应用多元统计分析习题解答_因子分析报告

合集下载

应用多元统计分析试题及答案(1)

应用多元统计分析试题及答案(1)

应用多元统计分析试题及答案(1)多元统计分析是现代统计学中不可或缺的一部分,它是用于对不同数据进行相关分析的高级统计方法。

对于需要进行多因素分析的问题,多元统计分析是必须掌握的技能。

以下是一些应用多元统计分析的试题及答案。

试题1:假设你要进行一项研究,以评估学生在学期末考试成绩与他们的就业情况之间是否存在关联。

你将分析什么类型的多元统计分析?答案:此问题需要进行一种二元多元回归分析。

此方法可以用于探索学期末考试成绩和就业情况之间的相关性。

通过回归分析,我们可以计算出两个变量之间的相关系数以及建立一个数学模型来预测就业成功与否的可能性。

试题2:你是一家旅游公司的行销经理,你想了解你们的财务状况、品牌信誉和市场定位之间的关系。

采用哪种多元统计分析来解决这个问题?答案:这个问题需要进行一种因子分析。

因子分析是一种常用的多元统计技术,可用于探索大量变量之间的共性或相似性。

因此,行销经理可以使用因子分析来探究这三个因素之间的关系,以帮助公司更好地了解市场需求、推广策略和产品定位。

试题3:你是一名医学研究员,你需要研究新型药物的效果以及它是否与特定人群的特征相关。

哪种多元统计分析可用于研究?答案:这个问题需要使用一种路径分析方法。

路径分析是一种分层回归分析技术,可用于探索变量间的直接和间接影响关系。

因此,研究人员可以使用路径分析来研究新型药物的效果以及与特定人群特征的相关性,以便更好地理解治疗效果的影响因素。

试题4:你是一名市场分析师,你需要研究不同年龄、性别和教育水平的人群之间的消费习惯。

采用哪种多元统计分析来解决这个问题?答案:这个问题需要使用一种聚类分析方法。

聚类分析是一种将成为节点的相似对象分组的过程。

因此,市场分析师可以使用聚类分析来将相似的人群以及他们的共同消费习惯分成几个类别,以便更好地了解不同年龄、性别和教育水平背景下的人群之间的消费习惯和偏好。

结论:多元统计分析是一种有用的技术,可以用于探索大量不同变量之间的关系,对于需要分析多个变量之间关系的问题,多元统计分析是必须学习的基本技能。

应用多元统计分析答案详解汇总_高惠璇[1]

应用多元统计分析答案详解汇总_高惠璇[1]
1 2 ( 2 x1 22 x1 65 ) 2
e
1 2 ( x2 2 x1 x2 14 x2 ) 2
dx2
1 e 2
1 2 ( 2 x1 22 x1 65 ) 2

e
1 2 ( x2 2 x2 ( x1 7 ) ( x1 7 ) 2 ) 2
比较上下式相应的系数,可得:
1 2 1 12 2 2 2 12 1 1 2 1 2 2 2 22 1 2 1 2 2 2 2 2 1 2 1 2 1 14 2 2 2 2 2 1 2 1 2 1 2 1 2
x1 y2 (2)第二次配方.由于 x2 y1 y2
14
第二章
2 1 2 2 2 1 2 1 2 2
多元正态分布及参数的估计
2 x x 2 x1 x2 22 x1 14 x2 65 y y 22 y2 14( y1 y2 ) 65 y 14 y1 49 y 8 y2 16 ( y1 7) ( y2 4)
由定理2.3.1可知X1 +X2 和X1 - X2相互独立.
4
第二章
(2) 因
多元正态分布及参数的估计
1 2 2 2(1 ) 0 X1 X 2 ~ N2 , Y 2(1 ) 0 X1 X 2 1 2
O 2(1 2 ) O 2(1 2 )
由定理2.3.1可知X(1) +X(2)和X(1) -X(2) 相 互独立.
7
第二章
(2) 因
(1) (2)

