高二数学《平面向量》知识点

合集下载

高二数学平面向量知识点

高二数学平面向量知识点

高二数学平面向量知识点高二数学平面向量知识点1.有向线段的定义线段的端点A为始点,端点B为终点,这时线段AB具有射线AB 的方向.像这样,具有方向的线段叫做有向线段.记作:.2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度.3.向量的定义:(1)具有大小和方向的量叫做向量.向量有两个要素:大小和方向.(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量.书写时,则用带箭头的小写字母,,,来表示.4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||.5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=.6.相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:-.7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线.向量平行于向量,记作//.规定://.8.零向量:长度等于零的`向量叫做零向量,记作:.零向量的方向是不确定的,是任意的.由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量.9.单位向量:长度等于1的向量叫做单位向量.10.向量的加法运算:(1)向量加法的三角形法则11.向量的减法运算12、两向量的和差的模与两向量模的和差之间的关系对于任意两个向量,,都有|||-|||||+||.13.数乘向量的定义:实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作.向量()的长度与方向规定为:(1)||=|(2)当0时,与方向相同;当0时,与方向相反.(3)当=0时,当=时,=.14.数乘向量的运算律:(1))= (结合律)(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)15.平行向量基本定理如果向量,则//的充分必要条件是,存在唯一的实数,使得=.如果与不共线,若m=n,则m=n=0.16.非零向量的单位向量:非零向量的单位向量是指与同向的单位向量,通常记作.=||,即==(,)17.线段中点的向量表达式点M是线段AB的中点,O是平面内任意一点,则=(+).18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).20.两向量相等和平行的条件:若=(a1,a2),=(b1,b2) ,则=a1=b1且a2=b2.//a1b2-a2b1=0.特别地,如果b10,b20,则// =.21.向量的长度公式:若=(a1,a2),则||=.22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=.23.中点公式若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y= .24.重心公式在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则x=,y=25.(1)两个向量夹角的取值范围是[0,p],即0,p.当=0时,与同向;当=p时,与反向当= 时,与垂直,记作.(3)向量的内积定义:=||||cos.其中,||cos叫做向量在向量方向上的正射影的数量.规定=0.(4)内积的几何意义与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在方向上的正射影数量的乘积当0,90时,0;=90时,90时,0.26.向量内积的运算律:(1)交换率(2)数乘结合律(3)分配律(4)不满足组合律27.向量内积满足乘法公式29.向量内积的应用:【高二数学平面向量知识点】。

