数学建模 排队论
数学建模排队论
数学建模排队论(最新版)目录一、数学建模与排队论简介二、数学建模的方法与应用三、排队论的概念及其应用四、数学建模在排队论中的应用案例五、总结正文一、数学建模与排队论简介数学建模是一种运用数学方法来描述和解决实际问题的科学方法,其目的是通过建立数学模型,揭示问题的本质,从而为解决实际问题提供理论依据。
而排队论是研究随机服务系统中顾客等待现象的一种数学理论,主要用于分析和优化服务系统的性能,以提高服务效率和顾客满意度。
二、数学建模的方法与应用数学建模的方法主要包括概率论、统计学、微分方程等。
这些方法在各个领域都有广泛的应用,如在经济学中分析市场需求、预测价格波动;在生物学中研究生物种群的数量变化等。
数学建模在排队论中也有着重要的应用,可以帮助我们理解顾客等待现象,优化服务系统。
三、排队论的概念及其应用排队论主要研究服务系统中的顾客到达、服务、离开等过程,以及顾客等待时间、服务时间等随机变量。
排队论的应用领域非常广泛,涉及到服务行业、交通工程、通信系统等。
通过排队论的分析,可以有效地优化服务系统的结构和策略,减少顾客等待时间,提高服务质量。
四、数学建模在排队论中的应用案例以一家医院挂号为例,我们可以通过数学建模和排队论来分析和优化挂号流程。
首先,我们可以建立一个概率模型,描述病人到达、挂号、就诊等过程。
然后,通过分析模型中的参数,如到达率、服务率等,可以得到病人等待时间的分布,从而为优化挂号流程提供依据。
例如,可以通过增加挂号窗口、提高挂号效率等措施,来减少病人的等待时间。
五、总结数学建模与排队论在实际应用中相辅相成,通过建立数学模型,可以更好地理解和优化排队现象。
数学建模排队论
数学建模排队论
排队论是一种数学理论,它研究的是人们排队等待服务或交通等系统的行为模式。
在排队论中,数学建模被广泛应用于分析和优化这些系统的性能和效率。
排队系统的基本构成包括到达过程、服务过程和队列规则。
到达过程指的是顾客或流量进入系统的过程,它可以用概率分布来描述。
服务过程指的是系统为每个顾客提供服务的时间,同样也可以用概率分布来描述。
队列规则则规定了顾客在等待队列中的顺序以及他们被服务的顺序。
在排队系统中,我们通常关注两个主要的性能指标:平均等待时间和平均队列长度。
平均等待时间指的是顾客在进入系统后需要等待多长时间才能接受服务的时间平均值,而平均队列长度则指的是在某个时间点等待服务的顾客数量的平均值。
为了分析和优化排队系统的性能,我们可以使用数学模型进行建模。
其中最常用的模型包括M/M/1模型、M/M/c模型、M/G/1模型等。
这些模型分别描述了不同的到达过程、服务过程和队列规则,并且可以计算出各种性能指标。
例如,M/M/1模型表示到达过程和服务过程都是泊松分布,并且只有一个服务窗口。
在这种情况下,我们可以使用该模型计算出平均等待时间和平均队列长度,并比较不同服务率下的性能指标。
M/M/c模型则表示到达过程和服务过程都是泊松分布,但是有c个服
务窗口。
在这种情况下,我们可以研究如何合理分配服务窗口的数量以优化系统的性能。
数学建模排队论是一种非常有用的工具,它可以用来分析和优化人们排队等待服务或交通等系统的行为模式。
通过建立数学模型,我们可以更好地理解这些系统的性能和效率,从而为实际应用提供指导。
数学建模之排队问题
排队问题教程一:复习期望公式()i i p a X P ==,∑=ii i p a EX ,()()∑=ii i p a g X Eg二:排队问题单个服务台排队系统问题(比如理发店只有一个理发师情况):假定顾客到达时间间隔()λ/1~e X 分钟,每个顾客接受服务的时间长度为()μ/1~e Y 分钟,假定1)、在时间段[]t t t ∆+,内有一个顾客到达的概率为()2t o t ∆+∆λ 2)、在时间段[]t t t ∆+,内有两个或以上顾客到达的概率为()2t o ∆ 3)、在时间段[]t t t ∆+,内有一个顾客接受完服务离开概率为()2t o t ∆+∆μ 4)、在时间段[]t t t ∆+,内有两个或以上顾客离开的概率为()2t o ∆用()t p n 表示在t 时刻,没有离开的顾客数(由于指数分布无记忆性,正在接受服务的顾客还需要接受的服务时间和任何一个顾客的接受服务时间同分布)。
