高考数学”一本“培养优选练中档大题分类练1三角函数、解三角形文

合集下载

2019年高考数学(文科)中档大题规范练(三角函数)(含答案)

2019年高考数学(文科)中档大题规范练(三角函数)(含答案)

高考数学精品复习资料2019.5中档大题规范练中档大题规范练——三角函数1.已知函数f (x )=(sin x -cos x )sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解 (1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f (x )=(sin x -cos x )sin 2x sin x=2cos x (sin x -cos x )=sin 2x -2cos 2x=sin 2x -(1+cos 2x ) =2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ). 2.已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值.(1)求f (x )的值域及周期;(2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列,所以2B =A +C ,又A +B +C =π,所以B =π3,即A +C =2π3. 因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π. 又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2].(2)因为f (x )在x =A 处取得最大值,所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π, 故当2A -π3=π2时,f (x )取到最大值, 所以A =512π,所以C =π4. 由正弦定理,知3sin π3=c sin π4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34. 3.已知函数f (x )=3sin 2x +2cos 2x +a .(1)求函数f (x )的最小正周期以及单调递增区间;(2)当x ∈[0,π4]时,函数f (x )有最大值4,求实数a 的值. 解 f (x )=3sin 2x +2cos 2x +a=cos 2x +3sin 2x +1+a=2sin(2x +π6)+a +1. (1)函数f (x )的最小正周期为2π2=π,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 解得k π-π3≤x ≤k π+π6,k ∈Z . 故函数f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ). (2)∵x ∈[0,π4],∴2x +π6∈[π6,2π3], 从而sin(2x +π6)∈[12,1]. ∴f (x )=2sin(2x +π6)+a +1∈[a +2,a +3], ∵f (x )有最大值4,∴a +3=4,故a =1.4.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2]. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,由|a |=|b |,得4sin 2x =1.又x ∈[0,π2],从而sin x =12, 所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin(2x -π6)+12. 当x =π3∈[0,π2]时,sin(2x -π6)取最大值1, 所以f (x )的最大值为32. 5.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1, 从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ). (2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 6.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°. 由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°. 在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ, 由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ), 解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.。

高考数学(文科)中档大题规范练(三角函数)(含答案)

高考数学(文科)中档大题规范练(三角函数)(含答案)

高考数学(文科)中档大题规范练(三角函数)(含答案)中档大题规范练大中型问题的标准实践——三角函数?sinx-cosx?sin2x1.已知函数f(x)=sinx(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.解(1)由sinx≠0得x≠kπ(k∈z),故f(x)的定义域为{x∈r|x≠kπ,k∈z}.?sinx-cosx?sin2x因为f(x)=sinx=2cosx(sinx-cosx)=sin2x-2cos2x=sin2x-(1+cos2x)π2x?-1,=2英寸?4.2π所以F(x)的最小正周期T=π2(2)函数y=sinx的单调递增区间为? 2kπ-π,2kπ+π?(k)∈z)。

22??πππ由2kπ-≤2x-≤2kπ+,x≠kπ(k∈z),242π3π得kπ-≤x≤kπ+,x≠kπ(k∈z).88所以F(x)的单调递增区间是?kπ-π,kπ?和?kπ,kπ+3π?(k∈z).88????2.已知的三个内角a、B和C△ ABC形成一个等差序列,边缘相对角度B=3,函数f (x)=23sin2x+2sinxcosx-3在x=A时获得最大值。

(1)找到f(x)的值范围和周期;(2)求△abc的面积.解(1)因为a,B和C形成一个等差序列,2b=a+C,a+B+C=π,π2π所以b=,即a+c=.33因为f(x)=23sin2x+2sinxcosx-3=3(2sin2x-1)+sin2x=sin2x-3cos2xπ2x?,=2分钟?3.2π所以t==π.二π2x-?∈ [1,1],因为罪?3.因此,F(x)的值范围为[-2,2]。

(2)因为f(x)在x=a,π时获得最大值2a-?=1.所以sin?3??2ππ因为0333ππ故当2a-=时,f(x)取到最大值,325π所以a=π,所以c=.1243c由正弦定理,知=?c=2.ππsinsin342+6ππ??又因为sina=sin?4+6?=,43+31所以s△abc=bcsina=.243.已知函数f(x)=3sin2x+2cos2x+a.(1)求函数f(x)的最小正周期以及单调递增区间;π(2)当x∈[0,]时,函数f(x)有最大值4,求实数a的值.4溶液f(x)=3sin2x+2cos2x+A=cos2x+3sin2x+1+aπ=2sin(2x+)+a+1。

2023届高考数学大题专项(三角函数与解三角形)练习(附答案)

2023届高考数学大题专项(三角函数与解三角形)练习(附答案)
DF=AC.
(1)若 D 为 BC 的中点,且△CDF 的面积等于△ABC 的面积,求∠ABC;
(2)若∠ABC=45°,且 BD=3CD,求 cos∠CFB.
参考答案
1.解 (1)f(0)=2cos20+sin 0=2.
(2)方案一:选条件①.f(x)的一个周期为 π.
f(x)=2cos2x+sin 2x=(cos 2x+1)+sin 2x=√2
6.(山东潍坊一模,17)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知向量 m=(c-a,sin B),n=(b-a,sin
A+sin C),且 m∥n.
(1)求 C;
(2)若√6c+3b=3a,求 sin A.
7.(山东模考卷,18)在△ABC 中,∠A=90°,点 D 在 BC 边上.在平面 ABC 内,过点 D 作 DF⊥BC,且
-B =4√3sin B
cos
2
sin
2
3
B+ sin B =6sin Bcos B+2√3sin2B=2√3sin 2B当 2B-
π
6
π

π
π
+√3.因为 0<B< ,所以- <2B6
3
6
6

.
6
π
π
,即 B= 时,△ABC 面积取得最大值 3√3.
2
3
4.解 (1)在△ABC 中,因为 a=3,c=√2,B=45°,由余弦定理 b2=a2+c2-2accos B,得 b2=9+2
由正弦定理得,c2=a+b2.
因为 a=4,所以 b2=c2-4.

高考数学解三角形练习和答案

高考数学解三角形练习和答案

解三角形基础篇基础篇一、正弦定理【练习1】在△ABC 中,已知三个内角为A ,B ,C 满足sinA :sinB :sinC =6:5:4,则sinB =( )A. √74B. 34C. 5√716D. 916【练习2】已知△ABC 中,A :B :C =1:1:4,则a :b :c 等于( )A. 1:1:√3B. 2:2:√3C. 1:1:2D. 1:1:4【练习3】在△ABC 中,若a =1,∠A =π4,则√2bsinC+cosC= ______ .【练习4】 在△ABC 中,∠A =2π3,a =√3c ,则bc =______.【练习5】(2019年新课标二文15)△ABC 内角ABC 的对边分别为a ,b ,c ,已知bsinA+acosB=0,则B=二、余弦定理【练习1】在△ABC 中,若AB =√13,BC =3,∠C =120∘,则AC =( )A. 1B. 2C. 3D. 4【练习2】在△ABC 中,已知a =3,b =4,c =√13,则角C 为( )A. 90∘B. 60∘C. 45∘D. 30∘三、三角形面积公式【练习1】 在ABC ∆中,3=AB ,1=AC ,ο30=∠B ,ABC ∆的面积为23,则=∠C ( ) A .ο30 B .ο45 C .ο60 D .ο75【练习2】在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a −b)2+6,C =π3,则△ABC 的面积是( )A. 3√32B. 9√32C. √3D. 3√3【练习3】已知三角形的三条边成公差为2的等差数列,且它的最大角的正弦值为√32,则这个三角形的面积为______ .【练习4】若△ABC的周长为20,面积为10√3,A=60∘,则a的值为()A. 5B. 6C. 7D. 8【练习5】△ABC的内角A,B,C所对的边分别为a,b,c.向量m⃗⃗⃗ =(a,√3b)与n⃗=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=√7,b=2,求△ABC的面积.【练习6】在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.(1)求角A的值;(2)若b+c=√10 , a=2,求△ABC的面积S.解三角形拔高篇拔高篇一、略新颖的给角的方法【例1.1】二、已知角被拆的解三角形问题【例2.1】三、图形中的解三角形问题【例3.1】四、巧用常数【例4.1】·······2014新课标一理16【例4.2】(汕头二模)五、给一边及高的比值,求另两边比值+比值倒数的最值【例5.1】在△ABC中,角ABC的对应边分别为a、b、c,BC边上的高为a2,则b2c+c2b的最大值是【例5.2】六、解三角形与均值不等式【例6.1】········七、解三角形中正切的性质【例7.1】八、给角分线长度和角,求邻边线性组合的最值【例8.1】(云南统考)九、三角形中sincos比大小总结【例9.1】在△ABC中,给出下列命题1)若A>B,则sinA>sinB 的逆命题、否命题、逆否命题都是真命题2)A>B是cosA>cosB的充要条件3)若△ABC是锐角三角形,则sinA>cosB4)cosA+cosB>0则正确的命题个数为十、类三角恋问题【例10.1】在三角形ABC中,角ABC所对应的边分别是abc,且acosC,bcosB,ccosA成等差数列,若b=√3,则a+c的最大值为十一、线段分角的知二求一【例11.1】解三角形进阶篇进阶篇一、 一条边和所对角已知,求面积的最大值 【练习1.1】已知a,b,c 分别为△ ABC 的三个角A,B,C 的对边,b=2,B=120°,则△ ABC 面积的最大值为_______二、 一边及对角已知,另两条边的线性组合或乘积的最值问题 【练习2.1】 (石家庄一模)【练习2.2】(东北三省三校二模)已知△ABC 三个内角A,B,C 所对的边分别是a,b,c 若(a -c )(sinA +sinC )=b (sinA-sinB ) (1)求角C(2)若△ABC 外接圆半径为2,求△ABC 周长最大值。

2020年高考数学(理)大题分解专题01 三角函数与解三角形(含答案)

2020年高考数学(理)大题分解专题01 三角函数与解三角形(含答案)