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。


用字母表示向量,如a、b等。

向量的大小可以用模表示,记作|a|。

2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。

加法满足交换律和结合律。

2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。

2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。

数量积满足交换律和分配律。

2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。

3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。

平行向
量的数量积等于两个向量的模的乘积。

3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。

垂直向量的
点积为0。

3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。

4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。

在物理学中,平面向量可以用来表示力的大小
和方向。

以上是关于高中数学平面向量的基本知识点归纳总结。

希望能够对你的学习和理解有所帮助!。

平面向量知识点

平面向量知识点

平面向量知识点
1. 坐标表示:平面向量可以由一个有序数对来表示,分别表示向量在x和y方向上的分量。

2. 向量加法:向量加法满足交换律和结合律,即A + B = B + A,(A+B)+C = A+(B+C)。

3. 向量减法:向量减法A - B 可以看作是A + (-B)。

4. 向量数乘:将向量乘以一个标量k,相当于将向量的大小缩放k 倍且不改变方向。

5. 向量的模长:向量的模长表示向量的大小,用勾股定理求得,A =√
(x^2+y^2)。

6. 向量的单位向量:向量A 的单位向量是A/ A ,即大小为1,方向与A 相同的向量。

7. 向量的夹角:向量A 和向量B 的夹角可以利用内积求得,θ= cos⁻¹(A·B/ A
B )。

8. 内积:向量A 和B 的内积A·B = x₁x₂+ y₁y₂,可以用来判断两个向量是
否垂直、平行,以及求解向量的投影等。

9. 外积:向量A 和B 的外积A×B 表示一个新的向量,其大小为 A B sin θ,方向垂直于A 和B 所在的平面,且符合右手定则。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a;坐标表示法),(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行零向量a =0 |a|=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x 2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a 00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a ; (ii) a +(a )=(a )+a =0;(iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差, 记作:)(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6平面向量的基本定理:如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例1 给出下列命题:① 若|a r |=|b r |,则a r =b r;② 若A ,B ,C ,D 是不共线的四点,则AB DC u u u r u u u r是四边形ABCD 为平行四边形的充要条件;③ 若a r =b r ,b r =c r ,则a r =c r ,④a r =b r 的充要条件是|a r |=|b r |且a r //b r;⑤ 若a r //b r ,b r //c r ,则a r //c r ,解:①不正确.两个向量的长度相等,但它们的方向不一定相同.② 正确.∵ AB DC u u u r u u u r ,∴ ||||AB DC u u u r u u u r且//AB DC u u u r u u u r ,又 A ,B ,C ,D 是不共线的四点,∴ 四边形 ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则,//AB DC u u u r u u u r 且||||AB DC u u u r u u u r,因此,AB DC u u u r u u u r.③ 正确.∵ a r =b r ,∴ a r ,b r的长度相等且方向相同;又b r =c r ,∴ b r ,c r的长度相等且方向相同,∴ a r ,c r 的长度相等且方向相同,故a r =c r .④ 不正确.当a r //b r 且方向相反时,即使|a r |=|b r |,也不能得到a r =b r,故|a r |=|b r |且a r //b r 不是a r =b r的充要条件,而是必要不充分条件. ⑤ 不正确.考虑b r =0r这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构,另一方面要善于与物理中、生活中的模型进行类比和联想.例2 设A 、B 、C 、D 、O 是平面上的任意五点,试化简: ①AB BC CD u u u r u u u r u u u r ,②DB AC BD u u u r u u u r u u u r ③OA OC OB CO u u u r u u u r u u u r u u u r解:①原式= ()AB BC CD AC CD AD u u u r u u u r u u u r u u u r u u u r u u u r②原式= ()0DB BD AC AC AC u u u r u u u r u u u r r u u u r u u u r③原式= ()()()0OB OA OC CO AB OC CO AB AB u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r u u u r例3设非零向量a r 、b r 不共线,c r =k a r +b r ,d r =a r +k b r (k R),若c r∥d r ,试求k解:∵c r∥d r∴由向量共线的充要条件得:c r=λd r (λ R) 即 k a r +b r =λ(a r +k b r ) ∴(k λ) a r+ (1 λk ) b r = 0r又∵a r 、b r不共线∴由平面向量的基本定理 1010k k k二.平面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r 作为基底由平面向量的基本定理知,该平面内的任一向量a r可表示成a xi yj r r r ,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr(2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r ,则1212a b x x y y rr若a b rr ,则02121 y y x x3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算运算类型几何方法 坐标方法 运算性质向 量 的 加 法1平行四边形法则 2三角形法则 1212(,)a b x x y y r r a b b a)()(c b a c b aAB BC AC u u u r u u u r u u u r向 量 的 减 法 三角形法则 1212(,)a b x x y y rr )(b a b aAB BA u u u r u u u r OB OA AB u u u r u u u r u u u r向 量 的 乘 法a是一个向量,满足:>0时,a 与a同向;<0时,a 与a异向;=0时, a =0),(y x a a a)()(a a a)( b a b a )(a ∥b a b向 量的 数量 积b a•是一个数 0 a 或0b 时, b a•=0 0 a 且0 b 时,•b a b a b a,cos |||| 1212a b x x y y • rra b b a • •)()()(b a b a b a • • • c b c a c b a • • • )(22||a a ,22||y x a||||||b a b a •例1 已知向量(1,2),(,1),2a b x u a b r r r r r ,2v a b rr r ,且//u v r r ,求实数x 的值解:因为(1,2),(,1),2a b x u a b r r r r r,2v a b r r r所以(1,2)2(,1)(21,4)u x x r ,2(1,2)(,1)(2,3)v x x r又因为//u v r r所以3(21)4(2)0x x ,即105x解得12x例2已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标解:设(,)P x y ,则(,),(4,)OP x y AP x y u u u r u u u r因为P 是AC 与OB 的交点所以P 在直线AC 上,也在直线OB 上即得//,//OP OB AP AC u u u r u u u r u u u r u u u r由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)AC OB u u u r u u u r得方程组6(4)20440x y x y解之得33x y故直线AC 与OB 的交点P 的坐标为(3,3)三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定0a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r5乘法公式成立: 2222a b a b a b a b r r r r r r r r ;2222a b a a b br r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =1212x x y y8a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800 )叫做向量a r 与b r的夹角cos =cos ,a ba b a b • •r r r r r r =当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件: a ⊥b a ·b=O 2121 y y x x 平面向量数量积的性质例1 判断下列各命题正确与否:(1)00a r;(2)00a r r ;(3)若0,a a b a c r r r r r,则b c r r ;⑷若a b a c r r r r ,则b c r r 当且仅当0a rr 时成立; (5)()()a b c a b c r r r r r r 对任意,,a b c r r r向量都成立;(6)对任意向量a r,有22a a r r解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对例2已知两单位向量a r 与b r 的夹角为0120,若2,3c a b d b a r r r r r r ,试求c r 与d r的夹角解:由题意,1a b r r ,且a r 与b r的夹角为0120,所以,01cos1202a b a b r r r r ,2c c c r r rQ (2)(2)a b a b r r r r 22447a a b b r r r r ,c r同理可得d r而c d r r 2217(2)(3)7322a b b a a b b a r r r r r r r r ,设 为c r与d r 的夹角, 则1829117137217cos1829117arccos点评:向量的模的求法和向量间的乘法计算可见一斑例3 已知 4,3a r, 1,2b r ,,m a b r r r 2n a b r r r ,按下列条件求实数的值(1)m n r r ;(2)//m n r r;(3)m n r r 解: 4,32,m a b r r r 27,8n a b rr r (1)m n r r 082374 952;(2)//m n r r 072384 21 ;(3)m n r r 088458723422222点评:此例展示了向量在坐标形式下的基本运算。

