备考2014数学高考典例真题名师精讲提能训练:第15讲 概率

合集下载

2014年高考数学文科(高考题+模拟题)分类汇编:概率

2014年高考数学文科(高考题+模拟题)分类汇编:概率

2014年高考数学文科(高考真题+模拟题)分类汇编:概率随事件的概率 1.[2014·新课标全国卷Ⅱ] 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.[解析] 甲有3种选法,乙也有3种选法,所以他们共有9种不同的选法.若他们选择同一种颜色,则有3种选法,所以其对应的概率P =39=13.2.[2014·全国新课标卷Ⅰ] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.[解析] 2本数学书记为数1,数2,3本书共有(数1数2语),(数1语数2),(数2数1语),(数2语数1),(语数1数2),(语数2数1)6种不同的排法,其中2本数学书相邻的排法有4种,对应的概率为P =46=23.3.[2014·浙江卷] 在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.[解析] 基本事件的总数为3×2=6,甲、乙两人各抽取一张奖券,两人都中奖只有2种情况,所以两人都中奖的概率P =26=13.4.[2014·陕西卷] 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解:(1)设A 表示事件“赔付金额为3000元”,B 表示事件“赔付金额为4000元”,以频率估计概率得P (A )=1501000=0.15,P (B )=1201000=0.12.由于投保金额为2800元,所以赔付金额大于投保金额的概率为 P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4000元”,由已知,得样本车辆中车主为新司机的有0.1×1000=100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24.由频率估计概率得P (C )=0.24.5.[2014·四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 解:(1)由题意,(a ,b ,c )所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B , 则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.古典概型 1.[2014·福建卷] 根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035~4085美元为中等偏下收入国家;人均GDP 为4085~12 616美元为中等偏上收入国家;人均GDP 不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:(1)(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.解:(1)设该城市人口总数为a ,则该城市人均GDP 为8000×0.25a +4000×0.30a +6000×0.15a +3000×0.10a +10 000×0.20aa=6400(美元).因为6400∈[4085,12 616),所以该城市人均GDP 达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A ,B},{A ,C},{A ,D},{A ,E},{B ,C},{B ,D},{B ,E},{C ,D},{C ,E},{D ,E},共10个.设事件M 为“抽到的2个行政区人均GDP 都达到中等偏上收入国家标准”, 则事件M 包含的基本事件是:{A ,C},{A ,E},{C ,E},共3个.所以所求概率为P (M )=310.2.[2014·广东卷] 从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为________.[解析] 所有事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),共10个,其中含有字母a 的基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),共4个,所以所求事件的概率是P =410=25.3.[2014·湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p 1,点数之和大于5的概率记为p 2,点数之和为偶数的概率记为p 3,则( )A .p 1<p 2<p 3B .p 2<p 1<p 3C .p 1<p 3<p 2D .p 3<p 1<p 2[解析]则p 1=1036,p 2=2636,p 3=1836.故p 1<p 3<p 2.故选C.4.[2014·湖南卷] 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平.(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x 甲=1015=23,方差为s 2甲=115⎣⎡⎦⎤⎝⎛⎭⎫1-232×10+⎝⎛⎭⎫0-232×5=29. 乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x 乙=915=35,方差为s 2乙=115⎣⎡⎦⎤⎝⎛⎭⎫1-352×9+⎝⎛⎭⎫0-352×6=625. 因为x 甲>x 乙,s 2甲<s 2乙,所以甲组的研发水平优于乙组. (2)记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个,故事件E 发生的频率为715.将频率视为概率,即得所求概率为P (E )=715.5.[2014·江苏卷] 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.4.13[解析] 基本事件有(1,2),(1,3)(1,6),(2,3),(2,6),(3,6),共6种情况,乘积为6的是(1,6)和(2,3),则所求事件的概率为13.6.[2014·江西卷] 掷两颗均匀的骰子,则点数之和为5的概率等于( ) A.118 B.19 C.16 D.112[解析] 掷两颗均匀的骰子,一共有36种情况,点数之和为5的有(1,4),(2,3),(3,2),(4,1),共4种,所以点数之和为5的概率为436=19.7.[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )= ⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169.又8169<119,所以当n ∈S 时,p (n )的最大值为119. 8.[2014·辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了(1)习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2++,解:(1)将2×2列联表中的数据代入公式计算,得χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)},其中a i 表示喜欢甜品的学生,i =1,2,b j 表示不喜欢甜品的学生,j =1,2,3. Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)}.事件A 由7个基本事件组成,因而P (A )=710.9.[2014·山东卷] 海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3}{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的. 记事件D 为“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=415,即这2件商品来自相同地区的概率为415.10.[2014·陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.45[解析] 由古典概型的特点可知从5个点中选取2个点的全部情况共有10种,其中选取的2个点的距离小于该正方形边长的情况共有4种,故所求概率为P =410=25.11.[2014·四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 解:(1)由题意,(a ,b ,c )所有的可能为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B , 则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.12.[2014·天津卷] 某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:现从这6). (1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.13.[2014·重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图1-3所示.(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.解:(1)据直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2.成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A1,A2,成绩落在[60,70)中的3人为B1,B2,B3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个,即(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).其中2人的成绩都在[60,70)中的基本事件有3个,即(B1,B2),(B1,B3),(B2,B3).故所求概率为P=310.几何概型1.[2014·福建卷] 如图1-5所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图1-5[解析] 设阴影部分的面积为S.随机撒1000粒豆子,每粒豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即S 1≈落在阴影部分中的豆子数落在正方形中的豆子数=1801000=0.18,所以可以估计阴影部分的面积为0.18.2.[2014·湖南卷] 在区间[-2,3]上随机选取一个数X,则X≤1的概率为()A.45B.35C.25D.15[解析] 由几何概型概率计算公式可得P =1-(-2)3-(-2)=35.3.[2014·辽宁卷] 若将一个质点随机投入如图1-1所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB图1-1A.π2B.π4C.π6D.π8[解析] 由题意AB =2,BC =1,可知长方形ABCD 的面积S =2×1=2,以AB 为直径的半圆的面积S 1=12×π×12=π2.故质点落在以AB 为直径的半圆内的概率P =π22=π4.4.[2014·重庆卷] 某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)[解析] 设小张到校的时间为x ,小王到校的时间为y ,(x ,y )可以看成平面中的点.试验的全部结果所构成的区域为Ω=⎩⎨⎧⎭⎬⎫(x ,y )|152≤x ≤476,152≤y ≤476,这是一个正方形区域,面积为S Ω=13×13=19.事件A 表示小张比小王早到5分钟,所构成的区域为A =(x ,y )x-y ≥112,152≤x ≤476,152≤y ≤476,即图中的阴影部分,面积为S A =12×14×14=132.这是一个几何概型问题,所以P (A )=S A S Ω=932.互斥事件有一个发生的概率与相互对立事件同时发生的概率 1.[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k .(1)因为P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )=P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )=0.31.(2)由(1)知,若k =2,则P (F )=0.31>0.1, P (E )=P (B ·C ·A 2)=P (B )P (C )P (A 2)=0.06. 若k =3,则P (F )=0.06<0.1, 所以k 的最小值为3.离散型随机变量及其分布列 2014·江苏卷] 盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数,求X 的概率分布和数学期望E (X ).解:(1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P =C 24+C 23+C 22C 29=6+3+136=518. (2)随机变量X 所有可能的取值为2,3,4.{X =4}表示的随机事件是“取到的4个球是4个红球”,故P (X =4)=C 44C 49=1126;{X =3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P (X =3)=C 34C 15+C 33C 16C 49=20+6126=1363;于是P (X =2)=1-P (X =3)-P (X =4)=1-1363-1126=1114.所以随机变量X 的概率分布如下表:因此随机变量X 的数学期望 E (X )=2×1114+3×1363+4×1126=209.条件概率与事件的独立性与离散型随机变量的数字特征与正态分布 [2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k .(1)因为P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )=P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )=0.31.(2)由(1)知,若k =2,则P (F )=0.31>0.1, P (E )=P (B ·C ·A 2)=P (B )P (C )P (A 2)=0.06. 若k =3,则P (F )=0.06<0.1, 所以k 的最小值为3. 模拟题1.[2014·湖南雅礼中学月考] 已知圆C :x 2+y 2=12,直线l :4x +3y =25,圆C 上任意一点A 到直线l 的距离小于2的概率为( )A.12B.14C.13D.16[解析] 因为圆心(0,0)到直线l 的距离为5,圆C 的半径为2 3,所以直线l 与圆C 相离.设l 0∥l 且圆心到l 0的距离为3,则满足题意的点A 位于l 0,l 之间的弧上,结合条件可求得该弧长为圆C 周长的16,由几何概型的概率计算公式可知选项D 正确.2.[2014·福州期末] 在边长为2的正方形ABCD 内随机取一点M ,则|AM |<1的概率为____________.[解析] 由|AM |<1知,点M 在以A 为圆心,1为半径的四分之一圆内,故所求概率为14π22=116π.3.[2014·泰安模拟] 从{1,2,3,4,5}中随机选取一个数a ,从{2,3,4}中随机选取一个数b ,则b >a 的概率是( )A.45B.35C.25D.15[解析] 从两个集合中各选一个数有15种选法,满足b >a 的选法有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共有6种,所以b >a 的概率是615=25.4.[2014·长沙联考] 某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为13,停车费多于14元的概率为512,求甲的停车费为6元的概率;(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.解:(1)设“一次停车不超过1小时”为事件A ,“一次停车1到2小时”为事件B ,“一次停车2到3小时”为事件C ,“一次停车3到4小时”为事件D .由已知得P (B )=13,P (C +D )=512.又事件A ,B ,C ,D 互斥, 所以P (A )=1-13-512=14,所以甲的停车费为6元的概率为14.(2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,所以所求概率为316.5.[2014·常德期末] 空气质量已成为城市居住环境的一项重要指标,空气质量的好坏由空气质量指数确定,空气质量指数越高,代表空气污染越严重:对某市空气质量指数进行一个月(30天)的监测,所得的条形统计图如图J17­1所示:图J17­1(1)估计该市一个月内空气受到污染的概率(若空气质量指数大于或等于75,则空气受到污染);(2)在空气质量类别为“良”“轻度污染”“中度污染”的监测数据中用分层抽样的方法抽取一个容量为6的样本,若在这6个数据中任取2个数据,求这2个数据所对应的空气质量类别不都是轻度污染的概率.解:(1)空气受到污染的概率P =1230+430+230=1830=35.(2)易知用分层抽样的方法从“良”“轻度污染”“中度污染”的监测数据中抽取的个数分别为2,3,1.设它们的数据依次为a 1,a 2,b 1,b 2,b 3,c 1,则抽取2个数据的所有基本事件为(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,c 1),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,c 1),(b 1,b 2),(b 1,b 3),(b 1,c 1),(b 2,b 3),(b 2,c 1),(b 3,c 1),共15种.设“这两天的空气质量类别不都是轻度污染”为事件A ,则A 中的基本事件数为12,所以P (A )=1215=45,即这两天的空气质量类别不都是轻度污染的概率为45.6.[2014·衡阳模拟] 某工厂有25周岁以上(含25周岁)的工人300名,25周岁以下的工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,并将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100].加以统计,得到如图J17­2所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2名,求至少抽到一名25周岁以下的工人的概率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“生产能手与工人的年龄有关”?图J17­2附表:解:(1)由已知得,样本中25周岁以上的工人有60名,25周岁以下的工人有40名, 所以样本中日平均生产件数不足60件的工人中,25周岁以上的工人有60×0.05=3(名),记为A 1,A 2,A 3;25周岁以下的工人有40×0.05=2(名),记为B 1,B 2.从中随机抽取2名工人,所有可能的结果为(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共10种.其中,至少抽到一名25周岁以下的工人的可能的结果为(A 1,B 1),(A 1,B 2),(A 2,B 1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共7种.故所求概率P=710.(2)由频率分布直方图可知,在抽取的100名工人中,25周岁以上的生产能手有60×0.25=15(名),25周岁以下的生产能手有40×0.375=15(名),据此可得2×2列联表如下:所以K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)2 60×40×30×70=2514≈1.79.因为1.79<2.706,所以没有90%以上的把握认为“生产能手与工人的年龄有关”.。

