相交线、平行线1

合集下载

相交线与平行线笔记整理

相交线与平行线笔记整理

相交线与平行线笔记整理
相交线与平行线是几何学中的重要概念,下面是有关相交线和平行线的笔记整理:
一、相交线:
1. 定义:在平面上,如果两条直线有一个公共的交点,则称这两条直线为相交线。

2. 特性:
- 两条相交线的交点只有一个。

- 两条相交线的两个交线角互为补角。

- 如果两条相交线的交线角互为补角,则这两条直线相交。

二、平行线:
1. 定义:在平面上,如果两条直线没有交点,且方向相同或者重合,则称这两条直线为平行线。

2. 特性:
- 平行线不相交,也没有公共的交点。

- 平行线的交线角为零度。

- 平行线的交线角是对应角,即对应于同一边的内角互为补角。

三、判定平行线的方法:
1. 对称判定法:如果两条直线作为一条直线的平分线,且分出的同侧角相等,则这两条直线平行。

2. 次对称法:如果两条直线与另外一条直线作为一对同位角,且同位角相等,则这两条直线平行。

3. 逆定理法:如果两条直线垂直于同一条直线,则这两条直线
平行。

4. 夹角法:如果两条直线与另外一条直线的夹角相等,则这两条直线平行。

5. 给定角的补角法:如果两条直线与另外一条直线的同侧内角互为补角,则这两条直线平行。

四、平行线性质:
1. 平行线的任意一对内错线互为消角。

2. 平行线的任意一对内错线互为内错角。

3. 平行线与切线的夹角等于对应弧所对的圆心角。

4. 平行线所夹平行线上的交线角相等。

以上是有关相交线与平行线的笔记整理,希望对你有所帮助。

七年级数学培优提高讲义:相交线与平行线(一) (1)

七年级数学培优提高讲义:相交线与平行线(一) (1)

七年级数学竞赛讲座:相交线与平行线一、知识要点:1.平面上两条不重合的直线,位置关系只有两种:相交和平行。

2.两条不同的直线,若它们只有一个公共点,就说它们相交。

即,两条直线相交有且只有一个交点。

3.垂直是相交的特殊情况。

有关两直线垂直,有两个重要的结论:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上所有点的连线中,垂线段最短。

4.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.5.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.6.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_______________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_______________________. 7.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .8.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:__________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:__________________。

七年级下册数学平行线与相交线

七年级下册数学平行线与相交线

第一讲 两条直线的位置关系知识点一 :相交线、平行线的概念(1)相交线平行定义:若两条直线只有一个公共点,我们称这两条直线为相交线 (2)平行线定义:在同一平面内,不相交的两条直线叫做平行线(3)两套直线的位置关系:在同一平面内,两条直线的位置关系有相交和平行两种 (4)两条直线是指不重合的两条直线注意:1、两条直线在同一平面内2、我们有时说两条射线或线段平行,实际上是指它们所在的直线平行 知识点二:关于对顶角的定义和性质定义 对顶角:像这样直线AB 与直线CD 相交于O ,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫做对顶角.注意:对顶角的判断条件:⎪⎩⎪⎨⎧无公共边有公共顶点两条直线相交另外,从对顶角的定义还可知:对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个。

性质 同角或等角的对顶角相等。

一般题型 下列说法中,正确的是( ). A .有公共顶点,并且相等的角是对顶角 B .如果两个角不相等,那么它们一定不是对顶角 C .如果两个角相等,那么这两个角是对顶角 D .互补的两个角不可能是对顶角 练习 1、如图2-1,共有________对对顶角.图2-1知识点三: 互为余角、互为补角的概念及其性质定义:互为余角:如果两个角的和是直角,则这两个角互为余角. 互为补角:如果两个角的和是平角,则这两个角互为补角 钝角没有余角注意: 互为余角、互为补角只与角的度数有关,与角的位置无关. 性质 同角或等角的余角相等,同角或等角的补角相等一般例题 ⑴∵1∠和2∠互余,∴=∠+∠21_____(或2_____1∠-=∠) ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠)练习1、若∠α=50º,则它的余角是 ,它的补角是 。

若∠β=110º,则它的补角是 ,它的补角的余角是 。

2若∠1与∠2互余,∠3和∠2互补,且∠3=120º,那么∠1= 。

七下数学“相交线与平行线”的知识点

七下数学“相交线与平行线”的知识点

七下数学“相交线与平⾏线”的知识点开学已经有⼏天了,新的第⼀章知识掌握的怎么样了呢?这⼀单元主要是概念和性质定理⼀定要理解清楚,可以在这篇⽂章梳理⼀下,⼀定能帮到你!⼀、相交线1.邻补⾓与对顶⾓两直线相交所成的四个⾓中存在⼏种不同关系的⾓,它们的概念及性质如下表:注意点:⑴对顶⾓是成对出现的,对顶⾓是具有特殊位置关系的两个⾓;⑵如果∠α与∠β是对顶⾓,那么⼀定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不⼀定是对顶⾓⑶如果∠α与∠β互为邻补⾓,则⼀定有∠α∠β=180°;反之如果∠α∠β=180°,则∠α与∠β不⼀定是邻补⾓。

⑶两直线相交形成的四个⾓中,每⼀个⾓的邻补⾓有两个,⽽对顶⾓只有⼀个。

2.垂线⑴定义:当两条直线相交所成的四个⾓中,有⼀个⾓是直⾓时,就说这两条直线互相垂直,其中的⼀条直线叫做另⼀条直线的垂线,它们的交点叫做垂⾜。

符号语⾔记作:如图所⽰:AB⊥CD,垂⾜为 O⑵垂线性质 1:过⼀点有且只有⼀条直线与已知直线垂直 (与平⾏公理相⽐较记)⑶垂线性质 2:连接直线外⼀点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。

3.垂线的画法:⑴过直线上⼀点画已知直线的垂线;⑵过直线外⼀点画已知直线的垂线。

注意:①画⼀条线段或射线的垂线,就是画它们所在直线的垂线;②过⼀点作线段的垂线,垂⾜可在线段上,也可以在线段的延长线上。

画法:⑴⼀靠:⽤三⾓尺⼀条直⾓边靠在已知直线上,⑵⼆移:移动三⾓尺使⼀点落在它的另⼀边直⾓边上,⑶三画:沿着这条直⾓边画线,不要画成给⼈的印象是线段的线。

4.点到直线的距离直线外⼀点到这条直线的垂线段的长度,叫做点到直线的距离。

应该结合图形进⾏记忆。

如图,PO⊥AB,同 P 到直线 AB 的距离是 PO 的长。

PO 是垂线段。

PO 是点 P 到直线 AB所有线段中最短的⼀条。

现实⽣活中开沟引⽔,牵⽜喝⽔都是“垂线段最短”性质的应⽤。

5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近⽽⼜相异的概念。

平行线与相交线

平行线与相交线

平行线与相交线
平行线和相交线是几何学中经常遇到的概念,它们在解决直线的性质和关系时起着重要的作用。

本文将介绍平行线和相交线的定义,性质以及它们之间的关系。

平行线的定义和性质
定义
两条直线如果在同一平面内,且没有交点,那么它们被称为平行线。

性质
- 平行线之间的距离始终保持相等。

- 平行线的斜率也相等。

相交线的定义和性质
定义
两条直线如果在同一平面内,且有且只有一个交点,那么它们被称为相交线。

性质
- 相交线的交点被称为交点。

- 相交线的斜率不相等。

平行线与相交线的关系
平行线和相交线之间有一些重要的关系:
1. 平行线与相交线之间的夹角为180度。

2. 如果两条直线分别与第三条直线平行,那么它们之间的夹角相等。

3. 如果两条直线分别与第三条直线相交,那么它们之间的夹角互补。

4. 平行线和相交线可以共面,但不一定共面。

在解决与平行线和相交线相关的问题时,我们可以利用这些关系来推导和证明定理。

总结:
平行线没有交点,而相交线有且只有一个交点。

它们之间的关系通过夹角和斜率的性质来确定。

这些概念在几何学中非常重要,我们可以根据它们的性质解决各类与直线相关的问题。

参考文献:。

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线第一节相交线一:相交线对顶角与邻补角二:垂线垂线段最短点到直线的距离第二节平行线及其判定一:平行线平行线平行线公理及推论二:平行线的判定同位角、内错角同旁内角平行线的判定第三节平行线的性质平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截;同位角相等.简单说成:两直线平行;同位角相等.定理2:两条平行线被地三条直线所截;同旁内角互补..简单说成:两直线平行;同旁内角互补.定理3:两条平行线被第三条直线所截;内错角相等.简单说成:两直线平行;内错角相等.2、两条平行线之间的距离处处相等平行线的判定及性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)2应用平行线的判定和性质定理时;一定要弄清题设和结论;切莫混淆.(3)3平行线的判定与性质的联系与区别(4)区别:性质由形到数;用于推导角的关系并计算;判定由数到形;用于判定两直线平行.(5)联系:性质与判定的已知和结论正好相反;都是角的关系与平行线相关.(6)4辅助线规律;经常作出两平行线平行的直线或作出联系两直线的截线;构造出三类角平行线之间的距离(1)平行线之间的距离(2)从一条平行线上的任意一点到另一条直线作垂线;垂线段的长度叫两条平行线之间的距离.(3)2平行线间的距离处处相等第四节平移生活中的平移现象1、平移的概念2、在平面内;把一个图形整体沿某一的方向移动;这种图形的平行移动;叫做平移变换;简称平移.3、2、平移是指图形的平行移动;平移时图形中所有点移动的方向一致;并且移动的距离相等.4、3、确定一个图形平移的方向和距离;只需确定其中一个点平移的方向和距离平移的性质②新图形中的每一点;都是由原图形中的某一点移动后得到的;这两个点是对应点.连接各组对应点的线段平行且相等作图----平移变换。

