5c=5×7=35平方米,35×220=7700元;厨房面积3a=3×10=30平方米,30×180=5400元;卫生间面积为2b=2×4=8平方米,8×150=1200元.12000+7700+5400+1200=26300元.∴小王一共要花26300元钱;(4)根据题意得,在(2)的条件下,小王家购买这套住房时向银行申请贷款的金额是:123×15000×(1-40%)=1107000元.∴小王家购买这套住房时向银行申请贷款的金额1107000元.【点睛】本题考查了列代数式,代数式求值,能够根据图形列出代数式是解决此类问题的关键.25.如图A在数轴上对应的数为-2.(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是_____.(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A 运动到-6的点处时,求A 、B 两点间的距离.(3)在(2)的条件下,现A 点静止不动,B 点以原速沿数轴向左运动,经过多长时间A 、B 两点相距4个单位长度.【答案】(1)2;(2)14个单位长度;(3)103秒或6秒. 【解析】【分析】 (1)根据左减右加可求得点B 所对应的数;(2)先根据时间=路程÷速度,求得运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的点B 在点A 右边4个单位长度;运动后的点B 在点A 左边4个单位长度,列出方程求解.【详解】解:(1)-2+4=2,故点B 所对应的数是2;(2)262=2秒,∴B 点到达的位置所表示的数字是2+3×2=88-(-6)=14(个单位长度).故A ,B 两点间距离是14个单位长度.(3)运动后的B 点在A 点右边4个单位长度,设经过t 秒长时间A ,B 两点相距4个单位长度,依题意有3t=14-4,解得x=103; 运动后的B 点在A 点左边4个单位长度,设经过x 秒长时间A ,B 两点相距4个单位长度,依题意有3t=14+4,解得x=6. ∴经过103秒或6秒长时间A ,B 两点相距4个单位长度. 【点睛】本题属于数轴和行程问题的数量关系的应用,解答时根据行程问题的数量关系建立方程是关键. 26.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x 1,x 2,x 3,称为数列x 1,x 2,x 3,计算1x ,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的价值.例如,对于数列2,-1,3,因为22=,2(1)122+-=,2(1)3433+-+=,所以数列2,-1,3的价值为12. 小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列-1,2,3的价值为12;数列3,-1,2的价值为1:…经过研究,小丁发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为12.根据以上材料,回答下列问题: (1)数列4,3,-2的价值为______.(2)将“4,3,-2”这三个数按照不同的顺序排列,可得到若干个数列,求这些数列的价值的最小值(请写出过程并作答).(3)将3,-8,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a 的值为_______ (直接写出答案).【答案】(1)53 ;(2)12 ;(3)2或10. 【解析】【分析】(1)根据题中给出的材料的方法计算出相应的价值即可;(2)按照三个数不同的顺序排列出6种数列,分别求出数列的价值,确定最小价值;(3)按照三个数不同的顺序排列出6种数列,求出对应的数值,根据最小价值为1,分情况列出方程求出a 值,确定符合题意进行解答.【详解】解:(1)根据题意, ∵4=4 ,4+37=22 ,4+325=33∴数列“4,3,-2”的价值为53 ; (2)①数列“4,3,-2”: ∵4=4 ,4+37=22 ,4+325=33∴数列“4,3,-2”的价值为53; ②数列“4,-2,3”: ∵4=4 ,42=12 ,42+35=33 ∴数列“4,-2,3”的价值为1;③数列“3,4,-2”: ∵3=3 ,3+47=22 ,3+425=33∴数列“3,4,-2”的价值为53;④数列“3,-2,4”:∵3=3,321=22,32+45=33∴数列“3,-2,4”的价值为12;⑤数列“-2,4,3”:∵2=2,24=12,2+4+35=33∴数列“-2,4,3”的价值为1;⑥数列“-2,3,4”:∵2=2,2+31=22,2+3+45=33∴数列“-2,3,4”的价值为12;∴这些数列的价值的最小值为1 2 .(3)①数列“3,-8,a”:3=3,3-85=22,38+a5=33a②数列“3,a,-8”:3=3,3+2a,3+a85=33a③数列“-8,3,a”:8=8,-8+35=22,8+3+a5=33a④数列“-8,a,3”:8=8,-8+8=22a a,8+a+35=33a⑤数列“a,3,-8”:a,32a,385=33a a⑥数列“a,-8,3”:a,-82a,8+35=33a a∵这些数列的价值的最小值为1,∴当5=13a时,a=8或2,当a=8时,数列⑥中-82a=0<1.不符合题意,a=8舍去;当+3=12a时,a=-1或-5,均不符合题意,舍去;当8=12a时,a=10或6,当a=6时,51=33a<1.不符合题意,a=6舍去;∴a的值为2或10.【点睛】本题考查数学阅读材料题目,读懂题意熟练掌握新定义式是解题的关键.。
江苏省盐城市七年级上学期数学期中考试试卷
B . 2
C . 3或5
D . 2或6
7. (3分) 在实数0.1,﹣5,0,﹣ , π中,负数的个数是( )
A . 1
B . 2
C . 3
D . 4
8. (3分) (2019七上·临潼月考) 有一座三层的楼房失火了,一个消防员需搭一个23级的梯子才能恰好爬到三楼楼顶去救人,当他爬到梯子正中间一级时,二楼的窗口喷出火来,他往下退了2级,等火小了,他又往上爬了6级,这时发现楼顶有一块木头将要掉下来,他又后退了3级,躲开了这块木头,然后又往上爬了6级,这时他到达三楼楼顶还需要往上爬( )
25. (12分) (2020七上·巴东期末) 已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.
(1) 若b=-4,则a的值为________.
(2) 若OA=3OB,求a的值.
(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.
三、 解答题(本大题共5小题,共50分) (共5题;共50分)
21. (8分) (2018七上·滨州期中) 已知有理数a,b,c在数轴上的对应点如图所示,
化简: .
22. (12分) (2019七上·通州期中) 计算
(1) (-10)-(-3)+(-5)-(+7);
(2) ;
(3) ;
(4) .
23. (10.0分) (2017七上·南宁期中) 某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2 ,-3 ,+2,+1,-2,-1,0,-2 (单位:元).
江苏省盐城市七年级上学期期中数学试卷
江苏省盐城市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法错误的是()A . 若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B . 与互为倒数C . 若a>|b|,则a>bD . 梯形的面积等于梯形的中位线与高的乘积的一半2. (2分) (2016七上·庆云期末) 中国海洋面积是2897000平方公里,2897000用科学记数法表示为()A . 2.897×106B . 28.94×105C . 2.897×108D . 0.2897×1073. (2分)式子﹣5﹣7不能读作()A . ﹣5与7的差B . ﹣5与﹣7的和C . ﹣5与﹣7的差D . ﹣5减74. (2分)下列运算结果正确的是A .B .C .D .5. (2分)多项式x3+5x﹣6﹣4x2中的常数项是()A . 5B . 6C . ﹣6D . ﹣46. (2分)在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是()A . -1B . -6C . -2或-6D . 无法确定7. (2分)元旦期间,泰州金鹰商场推出全场打九折的优惠活动,持贵宾卡可在九折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了()折优惠。
A . 6B . 7C . 8D . 98. (2分) (2016七上·岱岳期末) 若单项式的次数是8,则m的值是()A . 8B . 6C . 5D . 159. (2分) (2019七上·荣昌期中) 若、互为相反数,和互为倒数是最大的负整数,则的值是()A . 0B .C . 或0D . 210. (2分)若当b=1,c=-2时,代数式ab+bc+ca=10,则a的值为()A . -12B . 6C . -6D . 12二、填空题 (共6题;共6分)11. (1分) (2019七上·周口期中) 130542(精确到千位)≈________12. (1分)写出一个比﹣2小的数是________ .13. (1分) (2017七上·赣县期中) 若﹣3xmy3与2x4yn是同类项,则mn=________.14. (1分)(2017·浙江模拟) 若,则代数式的值为________.15. (1分)若x=0是方程2017x﹣a=2018x+4的解,则代数式﹣a2﹣a+2的值为________.16. (1分) (2020八上·潜江期末) 如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1 ,B1 , C1 ,使A1B=AB,B1C=BC,C1A=CA,顺次连结A1 , B1 , C1 ,得到△A1B1C1.第二次操作:分别延长A1B1 , B1C1 , C1A1至点A2 , B2 , C2 ,使A2B1=A1B1 , B2C1=B1C1 , C2A1=C1A1 ,顺次连结A2 ,B2 , C2 ,得到△A2B2C2.…按此规律,要使得到的三角形的面积超过2013,最少经过________次操作.三、解答题 (共8题;共58分)17. (3分) (2018七上·桥东期中) 有4张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:(1)从中取出2张卡片,使这2张卡片上数字之积最大,最大值是________.(2)从中取出2张卡片,使这2张卡片上数字之差最小,最小值是________.(3)从中取出4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,请写出一种符合要求的运算式子________.(注:4个数字都必须用到且只能用一次.)18. (10分)解方程:(1) 2(2x﹣3)﹣3=2﹣3(x﹣1)(2)﹣1= .19. (10分)糖业是我省重要的生物资源产业.我省某糖业集团今年4月收购甘蔗后入榨甘蔗250万吨,榨糖率为12%.经市场调查知5月份糖的销售价为2940/吨,若糖业集团在5月销售4月生产的糖,产销率为60%;又知糖业集团若在6月、7月两个月内销售4月生产的糖,销售价将在5月的基础上每月比上月降低6%、糖销量将在5月的基础上每月比上月增加9%.(1)问2005年4月糖业集团生产了多少吨糖?(2)若糖业集团计划只在7月销售4月生产的糖,请求出该糖业集团7月销售4月生产的糖的销售额是多少?(精确到万元)(注:榨糖率=(产糖量/入榨甘蔗量)×100%,产销率=(糖销量/产糖量)×100%,销售额=销售单价×销售数量).20. (5分) (2018七上·深圳期中) 先化简,再求值:,其中a=-221. (10分) (2016七上·沙坪坝期中) 列式计算:(1)﹣3减去﹣5 与2.5的和所得差是多少?(2) 3,﹣5,﹣6的和的平方比这三个数差的绝对值大多少?22. (5分)甲、乙两人同时从环形跑道上同一点出发,沿顺时针方向跑步,甲的速度比乙快,过一段时间,甲第一次从背后追上乙,这时甲立即背转方向,以原来的速度沿逆时针方向跑去,当两人再次相遇时,乙恰好跑了四圈,求甲的速度是乙的几倍?23. (10分)阅读理解:在解形如3|x﹣2|=|x﹣2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:①当x<2时,原方程可化为﹣3(x﹣2)=﹣(x﹣2)+4,解得:x=0,符合x<2②当x≥2时,原方程可化为3(x﹣2)=(x﹣2)+4,解得:x=4,符合x≥2∴原方程的解为:x=0,x=4.解题回顾:本题中2为x﹣2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.知识迁移:(1)运用整体思想先求|x﹣3|的值,再去绝对值符号的方法解方程:|x﹣3|+8=3|x﹣3|;知识应用:(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2﹣x|﹣3|x+1|=x﹣9.提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?24. (5分) (2019七上·普兰店期末) 轮船沿甲港顺流行驶到乙港比从乙港返回到甲港少用3小时,已知轮船在静水中的速度是27千米/小时,水速是9千米/小时,求甲乙两港之间的距离.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共58分)17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、23-1、23-2、24-1、。
七年级数学上学期期中试卷含解析苏科版51