2014高考数学(理)名师指导提能专训12 概率、随机变量的分布列

2014高考数学(理)名师指导提能专训12 概率、随机变量的分布列

提能专训(十二)概率、随机变量的分布列一、选择题1.投掷一枚质地均匀的骰子两次,若第一次的点数小于第二次的点数我们称其为“前效实验",若第二次的点数小于第一次的点数我们称其为“后效实验",若两次的点数相等我们称其为“等效试验”.那么一个人投掷该骰子两次后出现“等效实验”的概率是( )A。

错误!B。

错误! C.错误!D。

错误!B 命题立意:本题主要考查古典概型,根据本题中的新定义,列出投掷两次出现的所有可能情况,查出点数相同的基本事件的个数,利用古典概型的概率公式计算.解题思路:投掷两次的所有基本事件总数为36,其中点数相等的有6种情况,所以投掷两次后出现“等效实验”的概率是错误!=1。

62.随机变量ξ的概率分布列为P(ξ=n)=a错误!n(n=0,1,2),其中a为常数,则P(0.1<ξ<2。

9)的值为( )A.错误!B.错误!C.错误!D.错误!C 命题立意:本题考查随机变量ξ的概率分布列的应用问题,难度中等.解题思路:因为随机变量ξ的概率分布列为P(ξ=n)=a错误!n(n =0,1,2),根据各个概率值的和为1,得a=错误!,然后可得P(0.1<ξ<2.9)=p(ξ=1)+p(ξ=2)=错误!,故选C。

3.(2013·山东日照一模)已知实数x∈[1,9],执行如下图所示的程序框图,则输出的x不小于55的概率为()A。

错误! B.错误!C.错误!D。

错误!B 解题思路:由程序框图可知,输出的结果为2[2(2x+1)+1]+1≥55,解得x≥6,由几何概型可知,输出的x 不小于55的概率为错误!=错误!,故选B.4.(2013·石家庄一模)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A 。

错误!B.错误! D 。

23 D 。

错误!A 解题思路:记3个兴趣小组分别为1,2,3,甲参加兴趣小组1,2,3分别记为“甲1”“甲2”“甲3",乙参加兴趣小组1,2,3分别记为“乙1”“乙2”“乙3”,则基本事件为“甲1,乙1;甲1、乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此P (A )=错误!=错误!。

2014年高考数学一轮复习 热点难点精讲精析 11.2概率

2014年高考数学一轮复习 热点难点精讲精析 11.2概率

2014年高考一轮复习热点难点精讲精析:11.2概率一、随机事件的概率※相关链接※1.事件的判断震怒地三种事件即不可能事件、尽然事件和随机事件的概念充分理解,特别是随机事件要看它是否可能发生,并且是在一定条件下的,它不同于判断命题的真假。

2.对随机事件的理解应包含下面两个方面:(1)随机事件是指一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此必须强调同一事件必须在相同的条件下研究;(2)随机事件可以重复地进行大量试验,每次试验结果不一定相同,且无法预测下一次的结果,但随着试验的重复进行,其结果呈现规律性。

※例题解析※〖例〗一个口袋装有5个白球和3个黑球,从中任意取出一个球:(1)“取出的球是红球”是什么事件?(2)“取出的球是黑球”是什么事件?(3)“取出的球是白球或黑球”是什么事件?思路解析:结合必然事件、不可能事件、随机事件的概念求解。

解答:(1)由于口袋内只装有黑、白两种颜色的球,故“取出的球是红球”是不可能事件;(2)由已知,从口袋内取出一个球,可能是白球也可能是黑球,故“取出的球是黑球”是随机事件;(3)由于口袋内装的黑、白两种颜色的球,故取出一个球不是黑球,就是白球鞋。

因此,“取出的球是白球或黑球”是必然事件。

(二)随机事件的频率与概率※相关链接※1.随机事件的频率,指此事件发生的次数与试验总次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们给这个常数取一个名字,叫做这个随机事件的概率;2.概率可看做频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近。

只要次数足够多,所是频率就近似地当做随机事件的概率。

※例题解析※〖例〗某篮球运动员在最近几场大赛中罚球投篮的结果如下:(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率是多少? 思路解析:解答本题可根据频率的计算公式()An n f A n=,其中n 为相同条件下重复的试验次数,A n 为事件A 出现的次数,且随着试验次数的增多,频率接近概率解答:(1)由公式可计算出每场比赛该运动员罚球进球的频率依次为(2)由(1)知,每场比赛进球的频率虽然不同,但频率总是在34的附近摆动,可知该运动员投篮一次,进球的概率约为34。

2014高考数学概率汇编

2014高考数学概率汇编

2014高考概率与统计汇编1. (辽宁)正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 2比3 .2.(新课标二 5.)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.45 【答案】 A.,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=3.(湖北)由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( D ) A.81 B.41 C. 43 D.87 4.(福建)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为__22e ____. 5.(广东11)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 . 367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为6.(湖北)根据如下样本数据x 3 4 56 7 8y4.02.55.0-0.50.2- 0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a7.(湖北)由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )8.(陕西).从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 【解析】C p 选反向解题.53C 4C 4-1.2525=== 9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则(A )A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10. (江苏) 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 ▲ .11. (辽宁)(本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .解:(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯= . 2()0.003500.15P A =⨯=.()0.60.60.1520.108P B =⨯⨯⨯=.(Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,分布列为因为X ~B (3,0.6),所以期望为E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.7212.(福建)(本小题满分13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求①顾客所获的奖励额为60元的概率 ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解:本小题主要考查古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想。

2014高考数学(理)名师指导提能专训14 概率、随机变量的分布列

2014高考数学(理)名师指导提能专训14 概率、随机变量的分布列

提能专训(十四)直线与圆、圆锥曲线的概念、方程与性质A组一、选择题1.(2013·河南安阳一模)平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,点D在直线3x-y+1=0上移动,则点B的轨迹方程为( )A.3x-y-20=0 B.3x-y+10=0C.3x-y-9=0 D.3x-y-12=0A 解题思路:设AC的中点为O,即错误!.设B(x,y)关于点O 的对称点为(x0,y0),即D(x0,y0),则错误!由3x0-y0+1=0,得3x -y-20=0.2.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( )A.1 B.2错误!C。

错误!D.3C 解题思路:当该点是过圆心向直线引的垂线的交点时,切线长最小.因圆心(3,0)到直线的距离为d=错误!=2错误!,所以切线长的最小值是l=错误!=错误!.3.直线y=x+b与曲线x=错误!有且只有一个交点,则b的取值范围是( )A.{b||b|=错误!}B.{b|-1<b≤1或b=-2}C.{b|-1≤b<1}D.非以上答案B 解题思路:在同一坐标系中,画出y=x+b与曲线x=1-y2(就是x2+y2=1,x≥0)的图象,如图所示,相切时b=-错误!,其他位置符合条件时需-1<b≤1。