北师大版七年级数学下册《二章 相交线与平行线 1 两条直线的位置关系 对顶角、余角和补角》公开课教案_11

北师大版七年级数学下册《二章 相交线与平行线  1 两条直线的位置关系  对顶角、余角和补角》公开课教案_11

北师大版义务教育课程标准实验教科书七年级下册2.1.1两直线的位置关系第1课时教学设计一、教材分析1、地位作用:本节课研究的相交线是平面内两条直线的两种位置关系中的其中一种情形,学生已经学习了直线、射线、线段和角的有关知识,因此,本节课是在学生已有知识和经验的基础上,来进一步研究平面内两条直线相交的情形。

在本节课中首先探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;为接下来研究两条直线被第三条直线所截的情形,即同位角、内错角、同旁内角等概念的学习作了最基本的准备。

同时是后续学习垂直的基础。

2、目标和目标解析:1.理解邻补角和对顶角的概念;2.掌握“对顶角相等”的性质;3.理解对顶角相等的说理过程;4.经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力;5.通过师友互助、小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣。

3、教学重、难点教学重点:邻补角、对顶角的概念,对顶角的性质与应用。

教学难点:对顶角相等的性质的探索。

突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。

二、教学准备:多媒体课件、导学案、剪刀,纸。

三、教学过程教学内容师生活动设计意图一、创设情景,引入新知问题:在我们的生活的世界中,蕴涵着大量的相交线和平行线,大家对它们也不陌生,(播放图片)请找出图片中的相交线、平行线。

由此引入本节的主要内容。

(板书)课题学生观察图片,获得感性认识.让学生知道,相交线、平行线的概念是从实物中抽象出来的,通过学生熟悉的事物,激发学生的学习兴趣。

二、小组合作,探究新知1. 观察剪刀剪布的过程,引入两条相交直线所成的角问题1:张开地剪刀给人以什么形象?(出示一把张开的剪刀),张开的剪刀可看作两条相交直线。

(教师可以同时在黑板上画出几何图形)在用剪刀剪布的过程中,用力握紧把手引发了剪刀张角的变化,表演剪布过程,让学生仔细观察,提出问题问题2:两个把手之间的的角发生了什么变化?剪刀刀刃张开的口又怎么变化?握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.2.认识邻补角和对顶角,探索它们性质(1)角的位置关系探究画直线AB、CD相交于点O问题:1 、两条相交直线.形成的小于平角的角有几个?2、两两相配共组成几对角?3、各对角存在怎样的位置关系?按位置关系对他们怎样进行分类?4、各对角的度数有什么关系?学生观察、思考、回答问题学生观察、思考、回答,得出结论学生思考并在小组内交流,全班交流.由实际问题引导学生初步感知相交线形成的角及特点,同时明确本节课要学习的内容用现实生活中的例子引出两线相交所成角的问题,自然而贴切,同时在这个过程中,让学生对两线相交所成角的关系有了初步的认识,这就为研究对顶角相等作了铺垫三.细心观察,归纳定义1、探究邻补角的定义问题:(1)∠1与∠2有怎样的位置关系?(2)∠1与∠2的顶点有什么特点?(3)∠1与∠2的边所在的位置有什么特点?邻补角定义:∠1和∠2有一条公共边OA,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。

初中数学知识归纳平行线与相交线

初中数学知识归纳平行线与相交线

初中数学知识归纳平行线与相交线平行线与相交线是初中数学中的基础概念,它们在几何学和代数学中都有重要应用。

了解这些概念,对于学习几何学和解决与直线相关的问题非常有帮助。

本文将对平行线和相交线的概念、性质和应用进行归纳总结。

一、平行线的定义和性质平行线指在同一个平面内,永远不相交的两条直线。

平行线的定义可以从两个方面进行解释:点线距离相等和夹角相等。

1.1 点线距离相等如果两条直线上的任意一点到另一条直线的距离都相等,那么这两条直线是平行线。

1.2 夹角相等如果两条直线之间的夹角相等,那么这两条直线是平行线。

平行线的性质包括以下几点:1.3 平行线不会相交由于平行线的定义,它们在同一个平面内永远不会相交,即使无限延长也不会相交。

1.4 平行线与平面的关系在一个平面上,与给定直线平行的直线存在无数条。

1.5 平行线的判定常用的判定方法包括:点线距离相等、夹角相等、平行线的等价定义等。

二、相交线的定义和性质相交线指在同一个平面内相交的两条直线。

相交线的性质如下:2.1 直线交于一点根据直线的定义,一条直线与另一条直线一定相交于一个点。

2.2 夹角的特性两条相交直线之间会形成两对相对的夹角:相邻角和对顶角。

相邻角指的是两条直线之间有一个公共点,并且在该公共点上有一条共同的边的角,它们是相互独立的。

对顶角指的是两条直线之间有一个公共点,并且在该公共点上没有共同的边的角,它们是相等的。

2.3 相交线的性质相交线的性质还包括垂直线和角平分线。

垂直线是指两条直线的夹角为90度,垂直于另一条直线。

角平分线是指将一个角分成两个相等角的直线。

三、平行线与相交线的应用平行线与相交线的概念在数学中有广泛的应用,特别是在几何学和代数学中。

3.1 平行线的应用在几何学中,平行线的性质用于证明和构造各种定理。

例如,平行线截割同一直线上的两个平行线段,可以得到相似三角形。

基于这一原理,我们可以用相似三角形的性质来解决各种问题。

此外,平行线还与平行四边形和直角梯形等特殊四边形的性质相关。

初中数学-平行线与相交线

初中数学-平行线与相交线

F A D
O B E
练习3:下列命题是真命题的有( C, E, G ) A、相等的角是对顶角; B、不是对顶角的角不相等; C、对顶角必相等; D、有公共顶点的角是对顶角; E 、邻补角的和一定是180°; F、互补的两个角一定是邻补角; G、两条直线相交,只要其中一个角的大小确 定了,那么另外三个角的大小就确定了。
随堂 练习
3、垂直与垂线
(1)概念:两条直线相交形成一个直角时称两 条直线垂直,其中一条直线是另一条的垂线, 交点叫垂足。 (2)垂线的性质:在同一平面内,经过一点有 且只有一条直线与已知直线垂直。
(3)点到直线的距离:
连接直线外一点与直线上各点的所有线段中, 垂线段最短。简称:垂线段最短。
直线外一点到此直线的垂线段的长度叫做点到 直线的距离。
例题3:如图,在宽18米、长32米的长方形草地ABCD的中 间有一条宽2米的曲折的小路,你能否算出草地的面积?
A D
解:小路边沿的两条曲线,因小 路宽度的一致,形状、长度是完 全一样的,故可以将其中的一条 经过平移与另一条重合。 利用平移,两条曲线重合,将 中间的小路“挤”没了!小路 两边的草地重新“拼接”成一 个新的长方形,此长方形只是 比原长方形一边短了2米。
3 4 O' O 1 2 A B
祝大家学习愉快!
A D F C
B E
∴ EF// BC。 (平行于同一条直线的两条直线互相平行)
例题2:如图,EF⊥AB,CD⊥AB,∠EFB=∠GDC, A 求证:∠AGD=∠ACB。
证明: ∵ EF⊥AB,CD⊥AB (已知) ∴ AD∥BC ∴ ∠EFB= ∠DCB (两直线平行,同位角相等) ∵ ∠EFB=∠GDC (已知) ∴ ∠DCB=∠GDC (等量代换)

相交线和平行线知识点

相交线和平行线知识点

平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要注意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。

相等的两个角互为对顶角。

2、垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

注:距离指的是垂线段的长度,而不是这条垂线段的本身。

所以,如果在判断时,若没有“长度”两字,则是错误的。

4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。

注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。

沪科版七年级下册数学课件 第10章 相交线、平行线与平移 第1课时 平行线的概念、基本性质及三线八角

沪科版七年级下册数学课件 第10章 相交线、平行线与平移 第1课时 平行线的概念、基本性质及三线八角

B. ∠3
23
45
C. ∠4
D. ∠5
归纳总结 变式图形:下图中的∠1 与∠2 都是内错角关系.
1
1
12
2
2
2
1
图形特征:在形如字母“Z”的图形中有内错角.
三、同旁内角的概念
活动3 观察∠4 与∠5 的位置关系
① 在直线 EF 的同旁
② 在直线 AB、CD 之间
E1 2
B
同旁内角
A
34
4
65
5
C
第10章 相交线、平行线 与平移
10.2 平行线的判定
第1课时 平行线的概念、基本事实及三线八角
回顾与思考 问题 前面我们学过两条直线的什么位置关系? 两条直线相交 (其中垂直是相交的特殊情形).
生活中两条直线除了相交以外,还有什么其他的 情形呢?下面我们一起来体会一下.
摩托车在公路上奔驰
国旗上的线条
解: 因为 a∥b,b∥c,所以 a∥c.
( 如果两条直线都与第三条直线平行,那么
这两条直线互相平行 )
因为 c∥d,所以 a∥d.
( 如果两条直线都与第三条直线平行,那么
这两条直线互相平行 )
生活中的数学:三线八角手势记忆法
同位角
内错角
同旁内角
平行线 的概念
平行线 及三线 八角
平行线 的性质
三线八角
合作与交流: (1) 经过点 C 能画出几条直线? 无数条
(2) 与直线 AB 平行的直线有几条? 无数条
·C
a
A· ·B
·D
b
(3) 经过点 C 能画出几条直线与直线 AB 平行?
1条 (4) 过点 D 画一条直线与直线 AB 平行,与 (3) 中所画

2022年全国中考数学试题真题汇编 相交线与平行线(一)

2022年全国中考数学试题真题汇编  相交线与平行线(一)