江苏省盐城市盐都区2016-2017学年七年级(上)期中数学试卷一、选择题:本大题共8小题,每题3分,共24分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.2的相反数是()A.2 B.﹣2 C.D.2.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣ B.0 C.D.﹣13.如图,数轴上A,B两点别离对应实数a,b,那么以下结论正确的选项是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>04.以下各项中是同类项的是()A.﹣mn与mn B.2ab与2abc C.x2y与x2z D.a2b与ab25.以下计算:①(﹣)2=;②﹣32=9;③()2=;④﹣(﹣)2=;⑤(﹣2)2=﹣4,其中错误的有()A.5个 B.4个C.3个D.2个6.以下计算正确的选项是()A.7a+a=7a2B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.3a+2b=5ab7.以下说法正确的选项是()A.0是最小的整数B.两个数互为相反数那么和为零C.有理数包括正有理数和负有理数D.一个有理数的平方老是正数8.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部份沿虚线又剪拼成一个长方形(不重叠、无裂缝),假设拼成的长方形一边的长为3,那么另一边的长为()A.2a+5 B.2a+8 C.2a+3 D.2a+2二、填空题:本大题共10小题,每题2分,共20分,不需写出解答进程,请将答案直接写在答题卡相应位置上.9.3的倒数是.10.数轴上,将表示﹣1的点向右移动3个单位后,对应点表示的数是.11.绝对值不大于4的所有整数的积等于.12.钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m2,用科学记数法表示为m2.13.单项式的次数是.14.假设4x4y n+1与﹣5x m y2的和仍为单项式,那么m+n= .15.一个两位数,十位上的数字是a,个位上的数字比十位上的数字的2倍大3,那么那个两位数是.16.已知2x2﹣3x+5的值为9,那么代数式4x2﹣6x+8的值为.17.如图,是一个简单的数值运算程序,当输入x的值为3时,那么输出的数值为.18.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按一样的方式剪成四个更小的正三角形,…如此继续下去,结果如下表,那么a n= (用含n的代数式表示).所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n三、解答题:本大题共9小题,共76分,请在答题卡指定区域内作答,解答时应写出文字说明、推理进程或演算步骤.19.(6分)把以下各数﹣22,0.5,﹣|﹣3|,﹣(﹣2)在数轴上表示,并用“<”把它们连接起来.20.(8分)计算:(1)(+﹣)×(﹣12);(2)18﹣6÷(﹣2)×(﹣).21.(8分)化简:(1)﹣3x+2y﹣5x﹣7y;(2)a+(5a﹣3b)﹣2(a﹣2b).22.(8分)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.23.(8分)设[x]表示不大于x的所有整数中最大的整数,例如:[1.2]=1,[﹣1.2]=﹣2,依照此规定,完成以下运算:(1)[4.3]﹣[﹣2.5];(2)[0]×[﹣4.5].24.(8分)关于有理数a,b,概念运算:a⊗b=a×b﹣a﹣b+1(1)计算(﹣3)⊗4的值;(2)填空:5⊗(﹣2)(﹣2)⊗5(填“>”或“=”或“<”);(3)a⊗b与b⊗a相等吗?(填“相等”或“不相等”).25.(8分)小明同窗踊跃参加体育锻炼,天天坚持跑步,他天天以1000m为标准,超过的记作正数,不足的记作负数.下表是一周内小明跑步情形的记录(单位:m):星期一二三四五六日跑步情况(m)+420 +460 ﹣100 ﹣210 ﹣330 +200 0(1)礼拜三小明跑了多少米?(2)小明在跑得最少的一天跑了多少米?跑得最多的一天比最少的一天多跑了多少米?(3)假设小明跑步的平均速度为240m/min,求本周内小明用于跑步的时刻.26.(10分)如图在数轴上A点表示数a,B点表示数b,a、b知足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)假设在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰着挡板后(忽略球的大小,可看做一点)以原先的速度向相反的方向运动,设运动的时刻为t(秒),当t=1时,甲小球到原点的距离= ;乙小球到原点的距离= ;当t=3时,甲小球到原点的距离= ;乙小球到原点的距离= .27.(12分)【阅读】求值:1+2+22+23+…+22016解:设S=1+2+22+23+24+…+22016 ①将等式①的两边同时乘以2得2S=2+22+23+24+ (22017)由②﹣①得2S﹣S=22017﹣1即:S=1+2+22+23+24+…+22016=22017﹣1仿照此法计算:(1)1+3+32+33+…+3100(2)1++++…+【应用】如图,将边长为1的正方形分成4个完全一样的小正方形,取得左上角一个小正方形为S1,选取右下角的小正方形进行第二次操作,又取得左上角更小的正方形S2,依次操作2016次,依次取得小正方形S3、S4 (2016)完成以下问题:(3)小正方形S2016的面积等于;(4)求正方形S1、S2、S3、S4…S2016的面积和.2016-2017学年江苏省盐城市盐都区七年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共8小题,每题3分,共24分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】依照相反数的概念求解即可.【解答】解:2的相反数为:﹣2.应选:B.【点评】此题考查了相反数的知识,属于基础题,把握相反数的概念是解题的关键.2.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣ B.0 C.D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法那么:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判定即可.【解答】解:依照有理数大小比较的法那么,可得﹣1<﹣,因此在﹣,0,,﹣1这四个数中,最小的数是﹣1.应选:D.【点评】此题要紧考查了有理数大小比较的方式,要熟练把握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.如图,数轴上A,B两点别离对应实数a,b,那么以下结论正确的选项是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【考点】实数与数轴.【分析】此题要先观看a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项一一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,应选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,应选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,应选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,应选项D错误.应选:C.【点评】此题考查了实数与数轴的对应关系,数轴上右边的数老是大于左侧的数.4.以下各项中是同类项的是()A.﹣mn与mn B.2ab与2abc C.x2y与x2z D.a2b与ab2【考点】同类项.【分析】依照同类项的概念:含有相同的字母,且相同字母的次数相同,即可作出判定.【解答】解:A、正确;B、所含字母不同,那么不是同类项,选项错误;C、所含字母不同,那么不是同类项,选项错误;D、相同字母的次数不同,故不是同类项,选项错误.应选A.【点评】此题考查了同类项的概念,同类项概念中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.以下计算:①(﹣)2=;②﹣32=9;③()2=;④﹣(﹣)2=;⑤(﹣2)2=﹣4,其中错误的有()A.5个B.4个C.3个D.2个【考点】有理数的乘方.【分析】依照有理数的乘方,即可解答.【解答】解:∵(﹣)2=;﹣32=﹣9;()2=;﹣(﹣)2=﹣;(﹣2)2=4,∴②③④错误,共3个,应选:C.【点评】此题考查了有理数的乘方,解决此题的关键是熟记有理数的乘方.6.以下计算正确的选项是()A.7a+a=7a2B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.3a+2b=5ab【考点】归并同类项.【分析】依照归并同类项得法那么依次判定即可.【解答】解:A、7a+a=8a,故本选项错误;B、5y﹣3y=2y,故本选项错误;C、3x2y﹣2yx2=x2y,故本选项正确;D、3a+2b=5ab,不是同类项,不能归并,故本选项错误;应选C.【点评】此题要紧考查了归并同类项的法那么,熟练把握运算法那么是解题的关键.7.以下说法正确的选项是()A.0是最小的整数B.两个数互为相反数那么和为零C.有理数包括正有理数和负有理数D.一个有理数的平方老是正数【考点】有理数;相反数.【分析】依照有理数的分类、相反数的概念进行选择即可.【解答】解:A、0是最小的非负整数,故A错误;B、两个数互为相反数那么和为零,故B正确;C、有理数包括正有理数和负有理数,还有零,故C错误;D、一个有理数的平方老是非负数,故D错误;应选B.【点评】此题考查了有理数,把握有理数的分类和相反数的概念是解题的关键.8.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部份沿虚线又剪拼成一个长方形(不重叠、无裂缝),假设拼成的长方形一边的长为3,那么另一边的长为()A.2a+5 B.2a+8 C.2a+3 D.2a+2【考点】图形的剪拼.【分析】利用已知得出矩形的长分为两段,即AB+AC,即可求出.【解答】解:如下图:由题意可得:拼成的长方形一边的长为3,另一边的长为:AB+AC=a+4+a+1=2a+5.应选:A.【点评】此题要紧考查了图形的剪拼,正确明白得题意分割矩形成两部份是解题关键.二、填空题:本大题共10小题,每题2分,共20分,不需写出解答进程,请将答案直接写在答题卡相应位置上.9.3的倒数是.【考点】倒数.【分析】依照倒数的概念可知.【解答】解:3的倒数是.故答案为:.【点评】要紧考查倒数的概念,要求熟练把握.需要注意的是:倒数的性质:负数的倒数仍是负数,正数的倒数是正数,0没有倒数.倒数的概念:假设两个数的乘积是1,咱们就称这两个数互为倒数.10.数轴上,将表示﹣1的点向右移动3个单位后,对应点表示的数是+2 .【考点】数轴.【分析】依照数轴上点的移动规律“左减右加”进行计算.【解答】解:表示﹣1的点向右移动3个单位,即为﹣1+3=2.【点评】把数和点对应起来,也确实是把“数”和“形”结合起来,二者相互补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培育数形结合的数学思想.11.绝对值不大于4的所有整数的积等于0 .【考点】有理数的乘法;绝对值;有理数大小比较.【分析】找出绝对值不大于4的所有整数,求出之积即可.【解答】解:绝对值不大于4的所有整数为﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,之积为0,故答案为:0【点评】此题考查了有理数的乘法,绝对值,和有理数的大小比较,熟练把握乘法法那么是解此题的关键.12.钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m2,用科学记数法表示为 4.4×106m2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确信n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4400000m2,用科学记数法表示为4.4×106m2.故答案为:4.4×106.【点评】此题考查科学记数法的表示方式.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确信a的值和n的值.13.单项式的次数是 5 .【考点】单项式.【分析】依照一个单项式中所有字母的指数的和叫做单项式的次数,因此算x、y的指数和即可.【解答】解:单项式的次数是5,故答案为:5.【点评】此题要紧考查了单项式,关键是把握单项式的次数计算方式.14.假设4x4y n+1与﹣5x m y2的和仍为单项式,那么m+n= 5 .【考点】归并同类项.【分析】依照题意可知4x4y n+1与﹣5x m y2为同类项,然后求出m、n的值,即可得解.【解答】解:∵4x4y n+1与﹣5x m y2的和仍为单项式,∴4x4y n+1与﹣5x m y2为同类项,∴m=4,n+1=2,解得:m=4,n=1,那么m+n=4+1=5.故答案为:5.【点评】此题考查了归并同类项,解答此题的关键是把握归并同类项的法那么.15.一个两位数,十位上的数字是a,个位上的数字比十位上的数字的2倍大3,那么那个两位数是12a+3 .【考点】列代数式.【分析】两位数=十位数字×10+个位数字.【解答】解:十位数字为a,个位上的数字比十位上的数字的2倍大3,∴十位数字为2a+3,∴两位数为:1a+2a+3=12a+3,故答案为:12a+3.【点评】考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.16.已知2x2﹣3x+5的值为9,那么代数式4x2﹣6x+8的值为16 .【考点】代数式求值.【分析】由题意可知:2x2﹣3x=4,由等式的性质可知:4x2﹣6x=8,最后代入求值即可.【解答】解:∵2x2﹣3x+5的值为9,∴2x2﹣3x=4.∴4x2﹣6x=8.∴原式=8+8=16.故答案为:16.【点评】此题要紧考查的是求代数式的值,把握等式的性质是解题的关键.17.如图,是一个简单的数值运算程序,当输入x的值为3时,那么输出的数值为﹣12 .【考点】有理数的混合运算.【分析】把x=3代入运算程序中计算即可.【解答】解:把x=3代入得:(3+3)×(﹣2)=﹣12,故答案为:﹣12【点评】此题考查了有理数的混合运算,熟练把握运算法那么是解此题的关键.18.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按一样的方式剪成四个更小的正三角形,…如此继续下去,结果如下表,那么a n= 3n+1 (用含n的代数式表示).所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n【考点】等边三角形的性质.【分析】依照图跟表咱们能够看出n代表所剪次数,a n代表小正三角形的个数,也能够依照图形找出规律加以求解.【解答】解:由图可知没剪的时候,有一个三角形,以后每剪一次就多出三个,因此总的个数3n+1.故答案为:3n+1.【点评】此题要紧考验学生的逻辑思维能力和应变能力.三、解答题:本大题共9小题,共76分,请在答题卡指定区域内作答,解答时应写出文字说明、推理进程或演算步骤.19.把以下各数﹣22,0.5,﹣|﹣3|,﹣(﹣2)在数轴上表示,并用“<”把它们连接起来.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出来各数,然后比较大小.【解答】解:﹣22=﹣4,﹣|﹣3|=﹣3,﹣(﹣2)=2,在数轴上表示为:,大小关系为:﹣22<﹣|﹣3|<0.5<﹣(﹣2).【点评】此题考查了有理数的大小比较,解答此题的关键是在数轴上表示出各个数字.20.计算:(1)(+﹣)×(﹣12);(2)18﹣6÷(﹣2)×(﹣).【考点】有理数的混合运算.