故选B.4.(2013·湖南长沙一模)过点(1,3)作直线l,若经过点(a,0)和(0,b),且a∈N*,b∈N*,则可作出的直线l的条数为( ) A.1 B.2 C.3 D.4B 解题思路:由题意,得错误!+错误!=1⇒(a-1)(b-3)=3.又a∈N*,b∈N*,所以有两个解错误!或错误!5.已知动点P到两定点A,B的距离和为8,且|AB|=4错误!,线段AB的中点为O,过点O的所有直线与点P的轨迹相交而形成的线段中,长度为整数的有()A.5条B.6条C.7条D.8条D 命题立意:本题考查椭圆的定义与性质,难度中等.解题思路:依题意,动点P的轨迹是以A,B为焦点,长轴长是8,短轴长是2错误!=4的椭圆.注意到经过该椭圆的中心O的最短弦长等于4,最长弦长是8,因此过点O的所有直线与点P的轨迹相交而形成的线段中,长度可以为整数4,5,6,7,8,其中长度为4,8的各一条,长度为5,6,7的各有两条,因此满足题意的弦共有8条,故选D.6.(2012·天津高考)设m,n∈R,若直线(m+1)x+(n+1)y -2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是()A.[1-3,1+错误!]B.(-∞,1-错误!]∪[1+错误!,+∞)C.[2-2错误!,2+2错误!]D.(-∞,2-2错误!]∪[2+2错误!,+∞)D 解题思路:∵直线与圆相切,∴错误!=1,∴|m+n|=错误!,即mn=m+n+1,设m +n =t ,则mn ≤错误!2=错误!,∴ t +1≤错误!,∴ t 2-4t -4≥0,解得t ≤2-2错误!或t ≥2+2错误!。

【名师名校典型题】2014高考数学二轮复习名师知识点总结:概 率

【名师名校典型题】2014高考数学二轮复习名师知识点总结:概 率

S正方形-2S△ABC = S正方形
当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使 用几何概型求解; 利用几何概型求概率时, 关键是试验的全部结果构成的区域和事件发 生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域. (1)在区间[0,2]上任取两个实数 a, b, 则函数 f(x)=x3+ax-b 在区间[-1,1] 上有且仅有一个零点的概率是 1 A. 8 3 C. 4 1 B. 4 7 D. 8 ( )
Go the distance
(2)从该小组同学中任选 2 人,求选到的 2 人的身高都在 1.70 以上且体重指标都在 [18.5,23.9)中的概率. 解 (1)从身高低于 1.80 的 4 名同学中任选 2 人, 其一切可能的结果组成的基本事件有:
ห้องสมุดไป่ตู้
(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共 6 个.设“选到的 2 人身高都在 3 1 1.78 以下”为事件 M,其包括的事件有 3 个,故 P(M)= = . 6 2 (2)从小组 5 名同学中任选 2 人,其一切可能的结果组成的基本事件有:(A,B),(A, C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共 10 个. 设“选到的 2 人的身高都在 1.70 以上且体重指标都在[18.5,23.9)”为事件 N,且事件 N 包括事件有:(C,D),(C,E),(D,E)共 3 个. 3 则 P(N)= . 10 求古典概型概率的步骤 (1)反复阅读题目,收集题目中的各种信息,理解题意; (2)判断试验是否为古典概型,并用字母表示所求事件; (3)利用列举法求出总的基本事件的个数 n 及事件 A 中包含的基本事件的个数 m; m (4)计算事件 A 的概率 P(A)= . n (1)(2012· 安徽)袋中共有 6 个除了颜色外完全相同的球, 其中有 1 个红球, 2 个白球和 3 个黑球.从球中任取两球,两球颜色为一白一黑的概率等于 1 A. 5 3 C. 5 答案 B 解析 利用古典概型求解. 设袋中红球用 a 表示,2 个白球分别用 b1,b2 表示,3 个黑球分别用 c1,c2,c3 表示, 则从袋中任取两球所含基本事件为:(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1, b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2, c3),共 15 个. 两球颜色为一白一黑 的基本事件有: (b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共 6 个. 6 2 ∴其概率为 = .故选 B. 15 5 (2)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为 a,再由乙猜甲刚才所想的 数字,把乙猜的数字记为 b,其中 a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有 2 B. 5 4 D. 5 ( )

2014年高考数学真题汇编(含答案):概率与统计

2014年高考数学真题汇编(含答案):概率与统计

2014年全国高考理科数学试题分类汇编(纯word解析版)八、概率与统计(逐题详解)第I部分1.【2014年陕西卷(理06)】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()【答案】 C【解析】2.【2014年重庆卷(理03)】已知变量与正相关,且由观测数据算得样本平均数,,则由观测的数据得线性回归方程可能为()【答案】A【解析】根据正相关知回归直线的斜率为正,排除,回归直线经过点,故选3.【2014年陕西卷(理09)】设样本数据的均值和方差分别为1和4,若(为非零常数,),则的均值和方差分别为()(A)(B)(C)(D)【答案】 A【解析】4.【2014年湖南卷(理02)】对一个容量为N的总体抽取容量为m的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为,,,则A. B.C. D.【答案】D【解析】根据随机抽样的原理可得三种抽样方式都必须满足每个个体被抽到的概率相等,即,故选D5.【2014年山东卷(理07)】为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为舒张压/kPa频率 / 组距0.360.240.160.08171615141312(A ) (B ) (C ) (D )【答案】C【解析】第一组与第二组频率之和为0.24+0.16=0.46.【2014年全国新课标Ⅰ(理05)】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率....【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有种;②每天2人有种,则周六、周日都有同学参加公益活动的概率为;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为;选D.7.【2014年全国新课标Ⅱ(理05)】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.45【答案】 A 【解析】8.【2014年广东卷(理06)】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A. 200,20B. 100,20C. 200,10D. 100,10【答案】A【解析】由题意知:该地区中小学生总人数为:人,所以样本容量为,应抽取高中生人数为:,所以抽取的高中生近视人数为人.故选A.9.【2014年湖北卷(理04x 3 4 5 6 7 8y 4.0 2.5 -0.5 0.5 -2.-3.0得到的回归方程为,则A. B. C. D.【答案】 B【解析】画出散点图如图所示,y的值大致随x的增加而减小,因而两个变量呈负相关,所以,10.【2014年湖北卷(理07)】由不等式确定的平面区域记为,不等式,确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为()A. B. C. D.【答案】 D【解析】依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在内的概率为.11.【2014年江西卷(理06)】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是【答案】D【解析】根据独立性检验相关分析知,阅读量与性别相关数据较大,选D12.【2014年浙江卷(理09)】已知甲盒中仅有1个球且为红球,乙盒中有个红球和个蓝球,,从乙盒中随机抽取,个球放入甲盒中.()放入个球后,甲盒中含有红球的个数记为,;()放入个球后,从甲盒中取1个球是红球的概率记为,.则A.,B.,C.,D.,【答案】A【解析】,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以==,E(ξ1)﹣E(ξ2)=.故选A第II部分13.【2014年辽宁卷(理14)】正方形的四个顶点分别在抛物线和上,如图所示,若将一个质点随机投入正方形ABCD中,学科网则质点落在阴影区域的概率是 .【答案】【解析】∵A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1),∴正方体的ABCD的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积S=2=2=2[(1﹣)﹣(﹣1+)]=2×=,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是.故答案为:14.【2014年广东卷(理11)】从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为。

2014高考数学(文)名师指导提能专训11:概率(含解题思路)

2014高考数学(文)名师指导提能专训11:概率(含解题思路)

提能专训(十一)概率一、选择题1.(2013·石家庄模拟)现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0。

852 B.0.819 2 C.0.8 D.0。

75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-错误!=0.75,故选D。

2.(2013·云南昆明高三质检)在菱形ABCD中,∠ABC=30°,BC=4,若在菱形ABCD内任取一点,则该点到四个顶点的距离均不小于1的概率是()A.错误!B。

错误!C.错误!D.1-错误!答案:D 命题立意:本题主要考查几何概型,意在考查考生的运算求解能力.解题思路:如图,以菱形的四个顶点为圆心作半径为1的圆,图中阴影部分即为到四个顶点的距离均不小于1的区域,由几何概型的概率计算公式可知,所求概率P=错误!=错误!.3.(2013·浙江丽水一模)设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P (a,b),记“点P(a,b)落在直线x+y=n上”为事件C n(2≤n≤5,n∈N) ,若事件C n的概率最大,则n的所有可能值为( )A.3 B.4C.2和5 D.3和4答案:D 解题思路:分别从集合A和B中随机取出一个数,确定平面上的一个点P(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6种情况,a+b=2的有1种情况,a+b=3的有2种情况,a+b=4的有2种情况,a+b=5的有1种情况,所以可知若事件C n的概率最大,则n的所有可能值为3和4,故选D。