2022年全国中考数学试题真题汇编相交线与平行线(一)一、单选题1.将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为()A.70°B.75°C.80°D.85°【来源】贵州省毕节市2022年中考数学真题【答案】B【解析】【分析】利用三角形外角性质或者三角形内角和以及平行线的性质解题即可.【详解】解:如图,,∠=︒∠=︒360445∴∠=︒-︒-︒=︒,2180604575直尺上下两边互相平行,1=2=75∴∠∠︒,故选:B.【点睛】本题主要考查一副三角板多对应的角度以及平行线的性质,本题难度小,解法比较灵活.2.如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是()A.15°B.30°C.45°D.60°【来源】山东省潍坊市2022年中考数学真题【答案】B【解析】【分析】作CD⊥平面镜,垂足为G,根据EF⊥平面镜,可得CD//EF,根据水平线与底面所在直线平行,进而可得夹角α的度数.【详解】解:如图,作CD⊥平面镜,垂足为G,⊥EF⊥平面镜,⊥CD//EF,⊥⊥CDH=⊥EFH=α,根据题意可知:AG⊥DF,⊥⊥AGC=⊥CDH=α,⊥⊥AGC=α,⊥⊥AGC12=∠AGB12=⨯60°=30°,⊥α=30°.故选:B.【点睛】本题考查了入射角等于反射角问题,解决本题的关键是法线CG 平分⊥AGB . 3.如图,直线//,1130a b ∠=︒,则2∠等于( )A .70︒B .60︒C .50︒D .40︒【来源】山东省淄博市2022年中考数学试题【答案】C【解析】【分析】如图,由题意易得⊥2+⊥3=180°,⊥1=⊥3,然后问题可求解.【详解】解:如图所示:⊥//a b ,⊥⊥2+⊥3=180°,⊥31130∠=∠=︒,⊥250∠=︒;故选C .【点睛】本题主要考查平行线的性质及对顶角的定义,熟练掌握平行线的性质及对顶角的定义是解题的关键.4.如图,//m n ,其中140∠=︒,则2∠的度数为( )A .130︒B .140︒C .150︒D .160︒【来源】重庆市数学试题【答案】B【解析】【分析】根据两直线平行同旁内角互补,可求出2∠的对顶角即可.【详解】解:如图://m n ,13180∠+∠=︒,3140∴∠=︒,2,3∠∠互为对顶角;23140∴∠=∠=︒,故选:B .【点睛】本题考查了平行线的性质,对顶角、解题的关键是:利用平行线的性质得出同旁内角互补,再利用对顶角相等即可求解.5.如图,直线12l l //,直线3l 交1l 于点A ,交2l 于点B ,过点B 的直线4l 交1l 于点C .若350∠=︒,123240∠+∠+∠=︒,则4∠等于( )A .80︒B .70︒C .60︒D .50︒【来源】内蒙古包头市、巴彦淖尔市2022年中考数学真题【答案】B【解析】根据平行线性质计算角度即可.【详解】解:⊥12l l //,350∠=︒,⊥1=18050130∠︒-︒=︒,⊥123240∠+∠+∠=︒,⊥2=240-180=60∠︒︒,⊥4=1802180605070BAC ACB ∠∠=︒-∠-∠=︒-︒-︒=︒,故选:B .【点睛】本题主要考查平行线性质,熟练识别同位角、内错角,同旁内角是解决本题的关键. 6.如图,在ABC 中,50B ∠=︒,70C ∠=︒,直线DE 经过点A ,50DAB ∠=︒,则EAC ∠的度数是( )A .40°B .50°C .60°D .70°【来源】内蒙古呼和浩特市2022年中考数学真题【答案】D【解析】【分析】根据B DAB ∠=∠可判断//DE BC ,再利用两直线平行内错角相等即可得出结论.【详解】50,50B DAB ∠=︒∠=︒,直线DE 经过点A ,//DE BC ∴70C ∠=︒70C EAC ∴∠=∠=︒故选:D .本题考查了平行线的判定和性质,熟练掌握平行线的判定定理和性质定理是解题关键.7.如图,下列两个角是同旁内角的是( )A .1∠与2∠B .1∠与3∠C .1∠与4∠D .2∠与4∠【来源】广西贺州市2022年中考数学真题【答案】B【解析】【分析】根据同旁内角的概念求解即可.【详解】解:由图可知,⊥1与⊥3是同旁内角,⊥1与⊥2是内错角,⊥4与⊥2是同位角,故选:B .【点睛】本题考查了同旁内角的概念,属于基础题,熟练掌握同位角,同旁内角,内错角的概念是解决本题的关键.8.如图,//AB CD ,EF CD ⊥于点F ,若150BEF ∠=︒,则ABE ∠=( )A .30B .40︒C .50︒D .60︒【来源】山东省东营市2022年中考数学真题【解析】【分析】过点E 作EH ⊥CD ,由此求出90HEF ∠=︒,得到60BEH ∠=︒,根据平行线的推论得到AB ⊥EH ,利用平行线的性质求出答案.【详解】解:过点E 作EH ⊥CD ,如图,⊥180DFE HEF ∠+∠=︒,⊥EF CD ⊥,⊥90DFE ∠=︒,⊥90HEF ∠=︒,⊥150BEF ∠=︒,⊥60BEH ∠=︒,⊥EH ⊥CD ,//AB CD ,⊥AB ⊥EH ,⊥ABE ∠=60BEH ∠=︒,故选:D .【点睛】此题考查平行线的推论,平行线的性质,正确引出辅助线、熟记定理是解题的关键. 9.如图,//a b ,M ,N 分别在a ,b 上,P 为两平行线间一点,那么123∠+∠+∠= ( )A .180︒B .270︒C .360︒D .540︒【来源】初中数学【答案】C【解析】【分析】 首先过点P 作P A ⊥a ,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.【详解】解:过点P 作P A ⊥a ,则a ⊥b ⊥P A ,⊥⊥1+⊥MP A =180°,⊥3+⊥NP A =180°,⊥⊥1+⊥MPN +⊥3=360°.故选:C .【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.10.如图,//a b ,160∠=︒,则2∠的度数为( )A .90︒B .100︒C .110︒D .120︒【来源】河南省2022年中考数学真题【答案】D【解析】【分析】先利用“两直线平行,同位角相等”求出⊥3,再利用邻补角互补求出⊥2.【详解】解:如图,⊥a ⊥b ,⊥⊥1=⊥3=60°,⊥⊥2=180°-⊥3=120°,【点睛】本题考查了平行线的性质和邻补角互补的性质,解决本题的关键是牢记相关概念,本题较基础,考查了学生的基本功.11.一把直尺与一块直角三角板按如图方式摆放,若⊥1=47°,则⊥2=()A.40°B.43°C.45°D.47°【来源】浙江省台州市2022年中考数学真题【答案】B【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,⊥直尺的两边互相平行,∠=∠=︒,⊥3147∠=︒-∠=︒,⊥490343∠=∠=︒,⊥2443【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.12.如图,将一块含有60︒角的直角三角板放置在两条平行线上,若145∠=︒,则2∠为( )A .15︒B .25︒C .35︒D .45︒【来源】湖北省随州市2022年中考数学真题【答案】A【解析】【分析】过60°角顶点作直线平行于已知直线,然后根据平行线的性质推出⊥1+⊥2=60°,从而求出⊥2即可.【详解】如图,已知//a b ,作直线//c a ,则//c b ,则⊥1=⊥3,⊥2=⊥4,⊥⊥3+⊥4=60°,⊥⊥1+⊥2=60°,⊥⊥2=60°-⊥1=15°,故选:A .【点睛】本题考查平行线的基本性质,理解平行线的性质定理是解题关键.13.一副三角板按如图方式放置,含45︒角的三角板的斜边与含30°角的三角板的长直∠的度数是()角边平行,则αA.10︒B.15︒C.20︒D.25︒【来源】山东省菏泽市2022年中考数学真题【答案】B【解析】【分析】利用两直线平行,内错角相等传递等角后计算即可【详解】如图,⊥AB∥DE,⊥⊥BAE=⊥E=30°,∠=⊥CAB-⊥BAE= 45°-30°=15°,⊥α故选B【点睛】本题考查了平行线的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.14.如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠的度数为()∠=︒时,DCN40ABMA .40︒B .50︒C .60︒D .80︒【来源】四川省达州市2022年中考数学真题【答案】B【解析】【分析】过点B 作BE OM ⊥,过点C 作CE ON ⊥,BE 与CE 相交于点E ;根据余角性质计算得CBE ∠;根据平行线性质,得BCD ∠,结合角平分线性质,计算得DCE ∠;再根据余角性质计算,即可得到答案.【详解】如下图,过点B 作BE OM ⊥,过点C 作CE ON ⊥,BE 与CE 相交于点E⊥40ABM ∠=︒,CBE ABE ∠=∠⊥9050CBE ABE ABM ∠=∠=︒-∠=︒⊥100ABC ABE CBE ∠=∠+∠=︒⊥CD 与AB 平行⊥18080BCD ABC ∠=︒-∠=︒⊥BCE DCE ∠=∠,BCE DCE BCD ∠+∠=∠ ⊥1402BCE DCE BCD ∠=∠=∠=︒ ⊥9050DCN DCE ∠=︒-∠=︒故选:B .【点睛】本题考查了平行线、角平分线、垂线、余角的知识;解题的关键是熟练掌握平行线的性质,从而完成求解.15.将一副直角三角板按如图方式摆放,若直线//a b ,则1∠的大小为( )A .45︒B .60︒C .75︒D .105︒【来源】湖南省岳阳市2022年中考数学真题【答案】C【解析】【分析】根据平行线的性质解题.【详解】⊥a ⊥b⊥()1+45+60=180∠︒︒︒(两直线平行,同旁内角互补)⊥1=75︒∠.故选:C .【点睛】本题考查平行线的性质.两直线平行,同旁内角互补.16.如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连接PT ,则( )A .PT PQ ≥2B .PT PQ ≤2C .PT PQ ≥D .PT PQ ≤【来源】浙江省杭州市2022年中考数学真题【答案】C【解析】【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,PQ ∴是垂线段,即连接直线外的点P 与直线上各点的所有线段中距离最短, 当点T 与点Q 重合时有PQ PT =,综上所述:PT PQ ≥,故选:C .【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.17.如图,直线DE 过点A ,且//DE BC .若60B ∠=︒,150∠=︒,则2∠的度数为()A .50︒B .60︒C .70︒D .80︒【来源】新疆维吾尔自治区、生产建设兵团2022年中考数学试题【答案】C【解析】【分析】根据两直线平行同旁内角互补求出⊥BAE ,即可求出⊥2.【详解】⊥//DE BC ,⊥180B BAE ∠+∠=︒,⊥180120BAE B ∠=︒-∠=︒,即:12120∠+∠=︒,⊥2120170∠=︒-∠=︒,故选:C .