(完整版)高中数学平面向量知识点总结

(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。

2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。

高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型

平面向量一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法 AB ,a;坐标表示法),(y x yj xi a =+=向量的大小即向量的模长度,记作|AB |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a=0⇔|a|= 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行共线的问题中务必看清楚是否有“非零向量”这个条件.注意与0的区别 ③单位向量:模为1个单位长度的向量向量0a 为单位向量⇔|0a|=1④平行向量共线向量:方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b行任意的平移即自由向量,平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a=大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b ==,则a+b =AB BC +=AC1a a a=+=+00;2向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”:1用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量2 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量关于相反向量有: i )(a --=a; ii a +a -=a -+a =0 ; iii 若a 、b是互为相反向量,则a =b -,b =a -,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差,记作:)(b a b a-+=-求两个向量差的运算,叫做向量的减法③作图法:b a -可以表示为从b 的终点指向a 的终点的向量a 、b有共同起点 4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:Ⅰa a⋅=λλ;Ⅱ当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0=a λ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ 6平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 7 特别注意:1向量的加法与减法是互逆运算2相等向量与平行向量有区别,向量平行是向量相等的必要条件3向量平行与直线平行有区别,直线平行不包括共线即重合,而向量平行则包括共线重合的情况4向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关二.平面向量的坐标表示 1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对x,y 是一一对应的,因此把x,y 叫做向量a 的坐标,记作a =x,y,其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标1相等的向量坐标相同,坐标相同的向量是相等的向量2向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3)若a =x,y,则λa =λx, λy(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-= (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x3,数与向量的乘积,向量的数量内积及其各运算的坐标表示和性质12(a b x x +=+AB BC AC +=12(a b x x -=-)(b a b a-+=- AB BA =-OB OA AB -=a a)()(λμμλ=12a b x x •=+三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积或内积 规定00a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅∈R,称为向量b 在a 方向上的投影投影的绝对值称为射影3数量积的几何意义:a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅== 5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-;()2222a ba ab b ±=±⋅+222a a b b =±⋅+6平面向量数量积的运算律: ①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:1结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅; 2消去律不成立a b a c⋅=⋅不能得到b c =⋅3a b ⋅=0不能得到a =0或b =0 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ001800≤≤θ叫做向量a 与b 的夹角cos θ=cos ,a b a b a b•<>=•=222221212121y x y x y y x x +⋅++当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y x x 平面向量数量积的性质题型1.基本概念判断正误:1共线向量就是在同一条直线上的向量.2若两个向量不相等,则它们的终点不可能是同一点. 3与已知向量共线的单位向量是唯一的. 4四边形ABCD 是平行四边形的条件是AB CD =. 5若AB CD =,则A 、B 、C 、D 四点构成平行四边形. 6因为向量就是有向线段,所以数轴是向量. 7若a 与b 共线, b 与c 共线,则a 与c 共线. 8若ma mb =,则a b =. 9若ma na =,则m n =.10若a 与b 不共线,则a 与b 都不是零向量. 11若||||a b a b ⋅=⋅,则//a b . 12若||||a b a b +=-,则a b ⊥. 题型2.向量的加减运算1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b += .2.化简()()AB MB BO BC OM ++++= .3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为 、 .4.已知AC AB AD为与的和向量,且,AC a BD b ==,则AB = ,AD = .5.已知点C 在线段AB 上,且35AC AB =,则AC = BC ,AB = BC . 题型3.向量的数乘运算1.