记t 时刻在服务系统总人数n 的概率为()t p n ,则在t t ∆+时刻在服务系统总人数n 的概率()t t p n ∆+由以下几个不相容部分构成a):t 时刻有n 个顾客,时间段[]t t t ∆+,内没有顾客到达,也没有顾客离开,概率 ()t p t o t t o t n ))(1))((1(∆-∆-∆-∆-μλb):t 时刻有n 个顾客,时间段[]t t t ∆+,内有1顾客到达,有1顾客离开,概率 ()t p t t n ⋅∆⋅∆μλc):t 时刻有n-1个顾客,时间段[]t t t ∆+,内有1顾客到达,没有顾客离开 概率()t p t o t t n 1))(1(-∆-∆-∆μλd):t 时刻有n+1个顾客,时间段[]t t t ∆+,内没有顾客到达,有1个顾客离开 概率()t p t o t t n 1))(1(+∆-∆-∆λμ e):其他情况,概率()t o ∆由上面分析,()()()()()()()t o t p t t t p t t p t t t t p ∆+∆-⋅∆+⋅⋅∆-+⋅∆⋅∆=∆+1000111λμλμλ()()[]()()()t o t p t o t t t p t o t t t t t o t t o t t p t t p n n n n ∆+∆-∆-∆+∆-∆-∆+∆⋅∆+∆-∆-∆-∆-=∆++-11))(1())(1())(1))((1(λμμλμλμλ,1≥n简写()()()()()()00111p t t t p t t t p t o t λμλ+∆=-∆⋅+∆⋅-∆+∆()()[]()()()t o t p t t p t t t t p t t p n n n n ∆+⋅∆+⋅∆+∆-∆-=∆++-11)1)(1(μλμλ即()()()()()t o t p t t p t t p t t p ∆+⋅∆+⋅∆⋅-=-∆+1000μλ()()()()()()()t o t p t t p t t t p t p t t p n n n n n ∆+⋅∆+⋅∆+∆+-=-∆++-11μλμλ因此得到()()()()t p t p t p 100⋅+⋅-='μλ()()()()()()t p t p t p t p n n n n 11+-⋅+⋅++-='μλμλ假定()k t k p t p −−→−∞→,()()0−−→−∞'→t k t p 得到 010=⋅+⋅-p p μλ()011=⋅+⋅++-+-n n n p p p μλμλ把0p 当作已知,求解通项n p >将p(1)用)0(/p μλ代入得()()()n n n n p p p p μλμλλμμλμ001=→-+-=再,由1=∑kkp,我们得到()10=∑∞=n np μλ,>因此μλμ-=0p , nnn p p ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=μλμλμμλ0 问题1:系统平均有几个人没有离开?解答:系统有n 个人没有离开的概率n p ,因此,系统中滞留人数平均∑∞=0n n np>问题2:系统中排队等待服务平均有几个人?()∑∞=-11n npn>问题3:系统中平均每个人排队等待时间?解答:当一个顾客进入系统中,发现前面已经有n 个顾客在系统中,则他排队等待的平均时间就是这n 个顾客的平均服务时间总和(由于指数分布无记忆特性,不管正在接受服务的顾客已经服务了多少时间,其还要接受的服务时间依然服从相同的指数的分布)因此系统中平均每个人排队等待时间为nn pn∑∞=0μ>问题4:系统中每个顾客逗留时间平均?解答:每个顾客平均排队用时+每个顾客平均服务用时为所求 >。
【数学建模】排队论讲义
设 T X1 X 2 ,则TX的k 密度函数为
bk (t)
k (kt)k 1
(k 1)!