【分析】(1)原式利用乘法分派律计算即可取得结果;(2)原式先计算乘除运算,再计算加减运算即可取得结果.【解答】解:(1)原式=﹣3﹣2+6=1;(2)原式=18﹣1=17.【点评】此题考查了有理数的混合运算,熟练把握运算法那么是解此题的关键.21.化简:(1)﹣3x+2y﹣5x﹣7y;(2)a+(5a﹣3b)﹣2(a﹣2b).【考点】整式的加减.【分析】(1)原式归并同类项即可取得结果;(2)原式去括号归并即可取得结果.【解答】解:(1)原式=﹣8x﹣5y;(2)原式=a+5a﹣3b﹣2a+4b=4a+b.【点评】此题考查了整式的加减,熟练把握运算法那么是解此题的关键.22.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值.【分析】原式去括号归并取得最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练把握运算法那么是解此题的关键.23.设[x]表示不大于x的所有整数中最大的整数,例如:[1.2]=1,[﹣1.2]=﹣2,依照此规定,完成以下运算:(1)[4.3]﹣[﹣2.5];(2)[0]×[﹣4.5].【考点】有理数的混合运算;有理数大小比较.【分析】依照关于实数x咱们规定[x]不大于x最大整数,可得答案.【解答】解:(1)[4.3]﹣[﹣2.5]=4﹣(﹣3)=7;(2)[0]×[﹣4.5]=0×(﹣5)=0.【点评】此题考查了有理数的混合运算,解决此题的关键是明确[x]表示不大于的所有整数中最大的整数.24.关于有理数a,b,概念运算:a⊗b=a×b﹣a﹣b+1(1)计算(﹣3)⊗4的值;(2)填空:5⊗(﹣2)= (﹣2)⊗5(填“>”或“=”或“<”);(3)a⊗b与b⊗a相等吗?相等(填“相等”或“不相等”).【考点】有理数的混合运算;有理数大小比较.【分析】(1)依照给定的运算程序,一步一步计算即可;(2)先按新概念运算,再比较大小;(3)相等,按新概念别离运算即可说明理由.【解答】解:(1)原式=(﹣3)×4﹣(﹣3)﹣4+1=﹣12+3﹣4+1=﹣16+4=﹣12;(2)∵5⊗(﹣2)=5×(﹣2)﹣5﹣(﹣2)+1=﹣10﹣5+2+1=﹣12,(﹣2)⊗5=(﹣2)×5﹣(﹣2)﹣5+1=﹣10+2﹣5+1=﹣12,∴5⊗(﹣2)=(﹣2)⊗5.(3)相等,理由:∵a⊗b=a×b﹣a﹣b+1,b⊗a=b×a﹣b﹣a+1;∴a⊗b=b⊗a.故答案为:=;相等.【点评】此题是概念新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.25.小明同窗踊跃参加体育锻炼,天天坚持跑步,他天天以1000m为标准,超过的记作正数,不足的记作负数.下表是一周内小明跑步情形的记录(单位:m):星期一二三四五六日跑步情况(m)+420 +460 ﹣100 ﹣210 ﹣330 +200 0(1)礼拜三小明跑了多少米?(2)小明在跑得最少的一天跑了多少米?跑得最多的一天比最少的一天多跑了多少米?(3)假设小明跑步的平均速度为240m/min,求本周内小明用于跑步的时刻.【考点】有理数的混合运算;正数和负数.【分析】(1)利用1000米减去100米确实是所求;(2)跑步情形最少的数对应的日期确实是最少的天;最大值与最小值的差确实是跑得最多的一天比最少的一天多跑的距离;(3)利用总路程除以速度即可求解.【解答】解:(1)1000﹣100=900(m);(2)最少的一天是:1000﹣330=670(m),跑得最多的一天比最少的一天多跑了460﹣(﹣330)=790(m);(3)=31(min).【点评】此题考查了有理数的混合运算,明白得表中数据的含义是关键.26.(10分)(2016秋•盐都区期中)如图在数轴上A点表示数a,B点表示数b,a、b知足|a+2|+|b﹣4|=0;(1)点A表示的数为﹣2 ;点B表示的数为 4 ;(2)假设在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰着挡板后(忽略球的大小,可看做一点)以原先的速度向相反的方向运动,设运动的时刻为t(秒),当t=1时,甲小球到原点的距离= 3 ;乙小球到原点的距离= 2 ;当t=3时,甲小球到原点的距离= 5 ;乙小球到原点的距离= 2 .【考点】数轴;非负数的性质:绝对值.【分析】(1)利用绝对值的非负性即可确信出a,b即可;(2)依照运动确信出运动的单位数,即可得出结论.【解答】解:(1)∵|a+2|+|b﹣4|=0;∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,现在,甲小球到原点的距离=3,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动2个单位,现在,乙小球到原点的距离=4﹣2=2,故答案为:3,2;当t=3时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球3秒钟向左运动3个单位,现在,甲小球到原点的距离=5,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球2秒钟向左运动2个单位,现在,恰好碰着挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2.故答案为:5,2;【点评】此题是数轴题目,要紧考查了数轴上点的距离原点的成立,点的运动特点,解此题的关键是抓住运动特点确信出结论.27.(12分)(2016春•沭阳县期末)【阅读】求值:1+2+22+23+…+22016解:设S=1+2+22+23+24+…+22016 ①将等式①的两边同时乘以2得2S=2+22+23+24+ (22017)由②﹣①得2S﹣S=22017﹣1即:S=1+2+22+23+24+…+22016=22017﹣1仿照此法计算:(1)1+3+32+33+…+3100(2)1++++…+【应用】如图,将边长为1的正方形分成4个完全一样的小正方形,取得左上角一个小正方形为S1,选取右下角的小正方形进行第二次操作,又取得左上角更小的正方形S2,依次操作2016次,依次取得小正方形S3、S4 (2016)完成以下问题:(3)小正方形S2016的面积等于;(4)求正方形S1、S2、S3、S4…S2016的面积和.【考点】规律型:图形的转变类;规律型:数字的转变类.【分析】(1)先将等式①的两边同时乘以3,再由②﹣①得结论;(2)将等式①的两边同时乘以,再由②﹣①得结论;(3)依照题意依次求S1、S2、S3、…,得出S2016的值;(4)将等式①的两边同时乘以,再由②﹣①得结论;【解答】解:(1)设S=1+3+32+33+…+3100①,将等式①的两边同时乘以3得:3S=3+32+33+…+3100+3101②,由②﹣①得3S﹣S=3101﹣1,即:S=1+3+32+33+…+3100=;(2)设S=1++++…+①,将等式①的两边同时乘以得: S=+++…++②,由②﹣①得: S﹣S=﹣1,S=2﹣,即:S=1++++…+=2﹣;(3)由题意得:S=1,S1=,S2=×=,S3=××=,…,S2016=,故答案为:;(4)设A=S1+S2+S3+S4+…+S2016=1++++…+①,将等式①的两边同时乘以得: A=+++…++②,由②﹣①得: A﹣A=﹣1,A=﹣(﹣1),即:S1+S2+S3+S4+…+S2016=﹣(﹣1).【点评】此题是数字与图形相结合的规律题,关键是认真阅读已知材料,通过归纳与总结,取得其中的规律,并按此规律进行计算;此题还通过等分正方形的面积与数字类的规律结合在一路,进一步将数字类的规律应用到数学中来.。
江苏省盐城市盐都区2016-2017学年七年级上期中数学试卷含答案解析 (1)
试卷第1页,总8页……○…………内…………○…………装…………○…………学校:___________姓名:___________班级:_________……○…………外…………○…………装…………○…………绝密★启用前江苏省盐城市盐都区2016-2017学年七年级上期中数学试卷含答案解析题号 一 二 得分注意事项:1.本试卷共XX 页,二个大题,满分45分,考试时间为1分钟。
请用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
一、单选题(共24分)评卷人 得分1. (3分)A.B.C.D.2. (3分)A.B.试卷第2页,总8页○…………外…………○…………装…………○…………订…………○…………线…………○……※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…… C.D.3.(3分)A.B.C.D.4.(3分)A.B.C.D.5.(3分)试卷第3页,总8页内…………○…………装…………○…………订…………○…………线…………○……学校:___________姓名:___________班级:___________考号:___________外…………○…………装…………○…………订…………○…………线…………○…… A.B.C.D.6.(3分)A.B.C.D.7.(3分) A.B.C.D.试卷第4页,总8页…外……○…………订…………○…………线…………○……※※订※※线※※内※※答※※题※※…内……○…………订…………○…………线…………○……8.(3分) A.B.C.D.二、填空题(共21分)评卷人 得分9.3的倒数是 .(3分)10.绝对值不大于4的所有整数的积等于 .(3分) 11.钓鱼岛是中国的固有领土,位于中国东海,面积为4400000m 2,用科学记数法表示为 m 2.(3分)12.单项式的次数是 .(3分)13.若4x 4y n+1与﹣5x m y 2的和仍为单项式,则m+n= .(3分) 14.一个两位数,十位上的数字是a ,个位上的数字比十位上的数字的2倍大3,则这个两位数是 .(3分)试卷第5页,总8页…○…………内…………○…………装…………○…………订…………○…………………○……学校:___________姓名:___________班级:___________考号:___________…○…………外…………○…………装…………○…………订…………○…………………○……15.如图,是一个简单的数值运算程序,当输入x 的值为3时,则输出的数值为 .(3分)******答案及解析****** 一、单选题(共24分) 1.答案:解析:2.答案:解析:3.答案:解析:4.答案:解析:5.答案:。
【6套打包】盐城市七年级上册数学期中考试测试卷(含答案)
人教版七年级(上)期中模拟数学试卷(10)一、选择题(本大题共8小题,每小题3分,共24分)1.与1的和是3的数是()A.﹣4 B.﹣2 C.2 D.42.下列运算中,正确的是()A.4x+3y=7xy B.4x2+3x=7x3C.4x3﹣3x2=x D.﹣4xy+3yx=﹣xy3.马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×1034.下列各项中是同类项的是()A.3xy与2xy B.2ab与2abc C.x2y与x2z D.a2b与ab25.如图,数轴的单位长度为1,如果点A表示的数是﹣3,那么点B表示的数是()A.﹣2 B.﹣1 C.0 D.16.按图中计算程序计算,若开始输入的x的值为1,则最后输出的结果是()A.89 B.158 C.183 D.1987.已知代数式m+2n+2的值是3,则代数式3m+6n+1的值是()A.4 B.5 C.6 D.78.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办()A.2070年B.2071年C.2072年D.2073年二、填空题(本大题有8小题,每小题3分,共24分)9.﹣3的绝对值是.10.已知(a﹣2)2+|b﹣1|=0,则a b=.11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.12.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是.13.若a﹣1与3互为相反数,则a=.14.比较大小:﹣8 ﹣5(填“>”或“<”)15.a是某数的十位数字,b是它的个位数字,则这个数可表示为.16.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为.三、解答(共72分)17.计算(1)(﹣1)+(﹣3)﹣(﹣9);(2)(﹣4)×6+(﹣125)÷(﹣5);(3)(+)×(﹣36);(4)(﹣1)2018﹣6÷(﹣2)3×418.计算(1)2a﹣7a+3a;(2)(8mn﹣3m2)﹣2(3mn﹣2m2).19.先化简,再求值(1)2a﹣5b+4a+3b,其中a=,b=﹣2;(2)2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中x=﹣1,y=﹣2.20.画出数轴,把22,0,﹣2,(﹣1)3这四个数在数轴上表示出来;并按从小到大的顺序用“<”号将各数连接起来.21.如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当a=10,b=4时,求其阴影部分的面积.(其中π取3.14)22.开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.23.已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是、.(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)参考答案与试题解析一.选择题(共8小题)1.与1的和是3的数是()A.﹣4 B.﹣2 C.2 D.4【分析】根据有理数的加法法则即可得.【解答】解:∵2+1=3,∴与1的和是3的数是2,故选:C.2.下列运算中,正确的是()A.4x+3y=7xy B.4x2+3x=7x3C.4x3﹣3x2=x D.﹣4xy+3yx=﹣xy【分析】根据同类项的定义、合并同类项法则对四个选项进行判断即可.【解答】解:A.4x与3y不是同类项,不能合并,此选项错误;B.4x2与3x不是同类项,不能合并,此选项错误;C.4x3与﹣3x2不是同类项,不能合并,此选项错误;D.﹣4xy+3yx=﹣xy,此选项正确;故选:D.3.马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42195=4.2195×104,故选:C.4.下列各项中是同类项的是()A.3xy与2xy B.2ab与2abc C.x2y与x2z D.a2b与ab2【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A.3xy与2xy是同类项,符合题意;B.2ab与2abc所含字母不相同,不符合题意;C.x2y与x2z所含字母不相同,不符合题意;D.a2b与ab2相同字母的指数不相同,不符合题意;故选:A.5.如图,数轴的单位长度为1,如果点A表示的数是﹣3,那么点B表示的数是()A.﹣2 B.﹣1 C.0 D.1【分析】可借助数轴,直接数数得结论,也可通过加减法计算得结论.