计算:13()2()a b a b +-+= 22(253)3(232)a b c a b c +---+-=2.已知(1,4),(3,8)a b =-=-,则132a b -= .题型4.作图法球向量的和已知向量,a b ,如下图,请做出向量132a b +和322a b -.a b题型5.根据图形由已知向量求未知向量1.已知在ABC ∆中,D 是BC 的中点,请用向量AB AC ,表示AD . 2.在平行四边形ABCD 中,已知,AC a BD b ==,求AB AD 和.题型6.向量的坐标运算1.已知(4,5)AB =,(2,3)A ,则点B 的坐标是 .2.已知(3,5)PQ =--,(3,7)P ,则点Q 的坐标是 .3.若物体受三个力1(1,2)F =,2(2,3)F =-,3(1,4)F =--,则合力的坐标为 .4.已知(3,4)a =-,(5,2)b =,求a b +,a b -,32a b -.5.已知(1,2),(3,2)A B ,向量(2,32)a x x y =+--与AB 相等,求,x y 的值.6.已知(2,3)AB =,(,)BC m n =,(1,4)CD =-,则DA = .7.已知O 是坐标原点,(2,1),(4,8)A B --,且30AB BC +=,求OC 的坐标.题型7.判断两个向量能否作为一组基底1.已知12,e e 是平面内的一组基底,判断下列每组向量是否能构成一组基底: A.1212e e e e +-和 B.1221326e e e e --和4 C.122133e e e e +-和 D.221e e e -和2.已知(3,4)a =,能与a 构成基底的是A.34(,)55B.43(,)55C.34(,)55--D.4(1,)3--题型8.结合三角函数求向量坐标1.已知O 是坐标原点,点A 在第二象限,||2OA =,150xOA ∠=,求OA 的坐标.2.已知O 是原点,点A 在第一象限,||43OA =60xOA ∠=,求OA 的坐标.题型9.求数量积1.已知||3,||4a b ==,且a 与b 的夹角为60,求1a b ⋅,2()a a b ⋅+,31()2a b b -⋅,4(2)(3)a b a b -⋅+.2.已知(2,6),(8,10)a b =-=-,求1||,||a b ,2a b ⋅,3(2)a a b ⋅+, 4(2)(3)a b a b -⋅+.题型10.求向量的夹角1.已知||8,||3a b ==,12a b ⋅=,求a 与b 的夹角.2.已知(3,1),(23,2)a b ==-,求a 与b 的夹角.3.已知(1,0)A ,(0,1)B ,(2,5)C ,求cos BAC ∠. 题型11.求向量的模1.已知||3,||4a b ==,且a 与b 的夹角为60,求1||a b +,2|23|a b -.2.已知(2,6),(8,10)a b =-=-,求1||,||a b ,5||a b +,61||2a b -.3.已知||1||2a b ==,,|32|3a b -=,求|3|a b +.题型12.求单位向量 与a 平行的单位向量:||a e a =± 1.与(12,5)a =平行的单位向量是 .2.与1(1,)2m =-平行的单位向量是 . 题型13.向量的平行与垂直1.已知(6,2)a =,(3,)b m =-,当m 为何值时,1//a b 2a b ⊥2.已知(1,2)a =,(3,2)b =-,1k 为何值时,向量ka b +与3a b -垂直 2k 为何值时,向量ka b +与3a b -平行3.已知a 是非零向量,a b a c ⋅=⋅,且b c ≠,求证:()a b c ⊥-.题型14.三点共线问题1.已知(0,2)A -,(2,2)B ,(3,4)C ,求证:,,A B C 三点共线.2.设2(5),28,3()2AB a b BC a b CD a b =+=-+=-,求证:A B D 、、三点共线. 3.已知2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是 .4.已知(1,3)A -,(8,1)B -,若点(21,2)C a a -+在直线AB 上,求a 的值.5.已知四个点的坐标(0,0)O ,(3,4)A ,(1,2)B -,(1,1)C ,是否存在常数t ,使OA tOB OC +=成立题型15.判断多边形的形状1.若3AB e =,5CD e =-,且||||AD BC =,则四边形的形状是 .2.已知(1,0)A ,(4,3)B ,(2,4)C ,(0,2)D ,证明四边形ABCD 是梯形.3.已知(2,1)A -,(6,3)B -,(0,5)C ,求证:ABC ∆是直角三角形.4.在平面直角坐标系内,(1,8),(4,1),(1,3)OA OB OC =-=-=,求证:ABC ∆是等腰直角三角形.题型16.平面向量的综合应用1.已知(1,0)a =,(2,1)b =,当k 为何值时,向量ka b -与3a b +平行2.已知(3,5)a =,且a b ⊥,||2b =,求b 的坐标.3.已知a b 与同向,(1,2)b =,则10a b ⋅=,求a 的坐标.3.已知(1,2)a =,(3,1)b =,(5,4)c =,则c = a + b .4.已知(5,10)a =,(3,4)b =--,(5,0)c =,请将用向量,a b 表示向量c .5.已知(,3)a m =,(2,1)b =-,1若a 与b 的夹角为钝角,求m 的范围; 2若a 与b 的夹角为锐角,求m 的范围.6.已知(6,2)a =,(3,)b m =-,当m 为何值时,1a 与b 的夹角为钝角 2a 与b 的夹角为锐角7.已知梯形ABCD 的顶点坐标分别为(1,2)A -,(3,4)B ,(2,1)D ,且//AB DC ,2AB CD =,求点C 的坐标.8.已知平行四边形ABCD 的三个顶点的坐标分别为(2,1)A ,(1,3)B -,(3,4)C ,求第四个顶点D 的坐标.9.一航船以5km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30角,求水流速度与船的实际速度.10.已知ABC ∆三个顶点的坐标分别为(3,4)A ,(0,0)B ,(,0)C c ,1若0AB AC ⋅=,求c 的值;2若5c =,求sin A 的值.备用1.已知||3,||4,||5a b a b ==+=,求||a b -和向量,a b 的夹角.2.已知x a b =+,2y a b =+,且||||1a b ==,a b ⊥,求,x y 的夹角的余弦.1.已知(1,3),(2,1)a b ==--,则(32)(25)a b a b +⋅-= .4.已知两向量(3,4),(2,1)a b ==-,求当a xb a b +-与垂直时的x 的值.5.已知两向量(1,3),(2,)a b λ==,a b 与的夹角θ为锐角,求λ的范围. 变式:若(,2),(3,5)a b λ==-,a b 与的夹角θ为钝角,求λ的取值范围. 选择、填空题的特殊方法:1.代入验证法例:已知向量(1,1),(1,1),(1,2)a b c ==-=--,则c = A.1322a b -- B.1322a b -+ C.3122a b - D.3122a b -+ 2.排除法例:已知M 是ABC ∆的重心,则下列向量与AB 共线的是A.AM MB BC ++B.3AM AC +C.AB BC AC ++D.AM BM CM ++。