【点睛】本题考查平行线的性质,熟记平行线的基本性质是解题关键.18.如图,//AB CD ,//BC DE ,若7228B '∠=︒,那么D ∠的度数是( )A .7228'︒B .10128'︒C .10732'︒D .12732'︒【来源】山东省济宁市2022年中考数学真题【答案】C【解析】【分析】先根据//AB CD 求出C ∠的度数,再由//BC DE 即可求出D ∠的度数.【详解】解:⊥//AB CD ,7228B '∠=︒,⊥7228C B '∠=∠=︒,⊥//BC DE ,⊥180D C ∠+∠=︒,⊥18010732D C '∠=︒-∠=︒,故选:C .【点睛】本题主要考查平行线的性质以及角度的计算,熟记平行线的性质定理是解题的关键. 19.如图,直线c 与直线a 、b 都相交.若//a b ,155∠=︒,则2∠=( )A .60︒B .55︒C .50︒D .45︒【来源】云南省2022年中考数学真题【答案】B【解析】【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【详解】解:如图,1=55∠︒,3=55,∴∠︒⊥a ⊥b ,⊥3=55°,⊥⊥2=⊥3=55°.故选B .【点睛】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.20.如图,AB ⊥CD ⊥EF ,若⊥ABC =130°,⊥BCE =55°,则⊥CEF 的度数为()A .95°B .105°C .110°D .115°【来源】2022年山东省聊城市中考数学真题试卷【答案】B【解析】【分析】由//AB CD 平行的性质可知ABC DCB ∠=∠,再结合//EF CD 即可求解.【详解】解://AB CD130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B .【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质.21.如图,点O 在直线AB 上,OC OD ⊥.若120AOC ∠=︒,则BOD ∠的大小为( )A .30B .40︒C .50︒D .60︒【来源】北京市2022年中考数学真题试题【答案】A【解析】【分析】由题意易得60COB ∠=︒,90COD ∠=︒,进而问题可求解.【详解】解:⊥点O 在直线AB 上,OC OD ⊥,⊥180AOC COB ∠+∠=︒,90COD ∠=︒,⊥120AOC ∠=︒,⊥60COB ∠=︒,⊥9030BOD COB ∠=︒-∠=︒;故选A .【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.22.如图,在⊥ABC 中,⊥A =70°,⊥C =30°,BD 平分⊥ABC 交AC 于点D ,DE ⊥AB ,交BC 于点E ,则⊥BDE 的度数是( )A .30°B .40°C .50°D .60°【来源】江苏省宿迁市2022年中考数学真题【答案】B【解析】【分析】由三角形的内角和可求⊥ABC ,根据角平分线可以求得⊥ABD ,由DE //AB ,可得⊥BDE =⊥ABD 即可.【详解】解:⊥⊥A +⊥C =100°⊥⊥ABC =80°,⊥BD 平分⊥BAC ,⊥⊥ABD =40°,⊥DE ⊥AB ,⊥⊥BDE =⊥ABD =40°,故答案为B .【点睛】本题考查三角形的内角和定理、角平分线的意义、平行线的性质,灵活应用所学知识是解答本题的关键.23.阅读下列材料,其⊥~⊥步中数学依据错误的是( ) 如图:已知直线//b c ,a b ⊥,求证:a c ⊥.A .⊥B .⊥C .⊥D .⊥【来源】湖北省荆州市2022年中考数学真题【答案】C【解析】【分析】根据垂直的定义和平行线的性质进行判断即可【详解】解:证明:⊥⊥a b ⊥(已知)⊥190∠=︒(垂直的定义)⊥又⊥//b c (已知)⊥⊥12∠=∠(两直线平行,同位角相等)⊥2190∠=∠=︒(等量代换)⊥⊥a c ⊥(垂直的定义).所以错在⊥故选:C【点睛】本题考查了垂直的定义和平行线的性质,熟练掌握平行线的性质是解题的关键. 24.如图,将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为()A .42°B .48°C .52°D .60°【来源】四川省眉山市2022年中考数学真题【答案】A【解析】【分析】先通过作辅助线,将⊥1转化到⊥BAC ,再利用直角三角形两锐角互余即可求出⊥2.【详解】解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A ,由矩形对边平行,可得⊥1=⊥BAC ,因为BC ⊥AB ,⊥⊥BAC +⊥2=90°,⊥⊥1+⊥2=90°,因为⊥1=48°,⊥⊥2=42°;故选:A .【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质等内容,要求学生能根据题意理解其中的隐含关系,解决本题的关键是对角进行的转化,因此需要牢记并能灵活应用相关性质等.25.如图,//AB CD ,EF 分别与AB ,CD 交于点G ,H ,100AGE ∠=°,则DHF ∠的度数为( )A .100︒B .80︒C .50︒D .40︒【来源】湖南省长沙市2022年中考试数学真题【答案】A【解析】【分析】先根据平行线的性质可得100CHE AGE ∠=∠=︒,再根据对顶角相等即可得.【详解】解://,100AB CD AGE ∠=︒,100CHE AGE ∴∠=∠=︒,100CHE DHF ∴∠=∠=︒(对顶角相等),故选:A .【点睛】本题考查了平行线的性质、对顶角相等,熟练掌握平行线的性质是解题关键. 26.如图,直线//,DE BF Rt ABC 的顶点B 在BF 上,若20CBF ∠=︒,则ADE ∠=()A .70︒B .60︒C .75︒D .80︒【来源】甘肃省武威市2022年中考数学试卷【答案】A【解析】【分析】先求出CBF ∠的余角⊥ABF ,利用平行线性质可求⊥ADE .【详解】解:⊥Rt ABC ,20CBF ∠=︒⊥⊥ABC =90°,⊥ABF =90°-⊥CBF =90°-20°=70°,⊥//DE BF ,⊥⊥ADE =⊥ABF =70°.故选择A .本题考查余角性质,平行线性质,掌握余角性质,平行线性质是解题关键. 27.某同学的作业如下框,其中⊥处填的依据是( )A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补 【来源】浙江省金华市2022年中考数学真题【答案】C【解析】【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知⊥3和⊥4是同位角关系,即可选出答案.【详解】解:⊥12//l l ,⊥34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.28.设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-【来源】安徽省2022年中考数学真题【答案】D【解析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b ac =+=时,c b a >>,故A 错误; B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误; C .4()a b b c -=-整理可得1455b a c =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确; 故选:D .【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.29.如图,直线a //b ,148∠︒=,则2∠等于( )A .24°B .42°C .48°D .132°【来源】2022年广西贺州市中考数学试卷【答案】C【解析】【分析】根据两直线平行,内错角相等求解即可.【详解】解:⊥直线a ⊥b ,⊥2148∠=∠=︒.故选:C .【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,内错角相等,解题关键是熟记平行线的性质,准确识图.二、填空题30.如图,直线l 1,l 2相交于点O ,⊥1=70°,则⊥2=_____°.【来源】2022年广西桂林市中考数学真题【答案】70【解析】【分析】根据对顶角的性质解答即可.【详解】解:⊥⊥1和⊥2是一对顶角,⊥⊥2=⊥1=70°,故答案为:70.【点睛】本题主要考查了对顶角,熟练掌握对顶角相等是解答本题的关键.31.如图,直线a⊥b,直线c与直线a,b相交,若⊥1=54°,则⊥3=________度.【来源】2022年湖北省孝感市中考数学试卷【答案】54【解析】【分析】根据对顶角相等和平行线的性质“两直线平行同位角相等”,通过等量代换求解.【详解】因为a⊥b,∠=∠,所以23所以31∠=∠,因为154∠=︒,所以354∠=︒,故答案为:54.【点睛】本题考查了平行线的性质和对顶角的性质,熟练掌握对顶角相等,两直线平行同位角相等、内错角相等,加以灵活运用求解相关角的度数是解题关键.32.请写出命题“如果a b >,那么0b a -<”的逆命题:________.【来源】2022年江苏省无锡市中考数学真题【答案】如果0b a -<,那么a b >【解析】【分析】根据逆命题的概念解答即可.【详解】解:命题“如果a b >,那么0b a -<”的逆命题是“如果0b a -<,那么a b >”, 故答案为:如果0b a -<,那么a b >.【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.33.如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西35︒方向,则ACB ∠的大小是_____.【来源】2022年湖北省宜昌市中考数学真题【答案】85︒##85度【分析】∥交AB于F,根据方位角的定义,结合平行线性质即可求解.过C作CF DA【详解】解:C岛在A岛的北偏东50︒方向,DAC∴∠=︒,50C岛在B岛的北偏西35︒方向,∴∠=︒,35CBE∥交AB于F,如图所示:过C作CF DADA CF EB∴∥∥,∴∠=∠=︒∠=∠=︒,50,35FCA DAC FCB CBEACB FCA FCB∴∠=∠+∠=︒,85故答案为:85︒.【点睛】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.34.如图6,已知直线a⊥b,⊥BAC=90°,⊥1=50°,则⊥2=______.【来源】2022年四川省乐山市中考数学真题【答案】40°##40度根据平行线的性质可以得到⊥3的度数,进一步计算即可求得⊥2的度数.【详解】解:⊥a ⊥b ,⊥⊥1=⊥3=50°,⊥⊥BAC =90°,⊥⊥2+⊥3=90°,⊥⊥2=90°-⊥3=40°,故答案为:40°.