应用多元统计分析报告习题解答_因子分析报告

应用多元统计分析报告习题解答_因子分析报告

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX 对公共因子jF 的相对重要性。

指导应用多元统计分析资料报告习题解答_因子分析资料报告

指导应用多元统计分析资料报告习题解答_因子分析资料报告

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX 对公共因子jF 的相对重要性。

《多元统计实验》因子分析实验报告一

《多元统计实验》因子分析实验报告一

《多元统计实验》因子分析实验报告newscore2 #显示以第二因子得分排序结果newscore3<-newscore[order(newscore[,4],decreasing=T),] #按第三因子得分排序newscore3 #显示以第三因子得分排序结果newscore4<-newscore[order(newscore[,5],decreasing=T),] #按因子综合得分排序newscore4 #显示以因子综合得分排序结果三、实验结果分析下图为数据标准化后相关系数矩阵图,可以看出x3、x8、x4之间的存在较大的相关性,这些消费指标之间存在较强的线性相关关系,适合用因子分析模型进行分析,下面用极大似然估计法进行因子分析。

将公共因子设置为3个,从下运行结果可以看出,累计方差贡献率达到了83.36%,说明选择3个是合适的,从初始载荷阵可以看出消费指标无法准确的解释因子的含义,故我们在进行基于极大似然法的正交旋转。

由下图旋转得到的因子载荷估计,居住(x3)、生活用品及服务(x4)、交通通信(x5)、教育文化娱乐(x6)、医疗保健(x7)和其他用品及服务(x8)在因子f1上的载荷分别为0.772、0.679、0.663、0.858、0.733、0.692,这六个消费指标反映了日常消费,因此f1命名为日常消费因子;x1在f2上反映了食品烟酒的消费,因此f2命名为食品烟酒因子;x2在f3上反映了衣着的消费,因此命名为衣着因子。

也由此可得到因子分析模型:x*1≈0.208f1+0.975f2+ε1x*2≈0.220f1+0.972f3+ε2x*3≈0.772f1+0.510f2+ε3x*4≈0.679 f1+0.361 f2+0.405f3+ε4x*5≈0.663 f1+0.440 f2+0.271 f3+ε5x*6≈0.858 f1+0.262 f2+ε6x*7≈0.733 f1+0.350 f3+ε7x*8≈0.692 f1+0.522 f2+0.391+ε8从下图的各因子得分结果,可以看出,在第一因子上得分多的为上海、北京、天津;第二因子上得分多的为北京、上海、云南;第三因子得分多的为海南、广东、上海;但是这样得到的结果,较难找,因此我们对得分分别按第一因子和第二因子以及第三因子进行排序可直观看出。

应用多元统计分析习题解答_因子分析

应用多元统计分析习题解答_因子分析

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX对公共因子jF的相对重要性。

实验报告-因子分析(多元统计)精选全文

实验报告-因子分析(多元统计)精选全文

精选全文完整版可编辑修改实验报告主成分分析(综合性实验)(Principal component analysis)实验原理:主成分分析利用指标之间的相关性,将多个指标转化为少数几个综合指标,从而达到降维和数据结构简化的目的。

这些综合指标反映了原始指标的绝大部分信息,通常表示为原始指标的某种线性组合,且综合指标间不相关。

利用矩阵代数的知识可求解主成分。

实验题目一:将彩色胶卷在显影液下处理后在不同情形下曝光,然后通过红、绿、蓝三种滤色片并在高、中、低三种密度下进行测量,每个胶卷有高红、高绿、高蓝、中红、…、低蓝等九个指标(分别记为X1-X9九个变量)。

试验了108个胶卷,由数据已算得如下协差阵:(S2a1)177 179 95 96 53 32 -7 -4 -3419 245 131 181 127 -2 1 4302 60 109 142 4 4 11158 102 42 4 3 2137 96 4 5 6128 2 2 834 31 3339 3948实验要求:(1)试从协差阵出发进行主成分分析;(2)计算方差累积贡献率;(3)作Scree图,并结合(2)的结果确定主成分的个数;(4)试对结果进行解释。