【解答】解:因为点B与点A的距离为4,当点A表示的数为﹣3时,点B表示的数为﹣3+4=1.故选:D.6.按图中计算程序计算,若开始输入的x的值为1,则最后输出的结果是()A.89 B.158 C.183 D.198【分析】把x=1代入计算程序中计算即可求出所求.【解答】解:把x=1代入计算程序得:1+1+1=3<50,把x=3代入计算程序得:9+3+1=13<50,把x=13代入计算程序得:169+13+1=183>50,则输出的数为183,故选:C.7.已知代数式m+2n+2的值是3,则代数式3m+6n+1的值是()A.4 B.5 C.6 D.7【分析】由题意确定出m+2n的值,原式变形后代入计算即可求出值.【解答】解:∵m+2n+2=3,即m+2n=1,∴原式=3(m+2n)+1=3+1=4,故选:A.8.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办()A.2070年B.2071年C.2072年D.2073年【分析】根据题意可以分别写出世界运动会、亚运会、奥运会举行的时间,从而可以判断选项中的哪一个年份不符合题意,从而可以解答本题.【解答】解:由题意可得,世界运动会、亚运会、奥运会分别举行的时间为2013+4n,2014+4n,2016+4n,当n=14时,2013+4n=2019,2014+4n=2070,2016+4n=2072,当n=15时,2013+4n=2073,故选:B.二、填空题(本大题有8小题,每小题3分,共24分)9.﹣3的绝对值是 3 .【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.已知(a﹣2)2+|b﹣1|=0,则a b= 2 .【分析】直接利用偶次方以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣2)2+|b﹣1|=0,∴a﹣2=0,b﹣1=0,解得:a=2,b=1,故a b=2.故答案为:2.11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差0.4 千克.【分析】(50±0.2)的字样表明质量最大为50.2,最小为49.8,二者之差为0.4.依此即可求解.【解答】解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.12.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是8排13号.【分析】由“4排5号”记作(4,5)可知,有序数对与排号对应,(8,13)的意义为第8排13号.【解答】解:根据题意知:前一个数表示排数,后一个数表示号数.所以(8,13)表示的座位是8排13号.故答案为:8排13号.13.若a﹣1与3互为相反数,则a=﹣2 .【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a﹣1+3=0,解得:a=﹣2,故答案为:﹣214.比较大小:﹣8 <﹣5(填“>”或“<”)【分析】利用两个负数比较大小,绝对值大的反而小,进而得出答案.【解答】解:∵|﹣8|=8,|﹣5|=5,∴﹣8<﹣5.故答案为:<.15.a是某数的十位数字,b是它的个位数字,则这个数可表示为10a+b.【分析】根据两位数=十位数字×10+个位数字即可得出答案.【解答】解:十位数字为a,个位数字为b的意义是a个10与b个1的和为:10a+b.故答案为:10a+b.16.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为13 .【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故答案为:13.三、解答(共72分)17.计算(1)(﹣1)+(﹣3)﹣(﹣9);(2)(﹣4)×6+(﹣125)÷(﹣5);(3)(+)×(﹣36);(4)(﹣1)2018﹣6÷(﹣2)3×4【分析】(1)将减法转化为加法,再计算加法即可得;(2)先计算乘法和除法,再计算加减可得;(3)先利用乘法分配律展开,再依次计算乘法和加减可得;(4)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣1﹣3+9=﹣4+9=5;(2)原式=﹣24+25=1;(3)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣20+27﹣2=5;(4)原式=1﹣6÷(﹣8)×4=1+×4=1+3=4.18.计算(1)2a﹣7a+3a;(2)(8mn﹣3m2)﹣2(3mn﹣2m2).【分析】(1)直接找出同类项进而合并同类项得出答案;(2)直接去括号进而合并同类项得出答案.【解答】解:(1)原式=(2﹣7+3)a=﹣2a;(2)原式=8mn﹣3m2﹣6mn+4m2,=(﹣3+4)m2+(8﹣6)mn=m2+2mn.19.先化简,再求值(1)2a﹣5b+4a+3b,其中a=,b=﹣2;(2)2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中x=﹣1,y=﹣2.【分析】(1)先合并同类项化简原式,再将a,b的值代入计算可得;(2)将原式去括号,合并同类项化简,再将x,y的值代入计算可得.【解答】解:(1)原式=6a﹣2b,当a=,b=﹣2时,原式=6×﹣2×(﹣2)=3+4=7;(2)原式=6x2﹣8xy﹣8x2+12xy+4=﹣2x2+4xy+4,当x=﹣1,y=﹣2时,原式=﹣2×(﹣1)2+4×(﹣1)×(﹣2)+4=﹣2+8+4=10.20.画出数轴,把22,0,﹣2,(﹣1)3这四个数在数轴上表示出来;并按从小到大的顺序用“<”号将各数连接起来.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:22=4,0,﹣2,(﹣1)3=﹣1,如图所示:,故﹣2<(﹣1)3<0<22.21.如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当a=10,b=4时,求其阴影部分的面积.(其中π取3.14)【分析】(1)用长方形的面积减去2个半径为b的圆的面积,据此可得;(2)将a,b的值代入计算可得.【解答】解:(1)阴影部分的面积为ab﹣2××πb2=ab﹣πb2;(2)当a=10,b=4时,ab﹣πb2=10×4﹣×3.14×16≈14.88.22.开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x=10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x+120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x+135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元,故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.23.已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与 4 表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与﹣10 表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是﹣1006 、1012 .(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)【分析】(1)由表示1与﹣1的两点重合,利用对称性即可得到结果;(2)由﹣2表示的点与8表示的点重合,确定出3为对称点,得出两项的结果即可;(3)根据(2)的计算方法进行解答.【解答】解:(1)若1表示的点与﹣1表示的点重合,则原点为对称点,所以﹣4表示的点与4表示的点重合;(2)由题意得:(﹣2+8)÷2=3,即3为对称点,①根据题意得:2×3﹣16=﹣10;②∵3为对称点,A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,∴A表示的数=﹣+3=﹣1006,B点表示的数=+3=1012;(3)点P表示的数为:;点Q表示的数为:.故答案为:(1)4;(2)①﹣10;②﹣1006,1012.人教版七年级(上)期中模拟数学试卷(10)一、选择题(本大题共8小题,每小题3分,共24分)1.与1的和是3的数是()A.﹣4 B.﹣2 C.2 D.42.下列运算中,正确的是()A.4x+3y=7xy B.4x2+3x=7x3C.4x3﹣3x2=x D.﹣4xy+3yx=﹣xy3.马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×1034.下列各项中是同类项的是()A.3xy与2xy B.2ab与2abc C.x2y与x2z D.a2b与ab25.如图,数轴的单位长度为1,如果点A表示的数是﹣3,那么点B表示的数是()A.﹣2 B.﹣1 C.0 D.16.按图中计算程序计算,若开始输入的x的值为1,则最后输出的结果是()A.89 B.158 C.183 D.1987.已知代数式m+2n+2的值是3,则代数式3m+6n+1的值是()A.4 B.5 C.6 D.78.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办()A.2070年B.2071年C.2072年D.2073年二、填空题(本大题有8小题,每小题3分,共24分)9.﹣3的绝对值是.10.已知(a﹣2)2+|b﹣1|=0,则a b=.11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.12.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是.13.若a﹣1与3互为相反数,则a=.14.比较大小:﹣8 ﹣5(填“>”或“<”)15.a是某数的十位数字,b是它的个位数字,则这个数可表示为.16.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为.三、解答(共72分)17.计算(1)(﹣1)+(﹣3)﹣(﹣9);(2)(﹣4)×6+(﹣125)÷(﹣5);(3)(+)×(﹣36);(4)(﹣1)2018﹣6÷(﹣2)3×418.计算(1)2a﹣7a+3a;(2)(8mn﹣3m2)﹣2(3mn﹣2m2).19.先化简,再求值(1)2a﹣5b+4a+3b,其中a=,b=﹣2;(2)2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中x=﹣1,y=﹣2.20.画出数轴,把22,0,﹣2,(﹣1)3这四个数在数轴上表示出来;并按从小到大的顺序用“<”号将各数连接起来.21.如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当a=10,b=4时,求其阴影部分的面积.(其中π取3.14)22.开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.23.已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是、.(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)参考答案与试题解析一.选择题(共8小题)1.与1的和是3的数是()A.﹣4 B.﹣2 C.2 D.4【分析】根据有理数的加法法则即可得.【解答】解:∵2+1=3,∴与1的和是3的数是2,故选:C.2.下列运算中,正确的是()A.4x+3y=7xy B.4x2+3x=7x3C.4x3﹣3x2=x D.﹣4xy+3yx=﹣xy【分析】根据同类项的定义、合并同类项法则对四个选项进行判断即可.【解答】解:A.4x与3y不是同类项,不能合并,此选项错误;B.4x2与3x不是同类项,不能合并,此选项错误;C.4x3与﹣3x2不是同类项,不能合并,此选项错误;D.﹣4xy+3yx=﹣xy,此选项正确;故选:D.3.马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42195=4.2195×104,故选:C.4.下列各项中是同类项的是()A.3xy与2xy B.2ab与2abc C.x2y与x2z D.a2b与ab2【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A.3xy与2xy是同类项,符合题意;B.2ab与2abc所含字母不相同,不符合题意;C.x2y与x2z所含字母不相同,不符合题意;D.a2b与ab2相同字母的指数不相同,不符合题意;故选:A.5.如图,数轴的单位长度为1,如果点A表示的数是﹣3,那么点B表示的数是()A.﹣2 B.﹣1 C.0 D.1【分析】可借助数轴,直接数数得结论,也可通过加减法计算得结论.【解答】解:因为点B与点A的距离为4,当点A表示的数为﹣3时,点B表示的数为﹣3+4=1.故选:D.6.按图中计算程序计算,若开始输入的x的值为1,则最后输出的结果是()A.89 B.158 C.183 D.198【分析】把x=1代入计算程序中计算即可求出所求.【解答】解:把x=1代入计算程序得:1+1+1=3<50,把x=3代入计算程序得:9+3+1=13<50,把x=13代入计算程序得:169+13+1=183>50,则输出的数为183,故选:C.7.已知代数式m+2n+2的值是3,则代数式3m+6n+1的值是()A.4 B.5 C.6 D.7【分析】由题意确定出m+2n的值,原式变形后代入计算即可求出值.【解答】解:∵m+2n+2=3,即m+2n=1,∴原式=3(m+2n)+1=3+1=4,故选:A.8.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办()A.2070年B.2071年C.2072年D.2073年【分析】根据题意可以分别写出世界运动会、亚运会、奥运会举行的时间,从而可以判断选项中的哪一个年份不符合题意,从而可以解答本题.【解答】解:由题意可得,世界运动会、亚运会、奥运会分别举行的时间为2013+4n,2014+4n,2016+4n,当n=14时,2013+4n=2019,2014+4n=2070,2016+4n=2072,当n=15时,2013+4n=2073,故选:B.二、填空题(本大题有8小题,每小题3分,共24分)9.﹣3的绝对值是 3 .【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.已知(a﹣2)2+|b﹣1|=0,则a b= 2 .【分析】直接利用偶次方以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣2)2+|b﹣1|=0,∴a﹣2=0,b﹣1=0,解得:a=2,b=1,故a b=2.