已知向量(sin cos ,2cos )x x x =+m ,sin co,s )s in (x x x =-n ,()1f x =⋅+m n . (1)求()f x 的解析式,并求函数()f x 的单调增区间; (2)求()f x 在[0,]2π上的值域.【肢解1】在已知条件下求出,函数()f x 的解析式.【肢解2】在“肢解1”的基础上,完成问题:函数()f x 的单调增区间. 【肢解3】在已知条件下,求()f x 在[0,]2π上的值域.【解析】(1)22()sin cos 2sin cos 1sin 2cos21)14f x x x x x x x x π=-++=-+=-+.(3分)令222242k x k ππππ-≤-≤π+,k ∈Z ,得88k x k π3ππ-≤≤π+,k ∈Z . 故函数()f x 的单调增区间为[,]88k k π3ππ-π+,k ∈Z .(6分)(2)因为02x π≤≤,所以2444x ππ3π-≤-≤,从而sin(2)14x π≤-≤,(8分)大题肢解一三角函数的图象及其性质所以0)114x π-+≤,所以()f x 在[0,]2π上的值域为1].(12分)此类问题通常先通过三角恒等变换化简函数解析式为si (n )y A x B ωϕ++=的形式,再结合正弦函数sin y x =的性质研究其相关性质.(1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”; ②求形如sin()y A x ωϕ=+或cos()y A x ωϕ=+(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)函数图象的平移变换解题策略:①对函数sin y x =,sin()y A x ωϕ=+或cos()y A x ωϕ=+的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为x ωϕ±.②注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.【拓展1】已知向量()sin ,cos x x =a ,()cos ,cos x x =b ,x ∈R ,已知函数()()f x =⋅+a a b . 求()f x 的最值与最小正周期;【解析】由向量()sin ,cos x x =a ,()cos ,cos x x =b ,所以()sin cos ,2cos x x x +=+a b , 所以()()()2sin sin cos 2cos f x x x x x =⋅+=++a a b ()111sin 2cos 2122x x =+++32224x π⎛⎫=++ ⎪⎝⎭,又[]sin 2-1,14x π⎛⎫+∈ ⎪⎝⎭,即()f x的最大值是322+,最小值是322-,()f x 的最小正周期是22T π==π. 【拓展2】已知函数23()cos cos 2f x x x x =++,当[,]63x ππ∈-时,求函数()y f x =的值域.【解析】由题得1cos 23()2sin(2)22226x f x x x +π=++=++, ∵[,]63x ππ∈-, ∴2[,]666x ππ5π+∈-, ∴1sin(2)126x π-≤+≤, ∴函数()y f x =的值域为3[,3]2.(2019年河北省存瑞中学高三上一质检)已知向量)1cos ,,,cos2,2x x x x ⎛⎫=-=∈ ⎪⎝⎭R a b ,设函数()f x =⋅a b .(1)求()f x 的最小正周期; (2)求函数()f x 的单调递减区间;(3)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【解析】由已知可得:变式训练一()11·cos cos2cos2sin 22226f x x x x x x x π⎛⎫==-=-=- ⎪⎝⎭a b ,(3分)(1)()f x 的最小正周期2π2T π==;(5分) (2)由3222,262k x k k ππππ+≤-≤π+∈Z ,可得5,36k x k k πππ+≤≤π+∈Z , ()f x ∴的单调递减区间为()5,36k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z .(7分)(3)0,2x π⎡⎤∈=⎢⎥⎣⎦,52,666x πππ⎡⎤∴-∈-⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,(10分)()f x ∴的最大值为1,最小值为12-.(12分)在锐角ABC △中,角,,AB C 的对边分别为,,a b c ,已知ππsin 2)cos()44B B B =+-. (1)求角B 的大小;(2)若1b =,ABC △的面积为2,求ABC △的周长.【肢解1】在已知条件下化解二倍角公式和余弦和差公式. 【肢解2】根据正、余弦定理求解即可.大题肢解二解三角形【解析】(1)因为在锐角ABC △中,ππsin 2)cos()44B B B =+-,所以ππsin 2cos()sin()44B B B =++,所以sin 22B B =,(3分) 因为cos20B ≠,所以tan 2B =因为π02B <<, 所以π6B =.(6分) (2)由余弦定理2222cos b a c ac B =+-,得2212cos a c ac B =+-,所以221a c =+,(8分)因为ABC △的面积为2,所以1πsin 26ac =,即ac = 所以227a c +=,(10分)所以22()7(2a c +=+=+,所以2a c +=+所以3a b c ++=+ABC △的周长为3(12分)(1)利用正、余弦定理求边和角的方法:①根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.②选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.③在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. (2)求三角形面积的方法:①若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【拓展1】已知在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且ca bA B A C +=--sin sin sin sin , (1)求角C 的大小; (2)若3=c ,求b a +的取值范围. 【答案】(1)由c a b A B A C +=--sin sin sin sin ,则ca ba b a c +=--.⇒ab c b a =-+222,所以2122cos 222==-+=ab ab ab c b a C 而),0(π∈C 故3π=C , (2)由ab c b a =-+222 且3=c ,⇒ab ab b a =--+92)(2, ⇒22)2(339)(b a ab b a +≤=-+, ⇒36)(2≤+b a 所以6≤+b a ,又3=>+c b a ,所以b a +的取值范围是]6,3(.【拓展2】在ABC ∆中,设边,,a b c 所对的角分别为,,A B C ,cos cos 2A aC b c=-+. (1)求角A 的大小;(2)若2,bc =ABC ∆的周长为3,求a 的值.【答案】(1)23A π=(2)a =【解析】(1)因为cos cos 2A aC b c=-+ 由正弦定理得cos sin cos 2sin sin A A C B C=-+ sin cos cos sin 2cos sin 0A C A C A B ++=sin()2cos sin 0A C A B ++=sin 2cos sin 0B A B +=,(0,)B π∈, 1cos 2A =-,(0,)A π∈,23A π=(2)由余弦定理得2222222cos 2a b c bc Aa b c =+-⇒=++因为周长3a b c ++=,又222a b c =+-(),所以2232a a =+-(),所以a =【点睛】本题考查正、余弦定理的综合运用,考查了逻辑推理能力,考查了方程思想,属于中档题.(百校联盟2019-2020学年高三上学期10月尖子生联考数学理科试题)已知ABC △的内角A 、B 、C 所对的边分别为a 、b 、c .且cos 2sin cos 6B C A π⎛⎫=-⋅ ⎪⎝⎭. (1)求角A ;(2)若ABC △的面积为ABC ∆周长的最小值.【解析】(1)cos 2sin cos 6B C A π⎛⎫=-⋅ ⎪⎝⎭,且A B C ++=π,()1cos 2cos cos 2A C C C A ⎫∴-+=-⋅⎪⎪⎝⎭,(2分)sin sin cos A C C A ∴⋅=,0C <<π,且0A <<π,sin 0,sin C A A ∴>∴=,3A π∴=.(6分) 变式训练二(2)由1sin 2S bc A ==,得8bc =.(8分) 又222a b c bc =+-,28a bc ∴≥=,(当且仅当b c =时取等号),(10分) ()2224b c a ∴+=+,l a b c a a ∴=++=+≥,l ∴≥=ABC∴△周长的最小值为.(12分)已知函数πππ()cos(2)2sin()cos()()344f x x x x x =-+--∈R .(1)求函数的最小正周期及在区间π2π[,]123上的值域;(2)在ABC△中,ABC △的面积.【肢解1】在已知条件下化解二倍角公式和余弦和差公式. 【肢解2】根据正、余弦定理及三角形的面积公式求解即可.()f x ()f x 5AB =大题肢解三三角函数与解三角形的综合问题【解析】(1)∵πππ()cos(2)2sin()cos()344f x x x x =-+--1πcos 22sin(2)222x x x =++-12cos 2cos 2x x x =+-12cos 22x x =- πsin(2)6x =-.(3分)的最小正周期为2ππ2T ==;∵π2π[,]123x ∈, ∴π7π2[0,]66x -∈,(4分) ∴max ππππ()()sin(2)sin 13362f x f ==⨯-==,min 2π2ππ7π1()()sin(2)sin 33662f x f ==⨯-==-, ∴在区间π2π[,]123(6分)(2π1sin(2)62A -=,即π6A =,(7分) 由余弦定理得2725(0b b b =+-⇒--=,∴b =b =(10分))(x f ∴()f x∴ABC △(12分)此类问题是将三角函数的图象与性质、解三角形综合命题进行考查,解题时,只需从条件出发,其间只需熟练掌握三角函数的图象与性质的求解方法以及解三角形的相关知识即可顺利解决.【拓展1】已知函数()22sin 24f x x x π⎛⎫=+⎪⎝⎭. (1)求()f x 的最小正周期;(2)设ABC △的内角,,A B C 的对边分别为,,a b c ,且12C c f ⎛⎫== ⎪⎝⎭,若sin 2sin B A =,求,a b 的值.【解析】(1)1cos 22()221sin 2212sin 223x f x x x x x π⎛⎫-+ ⎪π⎛⎫⎝⎭=-=+=+- ⎪⎝⎭,所以22T π==π.(4分) (2)因为12sin 1sin 0233C f C C ππ⎛⎫⎛⎫⎛⎫=+-=⇒-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为0C <<π,所以3C π=.(5分) 因为222222cos 3c a b ab C a b ab =+-⇒=+-①,因为sin sin a b A B=,sin 2sin B A =,所以2b a =②,联立方程①②得:1,2a b ==.(12分)[广东省珠海市2019-2020学年高三上学期期末数学(理)]已知A 、B 、C 是ABC ∆的内角,a 、b 、c 分别是其对边长,向量(),m a b c =+,()sin sin ,sin sin n B A C B =--,且m n ⊥. (1)求角A 的大小;(2)若2a =,求ABC ∆面积的最大值. 【答案】(1)3A π=;(2【解析】(1)(),m a b c =+,()sin sin ,sin sin n B A C B =--,m n ⊥,()()()sin sin sin sin 0a b B A c C B ∴+-+-=,由正弦定理得()()()0b a b a c c b +-+-=,整理得222b c a bc +-=,2221cos 22b c a A bc +-∴==,0A π<<,3A π∴=;(2)在ABC ∆中,3A π=,2a =,由余弦定理知2222242cos a b c bc A b c bc ==+-=+-,由基本不等式得2242bc b c bc +=+≥,当且仅当b c =时等号成立,4bc ∴≤,11sin 422ABC S bc A ∆∴=≤⨯=ABC ∆.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积最值的计算,涉及基本不等式以及正变式训练三弦定理边角互化思想的应用,考查计算能力,属于中等题.1.(2019年10月广东省广州市天河区高考数学一模试题)在ABC △中,角A 、B 、C 所对的边分别为a 、b、c ,且22sin 30C C -++=.(1)求角C 的大小;(2)若b =,ABC △sin A B ,求sin A 及c 的值.【解析】(1)22sin 30C C -++=,可得:22(1cos )30C C --++=,22cos 10C C ∴++=, cos C ∴=0C π<<,34C π∴=. (2)2222222cos 325c a b ab C a a a =+-=+=,c ∴,sin C A ∴=,sinA C ∴=,1sin sin 2ABC S ab C A B ∆=,∴1sin sin 2ab C A B =,∴2sin ()sin sin sin sin a b c C C A B C=1c ∴=.2.(2019·沙雅县第二中学押题卷)已知点)P,(cos ,sin )Q x x ,O 为坐标原点,函数()f x OP QP =⋅.(1)求函数()f x 的解析式及最小正周期;(2)若A 为ABC △的内角,()4f A =,3BC =,ABC ∆ABC △的周长. 【解析】(1).()3,1OP =,()3cos ,1sin QP x x =-.∴()f x OP QP =⋅)3cos 1sin x x =-+-42sin 3x π⎛⎫=-+ ⎪⎝⎭,()f x 的最小正周期为2π.(2).因为()4f A =,所以sin 03A π⎛⎫+= ⎪⎝⎭,因为0A <<π,所以23A π=,因为1sin 2ABC S bc A ∆=12sin 234bc π==,所以3bc =,根据余弦定理22222cos3a b c b π=+-2()29b c bc bc =+-+=,所以b c +=即三角形的周长为3+3.(四川省遂宁市射洪县射洪中学2020届高三上学期10月月考数学试题)锐角ABC △的内角,,A B C 的对边分别为,,a b c cos sin C c B +=. (1)求角B 的大小;(2)若b =ABC △的周长的取值范围.【解析】(1cos sin C c B +=,cos sin sin B C C B A +=, 又由sin sin()sin cos cos sin A B C B C B C =+=+,代入整理得sin sin sin C B B C =,又由(0,)C ∈π,则sin 0C >,所以sin B B =,即tan B =又因为(0,)B ∈π,所以3B π=. (2)因为3b B π==,且由正弦定理,可得2sin sin sin a b cA B C====, 即2sin ,2sin a A c C ==,所以周长22(sin sin )2(sin sin())3L a b c a c A C A A π=++=+=+=+-32(sin ))26A A A π=+=+,即)6L A π=+又因ABC △为锐角三角形,且23A C π+=, 所以203202A A ππ⎧<-<⎪⎪⎨π⎪<<⎪⎩,解得62A ππ<<,所以2(,)633A πππ+∈,则有sin()6A π+∈ 即(3L ∈, 即ABC △的周长取值范围为(3+.4.(2019年河北省唐山市高三上学期摸底考试数学试题)ABC △的内角A B C ,,的对边分别为a b c ,,,已知ABC △的面积21tan 6S b A =. (1)证明:3cos b c A =;(2)若a c ==,求tanA .【解析】(1)由211sin tan 26S bc A b A ==得3sin tan c A b A = . 因为sin tan cos A A A =,所以sin 3sin cos b A c A A=, 又因为0A π<<,所以0sinA ≠ , 因此3b ccosA =.(2)由(1)得3cos b c A A ==,所以2230bccosA cos A =由余弦定理得2222a b c bccosA =+-,所以22845530cos A cos A -=+,解得21cos 5A =因此24sin 5A =,即2tan 4A = 由(1)得cos 0A >,所以tan 0A > , 故tan 2A =.5.(黑龙江省大庆市2019-2020学年高三上学期第一次教学质量检测数学试题)在ABC △中,角A 、B 、C 所对的边分别为a ,b ,c ,已知sin sin sin sin b B c C a A c B +=+.(1)求角A 的大小;(2)若cos 7B =,a =ABC △的面积S 的值. 【解析】(1)∵由正弦定理2sin sin sin a b cR A B C===, ∴有sin 2a A R =,sin 2b B R =,sin 2c C R=, 则sin sin sin sin b B c C a A c B +=+可化为2222b c a bb c a c R R R R⋅+⋅=⋅+⋅, 即222b c a bc +=+,即222a b c bc =+-, 又∵余弦定理2222cos a b c bc A =+-,∴1cos 2A =, 由()0,A ∈π,得3A π=; (2)由(1)知,3A π=,则sin 2A =,1cos 2A =,∵cos B =,()0,B ∈π,∴1sin 7B ==, ∴()1113sin sin 272714C A B =+=+⨯=,由正弦定理得,13sin 13sin a C c A===,∴111sin 132272S ac B ==⨯⨯=. 6.(河南省郑州市第一中学2019届高三高考适应性考试数学试题)在ABC △中,三边a ,b ,c 的对角分别为A ,B ,C ,已知3a =,cos cos cos sin cos B A C B C b+=.(1)若c =,求sin A ;(2)若AB 边上的中线长为2,求ABC △的面积.【解析】(1)因为cos cos cos sin cos B A C B C b+=,由正弦定理,得cos cos cos sin cos B A C B C +=,所以cos()cos cos sin cos A C A C B C -++=.所以sin sin cos A C A C =.又因为sin 0A ≠,所以tan C =因为(0,)C ∈π,所以3C π=.又因为sin sin a c A C =,所以3sin A =,所以3sin 4A =. (2)设AB 边上的中线为CD ,则2CD CA CB =+,所以22224()2cos CD CA CB b a ab C =+=++,即23793b b =++,23280b b +-=. 解得4b =或7b =-(舍去).所以11sin 4322ABC S ab C ∆==⨯⨯=.7.(河南、河北两省重点高中2019届高三考前预测试卷数学试题)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,30B =︒,且()()2sin 2sin 2sin a A b c B c b C -+=+.(1)求()sin A C -的大小;(2)若ABC △的面积为ABC ∆的周长.【解析】(1)因为()()2sin 2sin 2sin a A b c B c b C -+=+,由正弦定理可得:()()2222a b b c c c b -+=+,整理得222b c a bc +-=-,∴2221cos 22b c a A bc +-==-,解得120A =︒.又30B =︒,所以1801203030C =︒-︒-︒=︒,即30C B ==︒, ∴()()sin sin 120301A C -=︒-︒=. (2)由(1)知b c =,120A =︒,∴21sin1202b ︒=bc ==. 由余弦定理,得22212cos 1212212362a b c bc A ⎛⎫=+-=+-⨯⨯-= ⎪⎝⎭,即6a =.∴ABC 的周长为6.8.(重庆市2019届高三高考全真模拟考试数学试题)已知锐角ABC △中,角A ,B ,C 所对的边分别为a,b ,c ,sin cos (sin )0A C B B -+=.(1)求角C ;(2)若b =c =AB 边上的高长.【解析】(1)()sin cos sin 0A C B B -=,()()sin cos sin 0B C C B B ∴+-=, ()cos sin 0B C C ∴=,tan C ∴=3C π∴=.(2)由余弦定理可得:2222cos c a b ab C =+-,可得:210a -=,可得:a =,由等面积可得:11sin 22S ab C ch ==,可得:h =. 9.[惠州市2020届高三第三次调研考试数学(理)]【答案】(1)在ABC ∆中,因为2BC =,π3ABC ∠=,1sin 22ABC S AB BC ABC ∆=⋅∠=,所以22AB =,解得3AB =. 在ABC ∆中,由余弦定理得2222cos 7AC AB BC AB BC ABC =+-⋅∠=,因为0AC >,所以AC =(2)设ACD α∠=,则ππ33ACB ACD α∠=∠+=+. 在Rt ACD ∆中,因为AD =sin AD AC α==. 在ABC ∆中,ππ3BAC ACB ABC α∠=-∠-∠=-, 由正弦定理得sin sin BC AC BAC ABC =∠∠,即2πsin()3α=-, 所以2sin()sin 3παα-=,所以12(cos sin )sin 22ααα-=,2sin αα=,所以tan α=,即tan ACD ∠=。