e k t
,
t 0
1
1
E(T ) ,
D(T ) k 2
如k个服务台串联(k个服务阶段), 一个顾客接受k个服务共需的服务时间T, T 爱尔朗分布。
‹# ›
1.2 随机过程的有关概念
随机过程(Random process)的定义
1.2 随机过程的有关概念
随机过程的基本类型
二阶矩过本程节内容结束
平稳过程 平稳独立增量过程 常见随机过程 马尔可夫过程? Poisson过程? 生灭过程?
马尔可夫过程 离散
马尔可夫链
• 定义对:任意{非X负(整n数),若n 满足0,如1,下2,性...质,}:只要
就有
t1 t2
{X“(n将)} 来”的情况与“过去”无关,
只是通过“现在”与“过去”发生联系,若 “现在”已知,“将来”与“过去”无关。
‹# ›
时齐的马氏链:马氏链{X (n),n 0,1,2,...}
若满足P:{X nm j X n i} Pij (m)
则称{X (n),n 0,1,2,...}
为时齐马尔
排队论
一.概率论及随机过程回顾 二.排队论的基本知识 三.单服务台负指数分布排队系统分析 四.多服务台负指数分布排队系统分析 五.一般服务时间M/G/1模型分析 六.经济分析___排队系统的最优化
一、概率论及随机过程回顾
1.1、随机变量与概率分布
• 随机变量 • 离散型随机变量 • 概率分布和概率分布图 • 数学期望和方差 • 常见离散型随机变量的概率分布 • 二点分布? • 二项式分布? • Poisson分布?
数学建模.排队论讲解
P1
(m 1)
(m n 1) (m n)
P2
Pn 1
Pn
Pn 1
2
由状态转移图,可以建立系统概率平衡方程如下: P 1 mP 0, Pn 1 (m n 1)Pn 1 [(m n) ]Pn , 1 n m 1 Pm Pm 1 ,
E (T ) 1
n!
e
1.5 排队系统的常用分布
同样,对顾客服务时间常用的概率分布也是负指数分布, 概率密度为: t
f (t ) e
(t 0)
其中 表示单位时间内完成服务的顾客数,也称平均服务率. 3)爱尔朗分布:
(k ) k t k 1 kt 分布密度函数: f k (t ) (k 1)! e (t 0, k , 0)
N k k
模型的各数量指标参数如下: 1)系统里没有顾客的概率 1 1 N 1 P
0
1 1
1 1 N
2.2 系统容量有限的 M / M / 1/N / 模型
n P P0,n N 2)系统里有n个顾客的概率 n
3)在系统里的平均顾客数
3)服务时间的分布——在多数情况下,对每一个顾客的服务 时间是一随机变量,其概率分布有定长分布、负指数分布、 爱尔朗分布等.
1.3 排队系统的符号表示(Kendall符号)
根据不同的输入过程、排队规则和服务台数量,可以形成 不同的排队模型,为方便对模型的描述,通常采用如下的符 号形式:
X /Y / Z / A/ B /C
式中 表示平均到达率与平均服务率 之比,称为服务强度.