故答案为:2.11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差0.4 千克.【分析】(50±0.2)的字样表明质量最大为50.2,最小为49.8,二者之差为0.4.依此即可求解.【解答】解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.12.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是8排13号.【分析】由“4排5号”记作(4,5)可知,有序数对与排号对应,(8,13)的意义为第8排13号.【解答】解:根据题意知:前一个数表示排数,后一个数表示号数.所以(8,13)表示的座位是8排13号.故答案为:8排13号.13.若a﹣1与3互为相反数,则a=﹣2 .【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a﹣1+3=0,解得:a=﹣2,故答案为:﹣214.比较大小:﹣8 <﹣5(填“>”或“<”)【分析】利用两个负数比较大小,绝对值大的反而小,进而得出答案.【解答】解:∵|﹣8|=8,|﹣5|=5,∴﹣8<﹣5.故答案为:<.15.a是某数的十位数字,b是它的个位数字,则这个数可表示为10a+b.【分析】根据两位数=十位数字×10+个位数字即可得出答案.【解答】解:十位数字为a,个位数字为b的意义是a个10与b个1的和为:10a+b.故答案为:10a+b.16.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为13 .【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故答案为:13.三、解答(共72分)17.计算(1)(﹣1)+(﹣3)﹣(﹣9);(2)(﹣4)×6+(﹣125)÷(﹣5);(3)(+)×(﹣36);(4)(﹣1)2018﹣6÷(﹣2)3×4【分析】(1)将减法转化为加法,再计算加法即可得;(2)先计算乘法和除法,再计算加减可得;(3)先利用乘法分配律展开,再依次计算乘法和加减可得;(4)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣1﹣3+9=﹣4+9=5;(2)原式=﹣24+25=1;(3)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣20+27﹣2=5;(4)原式=1﹣6÷(﹣8)×4=1+×4=1+3=4.18.计算(1)2a﹣7a+3a;(2)(8mn﹣3m2)﹣2(3mn﹣2m2).【分析】(1)直接找出同类项进而合并同类项得出答案;(2)直接去括号进而合并同类项得出答案.【解答】解:(1)原式=(2﹣7+3)a=﹣2a;(2)原式=8mn﹣3m2﹣6mn+4m2,=(﹣3+4)m2+(8﹣6)mn=m2+2mn.19.先化简,再求值(1)2a﹣5b+4a+3b,其中a=,b=﹣2;(2)2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中x=﹣1,y=﹣2.【分析】(1)先合并同类项化简原式,再将a,b的值代入计算可得;(2)将原式去括号,合并同类项化简,再将x,y的值代入计算可得.【解答】解:(1)原式=6a﹣2b,当a=,b=﹣2时,原式=6×﹣2×(﹣2)=3+4=7;(2)原式=6x2﹣8xy﹣8x2+12xy+4=﹣2x2+4xy+4,当x=﹣1,y=﹣2时,原式=﹣2×(﹣1)2+4×(﹣1)×(﹣2)+4=﹣2+8+4=10.20.画出数轴,把22,0,﹣2,(﹣1)3这四个数在数轴上表示出来;并按从小到大的顺序用“<”号将各数连接起来.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:22=4,0,﹣2,(﹣1)3=﹣1,如图所示:,故﹣2<(﹣1)3<0<22.21.如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当a=10,b=4时,求其阴影部分的面积.(其中π取3.14)【分析】(1)用长方形的面积减去2个半径为b的圆的面积,据此可得;(2)将a,b的值代入计算可得.【解答】解:(1)阴影部分的面积为ab﹣2××πb2=ab﹣πb2;(2)当a=10,b=4时,ab﹣πb2=10×4﹣×3.14×16≈14.88.22.开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x=10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x+120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x+135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元,故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.23.已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与 4 表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与﹣10 表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是﹣1006 、1012 .(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)【分析】(1)由表示1与﹣1的两点重合,利用对称性即可得到结果;(2)由﹣2表示的点与8表示的点重合,确定出3为对称点,得出两项的结果即可;(3)根据(2)的计算方法进行解答.【解答】解:(1)若1表示的点与﹣1表示的点重合,则原点为对称点,所以﹣4表示的点与4表示的点重合;(2)由题意得:(﹣2+8)÷2=3,即3为对称点,①根据题意得:2×3﹣16=﹣10;②∵3为对称点,A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,∴A表示的数=﹣+3=﹣1006,B点表示的数=+3=1012;(3)点P表示的数为:;点Q表示的数为:.故答案为:(1)4;(2)①﹣10;②﹣1006,1012.人教版七年级第一学期期中模拟数学试卷【含答案】一、选择题(每小题3分,共30分)1.在﹣1,15,﹣10,0,﹣(﹣5),﹣|+3|中,负数的个数有()A.2个B.3个C.4个D.5 个2.下列计算正确的是()A.6b﹣5b=1B.2m+3m2=5m3C.﹣2(c﹣d)=﹣2c+2d D.﹣(a﹣b)=﹣a﹣b3.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为()A.259×104B.25.9×105C.2.59×106D.0.259×107 4.在,x+1,﹣2,,0.72xy,,中单项式的个数有()A.2个B.3个C.4个D.5个5.a,b,c三个数的位置如图所示,下列结论不正确的是()A.a+b<0B.b+c<0C.b+a>0D.a+c>06.如图中,是正方体的表面展开图的是()A.B.C.D.7.知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A.26B.16C.2D.﹣68.小强购买绿、橙两种颜色的珠子串成一条手链,已知绿色珠子a个,每个2元,橙色珠子b个,每个5元,那么小强购买珠子共需花费()A.(2a+5b)元B.(5a+2b)元C.2(a+5b)元D.5(2a+b)元9.已知M是一个五次多项式,N是一个三次多项式,则M﹣N是一个()次整式.A.5B.3C.小于等于5D.210.现有以下五个结论:①正数、负数和0统称为有理数;②若两个非0数互为相反数,则它们相除的商等于﹣1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数.其中正确的有()A.0个B.1个C.2个D.3个二.填空题(每小题3分,共15分)。
2015-2016学年江苏省盐城市亭湖区南洋中学七年级(上)期中数学试卷(解析版)
2015-2016学年江苏省盐城市亭湖区南洋中学七年级(上)期中数学试卷一、精心选一选(本大题共8小题,每小题2分,共16分)1.(2分)﹣2的相反数为()A.2 B.C.﹣2 D.2.(2分)下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2 D.﹣27与(﹣2)73.(2分)下列各式计算正确的是()A.5x+x=5x2B.3ab2﹣8b2a=﹣5ab2C.5m2n﹣3mn2=2mn D.﹣2a+7b=5ab4.(2分)如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1 B.﹣5 C.﹣1 D.55.(2分)一个整式与x2+y2的和是x2﹣y2,则这个整式是()A.2x2B.2y2C.﹣2x2D.﹣2y26.(2分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克7.(2分)已知﹣15a2m b和6a4b n+3是同类项,则m﹣n的值是()A.0 B.2 C.3 D.48.(2分)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2009厘米的线段AB,则线段AB盖住的整点的个数是()A.2007或2008 B.2008或2009 C.2009或2010 D.2010或2011二、细心填一填(本大题共10小题,每小题2分,共20分)9.(2分)如果向北走50米记为是+50米,那么向南走30米记为.10.(2分)某超市出售的三种品牌食品袋上,分别标有质量为(500±5)g,(500±10)g,(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差g.11.(2分)已知代数式3x﹣2y的值是5,则代数式6x﹣4y﹣5的值是.12.(2分)在这四个数中,最大数与最小数的和是.13.(2分)绝对值大于1而小于5的负整数是.14.(2分)已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月日点.15.(2分)若|a|=5,|b|=2,ab>0,则a+b=.16.(2分)某商品先按批发价a元提高20%零售,后又按零售价降低10%出售,则它最后的单价是元.17.(2分)如果代数式(3x2+mx﹣2y+4)﹣(3nx2﹣2x+6y﹣3)的值与字母x的取值无关,代数式m+n的值为.18.(2分)定义新运算“*”为:a*b=,则当x=3时,计算2*x﹣4*x 的结果为.三、认真算一算,答一答(本大题共有8小题,共64分)19.(8分)把下列各数分别填入相应的集合里﹣4,,0,,﹣3.14,2012,+1.88,﹣1.121121112 (2)(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.20.(16分)计算:(1)22+(﹣2014)+(﹣2)+2014(2)(﹣105)÷(﹣5)+13÷(﹣)(3)(a2﹣6a﹣7)﹣(a2﹣3a+4)(4)5(m+n)﹣4(3m﹣2n)﹣3(2m﹣3n)21.(5分)先化简,再求值:2(a2﹣a﹣1)﹣(a2﹣a﹣1)+3(a2﹣a﹣1),其中.22.(5分)在数轴上画出表示1.5,﹣2,﹣3,4及它们的相反数的点,并用“<”号将它们连接起来.23.(6分)若a,b互为相反数,c,d互为倒数,m是绝对值等于4的正数,求+cd+m的值.24.(6分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A处出发,晚上到达B处,记向东方向为正方向,当天航行路程记录如下:(单位:千米)14,﹣9,+8,﹣7,13,﹣6,+10,﹣5(1)B在A何处?(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,问途中还需补充多少升油?(3)冲锋舟距离处A最远是多少千米?25.(8分)已知(x﹣5)2+3|y+3|=0,A=﹣x2﹣2xy+y2,B=﹣,(1)求y﹣x的值.(2)求3A﹣[2A﹣B﹣4(A﹣B)]的值.26.(10分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和7两点之间的距离是,数轴上表示3和﹣3两点之间的距离是.(2)数轴上表示x和﹣4的两点之间的距离表示为.(3)若|x﹣2|+|x+4|=6,则x的取值范围是.(4)若x表示一个有理数,则代数式3﹣2|x﹣2|﹣2|x+4|有最大值吗?若有,请求出最大值.若没有,说出理由.2015-2016学年江苏省盐城市亭湖区南洋中学七年级(上)期中数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题2分,共16分)1.(2分)﹣2的相反数为()A.2 B.C.﹣2 D.【解答】解:与﹣2符号相反的数是2,所以,数﹣2的相反数为2.故选:A.2.(2分)下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2 D.﹣27与(﹣2)7【解答】解:A、﹣(﹣3)2=﹣9,﹣(2)3=﹣8,不相等;B、﹣32=﹣9,(﹣3)2=9,不相等;C、﹣3×23=﹣24,﹣32×2=﹣18,不相等;D、﹣27=(﹣2)7=128,相等.故选:D.3.(2分)下列各式计算正确的是()A.5x+x=5x2B.3ab2﹣8b2a=﹣5ab2C.5m2n﹣3mn2=2mn D.﹣2a+7b=5ab【解答】解:A、是同类项,合并得5x+x=6x,错误;B、计算准确;C、不是同类项,无法进行合并,不正确;D、不是同类项,无法合并,错误.4.(2分)如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1 B.﹣5 C.﹣1 D.5【解答】解:根据题意列得:﹣3x+2,当x=﹣1时,原式=﹣3×(﹣1)+2=3+2=5,则输出的值为5.故选:D.5.(2分)一个整式与x2+y2的和是x2﹣y2,则这个整式是()A.2x2B.2y2C.﹣2x2D.﹣2y2【解答】解:设这个整式为M,则M=x2﹣y2﹣(x2+y2)=x2﹣y2﹣x2﹣y2=﹣2y2.故选:D.6.(2分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克【解答】解:500亿=50 000 000 000=5×1010.故选:A.7.(2分)已知﹣15a2m b和6a4b n+3是同类项,则m﹣n的值是()A.0 B.2 C.3 D.4【解答】解:由题意得:2m=4,n+3=1,∴m=2,n=﹣2.故选:D.8.