高考数学总复习培优练习:解三角形(含答案)

高考数学总复习培优练习:解三角形(含答案)

高考数学总复习培优练习:解三角形(含答案)1.解三角形中的要素例1:ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,若2c 6b ,60B =,则C =_____.【答案】30C =【解析】(1)由已知B ,b ,c 求C 可联想到使用正弦定理:sin sin sin sin b c c BC B C b=⇒=, 代入可解得:1sin 2C =.由c b <可得:60C B <=,所以30C =.2.恒等式背景例2:已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边, 且有cos 3sin 0a C a C b c --=. (1)求A ;(2)若2a =,且ABC △3b ,c . 【答案】(1)3π;(2)2,2. 【解析】(1)cos 3sin 0a C a C b c --= sin cos 3sin sin sin sin 0A C A C B C ⇒--=()sin cos 3sin sin sin sin 0A C A C A C C ⇒-+-=sin cos 3sin sin sin cos sin cos sin 0A C A C A C C A C ⇒---=,13cos 12sin 1sin 662A A A A ππ⎛⎫⎛⎫-=⇒-=⇒-= ⎪ ⎪⎝⎭⎝⎭∴66A ππ-=或566A ππ-=(舍),∴3A π=; (2)1sin 342ABC S bc A bc ==△,222222cos 4a b c bc A b c bc =+-⇒=+-,∴22224844b c bc b c bc bc ⎧⎧+-=+=⇒⎨⎨==⎩⎩,可解得22b c =⎧⎨=⎩.一、单选题1.在ABC △中,1a =,6A π∠=,4B π∠=,则c =( ) A 62+ B 62- C 6D 2 【答案】A【解析】由正弦定理sin sin a bA B =可得1sinsin 42sin sin 6a Bb A π⨯===π,且()()62cos cos cos cos sin sin C A B A B A B -=-+=--= 由余弦定理可得:2262622cos 122124c a b ab C -+=+-++⨯⨯⨯.故选A . 2.在ABC △中,三边长7AB =,5BC =,6AC =,则AB BC ⋅等于( ) A .19 B .19-C .18D .18-【答案】B【解析】∵三边长7AB =,5BC =,6AC =,∴22222275619cos 227535AB BC AC B AB BC +-+-===⋅⨯⨯, ()19cos 751935AB BC AB BC B ⎛⎫⋅=⋅π-=⨯⨯-=- ⎪⎝⎭.故选B .3.在ABC △中,角A ,B ,C 所对应的边分别是a ,b ,c ,若2cos c a B =,则三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形【答案】C【解析】∵2cos c a B =,由正弦定理2sin c R C =,2sin a R A =,∴sin 2sin cos C A B =, ∵A ,B ,C 为ABC △的内角,∴()sin sin C A B =+,A ,()0,B ∈π,∴()sin 2sin cos A B A B +=,sin cos cos sin 2sin cos A B A B A B +=,整理得()sin 0A B -=, ∴0A B -=,即A B =.故ABC △一定是等腰三角形.故选C . 4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若3C π=,7c =3b a =,则ABC △对点增分集训的面积为( ) A 33B 23- C 2D 23+ 【答案】A 【解析】已知3C π=,7c 3b a =, ∴由余弦定理2222cos c a b ab C =+-,可得:2222227937a b ab a a a a =+-=+-=, 解得:1a =,3b =,∴11333sin 1322ABCSab C ==⨯⨯=A . 5.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a b bc -=,sin 23sin C B =,则A =( ) A .30︒ B .60︒ C .120︒ D .150︒【答案】A【解析】根据正弦定理由sin 23sin C B =得:23c b =, 所以2223323a b bc b =-,即227a b =, 则22222223cos 243b c a A bc b +-===,又()0,A ∈π,所以6A π=.故选A . 6.设ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,如果()()3a b c b c a bc +++-=,且3a ABC △外接圆的半径为( ) A .1 B 2C .2D .4【答案】A【解析】因为()()3a b c b c a bc +++-=,所以()223b c a bc +-=,化为222b c a bc +-=,所以2221cos 22b c a A bc +-==,又因为()0,A ∈π,所以3A π=, 由正弦定理可得322sin 3aR A===,所以1R =,故选A .7.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+,若2sin sin sin B C A ⋅=,则ABC △的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C【解析】因为2sin sin sin B C A ⋅=,所以2222b c a R R R ⎛⎫⋅= ⎪⎝⎭, 也就是2a bc =,所以222b c bc +=,从而b c =, 故a b c ==,ABC △为等边三角形.故选C .8.ABC △的内角A ,B ,C 的对边分别是a ,b ,c 且满足cos cos a B b A c -=,则ABC △是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形【答案】B【解析】利用正弦定理sin sin sin a b cA B C==化简已知的等式得: sin cos sin cos sin A B B A C -=,即()sin sin A B C -=,∵A ,B ,C 为三角形的内角,∴A B C -=,即2A B C π=+=, 则ABC △为直角三角形,故选B .9.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC △的面积为315,2b c -=,1cos 4A =-,则a 的值为( ) A .8 B .16 C .32 D .64【答案】A【解析】因为0A <<π,所以215sin 1cos A A =- 又115sin 3152ABCSbc A ===,∴24bc =,解方程组224b c bc -=⎧⎨=⎩得6b =,4c =, 由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.故选A .10.在ABC △中,a ,b ,c 分别为角A ,B ,C 所对的边.若()sin cos 0b a C C +-=, 则A =( ) A .4π B .3π C .34π D .23π 【答案】C【解析】()sin sin sin cos cos sin B A C A C A C =+=+,∵()sin cos 0b a C C +-=,可得:()sin sin sin cos 0B A CC +=﹣,∴sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,∴cos sin sin sin 0A C A C +=, ∵sin 0C ≠,∴cos sin A A =-,∴tan 1A =-, ∵2A π<<π,∴34A =π.故答案为C . 11.在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若cos cos cos a b cA B C==,则ABC △是( ) A .直角三角形 B .钝角三角形 C .等腰直角三角形 D .等边三角形【答案】D 【解析】∵cos cos cos a b cA B C==,由正弦定理得:2sin a R A =⋅,2sin b R B =⋅,2sin c R C =⋅代入, 得sin sin sin cos cos cos A B CA B C==,∴进而可得tan tan tan A B C ==, ∴A B C ==,则ABC △是等边三角形.故选D .12.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知23a =,22c =,tan 21tan A cB b+=, 则C ∠=( ) A .6π B .4π C .4π或34π D .3π【答案】B【解析】利用正弦定理,同角三角函数关系,原式可化为:sin cos 2sin 1cos sin sin A B CA B B+=,去分母移项得:sin cos sin cos 2sin cos B A A B C A +=, 所以()sin sin 2sin cos A B C C A +==,所以1cos 2A =.由同角三角函数得3sin A =,由正弦定理sin sin a c A C =,解得2sin C =所以4C π∠=或34π(舍).故选B .二、填空题13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,22c =,2216b a -=,则角C 的最大值为_____; 【答案】6π 【解析】在ABC △中,由角C 的余弦定理可知222222222332cos 224b a a b a b c a b C ab ab ab -+-+-+===≥, 又因为0C <<π,所以max 6C π=.当且仅当22a =,26b =14.已知ABC △的三边a ,b ,c 成等比数列,a ,b ,c 所对的角分别为A ,B ,C ,则sin cos B B +的取值范围是_________.【答案】(2⎤⎦,【解析】∵ABC △的三边a ,b ,c 成等比数列, ∴2222cos 22cos ac b a c ac B ac ac B ==+-≥-,得1cos 2B ≥, 又∵0B <<π,∴03B π⎛⎤∈ ⎥⎝⎦,,74412B πππ⎛⎤+∈ ⎥⎝⎦,,可得(sin cos 224B B B π⎛⎫⎤+=+∈ ⎪⎦⎝⎭,,故答案为(2⎤⎦,. 15.在ABC △中三个内角A ∠,B ∠,C ∠,所对的边分别是a ,b ,c ,若()2sin cos 2sin cos b C A A C +=-,且23a =,则ABC △面积的最大值是________3【解析】∵()2sin cos 2sin cos b C A A C +=-,∴()()cos 2sin cos sin cos 2sin 2sin b A C A A C A C B =-+=-+=-, 则2sin cos b B A -=,结合正弦定理得223cos sin a A A -==,即tan 3A =-,23A ∠=π 由余弦定理得2221cos 22b c a A bc +-==-,化简得22122b c bc bc +=-≥, 故4bc ≤,113sin 4322ABC S bc A =≤⨯=△3 16.在锐角ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且A ,B ,C 成等差数列,3b则ABC △面积的取值范围是__________.【答案】333⎝⎦,【解析】∵ABC △中A ,B ,C 成等差数列,∴3B π=.由正弦定理得32sin sin sin sin 3a c b A C B ====π,∴2sin a A =,2sin c C =, ∴132sin 3sin 3sin 23ABC S ac B A C A A π⎛⎫===- ⎪⎝⎭△ 23133331cos23sin sin sin cos sin 22242AA A A A A A A ⎫-=+==⎪⎪⎝⎭ 33333sin 22246A A A π⎛⎫=+=- ⎪⎝⎭, ∵ABC △为锐角三角形,∴022032A A π⎧<<⎪⎪⎨ππ⎪<-<⎪⎩,解得62A ππ<<.∴52666A πππ<-<,∴1sin 2126A π⎛⎫<-≤ ⎪⎝⎭,3333326A π⎛⎫<-≤ ⎪⎝⎭,故ABC △面积的取值范围是333⎝⎦,.三、解答题17.己知a ,b ,c 分别为ABC △三个内角A ,B ,C 3cos 2sin a A C+=. (1)求角A 的大小;(2)若5b c +=,且ABC △3a 的值. 【答案】(1)23π;(221 【解析】(13sin cos 2sin A A C+=,∵sin 0C ≠,∴3sin cos 2A A -=,即sin 16A π⎛⎫-= ⎪⎝⎭.∵0A <<π∴666A ππ5π-<-<,∴62A ππ-=,∴23A π=. (2)由3ABC S =△可得1sin 32S bc A ==.∴4bc =,∵5b c +=,∴由余弦定理得:()22222cos 21a b c bc A b c bc =+-=+-=, ∴21a =.18.如图,在ABC △中,点D 在BC 边上,60ADC ∠=︒,27AB =,4BD =..(1)求ABD △的面积.(2)若120BAC ∠=,求AC 的长. 【答案】(1)23;(27 【解析】(1)由题意,120BDA ∠=︒在ABD △中,由余弦定理可得2222cos120AB BD AD BD AD =+-⋅⋅︒ 即2281642AD AD AD =++⇒=或6AD =-(舍), ∴ABD △的面积113sin 42322S DB DA ADB =⋅⋅⋅∠=⨯⨯= (2)在ABD △中,由正弦定理得sin sin AD ABB BDA=∠, 代入得21sin B =B 为锐角,故57cos B =, 所以()21sin sin 60sin 60cos cos60sin C B B B =︒-=︒-︒=, 在ADC △中,由正弦定理得sin sin AD ACC CDA=∠, 213=,解得7AC。