高中平面向量知识点详细归纳总结(附带练习)

高中平面向量知识点详细归纳总结(附带练习)

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。

平面向量知识点+例题+练习+答案

平面向量知识点+例题+练习+答案

五、平面向量1.向量的概念①向量 既有大小又有方向的量。

向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。

向量不能比较大小,但向量的模可以比较大小。

向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。

由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。

(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。

(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。

(完整版)高中平面向量公式及知识点默写

(完整版)高中平面向量公式及知识点默写

平面向量知识点及公式默写一,基本概念1,向量的概念: 。

2,向量的表示:。

3,向量的大小:(或称模)4,零向量:,记为 ,零向量方向是 。

5,单位向量:长度为 的向量称为单位向量,一般用e 、i 1=1=6,平行向量(也称共线向量):方向 向量称为平行向量,规定零向量与任意向量 。

若a 平行于b ,则表示为a ∥b 。

7,相等向量: 称为相等向量。

若a 与b 相等,记为a =b8,相反向量: 称为相反向量。

若a 与b 是相反向量,则表示为a =b -;向量BA AB -=二,几何运算1,向量加法:(1)平行四边形法则(起点相同),可理解为力的合成,如图所示:(2)三角形法则(首尾相接),可理解为:位移的合成,如图所示, =+BC AB(3)两个向量和仍是一个向量;(4)向量加法满足交换律、结合律:a b b a +=+,)()(c b a c b a ++=++ (5)加法几种情况(加法不等式):= << = 2,减法:(1)两向量起点相同,方向是从减数指向被减数,如图=-AC AB(2)两向量差依旧是一个向量;(3)减法本质是加法的逆运算:CB CA AB CB AC AB =+⇔=- 3,加法、减法联系:(1)加法和减法分别是平行四边行两条对角线,AC AD AB =+,DB AD AB =- (2=,则四边形ABCD 为矩形 4,实数与向量的积:(1)实数λ与向量a 的积依然是个向量,记作a λ,它的长度与方向判断如下: BAaCB A•aba babba +当0>λ时,a λ与a 方向 ;当0<λ时,a λ与a 方向 ;当0=λ时,=a λ当0=a 时,0=a λ;=(2)实数与向量相乘满足:=)(a μλ =+a )(μλ=+)(b a λ5,向量共线:(1)向量b 与非零向量a 共线的条件是:有且只有一个实数λ(2)如图,平面内C BA ,,使得0=++OC n OB m OA q ,且0=++q n m ,反之也成立。

平面向量知识点总结归纳

平面向量知识点总结归纳

平面向量知识点总结归纳在数学中,平面向量是一个有大小和方向的量,常用于解决几何和代数的问题。

平面向量具有许多重要的性质和应用,本文将对平面向量的相关知识点进行总结归纳。

一、基本概念1. 平面向量的表示:平面向量通常用字母加上一个箭头来表示,例如向量a可以写作a→,其中箭头表示向量的方向。

2. 平行向量:两个向量具有相同或相反的方向时,称它们为平行向量。

平行向量的模长相等。

3. 零向量:所有分量都为零的向量称为零向量,用0→表示。

零向量的模长为0。

4. 向量共线:如果两个向量的方向相同或相反,它们被称为共线向量。

二、向量运算1. 向量加法:向量加法是指将两个向量的对应分量相加得到一个新向量。

向量加法满足交换律和结合律。

2. 向量减法:向量减法是指将两个向量的对应分量相减得到一个新向量。

向量减法可以转化为向量加法,即a→ - b→ = a→ + (-b→)。

3. 数乘运算:向量与一个实数相乘,可以改变向量的大小和方向,称为数乘运算。

4. 内积运算:向量的内积又称为点乘运算,表示两个向量之间的夹角关系。

内积的结果是一个实数,可以用向量的模长和夹角的余弦表示。

5. 外积运算:向量的外积又称为叉乘运算,用于求得两个向量所确定的平行四边形的面积和方向。

外积的结果是一个向量。

三、向量的性质1. 平行四边形法则:如果将两个向量的起点放在一起,则另外两个端点形成的四边形为平行四边形。

2. 模长计算:向量的模长是指向量的长度,可以用勾股定理计算。

3. 单位向量:模长为1的向量称为单位向量,可以通过将向量除以它的模长得到。

4. 点积性质:点积具有分配律、交换律和数量积与夹角的余弦值相关等性质。

5. 叉积性质:叉积具有反交换律、分配律和数量积与夹角的正弦值相关等性质。

四、向量的应用1. 几何问题:平面向量可以用于解决几何问题,如线段的平移、直线的垂直和平行判定等。

2. 物理学中的力:力可以用向量表示,通过向量运算可以求得多个力的合力和分力。

高二数学平面向量知识点

高二数学平面向量知识点

高二数学平面向量知识点一、向量的表示与运算平面向量是具有大小和方向的量,常用箭头表示。

向量AB的起点为A,终点为B。

向量的表示可以用坐标形式,也可以用向量符号表示。

1. 向量的坐标表示:设向量AB的起点为A(x₁, y₁),终点为B(x₂, y₂),则向量AB的坐标表示为AB = (x₂ - x₁, y₂ - y₁)。

2. 向量的向量符号表示:设向量AB的起点为A,终点为B,向量AB的向量符号表示为→AB。

3. 向量的加法与减法:向量的加法满足三角形法则,即将两个向量的起点连接起来,然后连接两个向量的终点,所得向量为其和向量。

向量的减法即为加法的逆运算。

二、向量的数量运算向量的数量运算包括向量的数乘和向量的数量积。

1. 向量的数乘:向量的数乘即将一个向量与一个实数相乘,结果是一个新的向量,其大小为原向量的大小与实数的乘积,方向与原向量相同(当实数为正数时)或相反(当实数为负数时)。