2.1 标准的 M / M / 1 模型
数学建模排队论模型
数学建模排队论模型排队论模型是一种数学建模方法,用于研究排队系统中的等待时间、服务效率和资源利用率等问题。
排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
本文将介绍排队论模型的基本概念和应用。
一、排队论模型的基本概念排队论模型的基本概念包括:顾客到达率、服务率、队列长度、等待时间、系统利用率等。
顾客到达率是指单位时间内到达系统的顾客数量,通常用λ表示。
服务率是指单位时间内一个服务员能够完成服务的顾客数量,通常用μ表示。
队列长度是指系统中正在等待服务的顾客数量。
等待时间是指顾客在队列中等待服务的时间。
系统利用率是指系统中所有服务员的利用率之和。
排队论模型可以分为单队列模型和多队列模型。
单队列模型是指系统中只有一个队列,多个服务员依次为顾客提供服务。
多队列模型是指系统中有多个队列,每个队列对应一个服务员,顾客可以选择任意一个队列等待服务。
二、排队论模型的应用排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
下面以银行业务为例,介绍排队论模型的应用。
在银行业务中,顾客到达率和服务率是两个重要的参数。
顾客到达率受到银行营业时间、银行位置、顾客数量等因素的影响。
服务率受到银行服务员数量、服务质量、服务时间等因素的影响。
为了提高银行的服务效率和资源利用率,可以采用排队论模型进行优化。
首先需要确定银行的顾客到达率和服务率,然后根据排队论模型计算出等待时间、队列长度、系统利用率等指标。
根据这些指标,可以制定相应的服务策略,如增加服务员数量、优化服务流程、提高服务质量等。
例如,如果银行的顾客到达率较高,服务员数量较少,导致顾客等待时间较长,可以考虑增加服务员数量或优化服务流程,以缩短顾客等待时间。
如果银行的服务率较低,导致服务员利用率较低,可以考虑提高服务质量或增加服务时间,以提高服务员利用率。
三、排队论模型的局限性排队论模型虽然可以应用于各种领域,但也存在一些局限性。
首先,排队论模型假设顾客到达率和服务率是稳定的,但实际情况中这些参数可能会发生变化。
数学建模之排队论模型
【修理工录用问题】工厂平均每天有一台机器发生故障而需要修理,机器的故障数 服从泊松分布。 修理一台机器平均花费 20 元。 现有技术水平不同的修理工人 A 和 B, A 种修理工平均每天能修理 1.2 台机器, 每天工资 3 元; B 种修理工平均每天能修理 1.5 台机器,每天工资 5 元,两种修理工修理机器的时间为负指数分布。问工厂录用 哪种工人较合算?
Ls = ∑ np n = ∑ n(1 − ρ )ρ n = ρ /(1 − ρ ) = λ /( µ Nhomakorabea− λ ).
n =0 n =1
∞
∞
(2) 排队长: (等待的平均顾客数)
4
PDF 文件使用 "pdfFactory Pro" 试用版本创建
Lq = ∑ (n − 1) p n = ∑ (n − 1) ρ n (1 − ρ )
本讲主要内容
1. 2. 3. 4. 5. 排队论的基本概念 单服务台的排队模型 多服务台的排队模型 排队系统的最优化问题 数学建模实例:校园网的设计和调节收费问题
5.1 排队论的基本概念
5.1.1 什么是排队系统
排队论也称随机服务系统理论,它是 20 世纪初由丹麦数学家 Erlang 应用数学方法在研 究电话话务理论过程中而发展起来的一门学科, 在实际中有广泛的应用。 它涉及的是建立一 些数学模型, 藉以对随机发生的需求提供服务的系统预测其行为。 现实世界中排队的现象比 比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同, 但有如下共同特征: (1)有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为 “顾客” 。 (2)有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员” 。由顾 客和服务员就组成服务系统。 (3)顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间 不一定是确定的, 服务过程的这种随机性造成某个阶段顾客排长队, 而某些时候服务员又空 闲无事。 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 1.输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到 达的规律、 作出经验分布, 然后按照统计学的方法 (如卡方检验法) 确定服从哪种理论分布, 并估计它的参数值。 我们主要讨论顾客来到服务台的概率分布服从泊松分布, 且顾客的达到 是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的 影响。 2.排队规则 即顾客排队和等待的规则。排队规则一般有即时制和等待制两种。所谓即 时制就是服务台被占用时顾客便随即离去; 等待制就是服务台被占用时, 顾客便排队等候服 务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论 先到先服务的系统。 3.服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单
数学建模-排队论
①模型特点
顾客总体为m个,每个顾客到达并经过服 务台后,任然回到原来总体,所以任然可 以到来。
②系统的稳态概率 Pn ;
1
P0 m m! ( )i
i0 (m i)!