三角函数与解三角形高考专题大题练习(含答案)

三角函数与解三角形高考专题大题练习(含答案)
【详解】
(Ⅰ)由正弦定理得 ,
所以 ,因 ,故 .
,故 .
(Ⅱ) ,由正弦定理 ,及 得 ,∴ ,
∴ 周长
∵ ∴当 即 时
所以 周长 的最大值为6.
【点睛】
在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.三角形中的关于边的最值问题,可以利用正弦定理化为关于某角的三角函数式的最值问题(多元问题转化为一元函数问题).
由 知 ,在 中利用余弦定理得到关于 的方程,与方程 联立求出 ,进而求出 ,利用两角差的正弦公式求解即可.
【详解】
由题意得, ,
由二倍角的余弦公式可得,
,
又因为 ,所以 ,
解得 或 ,
∵ ,∴ .
在 中,由余弦定理得 ,
即 ①
又因为 ,把 代入①整理得,
,解得 , ,
所以 为等边三角形, ,
∴ ,
(2)BM平分角B交AC于点M,且 , ,求 .
4.已知函数
(Ⅰ)求函数 的单调递增区间;
(Ⅱ)设 的内角 对边分别为 ,且 , ,
若 ,求 的值.
5.在 中,角 所对的边分别为 ,且满足 .
(1)求角 的大小;
(2)求 的最大值,并求此时角 的大小.
6.在△ABC中,角A,B,C所对的边分别为a,b,c,若锐角C满足
(2)根据(1)中的结论,根据三角形面积之间的和关系,结合角平分线的性质、三角形面积公式进行求解即可.
【详解】
解法一:(1)因为 且 ,
所以 ,
根据正弦定理,得 ,
因为 ,所以 ,所以 ,
因为 ,所以 ;
(2)由(1)知, ,
因为 , ,

高三理科数学 培养优选练:中档大题分类练1 三角函数、解三角形

高三理科数学 培养优选练:中档大题分类练1 三角函数、解三角形

中档大题分类练一三角函数、解三角形建议用时:60分钟一、解答题1.2022·河南省八市第一次测评在△ABC中,边a,b,c 的对角分别为A,B,C,且满足=1求角B的大小;2若b=2,求△ABC面积的最大值.2.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知a cos C=2b-c cos A1求角A的大小;2若a=2,D为BC的中点,AD=2,求△ABC的面积.3.已知a,b,c分别是△ABC的内角A,B,C所对的边,向量m=sin A,sin B,n=sin C,sin A,且m∥n1若cos A=,b+c=6,求△ABC的面积;2求sin B的取值范围.4.已知△ABC的内角A,B,C所对应的边分别为a,b,c,且满足cos A-B=2sin A sin B1判断△ABC的形状;2若a=3,c=6,CD为角C的平分线,求△BCD的面积.5.2022·烟台模拟在△ABC中,角A,B,C的对边分别是a,b,c,b-c sin B+sin C=a sin A-sin C.1求B的值;2若b=3,求a+c的最大值.6如图43,在△ABC中,AB=2,cos B=,点D在线段BC上.图431若∠ADC=π,求AD的长;2若BD=2DC,△ACD的面积为,求的值.习题答案1答案:见解析解析:1由=及正弦定理得=所以sin B cos A-cos B sin A=cos B sin C-sin B cos C,即sin B -A=sin C-B.所以B-A=C-B或B-A+C-B=π舍.所以2B=A+C,又A+B+C=π,所以B=2由b=2,B=及余弦定理得4=a2+c2-2ac cos=a2+c2-ac≥ac,得ac≤4,所以S△ABC=ac sin B≤×4×sin=,当且仅当a=c =2等号成立.所以△ABC面积的最大值为2答案:见解析解析:1∵a cos C=2b-c cos A,∴sin A cos C=2sin B cos A-sin C cos A,∴sin A cos C+sin C cos A=2sin B cos A,∴sin A+C=2sin B cos A,又A+B+C=π,∴sin B=2sin B cos A,sin B>0,∴cos A=,A∈0,π,∴A=2∵∠ADB+∠ADC=π,∴cos∠ADC+cos∠ADB=0,∴+=0,∴b2+c2=10,又b2+c2-2bc cos A=a2,b2+c2-bc=4,∴bc=6,∴S=bc sin A=×6×=3答案:见解析解析:因为m∥n,所以sin2A=sin B sin C,结合正弦定理可得a2=bc1因为cos A=,所以=,即=,解得bc=9从而△ABC的面积S△ABC=bc sin A=×9×=,故△ABC的面积为2因为a2=bc,所以cos A==≥=当且仅当b=c时,取等号.因为0<A<π,所以角A的取值范围是由正弦定理,知0<sin B=sin A≤,所以sin B的取值范围是4答案:见解析解析:1由cos A-B=2sin A sin B,得cos A cos B+sin A sin B=2sin A sin B,∴cos A cos B-sin A sin B=0,∴cos A+B=0,∴C=90°,故△ABC为直角三角形.2由1知C=90°,又a=3,c=6,∴b==3,A=30°,∠ADC=105°,由正弦定理得=,∴CD=×sin30°=×=,∴S=·CD·a·sin∠BCD=··3·sin=5答案:见解析解析:1在△ABC中,由正弦定理得,b-cb+c=aa-c,即b2=a2+c2-ac,由余弦定理,得cos B==,∵B∈0,π,∴B=;2由1知9=a2+c2-ac=a+c2-3ac,于是,=ac≤,解得a+c≤6,当且仅当a=c=3时,取等号.所以a+c的最大值为66答案:见解析解析:1在三角形中,∵cos B=,∴sin B=在△ABD中,=,又AB=2,∠ADB=,sin B=,∴AD=2∵BD=2DC,∴S△ABD=2S△ADC,S△ABC=3S△ADC,又S△ADC=,∴S△ABC=4∵S△ABC=AB·BC sin∠ABC,∴BC=6∵S△ABD=AB·AD sin∠BAD,S△ADC=AC·AD sin∠CAD,S△ABD=2S△ADC,∴=2·,在△ABC中,AC2=AB2+BC2-2AB·BC cos∠ABC,∴AC=4,∴=2·=4。

高考数学一轮复习 中档题目强化练 三角函数、解三角形

高考数学一轮复习 中档题目强化练 三角函数、解三角形
当 x=1π2时,得 fπ2=-f23π=-f(0), 故得 f(0)=23.
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
9.(2013·重庆)在△ABC 中,内角 A、B、C 的对边分别为 a、b、
c,且 a2=b2+c2+ 3bc.
(1)求 A;
(2)设 a= 3,S 为△ABC 的面积,求 S+3cos Bcos C 的最
又∵f(0)=2cosφ+π3,x=0 为 f(x)的对称轴,
∴f(0)=2 或-2,又∵|φ|<π2,∴φ=-π3, 此时 f(x)=2cos 2x,在0,π2上为减函数,故选 B. 答案 B
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
5.已知函数 f(x)= 3sin 2x+cos 2x-m 在0,π2上有
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
5.已知函数 f(x)= 3sin 2x+cos 2x-m 在0,π2上有
两个零点,则 m 的取值范围是
(B )
A.(1,2)
B.[1,2)
C.(1,2]
D.[1,2]
结合函数 y1=2sin2x+π6在0,π2上的图象, 知道当 y2=m 在[1,2)上移动时,两个函数有两个 交点.
数学 粤(文)
中档题目强化练——三角函数、 解三角形
第四章 三角函数、解三角形
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
A组 专项基础训练