实验题目二:下表中给出了不同国家及地区的男子径赛记录:(t8a6)Country 100m(s) 200m(s)400m(s)800m(min)1500m(min)5000m(min)10,000m(min)Marathon(mins)Argentina 10.39 20.81 46.84 1.81 3.7 14.04 29.36 137.72 Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.3 Austria 10.44 20.81 46.82 1.79 3.6 13.26 27.72 135.9 Belgium 10.34 20.68 45.04 1.73 3.6 13.22 27.45 129.95 Bermuda 10.28 20.58 45.91 1.8 3.75 14.68 30.55 146.62 Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13 Burma 10.64 21.52 48.3 1.8 3.85 14.45 30.28 139.95 Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15 Chile 10.34 20.8 46.2 1.79 3.71 13.61 29.3 134.03 China 10.51 21.04 47.3 1.81 3.73 13.9 29.13 133.53 Columbia 10.43 21.05 46.1 1.82 3.74 13.49 27.88 131.35 Cook Islands 12.18 23.2 52.94 2.02 4.24 16.7 35.38 164.7 Costa Rica 10.94 21.9 48.66 1.87 3.84 14.03 28.81 136.58 Czechoslovakia 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32 Denmark 10.56 20.52 45.89 1.78 3.61 13.5 28.11 130.78 Dominican Republic 10.14 20.65 46.8 1.82 3.82 14.91 31.45 154.12 Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87 France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.3 German (D.R.) 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92 German (F.R.) 10.16 20.37 44.5 1.73 3.53 13.21 27.61 132.23 Great Brit.& N. Ireland 10.11 20.21 44.93 1.7 3.51 13.01 27.51 129.13 Greece 10.22 20.71 46.56 1.78 3.64 14.59 28.45 134.6 Guatemala 10.98 21.82 48.4 1.89 3.8 14.16 30.11 139.33 Hungary 10.26 20.62 46.02 1.77 3.62 13.49 28.44 132.58 India 10.6 21.42 45.73 1.76 3.73 13.77 28.81 131.98Indonesia 10.59 21.49 47.8 1.84 3.92 14.73 30.79 148.83 Ireland 10.61 20.96 46.3 1.79 3.56 13.32 27.81 132.35 Israel 10.71 21 47.8 1.77 3.72 13.66 28.93 137.55 Italy 10.01 19.72 45.26 1.73 3.6 13.23 27.52 131.08 Japan 10.34 20.81 45.86 1.79 3.64 13.41 27.72 128.63 Kenya 10.46 20.66 44.92 1.73 3.55 13.1 27.38 129.75 Korea 10.34 20.89 46.9 1.79 3.77 13.96 29.23 136.25 D.P.R Korea 10.91 21.94 47.3 1.85 3.77 14.13 29.67 130.87 Luxembourg 10.35 20.77 47.4 1.82 3.67 13.64 29.08 141.27 Malaysia 10.4 20.92 46.3 1.82 3.8 14.64 31.01 154.1 Mauritius 11.19 22.45 47.7 1.88 3.83 15.06 31.77 152.23 Mexico 10.42 21.3 46.1 1.8 3.65 13.46 27.95 129.2 Netherlands 10.52 20.95 45.1 1.74 3.62 13.36 27.61 129.02 New Zealand 10.51 20.88 46.1 1.74 3.54 13.21 27.7 128.98 Norway 10.55 21.16 46.71 1.76 3.62 13.34 27.69 131.48 Papua New Guinea 10.96 21.78 47.9 1.9 4.01 14.72 31.36 148.22 Philippines 10.78 21.64 46.24 1.81 3.83 14.74 30.64 145.27 Poland 10.16 20.24 45.36 1.76 3.6 13.29 27.89 131.58 Portugal 10.53 21.17 46.7 1.79 3.62 13.13 27.38 128.65 Rumania 10.41 20.98 45.87 1.76 3.64 13.25 27.67 132.5 Singapore 10.38 21.28 47.4 1.88 3.89 15.11 31.32 157.77 Spain 10.42 20.77 45.98 1.76 3.55 13.31 27.73 131.57 Sweden 10.25 20.61 45.63 1.77 3.61 13.29 27.94 130.63 Switzerland 10.37 20.46 45.78 1.78 3.55 13.22 27.91 131.2 Taipei 10.59 21.29 46.8 1.79 3.77 14.07 30.07 139.27 Thailand 10.39 21.09 47.91 1.83 3.84 15.23 32.56 149.9 Turkey 10.71 21.43 47.6 1.79 3.67 13.56 28.58 131.5 USA 9.93 19.75 43.86 1.73 3.53 13.2 27.43 128.22 USSR 10.07 20 44.6 1.75 3.59 13.2 27.53 130.55Western Samoa 10.82 21.86 49 2.02 4.24 16.28 34.71 161.83 (数据来源:1984年洛杉机奥运会IAAF/AFT径赛与田赛统计手册)实验要求:(1)试求主成分,并对结果进行解释;(2)试用方差累积贡献率和Scree图确定主成分的个数;(3)计算各国第一主成分的得分并排名。