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答. 35.如图,已知a b ∥,1110∠=︒,则2∠的度数为________.【来源】2022年四川省眉山市中考数学真题【答案】110︒##110度【解析】【分析】根据题意,由平行线的性质“两直线平行,同位角相等”可知3=1∠∠,再借助3∠与2∠为对顶角即可确定2∠的度数.【详解】解:如下图,⊥a b ∥,1110∠=︒,⊥3=1110∠∠=︒,⊥3∠与2∠为对顶角,⊥2=3110∠∠=︒.故答案为:110︒.【点睛】此题考查了对顶角的性质和平行线的性质,熟记“两直线平行,同位角相等”是解题的关键.36.将一副三角板如图摆放,则______⊥______,理由是______.【来源】2022年甘肃省兰州市中考数学试卷(A 卷)【答案】 BC DE 内错角相等,两直线平行【解析】【分析】根据三角板的角度可知90BCA DEF ∠=∠=︒,根据内错角相等,两直线平行判断即可.【详解】解:一副三角板如图摆放,⊥90BCA DEF ∠=∠=︒,⊥//BC DE (内错角相等,两直线平行),故答案为:BC ;DE ;内错角相等,两直线平行.本题考查了平行线的判定,熟知平行线的判定定理是解本题的关键.37.如图,直线//a b ,若128∠=︒,则2∠=____.【来源】2022年四川省绵阳市中考真题数学试卷【答案】152︒【解析】【分析】利用平行线的性质可得3128∠=∠=︒,再利用邻补角即可求2∠的度数.【详解】解:如图,//a b ,128∠=︒,3128∴∠=∠=︒,21803152∴∠=︒-∠=︒.故答案为:152︒.【点睛】本题主要考查平行线的性质,解答的关键是结合图形分析清楚角与角之间的关系. 38.“如果a b =,那么a b =”的逆命题是___________.【来源】江苏省苏州市数学考试【答案】如果a b =,那么a b =【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b =,那么a b =”的逆命题是:“如果a b =,那么a b =”,故答案为:如果a b =,那么a b =.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义.39.如图,⊥ABC 沿BC 所在直线向右平移得到⊥DEF ,若EC =2,BF =8,则BE =___.【来源】辽宁省大连市数学试题【答案】3【解析】【分析】利用平移的性质解决问题即可.【详解】解:由平移的性质可知,BE =CF ,⊥BF =8,EC =2,⊥BE +CF =8﹣2=6,⊥BE =CF =3,⊥平移的距离为3,故答案为:3.【点睛】本题考查平移的性质,解题的关键是熟练掌握平移变换的性质,属于中考常考题型. 40.如图,直线a ,b 被直线c 所截,已知//a b ,1130∠=︒,则2∠为______度.【来源】湖南省湘潭市2022年中考数学真题【答案】50【解析】【详解】解:如图,⊥//a b ,1130∠=︒,⊥⊥3=130°,又⊥⊥2+⊥3=180°,⊥⊥2=180°-⊥3=180°-130°=50°.故答案为:50.【点睛】此题主要考查了平行线的性质以及邻补角,熟练掌握它们的性质是解答此题的关键. 41.如图,直线//AB CD ,一块含有30°角的直角三角尺顶点E 位于直线CD 上,EG 平分CEF ∠,则1∠的度数为_________°.【来源】辽宁省阜新市2022年中考数学试题【答案】60【解析】【分析】根据角平分线的定义可求出CEG ∠的度数,即可得到CEF ∠的度数,再利用平行线的性质即可解决问题.【详解】一块含有30°角的直角三角尺顶点E 位于直线CD 上,30FEG ∴∠=︒, EG 平分CEF ∠,30CEG FEG ∴∠=∠=︒,60∴∠=∠+∠=︒,CEF CEG FEGAB CD,//∴∠=∠=︒.CEF160故答案为:60.【点睛】本题考查了角平分线定义和平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.42.如图,直线a,b被直线c所截,当⊥1 ___⊥2时,a//b.(用“>”,“<”或“=”填空)【来源】2022年广西桂林市中考数学真题【答案】=.【解析】【分析】由图形可知⊥1 与⊥2是同位角,利用直线平行判定定理可以确定⊥1 =⊥2,可判断a//b.【详解】解:⊥直线a,b被直线c所截,⊥1与⊥2是同位角,⊥当⊥1 =⊥2,a//b.故答案为=.【点睛】本题考查平行线判定,掌握平行线判定判定定理是解题关键.43.如图,AB⊥CD,CB平分⊥ECD,若⊥B=26°,则⊥1的度数是________.【来源】广西贵港市2022年中考数学真题【答案】52︒【分析】根据平行线的性质得出26B BCD ∠=∠=︒,根据角平分线定义求出252ECD BCD ∠=∠=︒,再根据平行线的性质即可得解.【详解】解://AB CD ,26B ∠=︒,26BCD B ∴∠=∠=︒, CB 平分ECD ∠,252ECD BCD ∴∠=∠=︒,//AB CD ,152ECD ∴∠=∠=︒,故答案为:52︒.【点睛】本题考查了平行线的性质和角平分线定义的应用,能根据平行线的性质求出B BCD ∠=∠是解此题的关键.44.如图,直线//,160a b ∠=︒,则2∠的度数是______︒.【来源】广西柳州市2022年中考数学真题试卷【答案】60【解析】【分析】根据平行线的性质可得⊥1=⊥3,根据对顶角相等即可求得⊥2的度数.【详解】⊥a ⊥b ,如图⊥⊥3=⊥1=60゜⊥⊥2=⊥3故答案为:60【点睛】本题考查了平行线的性质、对顶角的性质,掌握这两个性质并熟练运用是关键. 45.如图,已知//AB CD ,BC 是ABD ∠的平分线,若264∠=︒,则3∠=________.【来源】湖南省张家界市2022年中考数学真题试题【答案】58°【解析】【分析】先根据对顶角的性质可得⊥BDC =264∠=︒,然后根据平行线的性质求得⊥ABC ,最后根据角平分线的定义求解即可.【详解】解:⊥⊥BDC 和⊥2是对顶角⊥⊥BDC =264∠=︒⊥//AB CD⊥⊥BDC +⊥ABD =180°,即⊥ABD =116°⊥BC 是ABD ∠的平分线 ⊥⊥3=⊥1=12⊥ABD =58°.故填:58°.本题主要考查了平行线的性质、对顶角相等以及角平分线的相关知识,掌握平行线的性质成为解答本题的关键.46.如图,AB 与CD 相交于点O ,OE 是AOC ∠的平分线,且OC 恰好平分EOB ∠,则AOD ∠=_______度.【来源】湖南省益阳市2022年中考数学真题【答案】60【解析】【分析】先根据角平分线的定义、平角的定义可得60COB ∠=︒,再根据对顶角相等即可得.【详解】解:设2AOC x ∠=, OE 是AOC ∠的平分线,12AOE EOC AOC x ∴∠=∠=∠=, OC 平分EOB ∠,COB EOC x ∴∠=∠=,又180AOE EOC COB ∠+∠+∠=︒,180x x x ∴++=︒,解得60x =︒,即60COB ∠=︒,由对顶角相等得:60AOD COB ∠=∠=︒,故答案为:60.【点睛】本题考查了角平分线的定义、平角的定义、对顶角相等,熟练掌握角平分线的定义是解题关键.47.如图,点O ,C 在直线n 上,OB 平分AOC ∠,若//m n ,156∠=︒,则2∠=_______________.【来源】广西贵港市2022年中考数学真题【答案】62°【解析】【分析】根据//m n 和OB 平分AOC ∠,计算出BOC ∠的度数,便可求解.【详解】解:如图:∵//m n∴156AON ∠=∠=, 2BOC ∠=∠180124AOC AON ∴∠=-∠=∵OB 平分AOC ∠1622BOC AOC ∴∠=∠= 62BOC ∴∠=故答案为62°【点睛】本题考查平行线性质,以及角平分线性质,属于基础题.三、解答题48.如图,在平行四边形ABCD 中,点E ,F 分别在AD ,BC 上,且ED BF =,连接AF ,CE ,AC ,EF ,且AC 与EF 相交于点O .(1)求证:四边形AFCE 是平行四边形;(2)若AC 平分8FAE AC ∠=,,3tan 4DAC ∠=,求四边形AFCE 的面积. 【来源】2022年广西贺州市中考数学真题【答案】(1)详见解析;(2)24.【解析】【分析】(1)根据一组对边平行且相等的四边形是平行四边形解答;(2)由平行线的性质可得EAC ACF ∠=∠,再根据角平分线的性质解得EAC FAC ∠=∠,继而证明AF FC =,由此证明平行四边形AFCE 是菱形,根据菱形的性质得到14,2AO AC AC EF ==⊥,结合正切函数的定义解得3EO =,最后根据三角形面积公式解答.(1) 证明:四边形ABCD 是平行四边形AD BC AE FC ∴=,∥ED BF =AD ED BC BF -=-,即AE FC =.∴四边形AFCE 是平行四边形.(2)解:AE FC ∥,EAC ACF ∴∠=∠. AC 平分FAE ∠,EAC FAC ∠=∠∴.ACF FAC ∴∠=∠.AF FC ∴=,由(1)知四边形AFCE 是平行四边形,∴平行四边形AFCE 是菱形.14,2AO AC AC EF ∴==⊥,在 Rt AOE △中,34,tan 4AO DAC =∠=, 3EO ∴=. 11S 43622AOE AO EO ∴=⋅=⨯⨯=△ 424AOE AFCE S S ==菱形.【点睛】本题考查平行四边形的判定、菱形的判定与性质、平行线的性质、角平分线的性质、正切函数的定义等知识,是重要考点,难度一般,掌握相关知识是解题关键. 49.如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证:AE DC ∥.【来源】2022年湖北省武汉市中考数学真题【答案】(1)100BAD ∠=︒(2)详见解析【解析】【分析】(1)根据两直线平行,同旁内角互补,即可求解;(2)根据AE 平分BAD ∠,可得50DAE ∠=︒.再由AD BC ∥,可得50AEB DAE ∠=∠=︒.即可求证.(1)解:⊥AD BC ∥,⊥180B BAD ∠+∠=°,⊥80B ∠=︒,⊥100BAD ∠=︒.(2)证明:⊥AE 平分BAD ∠,⊥50DAE ∠=︒.⊥AD BC ∥,⊥50AEB DAE ∠=∠=︒.⊥50BCD ∠=︒,⊥BCD AEB ∠=∠.⊥AE DC ∥.【点睛】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键 50.如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.【来源】湖北省武汉市2022年中考数学真题【答案】见解析【解析】【分析】根据已知条件//AB CD ,B D ∠=∠,得到DCF D ∠=∠,从而得到//AD BC ,即可证明DEF F ∠=∠.【详解】证明:⊥//AB CD ,⊥DCF B ∠=∠.⊥B D ∠=∠,⊥DCF D ∠=∠.⊥//AD BC .⊥DEF F ∠=∠.【点睛】本题考查平行线的性质和判定.平行线的性质:两直线平行,内错角相等.平行线的判定:同位角相等,两直线平行.。