高考数学二轮复习数学三角函数与解三角形多选题的专项培优练习题(及答案

高考数学二轮复习数学三角函数与解三角形多选题的专项培优练习题(及答案

高考数学二轮复习数学三角函数与解三角形多选题的专项培优练习题(及答案一、三角函数与解三角形多选题1.设函数()2sin 1xf x x x π=-+,则( )A .()43f x ≤B .()5f x x ≤C .曲线()y f x =存在对称轴D .曲线()y f x =存在对称中心【答案】ABC 【分析】 通过()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭可发现函数()y f x =具有对称轴及最大值,再利用函数对称中心的特点去分析()y f x =是否具有对称中心,再将()5f x x ≤化为32sin 555x x x x π≤-+,通过数形结合判断是否成立.【详解】函数解析式可化为:()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭,因为函数sin y x =π的图象关于直线12x =对称,且函数21324y x ⎛⎫=-+ ⎪⎝⎭的图象也关于直线12x =对称,故曲线()y f x =也关于直线12x =对称,选项C 正确; 当12x =时,函数sin y x =π取得最大值1,此时21324y x ⎛⎫=-+ ⎪⎝⎭取得最小值34,故()14334f x ≤=,选项A 正确; 若()5f x x ≤,则32sin 555x x x x π≤-+,令()32555g x x x x =-+,则()()221510553210g x x x x x '=-+=-+>恒成立,则()g x 在R 上递增,又()00g =,所以当0x <时,()00g <;当0x >时,()0g x >; 作出sin x π和32555x x x -+的图象如图所示:由图象可知32sin 555x x x x π≤-+成立,即()5f x x ≤,选项B 正确;对于D 选项,若存在一点(),a b 使得()f x 关于点(),a b 对称,则()()2f a x f a x b -++=,通过分析发现()()f a x f a x -++不可能为常数,故选项D 错误. 故选:ABC. 【点睛】本题考查函数的综合应用,涉及函数的单调性与最值、对称轴于对称中心、函数与不等式等知识点,难度较大. 对于复杂函数问题一定要化繁为简,利用熟悉的函数模型去分析,再综合考虑,注意数形结合、合理变形转化.2.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.3.函数()cos |cos |f x x x =+,x ∈R 是( ) A .最小正周期是π B .区间[0,1]上的减函数 C .图象关于点(k π,0)()k Z ∈对称 D .周期函数且图象有无数条对称轴 【答案】BD 【分析】根据绝对值的意义先求出分段函数的解析式,作出函数图象,利用函数性质与图象关系分别对函数的周期、单调区间、对称中心和对称轴进行判断求解. 【详解】2cos (22)22()30(22)22x k x k f x k x k ππππππππ⎧-+⎪⎪=⎨⎪+<≤+⎪⎩,则对应的图象如图:A 中由图象知函数的最小正周期为2π,故A 错误,B 中函数在[0,]2π上为减函数,故B 正确,C 中函数关于x k π=对称,故C 错误,D 中函数由无数条对称轴,且周期是2π,故D 正确 故正确的是B D 故选:BD【点睛】本题考查由有解析式的函数图象的性质. 有关函数图象识别问题的思路:①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复.4.设函数()sin 6f x M x πω⎛⎫=+ ⎪⎝⎭(0,0)M ω>>的周期是π,则下列叙述正确的有( )A .()f x 的图象过点10,2⎛⎫ ⎪⎝⎭B .()f x 的最大值为MC .()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减 D .5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心 【答案】BCD 【分析】已知只有周期的条件,只能求出ω,其中M 未知;A 选项代值判定;B 选项由解析式可知;C 选项由()f x 的单调递减区间在32,2,22k k k Z ππππ⎛⎫++∈⎪⎝⎭上化简可得;D 选项由()f x 的对称中心为(),0,k k Z π∈化简可得.【详解】 由题可知2T ππω==,解得2ω=,即()sin 26f x M x π⎛⎫=+ ⎪⎝⎭当0x =时,()0sin 20sin 662Mf M M ππ⎛⎫=⨯+== ⎪⎝⎭,故选项A 错误; 因为()sin 26f x M x π⎛⎫=+⎪⎝⎭,所以最大值为M ,故选项B 正确; 由解析式可知()f x 在3222,262k x k k Z πππππ+≤+≤+∈ 即2,63x k k ππππ⎡⎤∈++⎢⎥⎣⎦上单调递减,当0k =时,选项C 正确; 由解析式可知()f x 的对称中心的横坐标满足26x k ππ+=,即212k x ππ=- 当1k =时,512x π=,对称中心为5,012π⎛⎫⎪⎝⎭,故选项D 正确. 故选:BCD 【点睛】本题考查()()sin f x A x =+ωϕ型三角函数的性质,其中涉及最值、对称轴、对称中心,属于较难题.5.已知函数()f x 的定义域为D ,若对于任意()()()a b c D f a f b f c ∈,,,,,分别为某个三角形的边长,则称()f x 为“三角形函数”,其中为“三角形函数”的函数是( ) A .()4sin f x x =- B .()22sin 10cos 13f x x x =-++C .()tan 2xf x = D .()sin 20,34f x x x ππ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦【答案】AD 【分析】结合三角形的性质有:两边之差小于第三边,得若()f x 为 “三角形函数”则()()()max min min f x f x f x <-恒成立,即()()max min 2f x f x <恒成立即可,根据条件求出函数的最大值和最小值,进行判断即可. 【详解】解:①()4sin f x x =-,则()max 415f x =+=,()min 413f x =-= 则()()max min 2f x f x <恒成立,则A 满足条件②()22532cos 10cos 112cos 22f x x x x ⎛⎫=++=+= ⎪⎝⎭当0,2x π⎡⎤∈⎢⎥⎣⎦时,0cos 1x ≤≤∴当cos 0x =时,函数()f x 取得最小值()min 11f x =,当cos 1x =时,函数()f x 取得最大值,()max 23f x =则()()max min 2f x f x <不恒成立,则B 不满足条件 ③()()()tan ,00,2xf x =∈-∞⋃+∞,则不满足条件()()max min 2f x f x <恒成立,故C 不是④()sin 23f x x π⎛⎫=++ ⎪⎝⎭0,4x π⎡⎤∈⎢⎥⎣⎦,52,336x πππ⎡⎤∴+∈⎢⎥⎣⎦,则()max sin12f x π=+=+()min 51sin62f x π=+=+则()min 21f x =+,则()()max min 2f x f x <恒成立,故D 满足条件 故选AD 【点睛】本题考查了三角形的性质及“三角形函数”的概念,根据条件转化为()()max min 2f x f x <恒成立是解决本题的关键,综合性较强,有一定的难度.6.已知函数()2sin()05,||2f x x πωϕωϕ⎛⎫=+<<< ⎪⎝⎭,且对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,3y f x π⎛⎫=+⎪⎝⎭为奇函数,则下列说法正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的最小正周期为π C .函数()f x 的图象关于直线2x π=对称D .函数()f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【答案】BD 【分析】由()12f x f π⎛⎫≤ ⎪⎝⎭恒成立可得212f π⎛⎫=± ⎪⎝⎭,即()122k k ωππϕπ+=+∈Z ,由3y f x π⎛⎫=+ ⎪⎝⎭为奇函数可得()3k k ωπϕπ''+=∈Z ,即可求出2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,再根据正弦函数的性质分别判断即可.【详解】因为对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,所以2sin 21212f πωπϕ⎛⎫⎛⎫=+=± ⎪⎪⎝⎭⎝⎭, 即sin 112ωπϕ⎛⎫+=±⎪⎝⎭,得()122k k ωππϕπ+=+∈Z ①. 2sin 2sin 333f x x x ππωπωϕωϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为3y f x π⎛⎫=+ ⎪⎝⎭为奇函数,所以()3k k ωπϕπ''+=∈Z ②.由①②可得()(),3122k k k k ωπωπππ''-=--∈Z ,即()(42,)k k k k ω''=--∈Z .又05ω<<,所以1k k '-=,2ω=, 则(2,)33k k k k ππϕππ=+=-'∈'Z ,得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,由于(0)0f =≠,故()f x 的图象不关于原点对称,所以A 不正确; ()f x 的最小正周期22T ππ==,所以B 正确;2sin 22sin 2sin 222333f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=+=-=± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 不正确;令222232k x k πππππ-≤+≤+,k ∈Z ,得51212k x k ππππ-≤≤+,k ∈Z , 故函数() f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,所以D 正确. 故选:BD. 【点睛】关键点睛:本题考查正弦型函数的性质,解题的关键是:(1)根据“对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立”得到“212f π⎛⎫=± ⎪⎝⎭”;(2)得到“2sin 33f x x πωπωϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭”后,能根据“3y f x π⎛⎫=+ ⎪⎝⎭为奇函数”得到“()3k k ωπϕπ''+=∈Z ”.7.已知函数()22sin cos f x x x x =+,则下列结论中正确的是( )A .()f x 的图象是由y= 2sin2x 的图象向左移3π个单位得到的 B .()f x 在,03π⎡⎤-⎢⎥⎣⎦上单调递增C .()f x 的对称中心的坐标是(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭D .函数()()g x f x =[]0,10内共有8个零点 【答案】BCD 【分析】A.化简得()2sin(2)3f x x π=+,利用函数的图象变换得该选项错误;B.利用复合函数的单调性原理分析得该选项正确;C. 由2,3x k k Z ππ+=∈得该选项正确;D.解方程sin 232x π⎛⎫+= ⎪⎝⎭得该选项正确. 【详解】()2π2sin cos sin 222sin 22sin 236f x x x x x x x x π⎛⎫⎛⎫=+-=+=+=+ ⎪ ⎪⎝⎭⎝⎭,把2sin 2y x =的图象向左平移6π个单位,得到()f x ,所以选项A 不正确; 设23t x π=+,则t 在,03π⎡⎤-⎢⎥⎣⎦上单调增, ,03x π⎡⎤∈-⎢⎥⎣⎦2,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦,,33t ππ⎡⎤∴∈-⎢⎥⎣⎦又sin y t =在,33ππ⎡⎤-⎢⎥⎣⎦上单调递增, ()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭在,03π⎡⎤-⎢⎥⎣⎦上单调递增,所以选项B 正确;由2,3x k k Z ππ+=∈得对称中心为(),062k k Z ππ⎛⎫-+∈ ⎪⎝⎭,所以选项C 正确;由sin 232x π⎛⎫+= ⎪⎝⎭得2233x k πππ+=+或222,33x k k Z πππ+=+∈ 解得x k π=或,6x k k Z ππ=+∈,又[]0,10,x ∈0,1,2,3k ∴=时,713190,,,,2,,3,6666x πππππππ=,共8个零点,所以选项D 正确. 故选:BCD 【点睛】方法点睛:函数的零点问题的研究,常用的方法有:(1)方程法(解方程即得解);(2)图象法(直接画出函数的图象得解);(3)方程+图象法(令()=0f x 得()()g x h x =,再分析函数(),()g x h x 的图象得解). 要根据已知条件灵活选择方程求解.8.已知函数()1cos cos 632f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,则以下说法中正确的是( )A .()f x 的最小正周期为πB .()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减C .51,62π⎛⎫⎪⎝⎭是()f x 的一个对称中心 D .()f x 的最大值为12【答案】ABC 【分析】利用三角恒等变换思想化简()11sin 2232f x x π⎛⎫=++ ⎪⎝⎭,利用正弦型函数的周期公式可判断A 选项的正误,利用正弦型函数的单调性可判断B 选项的正误,利用正弦型函数的对称性可判断C 选项的正误,利用正弦型函数的有界性可判断D 选项的正误. 【详解】cos cos sin 3266x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以,()1111cos cos cos sin sin 2632662232f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+++=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.对于A 选项,函数()f x 的最小正周期为22T ππ==,A 选项正确; 对于B 选项,当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,32232x πππ≤+≤, 此时,函数()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,5151111sin 2sin 262632222f ππππ⎛⎫⎛⎫=⨯++=+= ⎪ ⎪⎝⎭⎝⎭, 所以,51,62π⎛⎫⎪⎝⎭是()f x 的一个对称中心,C 选项正确; 对于D 选项,()max 111122f x =⨯+=,D 选项错误. 故选:ABC. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.9.如图,已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象与x 轴交于点A ,B ,若7OB OA =,图象的一个最高点42,33D ⎛⎫⎪⎝⎭,则下列说法正确的是( )A .4πϕ=-B .()f x 的最小正周期为4C .()f x 一个单调增区间为24,33⎛⎫-⎪⎝⎭D .()f x 图象的一个对称中心为5,03⎛⎫- ⎪⎝⎭【答案】BCD 【分析】先利用7OB OA =设0OA x =,得到点A 处坐标,结合周期公式解得选项A 错误,再利用最高点42,33D ⎛⎫ ⎪⎝⎭解出0x 得到周期,求得解析式,并利用代入验证法判断单调区间和对称中心,即判断选项BCD 正确. 【详解】由7OB OA =,设0OA x =,则07OB x =,06AB x =,选项A 中,点A ()0,0x 处,()0sin 0x ωϕ+=,则00x ωϕ+=,即0x ϕω=-,0612262T x AB ϕπωω-==⋅==,解得6πϕ=-,A 错误; 选项B 中,依题意0004343D x x x x =+==,得013x =,故1,03A ⎛⎫⎪⎝⎭, 最小正周期414433T ⎛⎫=-=⎪⎝⎭,B 正确;选项C 中,由24T πω==,得2πω=,结合最高点42,33D ⎛⎫ ⎪⎝⎭,知43A =,即()4sin 326f x x ππ⎛⎫=- ⎪⎝⎭,当24,33x ⎛⎫∈- ⎪⎝⎭时,,2622x ππππ⎛⎫-∈- ⎪⎝⎭,故24,33⎛⎫- ⎪⎝⎭是()f x 的一个单调增区间,C 正确;选项D 中,53x =-时()5454sin sin 0332363f πππ⎡⎤⎛⎫⎛⎫-=⨯--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故5,03⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,D 正确.故选:BCD.【点睛】思路点睛:解决三角函数()sin y A ωx φ=+的图象性质,通常利用正弦函数的图象性质,采用整体代入法进行求解,或者带入验证.10.设函数()()1sin 0222f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭【答案】AD【分析】 化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误.【详解】()11sin cos sin 2226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦, 作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-, 所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确; 对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误;对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<, 此时,函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上不单调,C 选项错误. 故选:AD.【点睛】 关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.。