(2分)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2009厘米的线段AB,则线段AB盖住的整点的个数是()A.2007或2008 B.2008或2009 C.2009或2010 D.2010或2011【解答】解:依题意得:①当线段AB起点在整点时覆盖2010个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2009个数.故选:C.二、细心填一填(本大题共10小题,每小题2分,共20分)9.(2分)如果向北走50米记为是+50米,那么向南走30米记为﹣30米.【解答】解:“正”和“负”相对,所以,如果向北走50米记为+50米,那么向南走30米应记为﹣30米.故答案为:﹣30米.10.(2分)某超市出售的三种品牌食品袋上,分别标有质量为(500±5)g,(500±10)g,(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差40 g.【解答】解:由题意可得,最多的质量为500+20=520g,最少的为500﹣20=480g,520﹣480=40g.所以它们的质量相差最多是40g.故答案为:40.11.(2分)已知代数式3x﹣2y的值是5,则代数式6x﹣4y﹣5的值是5.【解答】解:∵3x﹣2y=5,∴原式=2(3x﹣2y)﹣5=2×5﹣5=5.故答案为:5.12.(2分)在这四个数中,最大数与最小数的和是﹣1.【解答】解:在有理数0、﹣2、1、中,最大的数是1,最小的数是﹣2;它们的和为﹣2+1=﹣1.13.(2分)绝对值大于1而小于5的负整数是﹣2,﹣3,﹣4.【解答】解:设此数为x.则有1<|x|<5,∵x<0,∴x=﹣2,﹣3,﹣4,故答案为:﹣2,﹣3,﹣4.14.(2分)已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月20日18点.【解答】解:根据题意得,8﹣14=8+(﹣14)=﹣6,24+(﹣6)=18.故答案为20;18.15.(2分)若|a|=5,|b|=2,ab>0,则a+b=±7.【解答】解:由|a|=5,|b|=2,可知a=±5,b=±2,又ab>0,所以a=5,b=2或a=﹣5,b=﹣2,当a=5,b=2时,a+b=7,当a=﹣5,b=﹣2时,a+b=﹣7,故答案为:±7.16.(2分)某商品先按批发价a元提高20%零售,后又按零售价降低10%出售,则它最后的单价是 1.08a元.【解答】解:零售价为:1.2a,降价之后价钱为:1.2a(1﹣10%)=1.08a.故答案为:1.08a.17.(2分)如果代数式(3x2+mx﹣2y+4)﹣(3nx2﹣2x+6y﹣3)的值与字母x的取值无关,代数式m+n的值为﹣1.【解答】解:原式=3x2+mx﹣2y+4﹣3nx2+2x﹣6y+3=(3﹣3n)x2+(m+2)x﹣8y+7,由结果与x取值无关,得到3﹣3n=0,m+2=0,解得:m=﹣2,n=1,则m+n=﹣2+1=﹣1.故答案为:﹣1.18.(2分)定义新运算“*”为:a*b=,则当x=3时,计算2*x﹣4*x 的结果为8.【解答】解:当x=3时,2*x﹣4*x=2*3﹣4*3=9﹣(4﹣3)=8,故答案为:8三、认真算一算,答一答(本大题共有8小题,共64分)19.(8分)把下列各数分别填入相应的集合里﹣4,,0,,﹣3.14,2012,+1.88,﹣1.121121112 (2)(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.【解答】解:(1)正数集合:{,2012,+1.88,2π};(2)负数集合:{﹣4,,﹣3.14,﹣1.121121112…};(3)整数集合:{﹣4,0,2012};(4)无理数集合:{﹣1.121121112…,2π}.20.(16分)计算:(1)22+(﹣2014)+(﹣2)+2014(2)(﹣105)÷(﹣5)+13÷(﹣)(3)(a2﹣6a﹣7)﹣(a2﹣3a+4)(4)5(m+n)﹣4(3m﹣2n)﹣3(2m﹣3n)【解答】解:(1)22+(﹣2014)+(﹣2)+2014=[22+(﹣2)]+[(﹣2014)+2014]=20+0=20;(2)(﹣105)÷(﹣5)+13÷(﹣)=21+(﹣169)=﹣148;(3)(a2﹣6a﹣7)﹣(a2﹣3a+4)=a2﹣6a﹣7﹣a2+3a﹣4=﹣3a﹣11;(4)5(m+n)﹣4(3m﹣2n)﹣3(2m﹣3n)=5m+5n﹣12m+8n﹣6m+9n=﹣13m+22n.21.(5分)先化简,再求值:2(a2﹣a﹣1)﹣(a2﹣a﹣1)+3(a2﹣a﹣1),其中.【解答】解:原式=2a2﹣2a﹣2﹣a2+a+1+3a2﹣3a﹣3=4a2﹣4a﹣4,当a=﹣时,原式=1+2﹣4=﹣1.22.(5分)在数轴上画出表示1.5,﹣2,﹣3,4及它们的相反数的点,并用“<”号将它们连接起来.【解答】解:如图所示.,故﹣4<﹣3<﹣2<﹣1.5<1.5<2<3<4.23.(6分)若a,b互为相反数,c,d互为倒数,m是绝对值等于4的正数,求+cd+m的值.【解答】解:根据题意得:a+b=0,cd=1,m=4,则原式=0+1+4=5.24.(6分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A处出发,晚上到达B处,记向东方向为正方向,当天航行路程记录如下:(单位:千米)14,﹣9,+8,﹣7,13,﹣6,+10,﹣5(1)B在A何处?(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,问途中还需补充多少升油?(3)冲锋舟距离处A最远是多少千米?【解答】解:(1)14+(﹣9)+8+(﹣7)+13+(﹣6)+10+(﹣5)=18(千米),答:B地在A地东18米处;(2)耗油量:(14+9+8+7+13+6+10+5)×0.5=36(升),36﹣29=7(升);答:求途中还需补充7升油.(3)第一次14,第二次14+(﹣9)=5,第三次5+8=13,第四次13+(﹣7)=6,第五次6+13=19,第六次19+(﹣6)=13,第七次13+10=23,第八次23+(﹣5)=18,23>19>18>14>13>6>5,答:最远处离出发点A有23千米;25.(8分)已知(x﹣5)2+3|y+3|=0,A=﹣x2﹣2xy+y2,B=﹣,(1)求y﹣x的值.(2)求3A﹣[2A﹣B﹣4(A﹣B)]的值.【解答】解:(1)∵(x﹣5)2+3|y+3|=0,∴x=5,y=﹣3;(2)∵A=﹣x2﹣2xy+y2,B=﹣x2﹣6xy+3y2,∴原式=3A﹣2A+B+4A﹣4B=5A﹣3B=8xy﹣4y2=﹣120﹣36=﹣156.26.(10分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和7两点之间的距离是5,数轴上表示3和﹣3两点之间的距离是6.(2)数轴上表示x和﹣4的两点之间的距离表示为|x+4|;.(3)若|x﹣2|+|x+4|=6,则x的取值范围是2≥x≥﹣4.(4)若x表示一个有理数,则代数式3﹣2|x﹣2|﹣2|x+4|有最大值吗?若有,请求出最大值.若没有,说出理由.【解答】解:(1)数轴上表示2和7两点之间的距离是|7﹣2|=5,数轴上表示3和﹣3的两点之间的距离是|3﹣(﹣3)|=6;(2)根据绝对值的定义有:数轴上表示x和﹣4的两点之间的距离表示为|x﹣(﹣4)|=|x+4|;(3)|x﹣2|+|x+4|可表示为点x到2与﹣4两点距离之和,当x在﹣4与2之间时,|x﹣2|+|x+4|=6,所以x的取值范围为:2≥x≥﹣4;(4)根据绝对值的定义有:|x﹣2|+|x+4|可表示为点x到2与﹣4两点距离之和,根据几何意义分析可知:当x在﹣4与2之间时,|x﹣2|+|x+4|有最小值6.所以3﹣2|x﹣2|﹣2|x+4|=3﹣2(|x﹣2|+|x+4|)=3﹣12=﹣9.所以代数式3﹣2|x﹣2|﹣2|x+4|有最大值﹣9.。
[推荐学习]七年级数学上学期期中试题(含解析)10
江苏省盐城中学2015-2016学年七年级数学上学期期中试题一、精心选一选:(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.在﹣1,0,1,2这四个数中,既不是正数也不是负数的是( )A.﹣1 B.0 C.1 D.22.下列四个数:﹣8,﹣3,0.66666…,π,其中无理数的是( )A.﹣8 B.﹣3C.0.66666…D.π3.把﹣(﹣)(﹣)(﹣)写成乘方的形式是( )A.﹣B.﹣()3 C.(﹣)3D.﹣(﹣)34.下列各组中的两项,属于同类项的是( )A.﹣2x3与﹣2x2B.a3b与ab2C.﹣125与15 D.0.5x2y与0.5x2z5.在代数式ab、3xy、a+1、3ax2y2、1﹣y、、x2+xy+y2中,单项式有( )A.3个B.4个C.5个D.6个6.下列各式中,正确的是( )A.﹣5÷×5=﹣5 B.2a+3b=5abC.7ab﹣3ab=4 D.x2y﹣2x2y=﹣x2y7.一个长方形的周长为20,其中它的长为a,那么该长方形的面积是( )A.20a B.a C.10a D.a(10﹣a)8.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或N B.M或R C.N或P D.P或R二、细心填一填:(本大题共10小题,每小题2分,共20分.请把结果直接填在题中的横线上.)9.的倒数是__________.10.绝对值等于4的数是__________.11.去年,中央财政安排资金 8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为__________元.12.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为__________.13.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是__________.14.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为__________.15.某粮店出售的某种品牌的面粉袋上,标有质量为(25±0.2)的字样,从中任意拿出两袋,它们的质量最多相差__________kg.16.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示﹣1的点B,则点A所表示的数是__________.17.你会玩“二十四点”游戏吗?请用“﹣3、﹣2、3、﹣13”四个数,利用有理数的混合运算,使四个数的运算结果为24(每个数只能用一次),写出你的算式(只写一个即可):__________.18.如图数表是由从 1 开始的连续自然数组成.下面所给的判断中,正确的有__________.(填序号)①表中第8行的最后一个数是64;②第n行的第一个数是(n﹣1)2+1;③第n行的最后一个数是n2;④第n行共有2n个数.三.认真算一算,答一答:(本大题共有7小题,共64分,解答需写出必要的文字说明、演算步骤.)19.把数2、﹣|﹣1|、1、0、﹣(﹣3.5)在数轴上表示出来,再用“<”把它们连接起来.20.(16分)计算:(1)﹣23+(+58)﹣(﹣5);(2)31+(﹣)﹣(﹣)+(3)(4).21.(16分)计算:(1)x2﹣5xy+xy+2x2(2)2x2+3(2x﹣x2)(3)2x2y3+(﹣4x2y3)﹣(﹣3x2y3)(4)求代数式的值:x2+6y2+(5﹣9y)﹣(x2+y2﹣4y)﹣5y2,其中x=﹣2015,y=2.22.2010年8月7日夜22点左右,甘肃舟曲发生特大山洪泥石流灾害,甘肃消防总队迅即出动兵力支援灾区.在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):﹣11,﹣9,+18,﹣2,+13,+4,+12,﹣7(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)直接写出在救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?23.(1)当a=2,b=1时时,分别求代数式①a2﹣2ab+b2②(a﹣b)2的值.(2)当a=5,b=﹣3时,分别求代数式①a2﹣2ab+b2②(a﹣b)2的值.(3)观察(1)(2)中代数式的值,a2﹣2ab+b2与(a﹣b)2有何关系?(4)利用你发现的规律,求135.72﹣2×135.7×35.7+35.72的值.24.图1是一张长方形的纸片,现将这张纸片沿图1中心线从右向左对折(图2).在图2中任意画一条线,沿这条线剪一刀,展开后分成的纸片数不一定相同.若沿图3中AB线剪一刀,展开后可分成2块纸片;若沿图4中CD线剪一刀,展开后可分成3块纸片.但剪一刀不能将它分成3块以上的纸片.现将图2再沿中心线(图5)从上向下对折(图6),现在图6中画一条线,沿这条线剪一刀后,研究展开后可分成几块纸片?(请在给定的图中画线,并在图形下方的括号中写出按此线剪一刀,展开后分成的纸片块数,分成相同的块数只画一个图,如果给定的小长方形不够,自已可以添加)25.将一张正方形纸片剪成四个大小、形状一样的小正方形(如图所示),记为第一次操作,然后将其中的一片又按同样的方法剪成四小片,记为第二次操作,如此循环进行下去.请将(1)如果剪100次,共能得到__________个正方形.(2)如果剪n次共能得到b n个正方形,试用含有n、b n的等式表示它们之间的数量关系.__________(3)若原正方形的边长为1,设a n表示第n次所剪的正方形的边长,①试用含n的式子表示a n=__________.②试猜想a1+a2+a3+a4+…+a n﹣1+a n与原正方形边长的数量关系,并用等式写出这个关系:__________.(4)运用第(3)题的结论,求的值.2015-2016学年江苏省盐城中学七年级(上)期中数学试卷一、精心选一选:(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.在﹣1,0,1,2这四个数中,既不是正数也不是负数的是( )A.﹣1 B.0 C.1 D.2【考点】有理数.【分析】正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.【解答】解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.【点评】理解正数和负数的概念是解答此题的关键.2.下列四个数:﹣8,﹣3,0.66666…,π,其中无理数的是( )A.﹣8 B.﹣3C.0.66666…D.π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣8是整数,是有理数,选项错误;B、﹣3是分数,是有理数,选项错误;C、0.66666…是无限循环小数,是有理数,选项错误;D、π是无理数,选项正确.故选D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.把﹣(﹣)(﹣)(﹣)写成乘方的形式是( )A.﹣B.﹣()3 C.(﹣)3D.﹣(﹣)3【考点】有理数的乘方.【分析】根据有理数的乘方的定义解答.