若向量a = (x, y),实数k,则向量ka = (kx, ky)。

2. 向量的数量积:向量的数量积又称为点积,用符号·表示。

设向量a = (x₁, y₁),向量b = (x₂, y₂),则向量a与b的数量积为a·b = x₁x₂ + y₁y₂。

数量积的性质:- 交换律:a·b = b·a- 结合律:(ka)·b = k(a·b) = a·(kb) (k为实数)- 分配律:(a + b)·c = a·c + b·c三、向量的模与单位向量向量的模即为向量的大小,用符号|a|表示。

设向量a = (x, y),则向量a的模为|a| = √(x² + y²)。

单位向量是模等于1的向量。

设向量a = (x, y),则向量a的单位向量为a/|a| = (x/|a|, y/|a|)。

四、向量的夹角设向量a与向量b的夹角为θ,则有以下公式成立:cosθ = (a·b) / (|a|·|b|)- 若cosθ = 0,则称向量a与向量b垂直。

平面向量基础知识梳理

平面向量基础知识梳理

__________________________________________________平面向量基础知识梳理一、向量的概念:⒈有向线段:叫做有向线段.⒉向量:叫做向量.向量通常用有向线段→AB或a 表示.⒊向量的模:向量→AB的又叫做向量的模,记作 .⒋两个重要概念:①零向量:叫做零向量.记作 .注意:零向量没有规定它的方向,因此零向量的方向是任意的.②单位向量:叫做单位向量.注意:单位向量的方向与它所在向量的方向相同.⒌相等向量:叫做相等向量. 向量a 与b 相等记作 .⒍平行向量:叫做平行向量. 向量a 与b 平行可记作 .规定:0 与任一向量平行.即0 ∥a ,→AB∥0 ,0 ∥0 .⒎共线向量:叫做共线向量.注意:若a 与b 是共线向量,则a 与b 的方向,它们所在的直线它们的夹角是 .⒏相反向量:叫做相反向量.的相反向量是,−a 的相反向量是,0 的相反向量是 .a__________________________________________________⒐两个非零向量a和b的夹角: . 二、向量的运算:⒈向量的加法:⑴向量a 与b的和的定义:⑵向量加法法则:①三角形法则(请画图于右)→AB +→BC (首尾相连) ②平行四边形法则(请画图于右)→AB +→AC (起点相同) ⑶向量加法运算律:①交换律:②结合律:⑷特例:0+a = ,a +0= ,00 += .⑸向量加法的坐标运算:设a=(x 1,y 1),b =(x 2,y 2),则b a+= .⒉向量的减法:⑴向量a 与b 的差的定义:向量a 加上b 的相反向量叫做a与b的差,记作a+(−b )=a −b.a−b是怎样的一个向量?答: .⑵向量减法法则:设a =→OA ,b=→OB ,则a −b=→OA -→OB = .(请画图于右).重要结论:设AB ,AD 是两个不共线向量,则以AB 、AD 为邻边的平行四边形的两条对角线的长分别是这两个向量和与差的模.⑶特例:0-a= ,a-0= ,00-= . ⑷向量减法的坐标运算:设a=(x 1,y 1),b =(x 2,y 2),则b a-= . ⒊实数与向量的积:⑴定义:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下: ①|λa |= ;OB__________________________________________________②当λ>0时,λa 的方向与a 的方向 ,当λ<0时,λa的方向与a 的方向 ;当λ=0时,λa = .⑵运算律:①λ(μa )= ;②(λ+μ)a = ;③λ(b a+)= . ⑶实数与向量的积的坐标运算: ⑷特例:若λ∈R ,则λ0= . ⒋向量的数量积(或内积):⑴定义:已知非零向量a和b,它们的夹角为θ,则b a⋅= . ⑶运算律:①ba⋅= ;②(λa)·b= = ;③(a +b)·c = .注意:向量的数量积没有结合律!特别地,a a ⋅= ,或|a |= .⑸向量的数量积的坐标运算:设a=(x 1,y 1),b=(x 2,y 2),则b a⋅= . ⑹特例:a⋅0= ,00⋅= .三、重要定理、公式及方法: ⒈平面向量基本定理:如果1e 和2e 是同一平面内的两个不共线...向量,那么对该平面内的任一向量a 有且只有一对实数λ1、λ2,使a =λ11e +λ22e .⒉向量模的计算公式:设a =(x ,y ),则|a |= .⒋如何证明A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)三点共线?⒌两个向量平行、垂直的充要条件:⑴向量a =(x1,y1),和b =(x2,y2)平行的充要条件....是x1y2-x2y1=0.⑵向量a =(x1,y1),和b =(x2,y2)垂直的必要不充分条件.......是x1x2+y1y2=0.⒎已知向量a =(x1,y1),和b =(x2,y2),它们的夹角为θ,则cosθ= .⒐线段的中点坐标公式:已知P1(x1,y1),P2(x2,y2),则线段P1P2的中点坐标是 .⒑三角形的重心坐标公式:设△ABC三顶点的坐标为A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标是 .。