应用多元统计分析习题解答_因子分析

应用多元统计分析习题解答_因子分析

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX 对公共因子jF 的相对重要性。

应用多元统计分析试题及答案.doc

应用多元统计分析试题及答案.doc

一、填空题:1、多元统计剖析是运用数理统计方法来研究解决多指标问题的理论和方法 .2、回归参数明显性查验是查验解说变量对被解说变量的影响能否著.3、聚类剖析就是剖析怎样对样品(或变量)进行量化分类的问题。

往常聚类分析分为Q型聚类和R型聚类。

4、相应剖析的主要目的是追求列联表行要素A和列要素B的基本剖析特点和它们的最优联立表示。

5、因子剖析把每个原始变量分解为两部分要素:一部分为公共因子,另一部分为特别因子。

6、若x( ): N P( ,),=1,2,3 .n且互相独立,则样本均值向量x 听从的散布为 _ x ~N(μ,Σ /n)_。

二、简答1、简述典型变量与典型有关系数的观点,并说明典型有关剖析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间拥有最大的有关系数。

选用和最先精选的这对线性组合不有关的线性组合,使其配对,并选用有关系数最大的一对,这样下去直到两组之间的有关性被提取完成为止。

被选出的线性组合配对称为典型变量,它们的有关系数称为典型有关系数。

2、简述相应剖析的基本思想。

相应剖析,是指对两个定性变量的多种水平进行剖析。

设有两组要素A和B,此中要素 A 包括 r 个水平,要素 B 包括 c 个水平。

对这两组要素作随机抽样检查,获得一个 rc 的二维列联表,记为。

要追求列联表列要素 A 和行要素 B 的基本剖析特点和最优列联表示。

相应剖析即是经过列联表的变换,使得要素 A和要素 B 拥有平等性,进而用同样的因子轴同时描绘两个要素各个水平的情况。

把两个要素的各个水平的情况同时反应到拥有同样坐标轴的因子平面上,进而获得要素 A 、 B 的联系。

3、简述费希尔鉴别法的基本思想。

从 k 个整体中抽取拥有 p 个指标的样品观察数据,借助方差剖析的思想结构一个线性鉴别函数系数:确立的原则是使得整体之间差别最大,而使每个整体内部的离差最小。

将新样 品的 p 个指标值代入线性鉴别函数式中求出 值,而后依据鉴别必定的规则,就能够鉴别新的样品属于哪个整体。

多元统计实验报告--因子分析

多元统计实验报告--因子分析

多元统计实验报告设计题目:因子分析一、分析数据1995年我国社会发展状况的数据二、基本原理因子分析的基本思想是把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子。

三、实验步骤及其结果分析1、选择Analyze→Data Reduction→Factor,打开Factor Analysis主对话框;2、选择变量X1至X6,点击向右的箭头按钮,将六个变量移到Variable栏中;3、点击Descriptives…按钮,打开Descriptives子对话框。

在此对话框的Statistics下选择Initial solution;Correlation Matrix下选择coefficients,单击Continue按钮,返回Factor Analysis主对话框;4、单击Extraction…按钮,打开Extraction子对话框。

在此对话框的Method 下选择Principal components;Analyze下选择Correlation Matrix;Extract下选择Number of Factor,并在其右端的矩形框键入6;Display下选择Unrotated factor 和Scree plot,单击Continue按钮,返回Factor Analysis主对话框;点击OK按钮,显示结果清单。

(1)相关矩阵从表Correlation Matrix(相关矩阵)可知,各变量间存在较强的相关关系,因此有必要进行因子分析。

表中主对角线上的元素为1,表明变量自身于自身的相关系数为1。

(2)解释总方差从表Total Variance Explained(解释总方差)可知,前三个因子一起解释总方差的93.466%(累计贡献率),这说明前三个因子提供了原始数据的足够信息。