2014年全国高考理科数学《概率》汇编

2014年全国高考理科数学《概率》汇编

2014年全国高考理科数学《概率》汇编1.(天津)某大学志愿者协会有6名男同学,4名女同学. 在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院. 现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.(Ⅰ)解:设“选出的3名同学来自互不相同的学院”为事件A ,则()120337373104960C C C C P A C ? ==. 所以,选出的3名同学来自互不相同学院的概率为4960. 所以,()f x 的最小正周期22T pp ==. (Ⅱ)解:随机变量X 的所有可能值为0,1,2,3.()346310k k C C P x k C -×==()0,1,2,3k =. 所以,随机变量X 的分布列是X 012 3P1612310 130随机变量X 的数学期望E(X)=0×61+1×21+2×103+3×301=56.2. (北京)李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率.(2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论) 解:⑴ 李明在该场比赛中命中率超过0.6的概率有:主场2 主场3 主场5 客场2 客场4 所以李明在该场比赛中投篮命中超过0.6的概率51102P == ⑵ 李明主场命中率超过0.6概率135P =,命中率不超过0.6的概率为1215P -= 客场中命中率超过0.6概率225P =,命中率不超过0.6的概率为2315P -=.332213555525P =⨯+⨯=⑶ ()E X x =.3、(广东)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.121272:(1)7,2,0.28,0.08;2525(2):n n f f ======解频率分布直方图如下所示(](](]044(3),30,350.2,30,35(4,0.2),130,35:1(0.2)(0.8)10.40960.5904.B C ξξ-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为设日加工零件数落在区间的人数为随机变量,则故4人中,至少有人的日加工零件数落在区间的概率为4.(山东)乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求: (I )小明两次回球的落点中恰有一次的落点在乙上的概率; (II )两次回球结束后,小明得分之和ξ的分布列与数学期望.BA CD解:(I )设恰有一次的落点在乙上这一事件为A10354615165)(=⨯+⨯=A P(II )643210,,,,,的可能取值为ξ1015121)6(,301151315321)4(15251615121)3(,515331)2(6153615131)1(,3015161)0(=⨯===⨯+⨯===⨯+⨯===⨯===⨯+⨯===⨯==ξξξξξξP P P P P P 的分布列为ξ∴ ξ 012346P301 6151 152 3011 101 309110163011415235126113010)(=⨯+⨯+⨯+⨯+⨯+⨯=∴ξE 其数学期望为5.(陕西)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少..于.2000元的概率.(1)3.06.0*5.0)4000(,5.04.0*5.06.0*5.0)2000(,2.04.0*5.0)800(.4000,2000,80040001000-10*50020001000-6*50020001000-10*3008001000-6*300.-*====+==========X p X p X p X X 三个,即,,,可以取考虑产量和价格,利润成本价格产量利润X 的分布列如下表:X 800 2000 4000 P 0.2 0.5 0.3(2)896.020*******.08.02.0*8.0*3)-1()-1(200023.8.03.05.02000)1(8001000-6*300.-*32333223的概率是季的利润不少于季中至少有所以,的概率季的利润不少于季中至少有则的概率知,一季利润不少于由,可以取考虑产量和价格,利润成本价格产量利润=+=+==+===p p C p p C P p X X6.(四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分)。

2014年高考数学真题汇编(含答案):概率与统计

2014年高考数学真题汇编(含答案):概率与统计

2014年全国高考理科数学试题分类汇编(纯w o r d 解析版) 八、概率与统计(逐题详解) 第I 部分1.【2014年陕西卷(理06)】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) 【答案】 C【解析】C p 选反向解题.53C 4C 4-1.2525===2.【2014年重庆卷(理03)】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =,3.5y =,则由观测的数据得线性回归方程可能为( )【答案】A【解析】根据正相关知回归直线的斜率为正,排除,C D ,回归直线经过点(,)x y --,故选A 3.【2014年陕西卷(理09)】设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数, 1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A【解析】A 选变均值也加此数,方差不样本数据加同一个数,. 4.【2014年湖南卷(理02)】对一个容量为N 的总体抽取容量为m 的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则 A. 321p p p <= B. 132p p p <= C. 231p p p <= D. 321p p p ==【答案】D【解析】根据随机抽样的原理可得三种抽样方式都必须满足每个个体被抽到的概率相等,即 321p p p ==,故选D5.【2014年山东卷(理07)】为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 (A )6 (B )8 (C ) 12(D )18 【答案】C【解析】第一组与第二组频率之和为0.24+0.16=0.4200.450÷=500.361818612⨯=-=6.【2014年全国新课标Ⅰ(理05)】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.7.【2014年全国新课标Ⅱ(理05)】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 【答案】 A 【解析】8.【2014年广东卷(理06)】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10 【答案】A【解析】由题意知:该地区中小学生总人数为:35004500200010000++=人,所以样本容量为100002%200⨯=,应抽取高中生人数为:420040794⨯=++,所以抽取的高中生近视人数为4050%20⨯=人.故选A.9.【2014年湖北卷(理04)】根据如下样本数据x 3 45 6 7 8 y4.02.5 -0.5 0.5-2.0-3.0得到的回归方程为a bx y +=ˆ,则A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a 【答案】 B【解析】画出散点图如图所示,y 的值大致随x 的增加而减小,因而两个变量呈负相关,所以0<b ,0>a10.【2014年湖北卷(理07)】由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A.81 B.41 C. 43 D.87 【答案】 D【解析】依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDFCEFBDFSSP S⨯⨯-⨯⨯-===⨯⨯. 11.【2014年江西卷(理06)】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是 【答案】D【解析】根据独立性检验相关分析知,阅读量与性别相关数据较大,选D 12.【2014年浙江卷(理09)】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(3m ≥,3)n ≥,从乙盒中随机抽取(1i i =,2)个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1i i ξ=,2);(b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1i p i =,2).则A.12p p >,12()()E E ξξ<B.12p p <,12()()E E ξξ>C.12p p >,12()()E E ξξ>D.12p p <,12()()E E ξξ< 【答案】A 【解析】,,,所以P1>P 2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以 ==,E (ξ1)﹣E (ξ2)=.故选A第II 部分13.【2014年辽宁卷(理14)】正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,学科网则质点落在阴影区域的概率是 .【答案】【解析】∵A (﹣1,﹣1),B (1,﹣1),C (1,1),D (﹣1,1),∴正方体的ABCD 的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积S=2=2=2[(1﹣)﹣(﹣1+)]=2×=,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是.故答案为:14.【2014年广东卷(理11)】从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 。

2014高考数学必考点解题方法秘籍 概率 理

2014高考数学必考点解题方法秘籍 概率 理

2014高考理科数学必考点解题方法秘籍:概率(1)随机事件——概率学把“可能性”引进数学在概率学中,我们称一定发生的事件为必然事件,不可能发生的事件是不可能事件,可能发生也可能不发生的事件是随机事件.概率也就是事件发生的可能性.所以必然事件的概率是1,不可能事件的概率是0,而随机事件的概率在区间(0,1)之中.同时掷两枚骰子,则以下事件各是什么事件?点数之和是正整数;点数之和小于2;点数之和是3的倍数.【解析】(1)是必然事件,(2)是不可能事件;(3)是随机事件.(2)等可能事件——概率公式的起源如果一次试验中可能出现的结果有n个,而且这n个结果出现的可能性相同,则称这类事件为等可能事件.由此导出基本概率公式是:()mP An=.(其中n和 m分别表示基本事件总数和事件A发生的次数.)【例2】将一枚骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()A.19B.112C.115D.118【解析】抛掷一枚骰子后,出现任何一面的可能性相同.所以本题属于等可能事件.一枚骰子连续抛掷三次,则基本事件总数36216n==;设事件A;连掷3次所得点数依次成等差数列,那么3数相等时有111,222,…666等六种;3数不相等时有123,234,345,456,135,246及其反序数等12个.于是事件A发生的次数61218m=+=种.故()18121612P A==.选B.(3)互斥事件——概率的加法原理在某种试验中,不能同时发生的事件称为互斥事件.如果A、B是互斥事件,那么:()()()P A B P A P B⋃=+.【例3】在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()A.310 B.15 C.110 D.112【解析】设小球标注的数字之和为3与6的事件分别为A、B.显然A与B不能同时成立,是互斥事件.由于基本事件总数2510.n C ==事件A 只有1+2=3一种,;事件B 有1+5=2+4=6两种,.∵A 与B 互斥,()()()1231010P A B P A P B +∴⋃=+==.选A.(4)对立事件——两互斥事件的特写在一次试验中,如果事件A 与B 一定恰有一个发生,则称事件A 与B 是对立事件. 注意对立事件必然互斥,但是互斥事件不一定对立. 一般地,记A 的对立事件为A .由于A 与A 具有互补性,所以()()1P A P B +=.这是简化概率计算的基本公式.【例4】8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛,这两个强队被分在一个组内的概率是多少?【解析】 我们用a 、b 分别记八个队中的两个强队. 令C=“a 队与b 队分在同一组”, 则C =“a 队与b 队不在同一组”.a 队与b 队不在同一组,只能分成两种情况:a 队在第一组,b 队在第二组,此时有C 36·C 33=C 36种分法;a队在第二组,b 队在第一组,此时有C 36·C 33=C 36种分法.这些分法中任何两种都是不同的,因此,有C 36+ C 36种分法.八个队平分成的两组的分法共C 48·C 44= C48种.每一种分法是一基本事件,任何两个基本事件都是等可能的.这样,P(C )=741454545C C C 483636=⨯⨯+⨯=+,∴P(C)=1-P(C )=1-74=73.【点评】 应抓住两个强队被分在一组和不同一组是对立的事件,由此入手来解之.(5)相互独立事件——概率的乘法原理如果事件A 与B 的发生互相没有影响,则称事件A 与B 为相互独立事件.特别注意:不能将互斥事件与相互独立事件搞混,前者相互约束,而后者相互无关;前者不可能同时发生,而后者可以同时发生.如果A 与B 是相互独立事件,那么A 与B 同时发生的概率是:()()()P A B P A P B ⋅=⋅.【例5】甲、乙两个袋中均有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球, 乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机取出一个球,则取出的两球都是红球的概率为 .(答案用分数表示)【分析】分别从甲、乙两袋中随机地取球,则取球的结果相互没有影响.所以本题中发生的事件是相互独立事件.【解析】两袋中各有6个球,则各取1球的基本事件总数为116636C C ⋅=. 设从甲袋中取出一个球是红球的事件为A ,从乙袋中取出一个球是红球的事件为B ,那么()()41,66P A P B ==.故“取出的两球都是红球的概率”是()()411669P A P B ⋅=⨯=.(6)独立重复试验——加法原理与乘法原理的复合在调查某事件发生的概率时,往往要做大量重复的试验.这些试验不仅相互独立,而且都是同一类型的等可能事件.我们称这种试验为独立重复试验. 独立重复试验中的概率计算公式是:()()1kk kn n P k C P P =-.【例6】甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( ) (A1 0.216 (B)0.36 (C)0.432 (D)0.648【分析】两人赛球不止一局,且每局每人获胜的概率相同.所以本题这种赛球属于独立重复试验.【解析】设事件A :在“3局2胜”的球赛中甲获胜,则A 有3种可能.前两局甲胜,其概率为210.6P =;1、3局胜,2局负,其概率为220.60.40.60.60.4P =⨯⨯=⨯ 首局负,2、3局胜,其概率为230.40.60.60.60.4P =⨯⨯=⨯ 显然3种情况互斥,()()20.610.40.40.648P A ∴=++=,故选D.【说明】本题虽然属于独立重复试验.的题型,却有不能死套公式.这是因为:如果甲前两局获胜,则无须打第3局.(7)和事件——概率计算与集合计数在某次试验中,如果事件A 与B 不互斥,则计算A 与B 都发生的概率不能用简单的加法,这是因为事件A 与B 含有交叉的部分,而这部分被重复计算一次,应该把重复计算的数据减去.和事件的正确计算方法是:()()()()P A B P A P B P A B ⋃=+-⋂.【例7】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,求这3人中至少有2人参加过培养的概率.【分析】在题设的两项培训中,每个下岗人员都有3种选择方法:参加1项、两项或不参加培训.所以仅根据现有数据,无法判断哪些是仅参加了一项培训,哪些是两项培训都参加了的.所以本题属于典型的计算和事件的题型.【解析】设事件A 表示参加财会培训,事件B 表示参加计算机培训,则A B ⋂表示同时参加两项培训.()()()0.6,0.75,0.60.750.45.P A P B P A B ==∴⋂=⨯=任选1名下岗人员,则该人参加过培训的概率是:()()()()0.60.750.450.9P A B P A P B P A B ⋃=+-⋂=+-=.设事件C 表示3人中至少有2人参加培训,则事件A 表示3人中至多1人参加培训. 根据(I ),三人中无人参加培训的概率是()3110.90.001P =-=;而三人中恰1人参加培训的概率是:()21230.90.10.027P C =⨯⨯=.这两种情况互斥,()0.0010.0270.028P C ∴=+=于是3人中至少有2人参加培训的概率是()10.0280.972.P C =-=三类概率问题的求解策略对于一个概率题,我们首先要弄清它属于哪一类型的概率,因为不同的类型需要采取不同类型的概率公式和求解方法;其次,要审清题意,注意问题中的关键语句,因为这些关键语句往往蕴含着解题的思路和方法。