平面向量知识点归纳

平面向量知识点归纳

平面向量知识点归纳平面向量是高中数学中的重要内容,也是大学数学中的基础知识,它是向量的一种。

向量是数学中的一个概念,它有方向和大小,用有向线段表示。

平面向量是指在平面中的向量,以下是平面向量的知识点归纳。

一、平面向量的定义平面向量是表示平面上有大小和方向的箭头的数学概念。

平面向量AB用符号→AB表示,它的长度表示向量大小,而方向则由方向角表示。

二、平面向量的加减法1. 平面向量的加法平面向量加法是指将一条平面向量按照另一条向量的方向和大小来平移,并合成为一条新的向量。

记作→AB+→BC=→AC。

向量加法满足交换律、结合律、分配律。

2. 平面向量的减法平面向量减法是将另一向量的方向翻转,依次相加,得到一个新向量。

记作→AB-→AC=→CB。

三、平面向量的数量积平面向量的数量积是指两个向量之间相乘得到的标量。

记作→a⋅→b=a·b·cosθ,其中a、b是两个向量,θ是它们之间的夹角。

四、平面向量的叉积平面向量的叉积是在二维平面内的两个向量所形成的向量垂直于平面,大小等于两个向量所组成的平行四边形的面积。

记作→a×→b,其中a、b是两个向量。

五、平面向量的共线、垂直及夹角1. 平面向量的共线两个向量共线的充要条件是它们的数量积等于它们的模的乘积,即→a//→b,当且仅当a·b=|a||b|。

2. 平面向量的垂直两个向量垂直的充要条件是它们的数量积等于0,即→a⊥→b当且仅当a·b=0。

3. 平面向量的夹角两个向量的夹角是指它们之间的夹角,记作θ,其中θ的范围是0≤θ≤π。

六、平面向量的投影与单位向量1. 平面向量的投影平面向量投影是指一个向量在另一个向量上的投影,也是向量的一个重要应用。

投影的值等于向量的模与夹角的余弦的乘积。

记作pr→a。

2. 平面向量的单位向量单位向量是模等于1的向量,它表示的方向与原向量相同。

单位向量是向量的一种特殊情况,用符号→e表示。

高中数学平面向量知识及注意事项

高中数学平面向量知识及注意事项

高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。

5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。

平面向量知识点归纳

平面向量知识点归纳

平面向量知识点归纳平面向量是高中数学中的一个基本概念,同时也是高中数学中比较难理解和掌握的知识点之一。

下面我们将结合实例,对平面向量的定义、加减和数量积等知识点进行简明归纳。

一、平面向量的定义平面向量又称二维向量,是具有大小和方向的有向线段,通常用字母加箭头表示(如:$\vec{a}$)。

在直角坐标系中,平面向量可以表示成一个有序实数对$(a,b)$。

例如:已知点$A(1,2)$和点$B(3,4)$,连接这两个点所得的有向线段$\vec{AB}$就是一个平面向量,它的坐标表示为$\vec{AB}=(3-1,4-2)=(2,2)$。

二、平面向量的加减平面向量的加减法是指将两个向量相加(或相减)所得的向量,即$\vec{a}+\vec{b}$(或$\vec{a}-\vec{b}$),其坐标分别相加(或相减)。

例如:已知向量$\vec{a}=(1,2)$和向量$\vec{b}=(3,4)$,则$\vec{a}+\vec{b}=(1+3,2+4)=(4,6)$;$\vec{a}-\vec{b}=(1-3,2-4)=(-2,-2)$。

另外,平面向量加减法还满足以下性质:(1)交换律:$\vec{a}+\vec{b}=\vec{b}+\vec{a}$;$\vec{a}-\vec{b}=-\vec{b}+\vec{a}$(2)结合律:$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$(3)零向量:对于任意向量$\vec{a}$,有$\vec{a}+\vec{0}=\vec{a}$,$\vec{a}-\vec{a}=\vec{0}$。

其中,$\vec{0}=(0,0)$。

三、平面向量的数量积平面向量的数量积又称为点积或内积,表示为$\vec{a} \cdot \vec{b}$,它的值为两个向量的模长乘积与它们夹角的余弦值,并可以用各个分量表示出来。

$\vec{a} \cdot \vec{b}=|\vec{a}| \cdot |\vec{b}| \cdot cos\theta=a_xb_x+a_yb_y$其中,$|\vec{a}|=\sqrt{a_x^2+a_y^2}$,$|\vec{b}|=\sqrt{b_x^2+b_y^2}$,$\theta$表示$\vec{a}$与$\vec{b}$之间的夹角。