高考数学二轮复习中档大题规范练(一)三角函数与解三角形文

高考数学二轮复习中档大题规范练(一)三角函数与解三角形文
(1)求cosC的值;
(2)求sin 的值.
解 (1)由2b=3c及正弦定理可得2sinB=3sinC,
又B=2C,
∴2sin 2C=3sinC,
∴4sinCcosC=3sinC,
∵0<C<π,∴sinC≠0.
∴cosC= .
(2)由(1)得cosC= ,0<C<π,
∴sinC= = ,
∴sin 2sinCcosC= ,
解 (1)f(x)=-cos 2x+ sin 2x=2sin ,
∴T= =π,
∴函数f(x)的最小正周期为π.
(2)由(1)知f(x)=2sin ,
∵在△ABC中,f(A)=2,∴sin =1,
又A∈(0,π),∴2A- ∈ ,
∴2A- = ,∴A= .
又cosB= ,∴sinB= ,
∴sinC=sin(A+B)= × + × = ,
∴cosC= = = -1,
∴sinC= = = ,
∴S= absinC= ab = .
∵a+b=2 ≥2 ,
即0<ab≤3,当且仅当a=b= 时等号成立,
∴S= ≤ = ,
∴△ABC面积的最大值为 .
(2)若锐角△ABC的三个内角A,B,C的对边分别是a,b,c,且f(A)=1,求 的取值范围.
解 (1)由条件可知,a·b=2cosx·sin +2sinx·cos =2sin ,
∴f(x)=cos〈a,b〉= = =sin .
由2x- =kπ,k∈Z,解得x= + ,k∈Z,
即函数f(x)的零点为x= + ,k∈Z.
(2)由正弦定理得 = ,
由(1)知,f(x)=sin ,
又f(A)=1,得sin =1,

高考数学考前中档题必刷:解三角形含详解

高考数学考前中档题必刷:解三角形含详解

2
3
2
解得: k 5 x k 11 , k Z ,
12
12
所以 f (x) 递减区间[k 5 , k 11 ], k Z .
12
12
(2)由f (C) 3 sin(2C ) 1 1 , 32
得 sin(2C ) 3 , 32
ABC 为锐角三角形,
C (0, ) , 2
2R 2R sin A 2R sin B 2R sin C
2R a 8 3 8 3 2 3 , bc 3bc 3 4 3
其中 R 是 ABC 外接圆的半径,
所以 1 1 的最小值为 2 3 .
tan B tan C
3
4.(1)
A
3
;(2)
a
7.
【分析】
(1)由二倍角公式、商数关系变形可求得 A ; (2)由三角形面积公式可得 bc ,然后由余弦定理可求得 a .
2
2
b2 CD2 (
3)2 2 2
3 2
CD
cos ADC
,两式相加得到
CD2
1(a 2 2
b2
)
3 4
,再利Biblioteka 用基本不等式求解.【详解】
(1) f (x) 3 sin 2x 3 (1 cos 2x) 1,
2
2
3
sin
2x
3
1 2

由 2k 2x 2k 3 , k Z ,
2
2
32
由余弦定理,得 a2 b2 c2 2bc cos b2 c2 bc , 3
即 a2 b c2 3bc 52 3 6 7 ,又因为 a 0 ,所以 a 7 .
5.(1)递减区间[k 5 , k 11 ]k Z ;(2) 3 .

高三文科数学_中档大题分类练_:1_三角函数、解三角形

高三文科数学_中档大题分类练_:1_三角函数、解三角形

中档大题分类练(一) 三角函数、解三角形(建议用时:60分钟)一、解答题1.已知m =⎝ ⎛⎭⎪⎫cos x 4,1,n =⎝ ⎛⎭⎪⎫3sin x 4,cos 2x 4,设函数f (x )=m·n . (1)求函数f (x )的单调增区间;(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列,求f (B )的取值范围.2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cosA .(1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.3.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a -c =66b ,sin B=6sin C .(1)求cos A 的值;(2)求cos ⎝ ⎛⎭⎪⎫2A -π6的值. 4.如图54所示,在四边形ABCD 中,∠D =2∠B ,且AD =1, CD =3,cos B =33.图54(1)求△ACD 的面积;(2)若BC =23,求AB 的长.5.已知f (x )=43sin x cos x +2cos 2x -1,x ∈⎣⎢⎡⎦⎥⎤0,π3. (1)求f (x )的值域;(2)若CD 为△ABC 的中线,已知AC =f (x )max ,BC =f (x )min ,cos ∠BCA =13,求CD的长.6.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角.(1)证明:B -A =π2;(2)求sin A +sin C 的取值范围..习题答案1. 答案:见解析解析:(1)f (x )=m·n =⎝ ⎛⎭⎪⎫cos x 4,1·⎝ ⎛⎭⎪⎫3sin x 4,cos 2x 4=sin ⎝ ⎛⎭⎪⎫x 2+π6+12, 令2k π-π2≤x 2+π6≤2k π+π2,则4k π-4π3≤x ≤4k π+2π3,k ∈Z ,所以函数f (x )单调递增区间为⎣⎢⎡⎦⎥⎤4k π-4π3,4k π+2π3,k ∈Z . (2)由b 2=ac 可知cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12(当且仅当a =c 时取等号),所以0<B ≤π3,π6<B 2+π6≤π3,1<f (B )≤3+12,综上f (B )的取值范围为⎝⎛⎦⎥⎤1,3+12. 2. 答案:见解析解析: (1)由正弦定理可得:3sin A cos C =2sin B cos A -3sin C cos A , 从而可得:3sin(A +C )=2sin B cos A ,即3sin B =2sin B cos A ,又B 为三角形内角,所以sin B ≠0,于是cos A =32,又A 为三角形内角,所以A =π6.(2)由余弦定理:a 2=b 2+c 2-2bc cos A 得:4=b 2+c 2-2bc 32≥2bc -3bc ,所以bc ≤4(2+3),所以S =12bc sin A ≤2+3,△ABC 面积最大值为2+ 3.3. 答案:见解析解析:(1)在△ABC 中,由b sin B =c sin C ,及sin B =6sin C ,可得b =6c .由a -c =66b ,得a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154. 所以cos ⎝ ⎛⎭⎪⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38. 4. 答案:见解析解析:(1)因为∠D =2∠B ,cos B =33,所以cos D =cos 2B =2cos 2B -1=-13.因为D ∈(0,π), 所以sin D =1-cos 2D =223. 因为AD =1,CD =3, 所以△ACD 的面积S =12AD ·CD ·sin D =12×1×3×223= 2.(2)在△ACD 中,AC 2=AD 2+DC 2-2AD ·DC ·cos D =12,所以AC =2 3.因为BC =23,AC sin B =AB sin ∠ACB , 所以23sin B =AB sinπ-2B =AB sin 2B =AB 2sin B cos B =AB 233sin B, 所以AB =4. 5. 答案:见解析解析:(1)f (x )=43sin x cos x +2cos 2x -1,化简得f (x )=23sin 2x +2cos 2x -1=4sin2x +π6-1.因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,5π6, 当2x +π6=π2时,sin ⎝ ⎛⎭⎪⎫2x +π6取得最大值1, 当2x +π6=π6或2x +π6=5π6时,sin ⎝ ⎛⎭⎪⎫2x +π6取得最小值12, 所以sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤12,1,4sin ⎝ ⎛⎭⎪⎫2x +π6 -1∈[1,3], 所以f (x )的值域为[1,3] .(2)法一:因为AC =f (x )max ,BC =f (x )min ,由(1)知,AC =3,BC =1 ,又因为cos ∠BCA =13,根据余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos ∠BCA =8, 所以AB =2 2.因为AC 2=AB 2+BC 2,所以△ABC 为直角三角形, B 为直角. 故在Rt △ABC 中,BC =1,BD = 2 ,所以CD =12+2= 3.法二:由(1)知|CA →|=3,|CB →|=1,CD →=12(CA →+CB →),所以CD →2=14(CA →2+CB →2+2CA →·CB →)=14⎝ ⎛⎭⎪⎫9+1+2×3×1×13=3, 所以|CD →|= 3.6.答案:见解析解析:(1)证明:由a =b tan A 及正弦定理, 得sin A cos A =a b =sin A sin B ,所以sin B =cos A ,即sin B =sin ⎝ ⎛⎭⎪⎫π2+A . 又B 为钝角,因此π2+A ∈⎝ ⎛⎭⎪⎫π2,π, 故B =π2+A ,即B -A =π2.(2)由(1)知,C =π-(A +B )=π-⎝ ⎛⎭⎪⎫2A +π2=π2-2A >0, 所以A ∈⎝ ⎛⎭⎪⎫0,π4. 于是sin A +sin C =sin A +sin ⎝ ⎛⎭⎪⎫π2-2A =sin A +cos 2A =-2sin 2A +sin A +1=-2⎝ ⎛⎭⎪⎫sin A -142+98. 因为0<A <π4,所以0<sin A <22, 因此22<-2⎝ ⎛⎭⎪⎫sin A -142+98≤98. 由此可知sin A +sin C 的取值范围是⎝ ⎛⎦⎥⎤22,98。