Pn
m! (m n)!
(
)n
P0
,1
n
m
③系统运行指标 a、 系统中平均顾客数(队长期望值)
Ls m (1 P0)
排队论
(Queueing Theory)
生活中处处可见的排队现象
商店、超市等收款处排队付款 车站、民航、港口等售票处依次购买车船票 各种生产系统、存储系统、运输系统等一系
列现象 大型网游登陆前的排队等等
基本概念
研究随机的排队服务模型的主要工具是 排队论,排队论又称为随机服务系统理 论,是研究由顾客、服务机构及其排队 现象所构成的一种排队系统理论。
PnP10
P1 0 Pn1 (
) Pn
0
n 1
(3)
这是关于 Pn 的差分方程,表明了各状态间的转移 关系,可以用下图表示:
0
1
n-1
n
n+1
由上式可得 Pn ( / )n P0 令 / 1(否则队列将
排至无限远),由概率性质知
Pn 1
n0
将
Pn
的关系带入,
P0
n
n0
1
P0 1
求 limPn(t) Pn,此时系统的状态概率分布不再随时间变化 n
(4)利用 Pn 求系统运行指标
①队长:系统中的顾客数,期望记为 Ls ②排队长:系统中排队等待覅物的顾客数,期望记为 Lq ③逗留时间:一个顾客在系统中的停留时间,期望记为 Ws ④等待时间:一个顾客在系统中排队等待的时间,期望记
( 数学建模)排队论模型
(1)流具有平衡性
对任何 a和0 0t1t,2 tn x ( a t i) x ( a ) ( 1 i n )
的分布只取决于 t1,t2, 而,t与n 无关a。
(2)流具有无后效性
对互不交接的时间区间序列 a i,b i ( 1 i, n )
x(bi)是x(a一i)组相互独立的随机变量。
(3)流具有普通性 liP m xr (a t)x(a ) 1 0
(2)逗留时间
逗留时间是指一顾客从进入系统起一直到接受服 务后离开系统为止所花费的时间;等待时间是指一 顾客从进入系统起到接受服务时所花费的时间。显 然,一个顾客的逗留时间等于其等待时间与接受服 务的时间之和。逗留时间与等待时间对顾客来说是 最关心的,因为每个顾客都希望自己用于排队等待 的时间愈短愈好。
P T t 1 r T t 0 P T t 1 r t 0
上式可改写为:对任何 t0 ,0都有
P T t 0 r x T t 0 P T x r
如果把T解释为寿命,上式表明:如果已知年龄大
排队论模型
排队论模型
一、排队论的基本概念 二、单通道等待制排队问题
(M/M/1排队系统) 三、多通道等待制排队问题
(M/M/c排队系统)
一、排队论的基本概念
(一)排队过程 1.排队系统
“排队”是指在服务机构处要求服务对象的一个等 待队列,而“排队论”则是研究各种排队现象的理论。
到来 顾客源
排队机构
常用的记号:M——负指数分布;D——确定型; Ek——k阶爱尔朗(Erlang)分布;GI——一般相互 独立的随机分布,G——一般随机分布。这里主要讨 论M/M/1,M/M/C。
2.排队模型的数量指标
(1)队长
数学建模--排队论
现实生活中的实例:
进餐馆就餐 到图书馆借书 去售票处购票 在车站等车等等
课件
2
一、排队系统的特征及排队论:
顾客为了得到某中服务而到达系统,若不能获得服 务而允许排队等待,则加入等待队伍,待获得服务后离
开系统。
课件
3
排队的形式:
顾客到达 队列 服务完成后离去 服务台
服务台1 顾客到达 队列
队列1
服务台2 服务台s
服务完成后离去
顾客到达
队列2 队列s
服务台1 服务台2
服务完成后离去 服务完成后离去 服务完成后离去
服务台s 课件
4
随机服务系统:
排队系统 输入 来源 顾客 队列 服务机构 服务完离开
课件
5
二、排对系统的描述
系统由三个部分组成:
输入过程 排队和排队规则 服务机制
M/D/1
D/M/1
M/E k/1
课件
30
结束语
排队论是专门研究带有随机因素,产生 拥挤现象的优化理论。也称为随机服务 系统。 排队论应用十分广泛。
课件
31
n 1
1
因此:
pn (1 )
n