5、根据以上分析提取因子情况,单击Extraction…按钮,打开Extraction子对话框。

应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答

应用多元统计分析课后习题答案详解北大高惠璇第八章习题解答
p i 1 p
所以
Q(m)
i 1 j 1 2 ij
p
p
j m1
(
2 j i 1
p
2 2 i
)
j m 1
,
2 j
16
p
第八章 因子分析
8-5 试比较主成分分析和因子分析的 (1) 主成分分析不能作为一个模型来描述,它只 是通常的变量变换,而因子分析需要构造因子模型; (2) 主成分分析中主成分的个数和变量个数p相 同,它是将一组具有相关关系的变量变换为一组互 不相关的变量(注意应用主成分分析解决实际问题 时,一般只选取前m(m<p)个主成分),而因子分析的 目的是要用尽可能少的公共因子,以便构造一个结 构简单的因子模型;
(2) ( AA D) 1 D 1 D 1 A( I AD 1 A) 1 A1 D 1 ; (3) A( AA D) 1 ( I m AD 1 A) 1 AD 1. 解:利用分块矩阵求逆公式求以下分块矩阵的逆:
记B221 I m AD A,
17
第八章 因子分析
(3) 主成分分析是将主成分表示为原变量的线 性组合,而因子分析是将原始变量表示为公因子 和特殊因子的线性组合,用假设的公因子来“解 释”相关阵的内部依赖关系. 这两种分析方法又有一定的联系.当估计方法 采用主成分法,因子载荷阵A与主成分的系数相 差一个倍数;因子得分与主成分得分也仅相差一 个常数.这种情况下可把因子分析看成主成分分 析的推广和发展. 这两种方法都是降维的统计方法,它们都可用 来对样品或变量进行分类.
18
2 11 2 21 2 3 2 31
a 1
2 31 2 3
a11a21 0.63 a11a31 0.45 a31a21 0.35

应用多元统计分析习题解答_因子分析

应用多元统计分析习题解答_因子分析

第七章因子分析7.1试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子 分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。

7.3 简述因子模型、一 m 卜中载荷矩阵A 的统计意义。

答:对于因子模型X i PF W2F 2• O j Fj •… WmF m;ii =1,2,…,pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k 「F j )kTm= Cov(' a ik F k ,F j ) Cov( ;i ,F j )k d=a ij若对X i 作标准化处理,=a 0 ,因此a jj —方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j 的相对重要性。

《应用多元统计分析》各章作业题及部分参考答案

《应用多元统计分析》各章作业题及部分参考答案

60.6
16.5
2 76
58.1
12.5
3 92
63.2
14.5
4 81
59.0
14.0
5 81
60.8
15.5
6 84
59.5
14.0
解:作如下假设 H0 : μ = μ0 , H1 : μ ≠ μ0
经计算,求的样本均值向量 x = (82.0, 60.2,14.5) ' ,x − μ0 = (−8, 2.2, −1.5) ' ,样本协差阵
x2
+
1 2
x3
+
1 2
x4 。
(2)第一主成分的贡献率为
λ1
+
λ2
λ1 +
λ3
+ λ4
= 1+ 3ρ 4
≥ 95% ,得 ρ
≥ 0.933 。
第 7 章 因子分析
1、设 x = (x1, x2 , x3 )′ 的相关系数矩阵通过因子分析分解为
⎛ ⎜
1

R
=
⎜ ⎜
−1 3
⎜ ⎜⎜⎝
2 3
−1 3 1
54.58
11.67
产品净值率 10.7
6.2
21.41
11.67
7.90
2、 设 G1, G2 , G3 三个组,欲判别某样品 x0 属于何组,已知 p1 = 0.05, p2 = 0.65, p3 = 0.3,
应用多元统计分析
pofeel@
3
f1 (x0 ) = 0.10, f2 (x0 ) = 0.63, f3 (x0 ) = 2.4 ,假定误判代价矩阵为:
⎢⎣ 4.5 ⎥⎦

应用多元统计分析习题解答第七章

应用多元统计分析习题解答第七章

第七章因子分析7.1试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子 分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。

7.3简述因子模型、一 m 卜中载荷矩阵A 的统计意义。

答:对于因子模型X i =a i 1F 1 - mF ?a j F j I" a m F m•;ii =1,2,Hl , pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k °F j )k=im= Cov(' a ik F k ,F j ) Cov(「F j )k d= a ij若对X i 作标准化处理,=a j ,因此a ij 一方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j的相对重要性。

应用多元统计分析课后习题答案高惠璇第六章习题解答

应用多元统计分析课后习题答案高惠璇第六章习题解答
应用多元统计分析课后习题答案高惠璇第六章习题解答
目录
习题一:多元线性回归分析 习题二:主成分分析 习题三:因子分析 习题四:聚类分析
01
习题一:多元线性回归分析
多元线性回归模型的建立
总结词:多元线性回归模型是用来研究多个自变量与因变量之间线性关系的统计方法。