【解答】解:﹣(﹣)(﹣)(﹣)=﹣(﹣)3.故选D.【点评】本题考查了有理数的乘方,乘方是乘法的特例,熟记概念是解题的关键.4.下列各组中的两项,属于同类项的是( )A.﹣2x3与﹣2x2B.a3b与ab2C.﹣125与15 D.0.5x2y与0.5x2z【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、﹣2x3与﹣2x2,所含字母相同,但指数不同,不是同类项,故本选项错误;B、a3b与ab2,所含字母相同,但指数不同,不是同类项,故本选项错误;C、﹣125与15,是同类项,本选项正确;D、0.5x2y与0.5x2z,所含字母不同,不是同类项,故本选项错误;故选C.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.5.在代数式ab、3xy、a+1、3ax2y2、1﹣y、、x2+xy+y2中,单项式有( )A.3个B.4个C.5个D.6个【考点】单项式.【分析】根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,求解即可.【解答】解:根据单项式的定义:ab、3xy、3ax2y2是单项式,共3个.故选A.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的定义,属于基础题.6.下列各式中,正确的是( )A.﹣5÷×5=﹣5 B.2a+3b=5abC.7ab﹣3ab=4 D.x2y﹣2x2y=﹣x2y【考点】合并同类项;有理数的混合运算.【分析】根据合并同类项,即可解答.【解答】解:A、﹣5÷×5=﹣125,故错误;B、2a与3b不是同类项,不能合并;C、7ab﹣3ab=4ab,故错误;D、正确;故选:D.【点评】本题考查了合并同类项,解决本题的关键是熟记合并同类项的法则.7.一个长方形的周长为20,其中它的长为a,那么该长方形的面积是( )A.20a B.a C.10a D.a(10﹣a)【考点】列代数式.【分析】首先表示出长方形的宽,然后利用长方形的面积公式即可求得.【解答】解:长方形的宽是:=10﹣a,则长方形的面积是:a(10﹣a).故选D.【点评】本题考查了列代数式,正确表示出正方形的宽是关键.8.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或N B.M或R C.N或P D.P或R【考点】数轴.【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选:B.【点评】此题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.二、细心填一填:(本大题共10小题,每小题2分,共20分.请把结果直接填在题中的横线上.)9.的倒数是2.【考点】倒数.【分析】根据倒数的定义,的倒数是2.【解答】解:的倒数是2,故答案为:2.【点评】此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.绝对值等于4的数是±4.【考点】绝对值.【专题】计算题.【分析】利用绝对值的代数意义判断即可得到结果.【解答】解:绝对值等于4的数是±4.故答案为:±4.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.11.去年,中央财政安排资金 8 200 000 000 元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为8.2×109元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将8 200 000 000 用科学记数法表示为8.2×109.故答案为:8.2×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为1.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:原式=b+c﹣d+a=(a+b)+(c﹣d)=4﹣3=1.故答案为:1.【点评】此题考查了整式的加减﹣混合求值,熟练掌握运算法则是解本题的关键.13.如图是一个数值转换机,若输入的x为﹣5,则输出的结果是21.【考点】有理数的乘法.【专题】图表型.【分析】根据转换机的设置,结合有理数的混合运算法则求出即可.【解答】解:如图所示:若输入的x为﹣5,则输出的结果是:(﹣5﹣2)×(﹣3)=﹣7×(﹣3)=21.故答案为:21.【点评】此题主要考查了有理数的混合运算,熟练掌握运算法则是解题关键.14.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为体育委员买了3个足球,2个篮球,剩余的经费.【考点】代数式.【专题】应用题.【分析】本题需先根据买一个足球a元,一个篮球b元的条件,表示出3a和2b的意义,最后得出正确答案即可.【解答】解:∵买一个足球a元,一个篮球b元.∴3a表示委员买了3个足球2b表示买了2个篮球∴代数式500﹣3a﹣2b:表示委员买了3个足球、2个篮球,剩余的经费.故答案为:体育委员买了3个足球、2个篮球,剩余的经费【点评】本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.15.某粮店出售的某种品牌的面粉袋上,标有质量为(25±0.2)的字样,从中任意拿出两袋,它们的质量最多相差0.4k g.【考点】正数和负数.【专题】计算题.【分析】一袋面粉的质量在24.8kg﹣25.2kg之间,用最大质量减去最小质量即可.【解答】解:25.2﹣24.8=0.4kg,故答案为0.4.【点评】本题考查了正数和负数的意义,及有理数的减法.16.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示﹣1的点B,则点A所表示的数是﹣5或3.【考点】数轴.【分析】利用数轴从蚂蚁可能在B的左侧或右侧求解即可.【解答】解:如图:由数轴可得出:一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示﹣1的点B,则点A 所表示的数﹣5或3,故答案为:﹣5或3.【点评】本题主要考查了数轴,解题的关键是理解蚂蚁可能在B的左侧或右侧.17.你会玩“二十四点”游戏吗?请用“﹣3、﹣2、3、﹣13”四个数,利用有理数的混合运算,使四个数的运算结果为24(每个数只能用一次),写出你的算式(只写一个即可):[﹣3+(﹣2)﹣(﹣13)]×3.【考点】有理数的混合运算.【专题】开放型.【分析】根据题目中的信息进行灵活变化,即可解答本题.【解答】解:根据题意可得:[﹣3+(﹣2)﹣(﹣13)]×3=[﹣5+13]×3=8×3=24故答案为:[﹣3+(﹣2)﹣(﹣13)]×3【点评】本题考查有理数的混合运算,解题的关键是能根据题目要求,灵活变化,找出所求问题需要的条件.18.如图数表是由从1 开始的连续自然数组成.下面所给的判断中,正确的有①②③.(填序号)①表中第8行的最后一个数是64;②第n行的第一个数是(n﹣1)2+1;③第n行的最后一个数是n2;④第n行共有2n个数.【考点】规律型:数字的变化类.【专题】规律型.【分析】观察每一行的最后一个数,可以发现第n行的最后一个数为n2,由此就可解决问题.【解答】解:第一行的最后一个数为1=12,第二行的最后一个数为4=22,第三行的最后一个数为9=32,…第(n﹣1)行的最后一个数为(n﹣1)2,第n行的最后一个数为n2.由此可得:①表中第8行的最后一个数是82=64;②第n行的第一个数是(n﹣1)2+1;③第n行的最后一个数是n2;④第n行共有[n2﹣(n﹣1)2]即(2n﹣1)个数.故答案为①②③.【点评】本题属于规律探究题,发现第n行的最后一个数为n2,是解决本题的关键.三.认真算一算,答一答:(本大题共有7小题,共64分,解答需写出必要的文字说明、演算步骤.)19.把数2、﹣|﹣1|、1、0、﹣(﹣3.5)在数轴上表示出来,再用“<”把它们连接起来.【考点】有理数大小比较;数轴.【分析】首先利用求绝对值与相反数的方法化简,画出数轴,在数轴上找出对应点,再按数轴上从左到右的顺序,用“<”把它们连接起来即可.【解答】解:﹣|﹣1|=﹣1,﹣(﹣3.5)=3.5,所以﹣|﹣1|<0<1<2<﹣(﹣3.5).【点评】此题考查数轴的画法,绝对值、相反数的意义,以及有理数大小比较的方法等知识点.20.(16分)计算:(1)﹣23+(+58)﹣(﹣5);(2)31+(﹣)﹣(﹣)+(3)(4).【考点】有理数的混合运算.【专题】计算题.【分析】(1)根据有理数的加法和减法法则计算即可;(2)根据有理数的加法和减法法则计算即可;(3)利用乘法分配律进行计算即可;(4)根据幂的乘方、有理数的乘法和加减法进行计算即可.【解答】解:(1)﹣23+(+58)﹣(﹣5)=﹣23+58+5=40;(2)31+(﹣)﹣(﹣)+=31+(﹣)+=31;(3)==﹣12+15﹣14=﹣11;(4)=﹣1+=﹣1+=1﹣=.【点评】本题考查有理数的混合运算,解题的关键是明确有理数乘方、加减乘除混合运算的法则.21.(16分)计算:(1)x2﹣5xy+xy+2x2(2)2x2+3(2x﹣x2)(3)2x2y3+(﹣4x2y3)﹣(﹣3x2y3)(4)求代数式的值:x2+6y2+(5﹣9y)﹣(x2+y2﹣4y)﹣5y2,其中x=﹣2015,y=2.【考点】整式的加减—化简求值;整式的加减.【专题】计算题;整式.【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=3x2﹣4xy;(2)原式=2x2+6x﹣3x2=﹣x2+6x;(3)原式=2x2y3﹣4x2y3+3x2y3=x2y3;(4)原式=x2+6y2+5﹣9y﹣x2﹣y2+4y﹣5y2=5﹣5y,当y=2时,原式=5﹣10=﹣5.【点评】此题考查了整式的加减﹣混合求值,以及整式的加减,熟练掌握运算法则是解本题的关键.22.2010年8月7日夜22点左右,甘肃舟曲发生特大山洪泥石流灾害,甘肃消防总队迅即出动兵力支援灾区.在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):﹣11,﹣9,+18,﹣2,+13,+4,+12,﹣7(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)直接写出在救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?【考点】正数和负数.【分析】(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.【解答】解:(1)∵﹣11﹣9+18﹣2+13+4+12﹣7=18>0,∴B地在A地的东边18千米;(2)∵路程记录中各点离出发点的距离分别为:第一次:11千米,第二次:|﹣11﹣9|=20千米,第三次:|﹣20+18|=2千米,第四次:|﹣2﹣2|=4千米,第五次:|﹣4+13|=9千米,第六次:|9+4|=13千米,第七次:|13+12|=25千米,第八次:|25﹣7|=18千米.∴最远处离出发点25千米;(3)∵这一天走的总路程为:11+9+18+2+13+4+12+7=76千米,应耗油76×0.5=38(升),∴还需补充的油量为:38﹣29=9(升)【点评】本题考查的是正数与负数的定义,解答此题的关键是熟知用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.23.(1)当a=2,b=1时时,分别求代数式①a2﹣2ab+b2②(a﹣b)2的值.(2)当a=5,b=﹣3时,分别求代数式①a2﹣2ab+b2②(a﹣b)2的值.(3)观察(1)(2)中代数式的值,a2﹣2ab+b2与(a﹣b)2有何关系?(4)利用你发现的规律,求135.72﹣2×135.7×35.7+35.72的值.【考点】代数式求值.【专题】计算题;实数.【分析】(1)把a与b的值分别代入各式计算即可得到结果;(2)把a与b的值分别代入各式计算即可得到结果;(3)观察上面代数式的值,得出两数相等;(4)利用得出的规律将原式变形,计算即可得到结果.【解答】解:(1)当a=2,b=1时,①a2﹣2ab+b2=4﹣4+1=1;②(a﹣b)2=1;(2)当a=5,b=﹣3时,①a2﹣2ab+b2=25+30+9=64;②(a﹣b)2=64;(3)可得a2﹣2ab+b2=(a﹣b)2;(4)原式=(135.7﹣35.7)2=1002=10000.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.24.图1是一张长方形的纸片,现将这张纸片沿图1中心线从右向左对折(图2).在图2中任意画一条线,沿这条线剪一刀,展开后分成的纸片数不一定相同.若沿图3中AB线剪一刀,展开后可分成2块纸片;若沿图4中CD线剪一刀,展开后可分成3块纸片.但剪一刀不能将它分成3块以上的纸片.现将图2再沿中心线(图5)从上向下对折(图6),现在图6中画一条线,沿这条线剪一刀后,研究展开后可分成几块纸片?(请在给定的图中画线,并在图形下方的括号中写出按此线剪一刀,展开后分成的纸片块数,分成相同的块数只画一个图,如果给定的小长方形不够,自已可以添加)【考点】剪纸问题.【专题】几何图形问题.【分析】实际动手操作下,把考虑到的各种情况都剪一下,即可解答本题.【解答】解:根据题意如下图所示:即在图6中画一条线,沿这条线剪一刀后,展开后可分成2块、3块、4块或5块.【点评】本题考查剪纸问题,解题的关键是考虑问题要全面,利用数学归纳法进行归纳总结.25.将一张正方形纸片剪成四个大小、形状一样的小正方形(如图所示),记为第一次操作,然后将其中的一片又按同样的方法剪成四小片,记为第二次操作,如此循环进行下去.请将(1)如果剪100次,共能得到301个正方形.(2)如果剪n次共能得到b n个正方形,试用含有n、b n的等式表示它们之间的数量关系.b n=3n+1;(3)若原正方形的边长为1,设a n表示第n次所剪的正方形的边长,①试用含n的式子表示a n=a n=()n.②试猜想a1+a2+a3+a4+…+a n﹣1+a n与原正方形边长的数量关系,并用等式写出这个关系:1﹣()n.(4)运用第(3)题的结论,求的值.【考点】规律型:图形的变化类;规律型:数字的变化类.【分析】(1)(2)观察图形及表格发现每多剪一刀就会增加3个小正方形,据此填表即可;根据得到的规律得到通项公式,然后代入求值即可;(3)①根据每次将边长一分为二即可得到答案;②结合图形得出答案即可;(4)利用发现的规律,代入数值即可求得答案.【解答】解:观察图形知道:剪一次,有4个小正方形,剪两次有7个小正方形,剪三次有10个小正方形,剪四次有13个小正方形,规律:每多剪一刀就会增加3个小正方形,故第n个共有4+3(n﹣1)=3n+1个,(1)令n=100得3n+1=3×100=301;(2)剪n次共能得到b n个正方形,则用含有n、b n的等式表示它们之间的数量关系为b n=3n+1;(3)①第一次所剪的正方形的边长为,第二次所剪的正方形的边长为()2;第三次所剪的正方形的边长为()3,…第n次所剪的正方形的边长a n=()n;②a1+a2+a3+a4+…+a n﹣1+a n=+()2+()3+…+()n=1﹣()n;(4)=9﹣×[1++()2+()3+…+()8]=9﹣×(1+1﹣)=9﹣+=8.