2021年高考数学三角函数与解三角形多选题专项练习附答案

2021年高考数学三角函数与解三角形多选题专项练习附答案

2021年高考数学三角函数与解三角形多选题专项练习附答案一、三角函数与解三角形多选题1.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2a =,sin 2sin B C =,有以下四个命题中正确的是( )A .满足条件的ABC 不可能是直角三角形B .ABC 面积的最大值为43C .当A =2C 时,ABC 的周长为2+D .当A =2C 时,若O 为ABC 的内心,则AOB 【答案】BCD 【分析】对于A ,利用勾股定理的逆定理判断;对于B ,利用圆的方程和三角形的面积公式可得答案; 对于C ,利用正弦定理和三角函数恒等变形公式可得答案对于D ,由已知条件可得ABC 为直角三角形,从而可求出三角形的内切圆半径,从而可得AOB 的面积 【详解】对于A ,因为sin 2sin B C =,所以由正弦定理得,2b c =,若b 是直角三角形的斜边,则有222a c b +=,即2244c c +=,得3c =,所以A 错误; 对于B ,以BC 的中点为坐标原点,BC 所在的直线为x 轴,建立平面直角坐标系,则(1,),(1,0)B C -,设(,)A m n ,因为2b c ==, 化简得22516()39m n ++=,所以点A 在以5,03⎛⎫- ⎪⎝⎭为圆心,43为半径的圆上运动, 所以ABC 面积的最大值为1442233⨯⨯=,所以B 正确; 对于C ,由A =2C ,可得3B C π=-,由sin 2sin B C =得2b c =,由正弦定理得,sin sin b cB C=,即2sin(3)sin c c C C π=-,所以sin32sin C C =,化简得2sin cos 22cos sin 2sin C C C C C +=, 因为sin 0C ≠,所以化简得23cos 4C =,因为2b c =,所以B C >,所以cos C =,则1sin 2C =,所以sin 2sin 1B C ==,所以2B π=,6C π=,3A π=,因为2a =,所以2343,c b ==, 所以ABC 的周长为223+,所以C 正确; 对于D ,由C 可知,ABC 为直角三角形,且2B π=,6C π=,3A π=,2343,c b ==, 所以ABC 的内切圆半径为123433212r ⎛⎫=+-=- ⎪ ⎪⎝⎭, 所以AOB 的面积为1123331122333cr ⎛⎫-=⨯⨯-= ⎪ ⎪⎝⎭所以D 正确, 故选:BCD 【点睛】此题考查三角形的正弦定理和面积公式的运用,考查三角函数的恒等变换,考查转化能力和计算能力,属于难题.2.如图,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若a b =,且()3cos cos 2sin a C c A b B +=,D 是ABC 外一点,1DC =,3DA =,则下列说法正确的是( )A .ABC 是等边三角形B .若23AC =A ,B ,C ,D 四点共圆 C .四边形ABCD 533 D .四边形ABCD 533 【答案】AC 【分析】利用三角函数恒等变换化简已知等式可求sin B ,再利用a b =,可知ABC 为等边三角形,从而判断A ;利用四点A ,B ,C ,D 共圆,四边形对角互补,从而判断B ;设AC x =,0x >,在ADC 中,由余弦定理可得2106cos x D =-,利用三角形的面积公式,三角函数恒等变换的,可求ABCD S 四边形,利用正弦函数的性质,求出最值,判断CD .【详解】由正弦定理2sin ,2sin ,2sin a R A b R B c R C ===,(sin cos sin cos )2sin sin A C C A B B +=⋅,2sin ,sin B B =∴=, a b =,B 是等腰ABC 的底角,(0,)2B π∴∈,,3B ABC π∴=∴△是等边三角形,A 正确;B 不正确:若,,,A BCD 四点共圆,则四边形对角互补, 由A 正确知21,cos 32D D π∠==-,但由于1,3,DC DA AC ===22211cos 232DC DA AC D DA DC +-===-≠-⋅⋅,∴B 不正确. C 正确,D 不正确:设D θ∠=,则2222cos 106cos AC DC DA DC DA θθ=+-⋅⋅=-,(106cos )ABC S θθ∴=-=△, 3sin 2ADC S θ=△,3sin cos 222ABCADCABCD S S Sθθ∴=+=-+四边形,13(sin cos 2θθ=⋅-+,3sin()3πθ=-+(0,),sin()(3πθπθ∈∴-∈,3ABCD S <≤+四边形,∴C 正确,D 不正确; 故选:AC.. 【点睛】本题主要考查正弦定理,余弦定理,三角函数恒等变换,正弦函数的图象和性质在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.3.设函数()2sin 1xf x x x π=-+,则( )A .()43f x ≤B .()5f x x ≤C .曲线()y f x =存在对称轴D .曲线()y f x =存在对称中心【答案】ABC 【分析】 通过()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭可发现函数()y f x =具有对称轴及最大值,再利用函数对称中心的特点去分析()y f x =是否具有对称中心,再将()5f x x ≤化为32sin 555x x x x π≤-+,通过数形结合判断是否成立.【详解】函数解析式可化为:()22sin sin 11324x xf x x x x ππ==-+⎛⎫-+⎪⎝⎭,因为函数sin y x =π的图象关于直线12x =对称,且函数21324y x ⎛⎫=-+ ⎪⎝⎭的图象也关于直线12x =对称,故曲线()y f x =也关于直线12x =对称,选项C 正确; 当12x =时,函数sin y x =π取得最大值1,此时21324y x ⎛⎫=-+ ⎪⎝⎭取得最小值34,故()14334f x ≤=,选项A 正确; 若()5f x x ≤,则32sin 555x x x x π≤-+,令()32555g x x x x =-+,则()()221510553210g x x x x x '=-+=-+>恒成立,则()g x 在R 上递增,又()00g =,所以当0x <时,()00g <;当0x >时,()0g x >; 作出sin x π和32555x x x -+的图象如图所示:由图象可知32sin 555x x x x π≤-+成立,即()5f x x ≤,选项B 正确;对于D 选项,若存在一点(),a b 使得()f x 关于点(),a b 对称,则()()2f a x f a x b -++=,通过分析发现()()f a x f a x -++不可能为常数,故选项D 错误. 故选:ABC. 【点睛】本题考查函数的综合应用,涉及函数的单调性与最值、对称轴于对称中心、函数与不等式等知识点,难度较大. 对于复杂函数问题一定要化繁为简,利用熟悉的函数模型去分析,再综合考虑,注意数形结合、合理变形转化.4.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( ) A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C,由余弦定理及基本不等式得224242122b c bccosAbc bc bc+--=≥=-(当且仅当b c=时,等号成立),由A选项知cos3bc A=,22coscos1133cosAAA∴≥-=-,解得3cos5A≥,故C错误;对于D,2222213233cos4442c c cBADc c c+-+∠==≥=(当且仅当3c=时,等号成立),因为BAD ABD∠<∠,所以(0,)2BADπ∠∈,又3cos2BAD∠≥,所以BAD∠的最大值30,D选项正确.故选:ABD【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题. 5.已知函数()()cos2f x A x bϕ=++(0A>,0ϕπ<<)的部分图像如图所示,则()A.2A=B.点7,112π⎛⎫⎪⎝⎭是()f x图像的一个对称中心C.6π=ϕD.直线3xπ=是()f x图像的一条对称轴【答案】ABD【分析】由图知函数最大值为3,最小值为1-,且函数图像与y轴的交点为()0,2,进而待定系数得()2cos213f x xπ⎛⎫=++⎪⎝⎭,再整体换元讨论B,D选项即可.【详解】 因为0A >,所以31A b A b +=⎧⎨-+=-⎩,解得21A b =⎧⎨=⎩,故A 正确;()02cos 12f ϕ=+=,则1cos 2ϕ=.又0ϕπ<<,所以3πϕ=,故C 错误;()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,令23x k ππ+=,k ∈Z ,解得62πk πx =-+,k ∈Z , 所以()f x 图像的对称轴方程为62πk πx =-+, 令1k =,则3x π=,D 正确;令232x k πππ+=+,k ∈Z ,解得122k x ππ=+,k ∈Z , 令1k =,则712x π=且7112f π⎛⎫= ⎪⎝⎭,故B 正确.故选:ABD 【点睛】本题考查三角函数图像求解析式,三角函数的对称轴,对称中心等,考查运算求解能力,是中档题.解题的过程中,需要注意形如()()sin 0y A x B A ωϕ=++>,()()cos 0y A x B A ωϕ=++>,max min ,y A B y A B =+=-+,ϕ的求解通常采用待定系数法求解.6.已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,则下列关于函数()f x 的说法中正确的是( )A .函数()f x 最靠近原点的零点为3π-B .函数()f x 的图像在y 3C .函数56f x π⎛⎫-⎪⎝⎭是偶函数 D .函数()f x 在72,3ππ⎛⎫⎪⎝⎭上单调递增 【答案】ABC 【分析】首先根据图象求函数的解析式,利用零点,以及函数的性质,整体代入的方法判断选项. 【详解】根据函数()()cos f x A x ωϕ=+的部分图像知,2A =, 设()f x 的最小正周期为T ,则24362T πππ=-=,∴2T π=,21T πω==. ∵2cos 266f ππϕ⎛⎫⎛⎫=+=⎪⎪⎝⎭⎝⎭,且2πϕ<,∴6πϕ=-, 故()2cos 6f x x π⎛⎫=- ⎪⎝⎭.令()2cos 06f x x π⎛⎫=-= ⎪⎝⎭,得62x k πππ-=+,k Z ∈, 即23x k ππ=+,k Z ∈,因此函数()f x 最靠近原点的零点为3π-,故A 正确;由()02cos 6f π⎛⎫=-= ⎪⎝⎭()f x 的图像在y B 正确; 由()52cos 2cos 6f x x x ππ⎛⎫-=-=- ⎪⎝⎭,因此函数56f x π⎛⎫-⎪⎝⎭是偶函数,故C 正确; 令226k x k ππππ-≤-≤,k Z ∈,得52266k x k ππππ-≤≤+,k Z ∈,此时函数()f x 单调递增,于是函数()f x 在132,6ππ⎛⎫ ⎪⎝⎭上单调递增,在137,63ππ⎛⎫⎪⎝⎭上单调递减,故D 不正确. 故选:ABC . 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.7.已知函数()22sin cos f x x x x =+,则下列结论中正确的是( )A .()f x 的图象是由y= 2sin2x 的图象向左移3π个单位得到的 B .()f x 在,03π⎡⎤-⎢⎥⎣⎦上单调递增 C .()f x 的对称中心的坐标是(),026k k Z ππ⎛⎫-∈⎪⎝⎭D .函数()()g x f x =[]0,10内共有8个零点 【答案】BCD 【分析】A.化简得()2sin(2)3f x x π=+,利用函数的图象变换得该选项错误;B.利用复合函数的单调性原理分析得该选项正确;C. 由2,3x k k Z ππ+=∈得该选项正确;D.解方程sin 232x π⎛⎫+= ⎪⎝⎭得该选项正确. 【详解】()2π2sin cos sin 222sin 22sin 236f x x x x x x x x π⎛⎫⎛⎫=+-=+=+=+ ⎪ ⎪⎝⎭⎝⎭,把2sin 2y x =的图象向左平移6π个单位,得到()f x ,所以选项A 不正确; 设23t x π=+,则t 在,03π⎡⎤-⎢⎥⎣⎦上单调增, ,03x π⎡⎤∈-⎢⎥⎣⎦2,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦,,33t ππ⎡⎤∴∈-⎢⎥⎣⎦又sin y t =在,33ππ⎡⎤-⎢⎥⎣⎦上单调递增, ()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭在,03π⎡⎤-⎢⎥⎣⎦上单调递增,所以选项B 正确;由2,3x k k Z ππ+=∈得对称中心为(),062k k Z ππ⎛⎫-+∈ ⎪⎝⎭,所以选项C 正确;由sin 232x π⎛⎫+= ⎪⎝⎭得2233x k πππ+=+或222,33x k k Z πππ+=+∈ 解得x k π=或,6x k k Z ππ=+∈,又[]0,10,x ∈0,1,2,3k ∴=时,713190,,,,2,,3,6666x πππππππ=,共8个零点,所以选项D 正确. 故选:BCD 【点睛】方法点睛:函数的零点问题的研究,常用的方法有:(1)方程法(解方程即得解);(2)图象法(直接画出函数的图象得解);(3)方程+图象法(令()=0f x 得()()g x h x =,再分析函数(),()g x h x 的图象得解). 要根据已知条件灵活选择方程求解.8.对于函数()sin cos 2sin cos f x x x x x =++,下列结论正确的是( ) A .把函数f (x )的图象上的各点的横坐标变为原来的12倍,纵坐标不变,得到函数g (x )的图象,则π是函数y =g (x )的一个周期B .对123,,2x x ππ⎛⎫∀∈ ⎪⎝⎭,若12x x <,则()()12f x f x <C .对,44x f x f x ππ⎛⎫⎛⎫∀∈-=+ ⎪ ⎪⎝⎭⎝⎭R 成立D .