n 0,1,
课件
23
②几个主要数量指标 平均队长:
L npn n(1 )
n n 0 n 0
1
平均排队长:
Lq (n 1) pn L (1 p0 ) L
数学建模算法大全排队论
第六章排队论模型排队论起源于1909年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。
1917年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。
排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。
排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。
此时要求服务的数量超过服务机构(服务台、服务员等)的容量。
也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。
这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。
由于顾客到达和服务时间的随机性。
可以说排队现象几乎是不可避免的。
排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。
它研究的内容有下列三部分:(i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。
(ii)最优化问题,又分静态最优和动态最优,前者指最优设计。
后者指现有排队系统的最优运营。
(iii)排队系统的统计推断,即判断一个给定的排队系统符合于那种模型,以便根据排队理论进行分析研究。
这里将介绍排队论的一些基本知识,分析几个常见的排队模型。
§1 基本概念1.1 排队过程的一般表示下图是排队论的一般模型。
一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。
凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。
对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。
因此,顾客总希望服务机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权衡决策,使其达到合理的平衡。
数学建模-排队论及其应用)
ρ ——服务强度,即每个服务台单位时间内的平均 服务时间,—般有ρ =λ /(sμ ),这是衡量排队 系统繁忙程度的重要尺度,当ρ 趋近于0时,表 明对期望服务的数量来说,服务能力相对地说 是很大的。这时,等待时间一定很短,服务台 有大量的空闲时间;如服务强度ρ 趋近于1,那 么服务台空闲时间较少而顾客等待时间较多。 我们一般都假定平均服务率μ 大于平均到达率 λ ,即λ /μ <1,否则排队的人数会越来越多, 以后总是保持这个假设而不再声明。
Wq W 1 0.75h 0.75h 45min
(4)为使病人平均逗留时间不超过半 小时,那么平均服务时间应减少多少? 由于
1 1 W 2
代入λ =3,解得μ ≥5,平均服务时间 为:
1
1
5
h 12 min
15-12=3min 即平均服务时间至少应减少3min
例1 某医院急诊室同时只能诊治一个病人,诊
故服务强度为:
60 3人 / h, 人 / h 4人 / h 15
3 0.75 4
(2)计算稳态概率:
P0 1 1 0.75 0.25
这就是急诊室空闲的概率,也是病人不 必等待立即就能就诊的概率。 而病人需要等待的概率则为:
(5)若医院希望候诊的病人90% 以上都能有 座位,则候诊室至少应安置多少座位? 设应该安置χ 个座位,加上急诊室的一 个座位,共有χ +1个。要使90% 以上的候诊 病人有座位,相当于使“来诊的病人数不 多于χ +1个”的概率不少于90%,即
P( N x 1) 1 P( N x 1) 0.9