【点评】本题考查了图形的变化类问题,找到规律并用通项公式表示出来是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省盐城市亭湖区南洋中学七年级(上)期中数学试卷一、精心选一选(本大题共8小题,每小题2分,共16分)1.(2分)﹣2的相反数为()A.2 B.C.﹣2 D.2.(2分)下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2 D.﹣27与(﹣2)73.(2分)下列各式计算正确的是()A.5x+x=5x2B.3ab2﹣8b2a=﹣5ab2C.5m2n﹣3mn2=2mn D.﹣2a+7b=5ab4.(2分)如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1 B.﹣5 C.﹣1 D.55.(2分)一个整式与x2+y2的和是x2﹣y2,则这个整式是()A.2x2B.2y2C.﹣2x2D.﹣2y26.(2分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克7.(2分)已知﹣15a2m b和6a4b n+3是同类项,则m﹣n的值是()A.0 B.2 C.3 D.48.(2分)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2009厘米的线段AB,则线段AB盖住的整点的个数是()A.2007或2008 B.2008或2009 C.2009或2010 D.2010或2011二、细心填一填(本大题共10小题,每小题2分,共20分)9.(2分)如果向北走50米记为是+50米,那么向南走30米记为.10.(2分)某超市出售的三种品牌食品袋上,分别标有质量为(500±5)g,(500±10)g,(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差g.11.(2分)已知代数式3x﹣2y的值是5,则代数式6x﹣4y﹣5的值是.12.(2分)在这四个数中,最大数与最小数的和是.13.(2分)绝对值大于1而小于5的负整数是.14.(2分)已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月日点.15.(2分)若|a|=5,|b|=2,ab>0,则a+b=.16.(2分)某商品先按批发价a元提高20%零售,后又按零售价降低10%出售,则它最后的单价是元.17.(2分)如果代数式(3x2+mx﹣2y+4)﹣(3nx2﹣2x+6y﹣3)的值与字母x的取值无关,代数式m+n的值为.18.(2分)定义新运算“*”为:a*b=,则当x=3时,计算2*x﹣4*x 的结果为.三、认真算一算,答一答(本大题共有8小题,共64分)19.(8分)把下列各数分别填入相应的集合里﹣4,,0,,﹣3.14,2012,+1.88,﹣1.121121112 (2)(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.20.(16分)计算:(1)22+(﹣2014)+(﹣2)+2014(2)(﹣105)÷(﹣5)+13÷(﹣)(3)(a2﹣6a﹣7)﹣(a2﹣3a+4)(4)5(m+n)﹣4(3m﹣2n)﹣3(2m﹣3n)21.(5分)先化简,再求值:2(a2﹣a﹣1)﹣(a2﹣a﹣1)+3(a2﹣a﹣1),其中.22.(5分)在数轴上画出表示1.5,﹣2,﹣3,4及它们的相反数的点,并用“<”号将它们连接起来.23.(6分)若a,b互为相反数,c,d互为倒数,m是绝对值等于4的正数,求+cd+m的值.24.(6分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A处出发,晚上到达B处,记向东方向为正方向,当天航行路程记录如下:(单位:千米)14,﹣9,+8,﹣7,13,﹣6,+10,﹣5(1)B在A何处?(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,问途中还需补充多少升油?(3)冲锋舟距离处A最远是多少千米?25.(8分)已知(x﹣5)2+3|y+3|=0,A=﹣x2﹣2xy+y2,B=﹣,(1)求y﹣x的值.(2)求3A﹣[2A﹣B﹣4(A﹣B)]的值.26.(10分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和7两点之间的距离是,数轴上表示3和﹣3两点之间的距离是.(2)数轴上表示x和﹣4的两点之间的距离表示为.(3)若|x﹣2|+|x+4|=6,则x的取值范围是.(4)若x表示一个有理数,则代数式3﹣2|x﹣2|﹣2|x+4|有最大值吗?若有,请求出最大值.若没有,说出理由.2015-2016学年江苏省盐城市亭湖区南洋中学七年级(上)期中数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题2分,共16分)1.(2分)﹣2的相反数为()A.2 B.C.﹣2 D.【解答】解:与﹣2符号相反的数是2,所以,数﹣2的相反数为2.故选:A.2.(2分)下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2 D.﹣27与(﹣2)7【解答】解:A、﹣(﹣3)2=﹣9,﹣(2)3=﹣8,不相等;B、﹣32=﹣9,(﹣3)2=9,不相等;C、﹣3×23=﹣24,﹣32×2=﹣18,不相等;D、﹣27=(﹣2)7=128,相等.故选:D.3.(2分)下列各式计算正确的是()A.5x+x=5x2B.3ab2﹣8b2a=﹣5ab2C.5m2n﹣3mn2=2mn D.﹣2a+7b=5ab【解答】解:A、是同类项,合并得5x+x=6x,错误;B、计算准确;C、不是同类项,无法进行合并,不正确;D、不是同类项,无法合并,错误.故选:B.4.(2分)如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1 B.﹣5 C.﹣1 D.5【解答】解:根据题意列得:﹣3x+2,当x=﹣1时,原式=﹣3×(﹣1)+2=3+2=5,则输出的值为5.故选:D.5.(2分)一个整式与x2+y2的和是x2﹣y2,则这个整式是()A.2x2B.2y2C.﹣2x2D.﹣2y2【解答】解:设这个整式为M,则M=x2﹣y2﹣(x2+y2)=x2﹣y2﹣x2﹣y2=﹣2y2.故选:D.6.(2分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克【解答】解:500亿=50 000 000 000=5×1010.故选:A.7.(2分)已知﹣15a2m b和6a4b n+3是同类项,则m﹣n的值是()A.0 B.2 C.3 D.4【解答】解:由题意得:2m=4,n+3=1,∴m=2,n=﹣2.∴m﹣n=4.故选:D.8.(2分)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2009厘米的线段AB,则线段AB盖住的整点的个数是()A.2007或2008 B.2008或2009 C.2009或2010 D.2010或2011【解答】解:依题意得:①当线段AB起点在整点时覆盖2010个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2009个数.故选:C.二、细心填一填(本大题共10小题,每小题2分,共20分)9.(2分)如果向北走50米记为是+50米,那么向南走30米记为﹣30米.【解答】解:“正”和“负”相对,所以,如果向北走50米记为+50米,那么向南走30米应记为﹣30米.故答案为:﹣30米.10.(2分)某超市出售的三种品牌食品袋上,分别标有质量为(500±5)g,(500±10)g,(500±20)g的字样,从中任意拿出两袋,它们的质量最多相差40 g.【解答】解:由题意可得,最多的质量为500+20=520g,最少的为500﹣20=480g,520﹣480=40g.所以它们的质量相差最多是40g.故答案为:40.11.(2分)已知代数式3x﹣2y的值是5,则代数式6x﹣4y﹣5的值是5.【解答】解:∵3x﹣2y=5,∴原式=2(3x﹣2y)﹣5=2×5﹣5=5.故答案为:5.12.(2分)在这四个数中,最大数与最小数的和是﹣1.【解答】解:在有理数0、﹣2、1、中,最大的数是1,最小的数是﹣2;它们的和为﹣2+1=﹣1.13.(2分)绝对值大于1而小于5的负整数是﹣2,﹣3,﹣4.【解答】解:设此数为x.则有1<|x|<5,∵x<0,∴x=﹣2,﹣3,﹣4,故答案为:﹣2,﹣3,﹣4.14.(2分)已知芝加哥比北京时间晚14小时,问北京时间9月21日早上8:00,芝加哥时间为9月20日18点.【解答】解:根据题意得,8﹣14=8+(﹣14)=﹣6,24+(﹣6)=18.故答案为20;18.15.(2分)若|a|=5,|b|=2,ab>0,则a+b=±7.【解答】解:由|a|=5,|b|=2,可知a=±5,b=±2,又ab>0,所以a=5,b=2或a=﹣5,b=﹣2,当a=5,b=2时,a+b=7,当a=﹣5,b=﹣2时,a+b=﹣7,故答案为:±7.16.(2分)某商品先按批发价a元提高20%零售,后又按零售价降低10%出售,则它最后的单价是 1.08a元.【解答】解:零售价为:1.2a,降价之后价钱为:1.2a(1﹣10%)=1.08a.故答案为:1.08a.17.(2分)如果代数式(3x2+mx﹣2y+4)﹣(3nx2﹣2x+6y﹣3)的值与字母x的取值无关,代数式m+n的值为﹣1.【解答】解:原式=3x2+mx﹣2y+4﹣3nx2+2x﹣6y+3=(3﹣3n)x2+(m+2)x﹣8y+7,由结果与x取值无关,得到3﹣3n=0,m+2=0,解得:m=﹣2,n=1,则m+n=﹣2+1=﹣1.故答案为:﹣1.18.(2分)定义新运算“*”为:a*b=,则当x=3时,计算2*x﹣4*x 的结果为8.【解答】解:当x=3时,2*x﹣4*x=2*3﹣4*3=9﹣(4﹣3)=8,故答案为:8三、认真算一算,答一答(本大题共有8小题,共64分)19.(8分)把下列各数分别填入相应的集合里﹣4,,0,,﹣3.14,2012,+1.88,﹣1.121121112 (2)(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.【解答】解:(1)正数集合:{,2012,+1.88,2π};(2)负数集合:{﹣4,,﹣3.14,﹣1.121121112…};(3)整数集合:{﹣4,0,2012};(4)无理数集合:{﹣1.121121112…,2π}.20.(16分)计算:(1)22+(﹣2014)+(﹣2)+2014(2)(﹣105)÷(﹣5)+13÷(﹣)(3)(a2﹣6a﹣7)﹣(a2﹣3a+4)(4)5(m+n)﹣4(3m﹣2n)﹣3(2m﹣3n)【解答】解:(1)22+(﹣2014)+(﹣2)+2014=[22+(﹣2)]+[(﹣2014)+2014]=20+0=20;(2)(﹣105)÷(﹣5)+13÷(﹣)=21+(﹣169)=﹣148;(3)(a2﹣6a﹣7)﹣(a2﹣3a+4)=a2﹣6a﹣7﹣a2+3a﹣4=﹣3a﹣11;(4)5(m+n)﹣4(3m﹣2n)﹣3(2m﹣3n)=5m+5n﹣12m+8n﹣6m+9n=﹣13m+22n.21.(5分)先化简,再求值:2(a2﹣a﹣1)﹣(a2﹣a﹣1)+3(a2﹣a﹣1),其中.【解答】解:原式=2a2﹣2a﹣2﹣a2+a+1+3a2﹣3a﹣3=4a2﹣4a﹣4,当a=﹣时,原式=1+2﹣4=﹣1.22.(5分)在数轴上画出表示1.5,﹣2,﹣3,4及它们的相反数的点,并用“<”号将它们连接起来.【解答】解:如图所示.,故﹣4<﹣3<﹣2<﹣1.5<1.5<2<3<4.23.(6分)若a,b互为相反数,c,d互为倒数,m是绝对值等于4的正数,求+cd+m的值.【解答】解:根据题意得:a+b=0,cd=1,m=4,则原式=0+1+4=5.24.(6分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A处出发,晚上到达B处,记向东方向为正方向,当天航行路程记录如下:(单位:千米)14,﹣9,+8,﹣7,13,﹣6,+10,﹣5(1)B在A何处?(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,问途中还需补充多少升油?(3)冲锋舟距离处A最远是多少千米?【解答】解:(1)14+(﹣9)+8+(﹣7)+13+(﹣6)+10+(﹣5)=18(千米),答:B地在A地东18米处;(2)耗油量:(14+9+8+7+13+6+10+5)×0.5=36(升),36﹣29=7(升);答:求途中还需补充7升油.(3)第一次14,第二次14+(﹣9)=5,第三次5+8=13,第四次13+(﹣7)=6,第五次6+13=19,第六次19+(﹣6)=13,第七次13+10=23,第八次23+(﹣5)=18,23>19>18>14>13>6>5,答:最远处离出发点A有23千米;25.(8分)已知(x﹣5)2+3|y+3|=0,A=﹣x2﹣2xy+y2,B=﹣,(1)求y﹣x的值.(2)求3A﹣[2A﹣B﹣4(A﹣B)]的值.【解答】解:(1)∵(x﹣5)2+3|y+3|=0,∴x=5,y=﹣3;(2)∵A=﹣x2﹣2xy+y2,B=﹣x2﹣6xy+3y2,∴原式=3A﹣2A+B+4A﹣4B=5A﹣3B=8xy﹣4y2=﹣120﹣36=﹣156.26.(10分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和7两点之间的距离是5,数轴上表示3和﹣3两点之间的距离是6.(2)数轴上表示x和﹣4的两点之间的距离表示为|x+4|;.(3)若|x﹣2|+|x+4|=6,则x的取值范围是2≥x≥﹣4.(4)若x表示一个有理数,则代数式3﹣2|x﹣2|﹣2|x+4|有最大值吗?若有,请求出最大值.若没有,说出理由.【解答】解:(1)数轴上表示2和7两点之间的距离是|7﹣2|=5,数轴上表示3和﹣3的两点之间的距离是|3﹣(﹣3)|=6;(2)根据绝对值的定义有:数轴上表示x和﹣4的两点之间的距离表示为|x﹣(﹣4)|=|x+4|;(3)|x﹣2|+|x+4|可表示为点x到2与﹣4两点距离之和,当x在﹣4与2之间时,|x﹣2|+|x+4|=6,所以x的取值范围为:2≥x≥﹣4;(4)根据绝对值的定义有:|x﹣2|+|x+4|可表示为点x到2与﹣4两点距离之和,根据几何意义分析可知:当x在﹣4与2之间时,|x﹣2|+|x+4|有最小值6.所以3﹣2|x﹣2|﹣2|x+4|=3﹣2(|x﹣2|+|x+4|)=3﹣12=﹣9.所以代数式3﹣2|x﹣2|﹣2|x+4|有最大值﹣9.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。