当且仅当,4x k k Z ππ=+∈时,f (x )1【答案】AC 【分析】根据三角函数的变换规则化简即可判断A ;令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,()21f t t t =+-,判断函数的单调性,即可判断B ;代入直接利用诱导公式化简即可;首先求出()f t 的最大值,从而得到x 的取值; 【详解】解:因为()2()sin cos 2sin cos sin cos sin cos 1f x x x x x x x x x =++=+++-,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以t ⎡∈⎣,所以()21f t t t =+-, 对于A :将()sin cos 2sin cos f x x x x x =++图象上的各点的横坐标变为原来的12倍,则()sin 2cos 22sin 2cos 2g x x x x x =++,所以()()()()()sin 2cos22sin 2cos2g x x x x x πππππ+=++++++()sin 2cos22sin 2cos2x x x x g x =++=,所以π是函数y =g (x )的一个周期,故A 正确;对于B :因为3,2x ππ⎛⎫∈ ⎪⎝⎭,所以57,444x πππ⎛⎫+∈ ⎪⎝⎭,则)14t x π⎛⎫⎡=+∈- ⎪⎣⎝⎭在5,4ππ⎛⎫ ⎪⎝⎭上单调递减,在53,42ππ⎛⎫⎪⎝⎭上单调递增, 又()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,对称轴为12t =-,开口向上,函数()21f t t t =+-在)1⎡-⎣上单调递减, 所以函数()f x 在5,4ππ⎛⎫ ⎪⎝⎭上单调递增,在53,42ππ⎛⎫⎪⎝⎭上单调递减, 故B 错误; 对于C :sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=----⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭c 2424242sin os 2sin cos 4x x x x ππππππππ⎥++⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦4444sin cos 2sin cos 4x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----=- ⎪ ⎪ ⎪ ⎪ ⎪=⎝⎭⎝⎭⎝⎭⎝⎭⎝+⎭+,故C 正确;因为()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,t ⎡∈⎣,当t =时()f t 取得最大值()max 1f t =,令4t x π⎛⎫=+= ⎪⎝⎭sin 14x π⎛⎫+= ⎪⎝⎭,所以2,42x k k Z πππ+=+∈,解得2,4x k k Z ππ=+∈,即当2,4x k k Z ππ=+∈时,函数()f x1,故D 错误;故选:AC 【点睛】本题考查三角函数的综合应用,解答的关键是换元令sin cos t x x =+,将函数转化为二次函数;9.已知函数()()sin 22sin cos 644f x x x x x πππ⎛⎫⎛⎫⎛⎫=--++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R ,现给出下列四个命题,其中正确的是( ) A .函数()f x 的最小正周期为2πB .函数()f xC .函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增D .将函数()f x 的图象向左平移512π个单位长度,得到的函数解析式为()()2g x x =【答案】BD 【分析】首先利用三角恒等变形化简函数()23f x x π⎛⎫=-⎪⎝⎭,再根据函数的性质依次判断选项,AB 选项根据解析式直接判断,C 选项可以先求23x π-的范围,再判断函数的单调性,D 选项根据平移规律直接求解平移后的解析式. 【详解】()12cos 2sin 222f x x x x π⎛⎫=--+ ⎪⎝⎭132cos 2cos 22cos 22222x x x x x =--=-23x π⎫⎛=- ⎪⎝⎭,函数()f x 的周期22T ππ==,故A 不正确;B.B 正确; C.,44x ππ⎡⎤∈-⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,当52,362x πππ⎡⎤-∈--⎢⎥⎣⎦时函数单调递减,即,412x ππ⎡⎤∈--⎢⎥⎣⎦时函数单调递减,,124x ππ⎡⎤∈-⎢⎥⎣⎦时,函数单调递增,故C 不正确;D. ()23f x x π⎛⎫=-⎪⎝⎭向左平移512π个单位长度,得到()52221232g x x x x πππ⎡⎤⎛⎫⎛⎫=+-=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 正确. 故选:BD 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.10.设函数()()sin f x A x =+ωϕ,x ∈R (其中0A >,0>ω,2πϕ<),在,62ππ⎛⎫⎪⎝⎭上既无最大值,也无最小值,且()026f f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则下列结论错误的是( )A .若()()()12f x f x f x ≤≤对任意x ∈R ,则21min x x π-=B .()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭中心对称 C .函数()f x 的单调减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D .函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是2π【答案】ABD 【分析】根据条件先求函数的解析式,对于A:判断出()1f x 为最小值,()2f x 为最大值,即可; 对于B:根据函数的对称性进行判断;对于C:求出角的范围,结合三角函数的单调性进行判断; 对于D:根据函数的对称性即对称轴之间的关系进行判断. 【详解】 因为函数()f x 在,62ππ⎛⎫⎪⎝⎭上既无最大值,也无最小值, 所以,62ππ⎛⎫⎪⎝⎭是函数的一个单调区间,区间长度为263πππ-=,即函数的周期2233T ππ≥⨯=,即223ππω≥,则03ω<≤因为()06f f π⎛⎫= ⎪⎝⎭,所以06212ππ+=为函数的一条对称轴;则1223πππωϕωϕπ+=+=①② 由①②解得:=2=3πωϕ,,即()sin 23f x A x π⎛⎫=+⎪⎝⎭,函数的周期=T π. 对于A: 若()()()12f x f x f x ≤≤对任意x ∈R 恒成立,则()1f x 为最小值,()2f x 为最大值,所以12||22T k x x k π-==,则21x x -必为2π的整数倍,故A 错误,可选A;对于B:3x π=-时,()sin 03f x A π⎛⎫=-≠ ⎪⎝⎭,故,03π⎛-⎫⎪⎝⎭不是()y f x =的对称中心,B 错误,可选B; 对于C:当7,1212x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,322,2322x k k πππππ⎡⎤+∈++⎢⎥⎣⎦,此时()y f x =单调递减,C 正确,不选C;对于D: 函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是44T π=,故D 错误,可选D 故选:ABD 【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②(2)求ω通常用周期;③求φ通常利用函数上的点带入即可求解;(2)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中档大题分类练(一) 三角函数、解三角形
(建议用时:60分钟)
1.已知m =⎝ ⎛⎭⎪⎫cos x 4,1,n =⎝ ⎛⎭⎪⎫3sin x 4,cos 2x
4,设函数f (x )=m·n . (1)求函数f (x )的单调增区间;
(2)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列,求f (B )的取值范围.
[解] (1)f (x )=m·n =⎝ ⎛⎭⎪⎫cos x 4,1·⎝ ⎛⎭⎪⎫3sin x 4,cos 2x 4=sin ⎝ ⎛⎭⎪⎫x 2+π6+12
, 令2k π-π2≤x 2+π6≤2k π+π2,则4k π-4π3≤x ≤4k π+2π3
,k ∈Z , 所以函数f (x )单调递增区间为⎣
⎢⎡⎦⎥⎤4k π-4π3,4k π+2π3,k ∈Z . (2)由b 2
=ac 可知cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12(当且仅当a =c 时取等号), 所以0<B ≤π3,π6<B 2+π6≤π3,1<f (B )≤3+12
, 综上f (B )的取值范围为⎝ ⎛⎦
⎥⎤1,3+12. 2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A .
(1)求角A 的大小;
(2)若a =2,求△ABC 面积的最大值.
[解] (1)由正弦定理可得:3sin A cos C =2sin B cos A -3sin C cos A , 从而可得:3sin(A +C )=2sin B cos A ,
即3sin B =2sin B cos A ,
又B 为三角形内角,所以sin B ≠0,于是cos A =
32, 又A 为三角形内角,所以A =π6
. (2)由余弦定理:a 2=b 2+c 2-2bc cos A 得:4=b 2+c 2-2bc 32
≥2bc -3bc , 所以bc ≤4(2+3),所以S =12
bc sin A ≤2+3,△ABC 面积最大值为2+ 3. 3.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a -c =66
b ,sin B =6sin
C .
(1)求cos A 的值;
(2)求cos ⎝
⎛⎭⎪⎫2A -π6的值. [解] (1)在△ABC 中,由b sin B =c
sin C
,及sin B =6sin C ,可得b =6c . 由a -c =66b ,得a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c
2=64. (2)在△ABC 中,由cos A =64,可得sin A =104
. 于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154
. 所以cos ⎝ ⎛⎭⎪⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38. 4.如图54所示,在四边形ABCD 中,∠D =2∠B ,且AD =1, CD =3,cos B =33
.
图54
(1)求△ACD 的面积;
(2)若BC =23,求AB 的长. [解] (1)因为∠D =2∠B ,cos B =33, 所以cos D =cos 2B =2cos 2B -1=-13
. 因为D ∈(0,π), 所以sin D =1-cos 2D =
223
. 因为AD =1,CD =3,
所以△ACD 的面积S =12AD ·CD ·sin D =12×1×3×223
= 2. (2)在△ACD 中,AC 2=AD 2+DC 2-2AD ·DC ·cos D =12,
所以AC =2 3.
因为BC =23,AC sin B =AB sin∠ACB
, 所以23sin B =AB π-2B =AB sin 2B =AB 2sin B cos B =AB
233sin B , 所以AB =4.
(教师备选)
1.已知f (x )=43sin x cos x +2cos 2x -1,x ∈⎣
⎢⎡⎦⎥⎤0,π3. (1)求f (x )的值域;
(2)若CD 为△ABC 的中线,已知AC =f (x )max ,BC =f (x )min ,cos∠BCA =13
,求CD 的长. [解] (1)f (x )=43sin x cos x +2cos 2x -1,
化简得f (x )=23sin 2x +2cos 2x -1=4sin2x +π6
-1. 因为x ∈⎣
⎢⎡⎦⎥⎤0,π3,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,5π6, 当2x +π6=π2时,sin ⎝ ⎛⎭⎪⎫2x +π6取得最大值1, 当2x +π6=π6或2x +π6=5π6时,sin ⎝ ⎛⎭⎪⎫2x +π6取得最小值12, 所以sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤12,1,4sin ⎝ ⎛⎭⎪⎫2x +π6 -1∈[1,3], 所以f (x )的值域为[1,3] .
(2)法一:因为AC =f (x )max ,BC =f (x )min ,
由(1)知,AC =3,BC =1 ,
又因为cos∠BCA =13
, 根据余弦定理得AB 2=AC 2+BC 2
-2AC ·BC ·cos∠BCA =8,
所以AB =2 2.
因为AC 2=AB 2+BC 2,所以△ABC 为直角三角形, B 为直角.
故在Rt△ABC 中,BC =1,BD = 2 ,
所以CD =12+2= 3.
法二:由(1)知|CA →|=3,|CB →|=1,CD →=12(CA →+CB →
),
所以CD →2=14
(CA →2+CB →2+2CA →·CB →) =14⎝
⎛⎭⎪⎫9+1+2×3×1×13=3, 所以|CD →
|= 3.
2.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A ,且B 为钝角.
(1)证明:B -A =π2
; (2)求sin A +sin C 的取值范围.
[解] (1)证明:由a =b tan A 及正弦定理,
得sin A cos A =a b =sin A sin B
, 所以sin B =cos A ,即sin B =sin ⎝ ⎛⎭
⎪⎫π2+A . 又B 为钝角,因此π2+A ∈⎝ ⎛⎭
⎪⎫π2,π, 故B =π2+A ,即B -A =π2
. (2)由(1)知,C =π-(A +B )=π-⎝
⎛⎭⎪⎫2A +π2=π2-2A >0, 所以A ∈⎝
⎛⎭⎪⎫0,π4. 于是sin A +sin C =sin A +sin ⎝ ⎛⎭
⎪⎫π2-2A =sin A +cos 2A =-2sin 2
A +sin A +1
=-2⎝
⎛⎭⎪⎫sin A -142+98. 因为0<A <π4,所以0<sin A <22
, 因此22<-2⎝ ⎛⎭⎪⎫sin A -142+98≤98. 由此可知sin A +sin C 的取值范围是⎝ ⎛⎦⎥⎤22,98.。

相关文档
最新文档