平行线与相交线

平行线与相交线

平行线与相交线在几何学中,平行线与相交线是两个重要的概念。

平行线是指在同一个平面上永远不会相交的直线,而相交线则是指在同一个平面上相交的两条直线。

本文将详细介绍平行线与相交线的性质和特点,并探讨它们在几何学中的应用。

一、平行线的性质1. 定义:平行线是指在同一个平面上永远不会相交的直线。

它们的方向是完全相同的,永远保持平行的关系。

2. 符号表示:通常用符号“||”来表示平行关系。

例如,若两条直线AB和CD平行,则可以表示为AB || CD。

3. 平行线的判定:a) 公理法:如果两条直线分别与第三条直线相交时,所成的内角和是180°,则这两条直线是平行的。

b) 等价判定法:- 如果两条直线的斜率相等且不相交,则这两条直线是平行的。

- 如果两条直线分别垂直于同一条直线,则这两条直线是平行的。

二、相交线的性质1. 定义:相交线是指在同一个平面上相互交叉的两条直线。

相交线总是相交于一点,这个点称为交点。

2. 符号表示:通常用字母P表示交点。

例如,若直线AB与直线CD相交于点P,则可以表示为P = AB ∩ CD。

3. 相交线的性质:a) 相交线所成的相邻内角互补,即两角的和等于180°。

b) 相交线所成的对顶外角相等,即两角的度数相等。

c) 垂直相交线的特殊性质:如果两条相交线相互垂直,则其中一条线上任意一点到另一条线的垂足的线段长度是最短的。

三、平行线与相交线的应用1. 平行线的应用:a) 建筑学中的平行线应用:借助平行线的特性,建筑师能够设计出具有平衡美观感的建筑物。

b) 数学推理中的平行线应用:平行线的性质经常被用于解决几何问题,例如通过证明两条直线平行,可推导出其他性质。

2. 相交线的应用:a) 交通规划中的相交线应用:交叉路口的设计需要合理规划相交线,以确保交通安全和交通流畅。

b) 几何图形的划分应用:在几何图形中,相交线的划分可以将图形分为不同的区域,让问题更易于解决。

综上所述,平行线与相交线是几何学中重要的概念。

专题34相交线与平行线(1) 中考数学真题分项汇编系列2(学生版)

专题34相交线与平行线(1)  中考数学真题分项汇编系列2(学生版)