平面向量知识点整理

平面向量知识点整理

平面向量知识点整理平面向量是线性代数中的重要概念,具有广泛的应用。

下面是关于平面向量的知识点整理。

一、平面向量的定义和表示平面向量是指在平面上一个具有大小和方向的量。

平面向量可以表示为箭头,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

平面向量通常表示为有序对(a,b),其中a和b是实数。

二、平面向量的运算1.加法:平面向量的加法运算是指将两个向量相加得到一个新的向量。

加法运算满足交换律和结合律。

2.数乘:将一个向量乘以一个标量得到一个新的向量,标量可以是实数。

数乘的结果是将向量的大小和方向进行相应的调整。

3.减法:将一个向量减去另一个向量等于将第二个向量取相反数后与第一个向量相加。

减法运算可以转化为加法运算。

三、平面向量的性质1.平行向量:两个向量的方向相同或相反,则它们是平行向量。

平行向量的大小可以不同。

2.零向量:大小为零的向量称为零向量,用0表示。

任何向量与零向量相加的结果仍为原向量本身。

3.负向量:一个向量的大小和方向相同但方向相反的向量称为它的负向量。

4.共线向量:两个或更多个向量都平行于同一条直线时,它们是共线向量。

5.非共线向量:不在同一直线上的向量是非共线向量。

6. 数量积:两个非零向量a和b的数量积(也称为点积或内积)是一个标量,定义为a·b= ,a,,b,cosθ,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角。

7. 向量积:两个非零向量a和b的向量积(也称为叉积或外积)是一个向量,定义为 a × b = ,a,,b,sinθ n,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角,n为一个与a和b都垂直的单位向量。

8.向量共线条件:两个向量共线的充要条件是它们的向量积等于零向量。

四、平面向量的应用1.几何问题:平面向量可以用于解决距离、角度等几何问题,如计算点的坐标、计算直线的夹角等。

2.物理问题:平面向量常用于物理学中的力学问题,如计算物体的合力、分解力等。

高中平面向量知识点总结

高中平面向量知识点总结

高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。

2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。

(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。

(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。

二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。

2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。

3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。

4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。

(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。

2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。

平面向量及其应用知识点总结

平面向量及其应用知识点总结

平面向量及其应用知识点总结
一、平面向量的定义和性质
1. 平面向量的定义:平面上的向量是由两个有序数对表示的,称为平
面向量。

2. 平面向量的性质:
(1)平面向量有大小和方向,大小为其长度,方向为从起点指向终点的方向。

(2)平面向量可以相加、相减和数乘,满足加法交换律、结合律和数乘结合律。

(3)平面向量之间可以定义数量积和叉积,满足数量积交换律、结合律和分配律,叉积具有反交换律和分配律。

二、平面向量的表示方法
1. 坐标表示法:设平面上两个点A(x1,y1)和B(x2,y2),则以A为起点,B为终点所表示的平面向量为AB=(x2-x1,y2-y1)。

2. 向量符号表示法:在AB上任取一点C作为起点,则以C为起点,B为终点所表示的平面向量也是AB。

三、平面向量之间的运算
1. 平移:将一个平面上的向量沿着另一个给定的非零向量进行移动得到新的向量。

2. 旋转:将一个给定角度旋转后得到新的向量。

3. 投影:将一个向量沿着另一个向量的方向投影得到新的向量。

4. 反向:将一个向量反过来得到新的向量。

5. 平面向量之间的加法、减法和数乘运算。

四、平面向量的应用
1. 向量运动学:平面上的物体在运动时可以用平面向量表示其位移、速度和加速度等物理量。

2. 向量力学:平面上的物体在受力时可以用平面向量表示其受力和作
用力等物理量,通过分解力求解问题。

3. 向量几何:利用平面向量可以求解线段长度、角度、垂直、平行等几何问题,如判断两条直线是否相交,判断三点共线等问题。

4. 向量代数:利用平面向量可以进行代数运算,如求解方程组、矩阵计算等问题。

高二数学平面向量知识点

高二数学平面向量知识点

高二数学平面向量知识点平面向量是在二维平面内既有方向direction又有大小magnitude的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量标量。

平面向量用小写加粗的字母a,b,c表示,也可以用表示向量的有向线段的起点和终点字母表示。

平面向量1.基本概念:向量的定义,向量的模,零向量,单位向量,对向量,共线向量和等向量。

2.加法与减法的代数运算:1如果a=x1,Y1,B=X2,Y2,ab=x1+X2,Y1+Y2向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有以下规则:+++交换律++C=++C组合律;3.实数与向量的积:实数与向量的积是一个向量。

1||=||·||;2当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.两个向量共线的充要条件:1向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.2如果=,B=那么‖B平面向量基本定理:如果E1和E2是同一平面上的两个非共线向量,那么对于这个平面上的任何向量,只有一对实数,所以=E1+E24.p分有向线段所成的比:假设P1和P2是直线上的两点,点P是与P1和P2不同的任何点,那么就有一个实数,所以=,这就是点P被分成有向线段的比率。

当点p在线段上时,>0;当点p在线段或的延长线上时,<0;拆分点坐标公式:if=;的坐标是,,;然后≠ - 1、中点坐标公式:5.向量的数量积:1.矢量的夹角:已知两个非零向量与b,作=,=b,则∠aob=叫做向量与b的夹角。

2.两个向量的量积:已知两个非零向量与b,它们的夹角为,则·b=||·|b|cos.其中| B | COS称为向量B在方向上的投影3.向量的数量积的性质:如果=,B=那么E·=·E=| cose是单位向量;⊥b·b=0,b为非零向量;||=;cos==.4.向量的量积运算规律:·B=B··B=·B=·B=·B;+b·c=·c+b·c。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档