多元线性回归模型的参数估计
总结词:参数估计是多元线性回归模型建立的重要步骤,常用的方法有最小二乘法和加权最小二乘法等。
步骤4
重新计算每个聚类的中心,并更新聚类中心。
步骤5
重复步骤3和4,直到聚类中心收敛或达到预设的最大迭代次数。
算法
常见的聚类算法包括K-means、层次聚类、DBSCAN等。
聚类分析的步骤与算法
感谢您的观看
THANKS
01
主成分在几何上表示数据集的投影方向,即数据在各主成分上的投影点形成的直线方向。
02
第一主成分是数据点散布最广的方向,第二主成分是数据点散布次广的方向,以此类推。
主成分的几何意义
03
习题三:因子分析
因子分析的基本概念
因子分析是一种多元统计分析方法,用于从一组变量中提取公因子,并对这些公因子进行解释。
习题四:聚类分析
聚类分析的目标是发现数据的内在结构,以便对数据进行更深入的理解和分类。
聚类分析广泛应用于数据挖掘、模式识别、图像处理等领域。
聚类分析是一种无监督学习方法,通过将数据点或观测值分组,使得同一组(即聚类)内的数据尽可能相似,而不同组之间的数据尽可能不同。
聚类分析的基本思想
设$X = {x_1, x_2, ..., x_n}$为数据集,其中每个$x_i$是一个$p$-维向量。
正的因子载荷表示正相关,负的因子载荷表示负相关。

应用多元统计分析课后习题答案高惠璇

应用多元统计分析课后习题答案高惠璇

1lili(x) b 2
i 1 i
p 1yi2 b2
i1 i a
21
第二章 多元正态分布及参数的估计
y1b122y2b222 ypb2 p2 1
故概率密度等高面 f(x;μ,Σ)= a是一个椭球面.
(2)当p=2且
2
1
1
(ρ>0)时,
||4(12).
由 |Ip|22 22(2)242
(22)(22)0
1 e2
x14)2
2
X1~N(4,1).
类似地有
f2(x2) f(x 1 ,x2)d1 x 212e 1 4 (x2 3 )2
X2~N(3,2). a
10
第二章 多元正态分布及参数的估计
12Co (Xv 1,X2)E[(X1E(X1))X (2E(X2)]
E[(X14)(X23)]
(x14)(x23)f(x1,x2)d1d x2x
第二章 多元正态分布及参数的估计
因 0 ,的特 值 记 征 1 为 2 p0,i对应
的特记 征li(特 向 i1,2,量 ,p)则 , 有 -1的 谱谱分
1
p i1
1
i
lili
(见附录§5 P390)
令 y i (x ) li( i 1 ,2 , ,p ),则概率密度等高面为
p
(x) 1(x) (x)
长轴半径为 d1b 1, 方向沿着l1方向(b>0);
短轴半径为d2b 1, 方向沿着l2方向.
a 23
第二章 多元正态分布及参数的估计
2-19 为了了解某种橡胶的性能,今抽了十个样品, 每个测量了三项指标: 硬度、变形和弹性,其数据见 表。试计算样本均值,样本离差阵,样本协差阵和样 本相关阵.

应用多元统计分析习题解答第八章

应用多元统计分析习题解答第八章

第八章 相应分析8.1 什么是相应分析?它与因子分析有何关系?答:相应分析也叫对应分析,通常意义下,是指两个定性变量的多种水平进行相应性研究。

其特点是它所研究的变量可以是定性的。

相应分析与因子分析的关系是: 在进行相应分析过程中,计算出过渡矩阵后,要分别对变量和样本进行因子分析。

因此,因子分析是相应分析的基础。

具体而言,Σr (Zu j )=λj (Zu j )式表明Zu j 为相对于特征值λj 的关于因素A 各水平构成的协差阵Σr 的特征向量。

从而建立了相应分析中R 型因子分析和Q 型因子分析的关系。

8.2试述相应分析的基本思想。

答:相应分析,是指对两个定性变量的多种水平进行分析。

设有两组因素A 和B ,其中因素A 包含r 个水平,因素B 包含c 个水平。

对这两组因素作随机抽样调查,得到一个r c ⨯的二维列联表,记为()ij r c k ⨯=K 。

要寻求列联表列因素A 和行因素B 的基本分析特征和最优列联表示。

相应分析即是通过列联表的转换,使得因素A 和因素B 具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。