2014年全国各地高考数学分类汇编-15 概率、统计、统计案例、推理与证明

2014年全国各地高考数学分类汇编-15 概率、统计、统计案例、推理与证明

2014年全国各地高考数学试题及解答分类汇编大全(15概率、统计、统计案例、推理与证明)一、选择题:1. (2014北京理)学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人 B.3人 C.4人 D.5人【答案】B【解析1】试题分析:用A、B、C分别表示优秀、及格和不及格,依题意,事件A、B、C中都最多只有一个元素,所以只有AC,BB,CA满足条件,故选B.【解析2】假设AB两个同学的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两个同学数学成绩是相同的.因为数学成绩只有3种,因而同学数量最大为3.即3位同学成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件.2、(2014广东文)为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为A.50B.40C.25D.203. (2014广东理)已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,104.(2014湖北文)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3 C.p1<p3<p2D.p3<p1<p24.C [解析]则p 1=1036,p 2=2636,p 3=1836.故p 1<p 3<p 2.故选C.5.(2014湖北理得到的回归方程为y =bx +a ,则( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0观察图象可知,回归直线y =bx +a 的斜率b <0,截距a >0.故a >0,b <0.故选B.6.(2014湖北文得到的回归方程为y =bx +a ,则( )A .a >0,b <0B .a >0,b >0C .a <0,b <0D .a <0,b >0由图像不难得出,回归直线y =bx +a 的斜率b <0,截距a >0,所以a >0,b <0.故选A.7. (2014湖南文、理)对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==8. (2014湖南文)在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D 【答案】B【解析】在[]2,3-上符合1X ≤的区间为[]2,1-,所以35P =,故选B.9.(2014江西文)掷两颗均匀的骰子,则点数之和为5的概率等于( )1.18A 1.9B 1.6C 1.12D 【答案】B 【解析】点数之和为5的基本事件有:(1,4)(4,1)(2,3)(3,2),所以概率为364=9110. (2014江西文、理)某人研究中学生的性别与成绩、学科 网视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )A.成绩B.视力C.智商D.阅读量【答案】D【解析】()22215262214105281636203216362032χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯,()()2222521651612521671636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯,()()222352248812521281636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯,()()222452143026526861636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯。

江苏省2014年高考数学(文)二轮复习专题提升训练:15 概率与统计

江苏省2014年高考数学(文)二轮复习专题提升训练:15 概率与统计

常考问题15 概率与统计(建议用时:35分钟)1.(2013·福建卷改编)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为________.解析 少于60分的学生人数600×(0.005+0.015)×10=120(人),所以不少于60分的学生人数为480人.答案 4802.(2013·北京海淀区期末)先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为________.解析 由题意可知,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为55+4+3+2+1=13. 答案 133.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________. 解析 分层抽样应按各层所占的比例从总体中抽取.∵120∶16∶24=15∶2∶3,又共抽出20人,∴各层抽取人数分别为20×1520=15(人),20×220=2(人),20×320=3(人).答案 15、2、34.(2011·课标全国)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为________.解析 甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣小组的概率P =39=13.答案 135.一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为________.解析 有放回地摸球,基本事件总数为25;两次都是白球所包含的基本事件为4.所以两次摸出的球都是白球的概率为425.答案 4256.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.解析 因为从5名候选学生中任选2名学生的方法共有10种,而甲、乙、丙中有2个被选中的方法有3种,所以甲、乙、丙中有2个被选中的概率为310.答案 3107.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.解析 平均数x =14+17+18+18+20+216=18,故方差s 2=16[(-4)2+(-1)2+02+02+22+32)]=5.答案 58.(2013·苏锡常镇模拟)袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是________.解析总的取法是4组,能构成等差数列的有{2,3,4},{2,4,6} 2组;故所求概率为P=24=12.答案1 29.设f(x)=x2-2x-3(x∈R),则在区间[-π,π]上随机取一个数x,使f(x)<0的概率为________.解析几何概型,x2-2x-3<0⇒-1<x<3;∵x∈[-π,π],∴P=42π=2π.答案2π10.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.解析从长度分别为2,3,4,5的四条线段中任意取出三条这一事件共有4种,而不能构成三角形的情形为2,3,5.所以这三条线段为边可以构成三角形的概率是P=3 4.答案3 411.(2013·福建卷)利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为________.解析因为0≤a≤1,由3a-1>0得13<a≤1,由几何概型概率公式得事件“3a-1>0”发生的概率为1-131=23.答案2 312.(2013·南京模拟)从一副没有大小王的52张扑克牌中随机抽取1张,事件A为“抽得红桃8”,事件B为“抽得为黑桃”,则事件“A+B”的概率值是________(结果用最简分数表示).解析事件A发生的概率152,事件B发生的概率1352,事件A、B是互斥事件,所以事件“A+B”的概率为:152+1352=726.答案7 2613.在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为________.解析由题意得到的P(m,n)有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共计6个;在圆x2+y2=9的内部的点有(2,1),(2,2),所以概率为26=13.答案1 314.(2013·苏北四市模拟)抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x,y,则xy为整数的概率是________.解析将抛掷甲、乙两枚质地均匀的正四面体所得的数字x,y记作有序实数对(x,y),共包含16个基本事件,其中xy为整数的有:(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2),共8个基本事件,故所求的概率为816=12.答案1 2备课札记:。

2014高考数学 专题五 5-1概率与统计名师指导历炼试题 理(含解析)新人教A版

2014高考数学 专题五 5-1概率与统计名师指导历炼试题 理(含解析)新人教A版

2014高考数学专题五5-1概率与统计名师指导历炼试题理(含解析)新人教A版1.(交汇新)正态总体N(2,9)在区间(3,4)和(0,1)上取值的概率分别为m,n,则mn与m+n 2的大小关系为()A.mn>m+n2B.mn=m+n2C.mn<m+n2D.不确定2.(交汇新)如图,圆O:x2+y2=π2内的正弦曲线y=sin x与x轴围成的区域记为M(圆中阴影部分),随机往圆O内投一个点A,则点A落在区域M内的概率是________.3.(背景新)甲、乙两人进行“石头、剪子、布”游戏.开始时每人拥有3张卡片,每一次“出手”(双方同时):若分出胜负,则负者给对方一张卡片;若不分胜负,则不动卡片.规定:当一人拥有6张卡片或“出手”次数达到6次时游戏结束.设游戏结束时“出手”次数为ξ,则E(ξ)=__________.4.(背景新)某品牌汽车的4S店,对最近100位采用分期付款的顾客进行统计,统计结果如下表所示.已知分3期付款的频率为0.2,4S店销售一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示销售一辆汽车的利润.(2)若以频率为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率P(A);(3)求η的分布列及数学期望E(η).[历炼]1.解析:正态分布N (2,9)的曲线关于x =2对称,区间(3,4)和(0,1)关于对称轴x =2对称,故m =n ,则mn =m +n2.答案:B2.解析:阴影部分的面积为2⎪⎪⎠⎛0πsin x d x =2(-cos x )π0=4,圆的面积为π3,所以点A落在区域M 内的概率是4π3.答案:4π33.解析:P(ξ=3)=2×⎝⎛⎭⎫133=227,P(ξ=4)=2×C 13×⎝⎛⎭⎫134=227, P(ξ=5)=2×⎣⎡⎦⎤C 24×⎝⎛⎭⎫135+C 13×⎝⎛⎭⎫135=227, P(ξ=6)=1-P(ξ≤5)=2127,E(ξ)=227×3+227×4+227×5+2127×6=509.答案:5094.解析:(1)由a100=0.2,得a =20.又40+20+a +10+b =100,所以b =10.(2)记分期付款的期数为ξ,则ξ的可能取值为1,2,3,4,5.依题意,得P(ξ=1)=40100=0.4,P(ξ=2)=20100=0.2,P(ξ=3)=0.2,P(ξ=4)=10100=0.1,P(ξ=5)=10100=0.1.则“购买该品牌汽车的3位顾客中至多有1位采用3期付款”的概率为P(A)=0.83+C 13×0.2×(1-0.2)2=0.896.(3)由题意,知ξ=1时,η=1;ξ=2时,η=1.5;ξ=3时,η=1.5;ξ=4时,η=2;ξ=5时,η=2.所以η的可能取值为1,1.5,2.其中P(η=1)=P(ξ=1)=0.4,P(η=1.5)=P(ξ=2)+P(ξ=3)=0.4, P(η=2)=P(ξ=4)+P(ξ=5)=0.1+0.1=0.2. 所以η的分布列为故η的数学期望E(η)=1×0.4+1.5×0.4+2×0.2=1.4.。