专题34相交线与平行线(1)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·浙江衢州中考真题)过直线l 外一点P 作直线l 的平行线,下列尺规作图中错误的是( ) A . B .C .D .2.(2020·广西河池中考真题)如图,直线a ,b 被直线c 所截,则∠1与∠2的位置关系是( )A .同位角B .内错角C .同旁内角D .邻补角3.(2020·贵州黔西中考真题)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为( )A .37°B .43°C .53°D .54°4.(2020·山东临沂中考真题)如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒5.(2020·辽宁大连中考真题)如图,ABC 中,60,40,//A B DE BC ︒︒∠=∠=,则AED ∠的度数是( )A .50︒B .60︒C .70︒D .80︒6.(2020·辽宁鞍山中考真题)如图,直线l 1//l 2,点A 在直线l 1上,以点A 为圆心,适当长为半径画弧,分别交直线l 1、l 2于B 、C 两点,连结AC 、BC .若∠ABC =54°,则∠1的大小为()A .36°.B .54°.C .72°.D .73°.7.(2020·浙江金华中考真题)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b ,理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行8.(2020·辽宁朝阳中考真题)如图,四边形ABCO 是矩形,点D 是BC 边上的动点(点D 与点B 、点C不重合),则BAD DOC ADO∠+∠∠的值为( )A .1B .12C .2D .无法确定9.(2020·内蒙古呼伦贝尔中考真题)如图,直线//,AB CD AE CE ⊥于点E ,若120EAB ︒∠=,则ECD ∠的度数是( )A .120°B .100°C .150°D .160°10.(2020·山东滨州中考真题)如图,AB//CD ,点P 为CD 上一点,PF 是∠EPC 的平分线,若∠1=55°,则∠EPD 的大小为( )A .60°B .70°C .80°D .100°11.(2020·四川绵阳中考真题)在螳螂的示意图中,AB ∥DE ,△ABC 是等腰三角形,∠ABC =124°,∠CDE =72°,则∠ACD =( )A .16°B .28°C .44°D .45°12.(2020·四川绵阳中考真题)如图,在四边形ABCD 中,∠A =∠C =90°,DF ∥BC ,∠ABC 的平分线BE 交DF 于点G ,GH ⊥DF ,点E 恰好为DH 的中点,若AE =3,CD =2,则GH =( )A .1B .2C .3D .413.(2020·江苏宿迁中考真题)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=50°,则∠2的度数为( )A .40°B .50°C .130°D .150°14.(2020·辽宁沈阳中考真题)如图,直线//AB CD ,且AC CB ⊥于点C ,若35BAC ∠=︒,则BCD ∠的度数为( )A .65°B .55°C .45°D .35°15.(2020·四川眉山中考真题)一副三角板如图所示摆放,则α∠与β∠的数量关系为( )A .180αβ∠+∠=︒B .225αβ∠+∠=︒C .270αβ∠+∠=︒D .αβ∠=∠16.(2020·江苏南通中考真题)如图,已知AB ∥CD ,∠A =54°,∠E =18°,则∠C 的度数是( )A .36°B .34°C .32°D .30°17.(2020·辽宁营口中考真题)如图,AB ∥CD ,∠EFD =64°,∠FEB 的角平分线EG 交CD 于点G ,则∠GEB 的度数为( )A .66°B .56°C .68°D .58°18.(2020·山东淄博中考真题)如图,在四边形ABCD 中,CD ∥AB ,AC ⊥BC ,若∠B =50°,则∠DCA 等于( )A .30°B .35°C .40°D .45°19.(2020·甘肃金昌中考真题)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是( )A .90︒B .100︒C .120︒D .150︒20.(2020·四川雅安中考真题)下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =21.(2020·山东威海中考真题)如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上.若直线1234//////l l l l 且间距相等,4AB =,3BC =,则tan α的值为( )A .38B .34C .52D .151522.(2020·山东东营中考真题)如图,直线AB CD 、相交于点,O 射线OM 平分,BOD ∠若42AOC ∠=︒,则AOM ∠等于( )A .159B .161C .169D .13823.(2020·海南中考真题)如图,已知//,AB CD 直线AC 和BD 相交于点,E 若70,40ABE ACD ∠=︒∠=︒,则AEB ∠等于( )A .50︒B .60︒C .70︒D .80︒24.(2020·湖南永州中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d 可用公式0021kx y b d k -+=+计算.根据以上材料解决下面问题:如图,C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是( )A .355B .3515-C .6515-D .225.(2020·湖北荆州中考真题)将一张矩形纸片折叠成如图所示的图形,若30CAB ︒∠=,则ACB ∠的度数是( )A .45︒B .55︒C .65︒D .75︒26.(2020·宁夏中考真题)如图摆放的一副学生用直角三角板,3045F C ∠=∠=,,AB 与DE 相交于点G ,当//EF BC 时,EGB ∠的度数是( )A .135°B .120°C .115°D .105°27.(2020·贵州毕节中考真题)将一幅直角三角板(90A FDE ∠=∠=︒,45F ∠=︒,60C ∠=°,点D 在边AB 上)按图中所示位置摆放,两条斜边为EF ,BC ,且//EF BC ,则ADF ∠等于( )A .70︒B .75︒C .80︒D .85︒28.(2020·广西玉林中考真题)下列命题中,其逆命题是真命题的是( )A .对顶角相等B .两直线平行,同位角相等C .全等三角形的对应角相等D .正方形的四个角相等29.(2020·广西玉林中考真题)如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形30.(2020·湖南郴州中考真题)如图,直线,a b 被直线,c d 所截下列条件能判定//a b 的是( )A .13∠=∠B .24180∠+∠=C .45∠=∠D .12∠=∠31.(2020·广东深圳中考真题)一把直尺与30°的直角三角板如图所示,∠1=40°,则∠2=( )A .50°B .60°C .70°D .80°32.(2020·湖南娄底中考真题)如图,将直尺与三角尺叠放在一起,如果128∠=︒,那么2∠的度数为( )A .62°B .56°C .28°D .72°33.(2020·四川宜宾中考真题)如图,M ,N 分别是ABC ∆的边AB ,AC 的中点,若65,45A ANM ∠=︒∠=︒,则B =( )A .20︒B .45︒C .65︒D .70︒34.(2020·湖北省直辖县级单位中考真题)将一副三角尺如图摆放,点E 在AC 上,点D 在BC 的延长线上,//,90,45,60EF BC B EDF A F ∠=∠=︒∠=︒∠=︒,则CED ∠的度数是( )A .15°B .20°C .25°D .30°35.(2020·湖南长沙中考真题)如图,一块直角三角板的60度的顶点A 与直角顶点C 分别在平行线,FD GH上,斜边AB 平分CAD ∠,交直线GH 于点E ,则ECB ∠的大小为( )A .60︒B .45︒C .30︒D .25︒36.(2020·江苏常州中考真题)如图,直线a 、b 被直线c 所截,//a b ,1140∠=︒,则2∠的度数是( )A .30°B .40°C .50°D .60°37.(2020·辽宁抚顺中考真题)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若120∠=︒,则∠2的度数是( )A .15°B .20°C .25°D .40°38.(2020·四川内江中考真题)如图,已知直线//a b ,150∠=︒,则2∠的度数为( )A .140︒B .130︒C .50︒D .40︒39.(2020·湖北随州中考真题)如图,直线12//l l ,直线l 与1l ,2l 分别交于A ,B 两点,若160︒∠=,则2∠的度数是( )A .60︒B .100︒C .120︒D .140︒40.(2020·黑龙江齐齐哈尔中考真题)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A 顺时针旋转,使BC ∥DE ,如图②所示,则旋转角∠BAD 的度数为( )A .15°B .30°C .45°D .60°41.(2020·湖北孝感中考真题)如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为点O .若40BOE ∠=︒,则AOC ∠的度数为( )A .40︒B .50︒C .60︒D .140︒42.(2020·河北中考真题)如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A .0条B .1条C .2条D .无数条43.(2020·北京中考真题)如图,AB 和CD 相交于点O ,则下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1>∠4+∠5D .∠2<∠544.(2020·湖北鄂州中考真题)如图,//a b ,一块含45︒的直角三角板的一个顶点落在其中一条直线上,若165︒∠=,则2∠的度数为( )A .25︒B .35︒C .55︒D .65︒45.(2020·贵州贵阳中考真题)如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )A .150︒B .120︒C .60︒D .3046.(2020·江西中考真题)如图,1265,335︒∠=∠=∠=︒,则下列结论错误的是( )A .//AB CD B .30B ∠=︒C .2C EFC ∠+∠=∠D .CG FG >47.(2020·湖北襄阳中考真题)如图,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,若64EFG ∠=︒,则EGD ∠的大小是( )A .132︒B .128︒C .122︒D .112︒48.(2020·河南中考真题)如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为( )A .100︒B .110︒C .120︒D .130︒49.(2020·湖南岳阳中考真题)如图,DA AB ⊥,CD DA ⊥,56B ∠=︒,则C ∠的度数是( )A .154︒B .144︒C .134︒D .124︒50.(2020·湖南岳阳中考真题)下列命题是真命题的是( ) A .一个角的补角一定大于这个角 B .平行于同一条直线的两条直线平行 C .等边三角形是中心对称图形D .旋转改变图形的形状和大小51.(2020·湖南怀化中考真题)如图,已知直线a ,b 被直线c 所截,且//a b ,若40α︒∠=,则β∠的度数为( )A .140︒B .50︒C .60︒D .40︒52.(2020·四川广元中考真题)如图,a ∥b,M 、N 分别在a,b 上,P 为两平行线间一点,那么∠1+∠2+∠3=( ).A .180°B .360°C .270°D .540°53.(2020·山东聊城中考真题)如图,在ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A .120°B .130°C .145°D .150°54.(2020·重庆中考真题)如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)ky k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A .6B .12C .18D .2455.(2020·四川自贡中考真题)如图,a ∥b ,150∠=,则2∠的度数为 ( )A .40°B .50°C .55°D .60°56.(2020·四川攀枝花中考真题)如图,平行线AB 、CD 被直线EF 所截,过点B 作BG EF ⊥于点G ,已知150∠=︒,则B ∠=( ).A .20︒B .30︒C .40︒D .50︒二、填空题57.(2020·辽宁大连中考真题)如图,在平面直角坐标系中,正方形ABCD 的顶点A 与D 在函数(0)ky x x=>的图象上,AC x ⊥轴,垂足为C ,点B 的坐标为(0,2),则k 的值为______.58.(2020·云南中考真题)如图,直线c 与直线a 、b 都相交.若a ∥b ,154∠=︒,则2∠=___________度.59.(2020·四川绵阳中考真题)如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为_____.60.(2020·四川凉山中考真题)如图,点C 、D 分别是半圆AOB 上的三等分点,若阴影部分的面积为32π,则半圆的半径OA 的长为__________.61.(2020·云南昆明中考真题)如图,点C 位于点A 正北方向,点B 位于点A 北偏东50°方向,点C 位于点B 北偏西35°方向,则∠ABC 的度数为_____°.62.(2020·四川雅安中考真题)如图,//a b c ,与a b ,都相交,150∠=︒,则2∠=_________.63.(2020·吉林中考真题)如图,某单位要在河岸l 上建一个水泵房引水到C 处,他们的做法是:过点C 作CD l ⊥于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是_______.64.(2020·湖南益阳中考真题)如图,//AB CD ,AB AE ⊥,42CAE ∠=,则ACD ∠的度数为__________.65.(2020·湖南永州中考真题)已知直线//a b ,用一块含30°角的直角三角板按图中所示的方式放置,若125∠=︒,则2∠=_________.66.(2020·内蒙古通辽中考真题)如图,点O 在直线AB 上,531728AOC ︒'''∠=,则BOC ∠的度数是______.67.(2020·内蒙古中考真题)如图,在平行四边形ABCD 中,2,AB ABC =∠的平分线与BCD ∠的平分线交于点E ,若点E 恰好在边AD 上,则22BE CE +的值为______.68.(2020·陕西中考真题)如图,在正五边形ABCDE 中,DM 是边CD 的延长线,连接BD ,则∠BDM 的度数是_____.69.(2020·江苏盐城中考真题)如图,直线,a b 被直线c 所截,//,160a b ∠=.那么2∠=_______________________.70.(2020·湖北恩施中考真题)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠=______.71.(2020·四川内江中考真题)如图,在矩形ABCD 中,10BC =,30ABD ∠=︒,若点M 、N 分别是线段DB 、AB 上的两个动点,则AM MN +的最小值为___________________.72.(2020·湖南邵阳中考真题)如图,在Rt ABC 中,90ACB ∠=︒,斜边2AB =,过点C 作//CF AB ,以AB 为边作菱形ABEF ,若30F ∠=︒,则Rt ABC 的面积为________.73.(2020·湖北黄冈中考真题)已知:如图,//,75,135AB EF ABC CDF ︒︒∠=∠=,则BCD ∠=_____________度.74.(2020·湖北咸宁中考真题)如图,请填写一个条件,使结论成立:∵__________,∴//a b .75.(2020·湖南湘西中考真题)如图,直线AE ∥BC ,BA AC ⊥,若54ABC ∠=︒,则EAC ∠=___________度.76.(2020·湖南张家界中考真题)如图,AOB ∠的一边OA 为平面镜,38AOB ︒∠=,一束光线(与水平线OB 平行)从点C 射入经平面镜反射后,反射光线落在OB 上的点E 处,则DEB ∠的度数是_______度.77.(2020·湖南湘潭中考真题)如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且3PD =,点M 是射线OC 上一动点,则PM 的最小值为________.78.(2020·湖南衡阳中考真题)一副三角板如图摆放,且//AB CD ,则∠1的度数为_________.79.(2020·山东临沂中考真题)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点(2,1)A 到以原点为圆心,以1为半径的圆的距离为_____.80.(2020·四川南充中考真题)如图,两直线交于点O ,若∠1+∠2=76°,则∠1=________度.81.(2020·江苏连云港中考真题)如图,正六边形123456A A A A A A 内部有一个正五形12345B B B B B ,且3344//A A B B ,直线l 经过2B 、3B ,则直线l 与12A A 的夹角α=________︒.三、解答题82.(2020·江苏镇江中考真题)如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF . (1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.83.(2020·江苏宿迁中考真题)(感知)(1)如图①,在四边形ABCD 中,∠C =∠D =90°,点E 在边CD 上,∠AEB =90°,求证:AE EB =DECB. (探究)(2)如图②,在四边形ABCD 中,∠C =∠ADC =90°,点E 在边CD 上,点F 在边AD 的延长线上,∠FEG =∠AEB =90°,且EF EG =AEEB,连接BG 交CD 于点H .求证:BH =GH . (拓展)(3)如图③,点E 在四边形ABCD 内,∠AEB +∠DEC =180°,且AE EB =DEEC,过E 作EF 交AD于点F ,若∠EFA =∠AEB ,延长FE 交BC 于点G .求证:BG =CG .84.(2020·四川凉山中考真题)如图,AB 是半圆AOB 的直径,C 是半圆上的一点,AD 平分BAC ∠交半圆于点D ,过点D 作DH AC ⊥与AC 的延长线交于点H .(1)求证:DH 是半圆的切线; (2)若25DH =,5sin 3BAC ∠=,求半圆的直径. 85.(2020·黑龙江大庆中考真题)如图,AB ,CD 为两个建筑物,两建筑物底部之间的水平地面上有一点M .从建筑物AB 的顶点A 测得M 点的俯角为45°,从建筑物CD 的顶点C 测得M 点的俯角为75°,测得建筑物AB 的顶点A 的俯角为30°.若已知建筑物AB 的高度为20米,求两建筑物顶点A 、C 之间的距离(结果精确到1m ,参考数据:2 1.414≈,3 1.732≈)86.(2020·山东东营中考真题)如图,C 处是一钻井平台,位于东营港口A 的北偏东60方向上,与港口A 相距602海里,一艘摩托艇从A 出发,自西向东航行至B 时,改变航向以每小时50海里的速度沿BC 方向行进,此时C 位于B 的北偏西45方向,则从B 到达C 需要多少小时?87.(2020·湖北荆州中考真题)如图,将ABC 绕点B 顺时针旋转60度得到DBE ∆,点C 的对应点E 恰好落在AB 的延长线上,连接AD .(1)求证://BC AD ;(2)若AB=4,BC=1,求A ,C 两点旋转所经过的路径长之和.88.(2020·湖北黄石中考真题)如图,,//,70,40AB AE AB DE DAB E =∠=︒∠=︒.(1)求DAE ∠的度数;(2)若30B ∠=︒,求证:AD BC =. 89.(2020·山西中考真题)阅读与思考下面是小宇同学的数学日记,请仔细阅读并完成相应的任务.×年×月×日 星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出30CD cm =,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则DCE ∠必为90︒.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS MN =,得到点S ,作直线SC ,则90RCS ∠=︒.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢? …… 任务:(1)填空;“办法一”依据的一个数学定理是_____________________________________; (2)根据“办法二”的操作过程,证明90RCS ∠=︒;(3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线(在木板上保留作图痕迹,不写作法); ②说明你的作法依据的数学定理或基本事实(写出一个即可)90.(2020·四川内江中考真题)如图,抛物线2y ax bx c =++经过A (-1,0)、B (4,0)、C (0,2)三点,点D (x ,y )为抛物线上第一象限内的一个动点. (1)求抛物线所对应的函数表达式;(2)当BCD ∆的面积为3时,求点D 的坐标;(3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE ∆中的某个角等于ABC ∠的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.91.(2020·广东中考真题)如图,点B 是反比例函数8y x=(0x >)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C ,反比例函数ky x=(0x >)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k =_________; (2)求BDF ∆的面积;(3)求证:四边形BDFG 为平行四边形.92.(2020·湖北宜昌中考真题)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射,如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成FH ,点G 在射线EF 上,已知20,45HFB FED ∠=︒∠=︒,求GFH ∠的度数.93.(2020·湖北孝感中考真题)如图,在ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE DF =.连接EF ,分别与BC ,AD 交于点G ,H .求证:EG FH =.94.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. 95.(2020·湖北武汉中考真题)如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,且EM ∥FN .求证:AB ∥CD .96.(2020·北京中考真题)已知:如图,ABC 为锐角三角形,AB=BC ,CD ∥AB . 求作:线段BP ,使得点P 在直线CD 上,且∠ABP=12BAC ∠. 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹) (2)完成下面的证明. 证明:∵CD ∥AB , ∴∠ABP= . ∵AB=AC , ∴点B 在⊙A 上. 又∵∠BPC=12∠BAC ( )(填推理依据) ∴∠ABP=12∠BAC97.(2020·江苏南京中考真题)如图,在ABC 和A B C '''中,D 、D 分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC ABC D A C A B ==''''''时,求证:~ABC A B C '''△△ 证明的途径可以用如框图表示,请填写其中的空格 E '(2)当CD AC BCC D A C B C==''''''时,判断ABC 与A B C '''是否相似,并说明理由 98.(2020·江西中考真题)如图,Rt ABC 中,90ACB ∠=,顶点A ,B 都在反比例函数(0)ky x x=>的图象上,直线AC x ⊥轴,垂足为D ,连结OA ,OC ,并延长OC 交AB 于点E ,当2AB OA =时,点E 恰为AB 的中点,若45AOD ∠=,22OA =. (1)求反比例函数的解析式; (2)求EOD ∠的度数.99.(2020·山东菏泽中考真题)如图,在ABC 中,AB AC =,以AB 为直径的⊙O 与BC 相交于点D ,过点D 作⊙O 的切线交AC 于点E .(1)求证:DE AC ⊥;(2)若⊙O 的半径为5,16BC =,求DE 的长.。