把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。

8.3 试述相应分析的基本步骤。

答:(1)建立列联表设受制于某个载体总体的两个因素为A 和B ,其中因素A 包含r 个水平,因素B 包含c 个水平。

对这两组因素作随机抽样调查,得到一个r c ⨯的二维列联表,记为()ij r c k ⨯=K 。

(2)将原始的列联资料K =(kij) r ⨯c 变换成矩阵Z =(zij) r ⨯c ,使得zij 对因素A 和列因素B 具有对等性。

通过变换Z ij =k −k i.k .jr k k 。

得c '=ΣZ Z ,r '=ΣZZ 。

(3)对因素B 进行因子分析。

计算出c '=ΣZ Z 的特征向量λ1,λ2⋯,λm 及其相应的特征向量 t 1,t 2,⋯t m 计算出因素B 的因子 U 1,U 2⋯U =( λ1t 1, λ2t 2,⋯ λm t m )(4)对因素A 进行因子分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a a a a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mikk j i j k aF F F ε=+∑=ij a若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了变量iX对公共因子jF的相对重要性。

变量共同度2211,2,,mi ijjh a i p===∑2221122()()()()()i i i im m iD X a D F a D F a D F Dε=++++22i ihσ=+说明变量iX的方差由两部分组成:第一部分为共同度2ih,它描述了全部公共因子对变量iX的总方差所作的贡献,反映了公共因子对变量iX的影响程度。

第二部分为特殊因子iε对变量iX的方差的贡献,通常称为个性方差。

而公共因子jF对X的贡献2211,2,,pj ijig a j m===∑表示同一公共因子jF对各变量所提供的方差贡献之总和,它是衡量每一个公共因子相对重要性的一个尺度。

7.4 在进行因子分析时,为什么要进行因子旋转?最大方差因子旋转的基本思路是什么?答:因子分析的目标之一就是要对所提取的抽象因子的实际含义进行合理解释。

但有时直接根据特征根、特征向量求得的因子载荷阵难以看出公共因子的含义。

这种因子模型反而是不利于突出主要矛盾和矛盾的主要方面的,也很难对因子的实际背景进行合理的解释。

这时需要通过因子旋转的方法,使每个变量仅在一个公共因子上有较大的载荷,而在其余的公共因子上的载荷比较小。

最大方差旋转法是一种正交旋转的方法,其基本思路为:①A其中令***(),/ij p m ij ij ia d a h⨯===A AΓ211pj ijid dp==∑*A的第j列元素平方的相对方差可定义为2211()pj ij jiV d dp==-∑②12mV V V V=+++最大方差旋转法就是选择正交矩阵Γ,使得矩阵*A所有m个列元素平方的相对方差之和达到最大。

7.5 试分析因子分析模型与线性回归模型的区别与联系。

答:因子分析模型是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法的模型。

而线性回归模型回归分析的目的是设法找出变量间的依存(数量)关系, 用函数关系式表达出来。

因子分析模型中每一个变量都可以表示成公共因子的线性函数与特殊因子之和。

即1122i i i im m i X a F a F a F ε=++++,(1,2,,i p =) 该模型可用矩阵表示为:=+X AF ε而回归分析模型中多元线性回归方程模型为:其中是常数项,是偏回归系数,是残差。

因子模型满足:(1)m p ≤; (2)(,)0Cov =F ε,即公共因子与特殊因子是不相关的;(3)101()01F m D ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦D F I ,即各个公共因子不相关且方差为1; (4)212220()0p D εσσσ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦D ε,即各个特殊因子不相关,方差不要求相等。

而回归分析模型满足(1)正态性:随机误差(即残差)e 服从均值为 0,方差为σ2的正态分布;(2)等方差:对于所有的自变量x ,残差e 的条件方差为σ2,且σ为常数;(3)独立性:在给定自变量x 的条件下,残差e 的条件期望值为0(本假设又称零均值假设);(4)无自相关性:各随机误差项e 互不相关。

两种模型的联系在于都是线性的。

因子分析的过程就是一种线性变换。

7.6 设某客观现象可用X =()’来描述, 在因子分析时,从约相关阵出发计算出特征值为 由于,所以找前两个特征值所对应的公共因子即可, 又知对应的正则化特征向量分别为(0.707,-0.316,0.632)’及(0,0.899,0.4470)’,要求:(1)计算因子载荷矩阵A ,并建立因子模型。