高考数学 专家讲坛 第15讲 概 率(含试题,含点评)

高考数学 专家讲坛 第15讲 概 率(含试题,含点评)

第十五讲概率真题试做►———————————————————1.(2013·高考课标全国卷Ⅰ)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.162.(2013·高考福建卷)利用计算机产生0~1之间的均匀随机数a,则事件“3a-1<0”发生的概率为________.3.(2013·高考辽宁卷)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.考情分析►———————————————————古典概型及几何概型为高考的重点内容,难度为中、低档,其中几何概型以“面积型”和“长度型”为主,古典概型常与互斥事件、对立事件相结合命题;近年来概率与统计结合命题多出现在解答题中.考点一古典概型古典概型是每年必考内容,试题借助一定的背景材料考查,近几年也常与抽样方法、统计等内容结合出现在解答题中,试题难度中等或稍易.(2013·高考山东卷)某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.【思路点拨】(1)身高低于1.80的同学共有4人,因此所有可能的基本事件总数是指从4人中选取2人;(2)所有可能的基本事件总数是从5人中选取2人,而符合条件的基本事件需要同时满足身高在1.70以上且体重指标都在[18.5,23.9)内.求解古典概型问题的三个步骤:(1)判断本次试验的结果是否是等可能的,设出所求的事件为A ;(2)分别计算基本事件的总个数n 和所求的事件A 所包含的基本事件个数m ;(3)利用古典概型的概率公式P (A )=m n求出事件A 的概率.强化训练1 袋内装有6个球,这些球依次被编号为1、2、3、…、6,设编号为n 的球重n 2-6n +12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出一个球,求其重量大于其编号的概率; (2)如果不放回地任意取出2个球,求它们重量相等的概率.考点二 几何概型考纲对几何概型的要求不高,因此对几何概型的考查难度不大,多与平面区域、空间几何体、函数等结合命题.(2013·高考湖北卷)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.【思路点拨】 根据几何概型,在线性问题中用长度之比表示概率,求m 的值.利用几何概型求概率时,要选择好角度,从分析基本事件的“等可能性”入手,将每个基本事件理解为在某个特定区域内随机地取一点,而某个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.强化训练2 (2013·成都市诊断性检测)已知集合{(x ,y )|⎩⎪⎨⎪⎧2x +y -4≤0x +y ≥0x -y ≥0}表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( )A.3π32B.3π16C.π32D.π16考点三 互斥事件、对立事件的概率互斥事件、对立事件的概率常借助古典概型来考查,以实际生产、生活为背景,命制试题,解题的关键是遇到复杂的事件时可分解为几个互斥事件的和,或利用对立事件求复杂事件的概率.有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5.同时投掷这两枚玩具一次,记m为两个朝下的面上的数字之和.(1)求事件“m不小于6”的概率;(2)“m为奇数”的概率和“m为偶数”的概率相等吗?为什么?【思路点拨】(1)利用列举法求解.(2)利用互斥事件、对立事件的概率公式求“m为奇数”、“m为偶数”的概率.求解互斥事件、对立事件的概率问题时,一要先利用条件判断所给的事件是互斥事件,还是对立事件;二要将所求事件的概率转化为互斥事件、对立事件的概率;三要准确利用互斥事件、对立事件的概率公式去计算所求事件的概率.强化训练3 有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取得的两个球颜色相同的概率;(2)求取得的两个球颜色不相同的概率.概率与四类知识的交汇一、概率与统计中的频率分布直方图的交汇(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率. 【解】 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000. 当X ∈[130,150]时, T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.本题把频率分布直方图与函数、概率相结合,题目新颖,但难度较小,由于X 的取值不同,经销商所获利润T 不同,从而求出T 关于X 的函数为分段函数;要求利润不少于57 000元,从而可求出X 的范围,利用直方图可求得概率.二、概率与统计中茎叶图的交汇以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.甲组 乙组 9 9 0 X 8 9 1 1 1 0(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x ,x 2,…,x n 的平均数)【解】 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10,所以平均数为x =8+8+9+104=354;方差为s 2=14⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫9-3542+⎝ ⎛⎭⎪⎫10-3542=1116. (2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为P (C )=416=14.本题是概率与统计相交汇的常规命制试题,门槛低,入手容易.解决此类问题的关键是理解平均数与方差的概念,理解事件的含义并确定事件的所有可能结果,求出每个结果对应的概率,即可得到答案.三、概率与程序框图的交汇(2013·高考四川卷)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3); (2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)运行次数n 输出y 的值为1的频数 输出y 的值为2的频数 输出y 的值为3的频数30 14 6 10 … … … … 2 100 1 027 376 697 乙的频数统计表(部分)运行次数n 输出y 的值为1的频数 输出y 的值为2的频数 输出y 的值为3的频数30 12 11 7 … … … … 2 100 1 051 696 353 当n =2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大.【解】 (1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能.当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12;当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16.所以输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100时,甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率如下:输出y 的值为1的频率 输出y 的值为2的输出y 的值为3的频率 频率甲 1 0272 100 3762 100 6972 100乙 1 0512 100 6962 100 3532 100比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大.本题的亮点是概率、统计中融入算法框图,且以生活题材为背景,使整个题目显得新颖独特.解题的关键是把框图语言翻译成数学语言,即把数字1,2,…,24分为三类,利用古典概型求其概率.四、概率与平面向量的交汇(2013·高考江西卷)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图所示)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若X >0就去打球,若X =0就去唱歌,若X <0就去下棋.(1)写出数量积X 的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率. 【解】 (1)X 的所有可能取值为-2,-1,0,1.(2)数量积为-2的有OA 2→·OA 5→,共1种;数量积为-1的有OA 1→·OA 5→,OA 1→·OA 6→,OA 2→·OA 4→,OA 2→·OA 6→,OA 3→·OA 4→,OA 3→·OA 5→,共6种;数量积为0的有OA 1→·OA 3→,OA 1→·OA 4→,OA 3→·OA 6→,OA 4→·OA 6→,共4种;数量积为1的有OA 1→·OA 2→,OA 2→·OA 3→,OA 4→·OA 5→,OA 5→·OA 6→,共4种. 故所有可能的情况共有15种.所以小波去下棋的概率为p 1=715;因为去唱歌的概率为p 2=415,所以小波不去唱歌的概率p =1-p 2=1-415=1115.本题是概率与平面向量的交汇,解决此类问题的关键是求数量积X 的所有可能值,利用古典概型概率求法求其概率,本题集趣味性与创新性为一体,不失为一道好题._体验真题·把脉考向_ 1.【解析】选B.从1,2,3,4中任取2个不同的数,有(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情形,而满足条件“2个数之差的绝对值为2”的只有(1,3),(2,4),(3,1),(4,2),共4种情形,所以取出的2个数之差的绝对值为2的概率为412=13.2.【解析】已知0≤a ≤1,事件“3a -1<0”发生时,0<a <13,取区间长度为测度,由几何概型得其概率为P =13.【答案】133.【解】(1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25.(2)基本事件同(1),用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815._典例展示·解密高考_ 【例1】【解】(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有(A ,B ),(A ,C ),(B ,C ),共3个.因此选到的2人身高都在1.78以下的概率为P =36=12.(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有(C ,D ),(C ,E ),(D ,E ),共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P =31`0.[强化训练1]【解】(1)若编号为n 的球的重量大于其编号,则n 2-6n +12>n ,即n 2-7n +12>0. 解得n <3,或n >4. 所以n =1,2,5,6.所以从袋中任意取出一个球,其重量大于其编号的概率 P =46=23. (2)不放回地任意取出2个球,这2个球编号的所有可能情形为: 1,2;1,3;1,4;1,5;1,6; 2,3;2,4;2,5;2,6; 3,4;3,5;3,6; 4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n∈{1,2,3,4,5,6},且m≠n)球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去),或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为2 15.【例2】【解析】由|x|≤m,得-m≤x≤m.当m≤2时,由题意得2m6=56,解得m=2.5,矛盾,舍去.当2<m<4时,由题意得m-(-2)6=56,解得m=3.即m的值为3.【答案】3[强化训练2]【解析】选A.作出不等式组⎩⎪⎨⎪⎧2x+y-4≤0x+y≥0x-y≥0表示的平面区域,如图三角形ABO,且有A(43,43),B(4,-4),所以S△ABO=12×423×42=163,点P的坐标满足不等式x2+y2≤2的面积S扇形=14×π(2)2=π2,所以所求概率P=π2163=π2×316=3π32.【例3】【解】因玩具是均匀的,所以玩具各面朝下的可能性相等,出现的可能情况有(1,1),(1,2),(1,3),(1,5),(2,1),(2,2),(2,3),(2,5),(3,1),(3,2),(3,3),(3,5),(5,1),(5,2),(5,3),(5,5)共16种.(1)事件“m不小于6”包含其中(1,5),(2,5),(3,5),(3,3),(5,1),(5,2),(5,3),(5,5)共8个基本事件,所以P(m≥6)=816=12.(2)“m为奇数”的概率和“m为偶数”的概率不相等.因为m为奇数的概率为P(m=3)+P(m=5)+P(m=7)=216+216+216=38,m为偶数的概率为1-38=58.所以这两个概率值不相等.[强化训练3]【解】从六个球中取出两个球的基本事件:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共计15个基本事件.(1)记事件A 为取出的两个球是白球,则这个事件包含的基本事件的是(1,2),(1,3),(2,3),共计3个基本事件,故P (A )=315=15.记取出的两个球是黑球为事件B ,同理可得P (B )=15.记事件C 为取出的两个球的颜色相同,则C =A +B ,且A ,B 互斥,根据互斥事件的概率加法公式,得P (C )=P (A +B )=P (A )+P (B )=25.(2)记事件D 为取出的两个球的颜色不相同,则事件C ,D 对立,根据对立事件概率之间的关系,得P (D )=1-P (C )=1-25=35.。