平行线与相交线的性质

平行线与相交线的性质

平行线与相交线的性质在初中数学中,平行线与相交线是一个非常重要的概念。

它们的性质不仅在数学中有着广泛的应用,而且在现实生活中也有着很多实际的应用。

在本文中,我将详细介绍平行线与相交线的性质,并通过举例和说明来帮助中学生更好地理解和应用这些性质。

1. 平行线的性质平行线是指在同一个平面内永远不会相交的两条直线。

平行线的性质有以下几个重要的特点:1.1 平行线的定义两条直线如果在同一个平面内,且没有任何一个点相交,那么它们就是平行线。

举例:在一张纸上画一条直线AB,然后再画一条直线CD,如果直线CD与直线AB没有任何一个交点,那么我们可以说直线CD与直线AB平行。

1.2 平行线的判定判定两条直线是否平行有多种方法,其中一种常用的方法是使用平行线的判定定理。

平行线的判定定理:如果两条直线分别与第三条直线相交,并且对应的内角或外角相等,那么这两条直线是平行线。

举例:如图所示,直线AB与直线CD分别与直线EF相交,并且∠A=∠C,那么我们可以得出结论:直线AB与直线CD平行。

1.3 平行线的性质平行线有许多重要的性质,其中一些性质如下:性质1:平行线的对应角相等。

举例:如图所示,直线AB与直线CD是平行线,那么∠1=∠3,∠2=∠4。

性质2:平行线的同位角互补。

举例:如图所示,直线AB与直线CD是平行线,那么∠1+∠2=180°,∠3+∠4=180°。

性质3:平行线的内错角相等,外错角互补。

举例:如图所示,直线AB与直线CD是平行线,那么∠1=∠4,∠2=∠3,∠1+∠3=180°,∠2+∠4=180°。

2. 相交线的性质相交线是指在同一个平面内相交的两条直线。

相交线的性质有以下几个重要的特点:2.1 相交线的定义两条直线如果在同一个平面内有一个且只有一个交点,那么它们就是相交线。

举例:在一张纸上画一条直线AB,然后再画一条直线CD,如果直线CD与直线AB有且只有一个交点,那么我们可以说直线CD与直线AB相交。

初中数学平行线与相交线

初中数学平行线与相交线

初中数学平行线与相交线平行线与相交线是初中数学中的重要概念,在几何学的学习中起着关键的作用。

本文将对平行线和相交线的定义、性质以及相关应用进行详细介绍。

一、平行线与相交线的定义平行线是指在同一个平面上,永不相交的两条直线。

记作∥。

相交线是指在同一个平面上,有一个公共点的两条直线。

记作⊥。

二、平行线的性质1. 如果两条直线与第三条直线分别平行,则这两条直线也平行。

2. 如果两条直线被一条平行于它们的直线所截断,则这两条直线的截断线段互相平行。

3. 平面上的两条平行线分别与一条直线相交,则所形成的内错角、内错角相等。

三、相交线的性质1. 在同一平面上,两条互相垂直的直线称为相交线。

2. 相交线的交点称为垂足。

3. 在一个三角形内,高交于底边上的一点,这条高与底边的垂线相等。

四、平行线与相交线的应用1. 平行线在建筑设计中的应用:建筑工程中常常使用平行线来保证建筑结构的牢固和稳定。

2. 相交线在交通规划中的应用:交叉路口中的线路交叉又称为相交线,交通规划中需要合理设计相交线的交叉方式,以确保交通的流畅和安全。

五、实例分析以一道典型的应用题为例,来展示平行线与相交线的解题思路。

题目:如图,已知AB∥CD,AE⊥CD,且AC=15cm,BD=12cm,DE=9cm,求BE的长度。

解析:根据已知条件,在平行线AB和CD之间可以得到∠ADE和∠DCE为直角,因此∠ADE≌∠DCE。

由于两直角三边全等,则∆ADE≌∆DCE。

根据全等定理可知,AE=CE,由此可得AC=AE+EC=2AE。

又已知AC=15cm,因此AE=15/2=7.5cm。

根据直角三角形的性质,可以得到BE=√(EC^2+AE^2)=√(15^2+7.5^2)=√(225+56.25)=√281.25≈16.77cm。

六、总结平行线与相交线是初中数学中的重要内容,通过对平行线和相交线的定义、性质以及应用的学习,可以帮助我们更好地理解几何学中的相关知识。

人教版七年级下册数学第五章相交线与平行线第一第二节中等难度解答题

人教版七年级下册数学第五章相交线与平行线第一第二节中等难度解答题
(1)求证:AB∥CD;
(2)求∠2的度数.
相交线与平行线解答题练习
一பைடு நூலகம்解答题
1.如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.
(1)证明:∠AOD=2∠COE;
(2)若∠AOC=50°,求∠EOF的度数;
(3)若∠BOF=15°,求∠AOC的度数.
2.如图,直线 与 相交于点 , 于点 , 平分 ,且 ,求 的度数.
3.如图,直线AB、CD相交于点O,EO⊥AB于点O,若∠1=55°,求∠3的度数.
4.如图所示:AB与CD相交于点O,OE为射线.
(1)写出∠AOC的对顶角.
(2)写出∠AOC和∠COE的邻补角.
(3)若∠AOC=38°,∠BOE=108°,求∠DOE和∠AOE的度数.
5.如图所示, 和 是射线,并且 ,
求证: .
6.如图所示,∠1=65°,∠2=65°,∠3=115°,试说明DE BC,DF AB.
7.已知:E是AB、CD外一点,∠B=∠D+∠E,求证:AB∥CD(写出每一步推理的依据).
8.如图,直线 , 被直线 所截, , ,判断 与 是否平行,并说明理由.
9.如图, , .求证: .
10.如图,在四边形ABCD中,延长AD至E,已知AC平分∠DAB,∠DAB=70°,∠1=35°.

相交线与平行线的知识点

相交线与平行线的知识点

相交线与平行线的知识点一、相交线。

1. 邻补角。

- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

- 性质:邻补角互补,即它们的和为180°。

例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。

2. 对顶角。

- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。

- 性质:对顶角相等。

如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。

3. 垂直。

- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。

- 连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

二、平行线。

1. 平行线的定义。

- 在同一平面内,不相交的两条直线叫做平行线。

用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。

2. 平行公理及推论。

- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即如果a∥b,b∥c,那么a∥c。

3. 平行线的判定。

- 同位角相等,两直线平行。

例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。

- 内错角相等,两直线平行。

如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。

- 同旁内角互补,两直线平行。

当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。

4. 平行线的性质。

- 两直线平行,同位角相等。

若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档