(2)计算共同度。

(3)计算第一公因子对X的“贡献”。

解:(1)根据题意,A==建立因子模型为(2)(3)因为是从约相关阵计算的特征值,所以公共因子对X的“贡献”为。

7.7 利用因子分析方法分析下列30个学生成绩的因子构成,并分析各个学生较适合学文科序号数学物理化学语文历史英语1 65 61 72 84 81 792 77 77 76 64 70 553 67 63 49 65 67 574 80 69 75 74 74 635 74 70 80 84 81 746 78 84 75 62 71 647 66 71 67 52 65 578 77 71 57 72 86 719 83 100 79 41 67 5010 86 94 97 51 63 5511 74 80 88 64 73 6612 67 84 53 58 66 5613 81 62 69 56 66 5214 71 64 94 52 61 5215 78 96 81 80 89 7616 69 56 67 75 94 8017 77 90 80 68 66 6018 84 67 75 60 70 6319 62 67 83 71 85 7720 74 65 75 72 90 7321 91 74 97 62 71 6622 72 87 72 79 83 7623 82 70 83 68 77 8524 63 70 60 91 85 8225 74 79 95 59 74 5926 66 61 77 62 73 6427 90 82 98 47 71 6028 77 90 85 68 73 7629 91 82 84 54 62 6030 78 84 100 51 60 60解:令数学成绩为X1,物理为X2,化学为X3,语文为X4,历史为X5,英语为X1,用spss 分析学生成绩的因子构成的步骤如下:1. 在SPSS窗口中选择Analyze→Data Reduction→Factor,调出因子分析主界面,并将六个变量移入Variables框中。

图7.1 因子分析主界面2. 点击Descriptives按钮,展开相应对话框,见图7.2。

选择Initial solution复选项。

这个选项给出各因子的特征值、各因子特征值占总方差的百分比以及累计百分比。

单击Continue按钮,返回主界面。

图7.2 Descriptives子对话框3. 点击Extraction按钮,设置因子提取的选项,见图7.3。

在Method下拉列表中选择因子提取的方法,SPSS提供了七种提取方法可供选择,一般选择默认选项,即“主成分法”。

在Analyze栏中指定用于提取因子的分析矩阵,分别为相关矩阵和协方差矩阵。

在Display栏中指定与因子提取有关的输出项,如未旋转的因子载荷阵和因子的碎石图。

在Extract栏中指定因子提取的数目,有两种设置方法:一种是在Eigenvalues over后的框中设置提取的因子对应的特征值的围,系统默认值为1,即要求提取那些特征值大于1的因子;第二种设置方法是直接在Number of factors后的矩形框中输入要求提取的公因子的数目。

这里我们均选择系统默认选项,单击Continue按钮,返回主界面。

图7.3 Extraction子对话框4.点击Rotation按钮,设置因子旋转的方法。

这里选择Varimax(方差最大旋转),并选择Display栏中的Rotated solution复选框,在输出窗口中显示旋转后的因子载荷阵。

单击Continue按钮,返回主界面。

图7.4 Rotation子对话框5.点击Scores按钮,设置因子得分的选项。

选中Save as variables复选框,将因子得分作为新变量保存在数据文件中。

选中Display factor score coefficient matrix复选框,这样在结果输出窗口中会给出因子得分系数矩阵。

单击Continue按钮返回主界面。

图7.5 Scores子对话框6. 单击OK按钮,运行因子分析过程。

结果分析:表7.1 旋转前因子载荷阵表7.2 旋转后因子载荷阵成份矩阵a成份1 2x1 -.662 .503x2 -.530 .478x3 -.555 .605x4 .900 .233x5 .857 .357从表7.1中可以看出,每个因子在不同原始变量上的载荷没有明显的差别,为了便于对因子进行命名,需要对因子载荷阵进行旋转,得表7.2。

经过旋转后的载荷系数已经明显地两极分化了。

第一个公共因子在后三个指标上有较大载荷,说明这三个指标有较强的相关性,可以归为一类,属于文科学习能力的指标;第二个公共因子在前三个指标上有较大载荷,同样可以归为一类,这三个指标同属于理科学习能力的指标。

相关文档
最新文档