河南省洛阳市中成外国语学校2014届高三高考数学专题复习学案概率统计 知识回顾

河南省洛阳市中成外国语学校2014届高三高考数学专题复习学案概率统计 知识回顾

一.随机抽样1.随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:⑴简单随机抽样:从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.抽出办法:①抽签法:用纸片或小球分别标号后抽签的方法.②随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表.表中每一位置出现各个数字的可能性相同.随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法.简单随机抽样是最简单、最基本的抽样方法.⑵系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整除,设Nkn=,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作为起始数,然后顺次抽取第2(1)s k s k s n k+++-,,,个数,这样就得到容量为n的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.系统抽样适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样.⑶分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛.2.简单随机抽样必须具备下列特点:⑴简单随机抽样要求被抽取的样本的总体个数N是有限的.⑵简单随机样本数n小于等于样本总体的个数N.⑶简单随机样本是从总体中逐个抽取的.⑷简单随机抽样是一种不放回的抽样.⑸简单随机抽样的每个个体入样的可能性均为nN.3.系统抽样时,当总体个数N恰好是样本容量n的整数倍时,取Nkn =;若Nn不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n整除.因为每个个体被剔除的机会相等,因而整个抽样过程中每个个体被抽取的机会仍然相等,为Nn.三.茎叶图制作茎叶图的步骤:①将数据分为“茎”、“叶”两部分;②将最大茎与最小茎之间的数字按大小顺序排成一列,并画上竖线作为分隔线; ③将各个数据的“叶”在分界线的一侧对应茎处同行列出. 四.统计数据的数字特征用样本平均数估计总体平均数;用样本标准差估计总体标准差. 数据的离散程序可以用极差、方差或标准差来描述.极差又叫全距,是一组数据的最大值和最小值之差,反映一组数据的变动幅度; 样本方差描述了一组数据平均数波动的大小,样本的标准差是方差的算术平方根. 一般地,设样本的元素为12n x x x ,,,样本的平均数为x , 定义样本方差为222212()()()n x x x x x x s n-+-++-=,样本标准差s =简化公式:22222121[()]n s x x x nx n=+++-.五.独立性检验1.两个变量之间的关系;常见的有两类:一类是确定性的函数关系;另一类是变量间存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有一定随机性的.当一个变量取值一定时,另一个变量的取值带有一定随机性的两个变量之间的关系叫做相关关系.2.散点图:将样本中的n 个数据点()(12)i i x y i n =,,,,描在平面直角坐标系中,就得到了散点图. 散点图形象地反映了各个数据的密切程度,根据散点图的分布趋势可以直观地判断分析两个变量的关系.3.如果当一个变量的值变大时,另一个变量的值也在变大,则这种相关称为正相关;此时,散点图中的点在从左下角到右上角的区域.反之,一个变量的值变大时,另一个变量的值由大变小,这种相关称为负相关.此时,散点图中的点在从左上角到右下角的区域.散点图可以判断两个变量之间有没有相关关系.4.统计假设:如果事件A 与B 独立,这时应该有()()()P AB P A P B =,用字母0H 表示此式,即0:()()()H P AB P A P B =,称之为统计假设.5.2χ(读作“卡方”)统计量:统计学中有一个非常有用的统计量,它的表达式为22112212211212()n n n n n n n n n χ++++-=,用它的大小可以用来决定是否拒绝原来的统计假设0H .如果2χ的值较大,就拒绝0H ,即认为A 与B 是有关的.2χ统计量的两个临界值:3.841、6.635;当2 3.841χ>时,有95%的把握说事件A 与B 有关;当2 6.635χ>时,有99%的把握说事件A 与B 有关;当2 3.841χ≤时,认为事件A 与B 是无关的. 独立性检验的基本思想与反证法类似,由结论不成立时推出有利于结论成立的小概率事件发生,而小概率事件在一次试验中通常是不会发生的,所以认为结论在很大程度上是成立的.1.独立性检验的步骤:统计假设:0H ;列出22⨯联表;计算2χ统计量;查对临界值表,作出判断.2.几个临界值:222()0.10( 3.841)0.05( 6.635)0.01P P P χχχ≈≈≈≥2.706,≥,≥. 22⨯联表的独立性检验:如果对于某个群体有两种状态,对于每种状态又有两个情况,这样排成一张22⨯的表,如下:如果有调查得来的四个数据11122122n n n n ,,,,并希望根据这样的4个数据来检验上述的两种状态A 与B 是否有关,就称之为22⨯联表的独立性检验. 六.回归分析1.回归分析:对于具有相关关系的两个变量进行统计分析的方法叫做回归分析,即回归分析就是寻找相关关系中这种非确定关系的某种确定性.回归直线:如果散点图中的各点都大致分布在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. 2.最小二乘法:记回归直线方程为:ˆya bx =+,称为变量Y 对变量x 的回归直线方程,其中ab ,叫做回归系数.ˆy是为了区分Y 的实际值y ,当x 取值i x 时,变量Y 的相应观察值为i y ,而直线上对应于i x 的纵坐标是ˆi i y a bx =+. 设x Y ,的一组观察值为()i i x y ,,12i n =,,,,且回归直线方程为ˆy a bx =+, 当x 取值i x 时,Y 的相应观察值为i y ,差ˆ(12)i i y y i n -=,,,刻画了实际观察值i y 与回归直线上相应点的纵坐标之间的偏离程度,称这些值为离差.我们希望这n 个离差构成的总离差越小越好,这样才能使所找的直线很贴近已知点.记21()ni i i Q y a bx ==--∑,回归直线就是所有直线中Q 取最小值的那条.这种使“离差平方和为最小”的方法,叫做最小二乘法.用最小二乘法求回归系数a b ,有如下的公式: 1221ˆni ii nii x ynxy bxnx ==-=-∑∑,ˆˆay bx =-,其中a b ,上方加“^”,表示是由观察值按最小二乘法求得的回归系数. 3.线性回归模型:将用于估计y 值的线性函数a bx +作为确定性函数;y 的实际值与估计值之间的误差记为ε,称之为随机误差;将y a bx ε=++称为线性回归模型. 产生随机误差的主要原因有:①所用的确定性函数不恰当即模型近似引起的误差; ②忽略了某些因素的影响,通常这些影响都比较小; ③由于测量工具等原因,存在观测误差. 4.线性回归系数的最佳估计值:利用最小二乘法可以得到ˆˆa b ,的计算公式为 1122211()()()()nnii iii i nniii i xx y y x ynx yb xx xn x ====---==--∑∑∑∑,ˆˆay bx =-,其中11ni i x x n ==∑,11n i i y yn ==∑ 由此得到的直线ˆˆya bx =+就称为回归直线,此直线方程即为线性回归方程.其中ˆa ,b 分别为a ,b 的估计值,ˆa称为回归截距,b 称为回归系数,ˆy 称为回归值. 5.相关系数: ()()nnii i ixx y y x ynx yr ---==∑∑6.相关系数r 的性质:⑴||1r ≤;⑵||r 越接近于1,x y ,的线性相关程度越强; ⑶||r 越接近于0,x y ,的线性相关程度越弱.可见,一条回归直线有多大的预测功能,和变量间的相关系数密切相关. 7.转化思想:根据专业知识或散点图,对某些特殊的非线性关系,选择适当的变量代换,把非线性方程转化为线性回归方程,从而确定未知参数. 8.一些备案①回归(regression )一词的来历:“回归”这个词英国统计学家Francils Galton 提出来的.1889年,他在研究祖先与后代的身高之间的关系时发现,身材较高的父母,他们的孩子也较高,但这些孩子的平均身高并没有他们父母的平均身高高;身材较矮的父母,他们的孩子也较矮,但这些孩子的平均身高却比他们父母的平均身高高.Galton 把这种后代的身高向中间值靠近的趋势称为“回归现象”.后来,人们把由一个变量的变化去推测另一个变量的变化的方法称为回归分析. ②回归系数的推导过程:22222[()]222i i i i i i i i Q y a bx y a y na b x y ab x b x =--=-+-++∑∑∑∑∑∑22222()2i i i i i i na a b x y b x b x y y =+-+-+∑∑∑∑∑, 把上式看成a 的二次函数,2a 的系数0n >,因此当2()2i i ii b x y yb x a nn--=-=∑∑∑∑时取最小值.同理,把Q 的展开式按b 的降幂排列,看成b 的二次函数,当2i iiix y a xb x-=∑∑∑时取最小值.解得:12221()()()ni iii i niii x ynxyx x y y b x x xnx==---==--∑∑∑∑,a y bx =-,其中1i y y n =∑,1ix x n =∑是样本平均数.附件2:律师事务所反盗版维权声明。

2014年高考

2014年高考

2014年高考-概率大题训练(理)1. 某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为2,中将可以获得2分;方案乙的中奖率3为2,中将可以得53分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,Y,求X?3的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?2.现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(I)求张同学至少取到1道乙类题的概率;(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是3,答对每道乙类题的概率都是545,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.3.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X的分布列及数学期望.1概率大题训练4. 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数?的分布列与期望5. 先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为11,乙每次投篮投中的概率为32,且各次投篮互不影响. 34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率; (Ⅱ)求该射手的总得分X的分布列及数学期望EX.6. 某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五讲 概 率真题试做►———————————————————1.(2013·高考课标全国卷Ⅰ)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.16 2.(2013·高考福建卷)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”发生的概率为________.3.(2013·高考辽宁卷)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.考情分析►———————————————————古典概型及几何概型为高考的重点内容,难度为中、低档,其中几何概型以“面积型”和“长度型”为主,古典概型常与互斥事件、对立事件相结合命题;近年来概率与统计结合命题多出现在解答题中.考点一 古典概型古典概型是每年必考内容,试题借助一定的背景材料考查,近几年也常与抽样方法、统计等内容结合出现在解答题中,试题难度中等或稍易.(2013·高考山东卷)某小组共有A ,B ,C ,D ,E 五位同学,他们的身高(单位:米)及体重指标(2(1) 1.78以下的概率;(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.【思路点拨】 (1)身高低于1.80的同学共有4人,因此所有可能的基本事件总数是指从4人中选取2人;(2)所有可能的基本事件总数是从5人中选取2人,而符合条件的基本事件需要同时满足身高在1.70以上且体重指标都在[18.5,23.9)内.求解古典概型问题的三个步骤:(1)判断本次试验的结果是否是等可能的,设出所求的事件为A ;(2)分别计算基本事件的总个数n 和所求的事件A 所包含的基本事件个数m ;(3)利用古典概型的概率公式P (A )=mn求出事件A 的概率.强化训练1 袋内装有6个球,这些球依次被编号为1、2、3、…、6,设编号为n 的球重n 2-6n +12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出一个球,求其重量大于其编号的概率; (2)如果不放回地任意取出2个球,求它们重量相等的概率.考点二 几何概型考纲对几何概型的要求不高,因此对几何概型的考查难度不大,多与平面区域、空间几何体、函数等结合命题.(2013·高考湖北卷)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________. 【思路点拨】 根据几何概型,在线性问题中用长度之比表示概率,求m 的值.利用几何概型求概率时,要选择好角度,从分析基本事件的“等可能性”入手,将每个基本事件理解为在某个特定区域内随机地取一点,而某个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.强化训练2 (2013·成都市诊断性检测)已知集合{(x ,y )|⎩⎪⎨⎪⎧2x +y -4≤0x +y ≥0x -y ≥0}表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( )A.3π32B.3π16C.π32D.π16考点三 互斥事件、对立事件的概率互斥事件、对立事件的概率常借助古典概型来考查,以实际生产、生活为背景,命制试题,解题的关键是遇到复杂的事件时可分解为几个互斥事件的和,或利用对立事件求复杂事件的概率.有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5.同时投掷这两枚玩具一次,记m 为两个朝下的面上的数字之和.(1)求事件“m 不小于6”的概率;(2)“m 为奇数”的概率和“m 为偶数”的概率相等吗?为什么? 【思路点拨】 (1)利用列举法求解.(2)利用互斥事件、对立事件的概率公式求“m 为奇数”、“m 为偶数”的概率.求解互斥事件、对立事件的概率问题时,一要先利用条件判断所给的事件是互斥事件,还是对立事件;二要将所求事件的概率转化为互斥事件、对立事件的概率;三要准确利用互斥事件、对立事件的概率公式去计算所求事件的概率.强化训练3有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取得的两个球颜色相同的概率;(2)求取得的两个球颜色不相同的概率.概率与四类知识的交汇一、概率与统计中的频率分布直方图的交汇(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.【解】(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39 000.当X∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.本题把频率分布直方图与函数、概率相结合,题目新颖,但难度较小,由于X 的取值不同,经销商所获利润T 不同,从而求出T 关于X 的函数为分段函数;要求利润不少于57 000元,从而可求出X 的范围,利用直方图可求得概率.二、概率与统计中茎叶图的交汇以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模(1)如果X =8(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x ,x 2,…,x n 的平均数)【解】 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10,所以平均数为x =8+8+9+104=354;方差为s 2=14⎣⎡⎦⎤⎝⎛⎭⎫8-3542+⎝⎛⎭⎫8-3542+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为P (C )=416=14.本题是概率与统计相交汇的常规命制试题,门槛低,入手容易.解决此类问题的关键是理解平均数与方差的概念,理解事件的含义并确定事件的所有可能结果,求出每个结果对应的概率,即可得到答案.三、概率与程序框图的交汇(2013·高考四川卷)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大.【解】 (1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能.当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12;当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16.所以输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =本题的亮点是概率、统计中融入算法框图,且以生活题材为背景,使整个题目显得新颖独特.解题的关键是把框图语言翻译成数学语言,即把数字1,2,…,24分为三类,利用古典概型求其概率.四、概率与平面向量的交汇(2013·高考江西卷)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图所示)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若X >0就去打球,若X =0就去唱歌,若X <0就去下棋.(1)写出数量积X 的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率. 【解】 (1)X 的所有可能取值为-2,-1,0,1.(2)数量积为-2的有OA 2→·OA 5→,共1种;数量积为-1的有OA 1→·OA 5→,OA 1→·OA 6→,OA 2→·OA 4→,OA 2→·OA 6→,OA 3→·OA 4→,OA 3→·OA 5→,共6种;数量积为0的有OA 1→·OA 3→,OA 1→·OA 4→,OA 3→·OA 6→,OA 4→·OA 6→,共4种;数量积为1的有OA 1→·OA 2→,OA 2→·OA 3→,OA 4→·OA 5→,OA 5→·OA 6→,共4种. 故所有可能的情况共有15种.所以小波去下棋的概率为p 1=715;因为去唱歌的概率为p 2=415,所以小波不去唱歌的概率p =1-p 2=1-415=1115.本题是概率与平面向量的交汇,解决此类问题的关键是求数量积X 的所有可能值,利用古典概型概率求法求其概率,本题集趣味性与创新性为一体,不失为一道好题._体验真题·把脉考向_ 1.【解析】选B.从1,2,3,4中任取2个不同的数,有(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情形,而满足条件“2个数之差的绝对值为2”的只有(1,3),(2,4),(3,1),(4,2),共4种情形,所以取出的2个数之差的绝对值为2的概率为412=13.2.【解析】已知0≤a ≤1,事件“3a -1<0”发生时,0<a <13,取区间长度为测度,由几何概型得其概率为P =13.【答案】133.【解】(1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25.(2)基本事件同(1),用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815._典例展示·解密高考_ 【例1】【解】(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的. 选到的2人身高都在1.78以下的事件有(A ,B ),(A ,C ),(B ,C ),共3个.因此选到的2人身高都在1.78以下的概率为P =36=12.(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有(C ,D ),(C ,E ),(D ,E ),共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P =31`0.[强化训练1]【解】(1)若编号为n 的球的重量大于其编号, 则n 2-6n +12>n ,即n 2-7n +12>0. 解得n <3,或n >4. 所以n =1,2,5,6.所以从袋中任意取出一个球,其重量大于其编号的概率P =46=23.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为: 1,2;1,3;1,4;1,5;1,6; 2,3;2,4;2,5;2,6; 3,4;3,5;3,6; 4,5;4,6; 5,6.共有15种可能的情形.设编号分别为m 与n (m ,n ∈{1,2,3,4,5,6},且m ≠n )球的重量相等,则有 m 2-6m +12=n 2-6n +12,即有(m -n )(m +n -6)=0. 所以m =n (舍去),或m +n =6.满足m +n =6的情形为1,5;2,4,共2种情形.故所求事件的概率为215.【例2】【解析】由|x |≤m ,得-m ≤x ≤m .当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.即m 的值为3. 【答案】3 [强化训练2]【解析】选A.作出不等式组 ⎩⎪⎨⎪⎧2x +y -4≤0x +y ≥0x -y ≥0表示的平面区域,如图三角形ABO ,且有A (43,43),B (4,-4),所以S △ABO=12×423×42=163,点P 的坐标满足不等式x 2+y 2≤2的面积S 扇形=14×π(2)2=π2, 所以所求概率P =π2163=π2×316=3π32.【例3】【解】因玩具是均匀的,所以玩具各面朝下的可能性相等,出现的可能情况有(1,1),(1,2),(1,3),(1,5),(2,1),(2,2),(2,3),(2,5),(3,1),(3,2),(3,3),(3,5),(5,1),(5,2),(5,3),(5,5)共16种.(1)事件“m 不小于6”包含其中(1,5),(2,5),(3,5),(3,3),(5,1),(5,2),(5,3),(5,5)共8个基本事件,所以P (m ≥6)=816=12.(2)“m 为奇数”的概率和“m 为偶数”的概率不相等.因为m 为奇数的概率为P (m =3)+P (m =5)+P (m =7)=216+216+216=38,m 为偶数的概率为1-38=58.所以这两个概率值不相等.[强化训练3]【解】从六个球中取出两个球的基本事件:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共计15个基本事件.(1)记事件A 为取出的两个球是白球,则这个事件包含的基本事件的是(1,2),(1,3),(2,3),共计3个基本事件,故P (A )=315=15.记取出的两个球是黑球为事件B ,同理可得P (B )=15.记事件C 为取出的两个球的颜色相同,则C =A +B ,且A ,B 互斥,根据互斥事件的概率加法公式,得P (C )=P (A +B )=P (A )+P (B )=25.(2)记事件D 为取出的两个球的颜色不相同,则事件C ,D 对立,根据对立事件概率之间的关系,得P (D )=1-P (C )=1-25=35.。

相关文档
最新文档