(3)混合制
3.服务台
数学建模中的排队论问题
数学建模中的排队论问题数学建模是运用数学方法来解决实际问题的一种学科,而排队论则是数学建模中的一个重要问题。
排队论是研究人们在排队等待时所产生的等待时间、服务时间、队列长度等问题的数学理论。
在各个领域中,排队论都有广泛的应用,例如交通运输、生产调度、服务管理等。
排队论的基本概念包括顾客、服务台、队列、到达率、服务率等。
顾客是指等待服务的个体,可以是人、机器或其他物体。
服务台是为顾客提供服务的地方,可以是柜台、服务窗口或机器设备。
队列是顾客排队等待的区域。
到达率是指单位时间内到达队列的顾客数量。
服务率则是指单位时间内服务台完成服务的顾客数量。
排队论的目标是通过数学模型来分析和优化排队系统,以提高效率和服务质量。
常用的排队论模型有M/M/1, M/M/c, M/M/∞等,其中M表示到达率和服务率满足泊松分布,1表示一个服务台,c表示多个服务台,∞表示无穷多个服务台。
在现实生活中,排队论的应用非常广泛。
以交通运输为例,交通流量大的道路上常常出现拥堵现象。
排队论可以用来研究交通信号灯的时序控制,从而减少交通阻塞和等待时间。
排队论还可以应用于生产调度问题,如工厂的生产线、餐馆的点餐队列等,通过优化排队系统可以提高生产效率和顾客满意度。
除了基本的排队论模型,还有许多扩展模型用于解决更复杂的实际问题。
例如,考虑到顾客的不满意程度,可以引入优先级排队模型。
考虑到服务台设备可能发生故障,可以引入可靠性排队模型。
排队论也可以与优化算法相结合,寻找最佳的服务策略和资源配置。
在数学建模中,解决排队论问题通常需要进行数学推导、建立数学模型、进行仿真实验以及进行实际数据的拟合和验证。
通过数学建模的方法,可以对排队系统的性能进行全面评估,从而提出改进方案和决策策略。
综上所述,数学建模中的排队论问题在实际应用中具有重要的意义。
通过研究排队论,可以优化排队系统,提高效率和服务质量。
随着科技的进步和数据的丰富,排队论的研究将在各个领域中得到更广泛的应用和发展。
数学建模排队论
数学建模排队论
排队论是数学中的一个分支,主要研究排队系统的性质与特征。
排队系统是指存在一个或多个顾客到达某个服务设施,并等待服务的过程。
排队论的目标是通过数学方法研究这些系统的行为和性能,并提供优化方案。
排队论的主要研究内容包括:排队模型的建立、排队系统的性能度量、排队系统的稳定性与稳定条件、排队系统的解析解和数值解等。
排队模型通常包括顾客到达过程、服务设施的服务过程和排队规则等要素,用以描述各种不同类型的排队系统。
排队论的应用广泛,包括但不限于以下领域:
1. 交通流量分析:排队论可用于研究交通流量的稳定性和优化信号控制。
2. 队列管理:排队论可以应用于零售业、餐馆等地方的队列管理,用以提高服务效率和顾客满意度。
3. 通信网络:排队论可以用于分析数据包的排队和延迟问题,优化网络资源利用率。
4. 生产与制造:排队论可以用于分析生产线上的工人排队和设备故障等因素,优化生产效率。
5. 医疗系统:排队论可以应用于研究医院门诊和急诊的排队问题,优化资源分配和患者等待时间。
总之,排队论是一门重要的数学理论,通过研究排队系统的性能与优化方法,可以提高各种系统的效率和质量,对于实际问题的解决有着重要的应用价值。
数模培训第三周——排队论
数模培训第三周——排队论排队论简介 排队论⼜称随机服务系统,它应⽤于⼀切服务系统,包括⽣产管理系统、通信系统、交通系统、计算机存储系统。
现实⽣活中如排队买票、病⼈排队就诊、轮船进港、⾼速路上汽车排队通过收费站、机器等待修理等等都属于排队论问题。
四种模型等待制模型 M / M / S / ∞ M/M/S/\infty M/M/S/∞ 该模型中顾客到达服从参数为 λ \lambda λ的 P o i s s o n Poisson Poisson分布,在 [ 0 , t ] \left[ 0,t \right] [0,t]时间内到达的顾客数 X ( t ) X\left( t \right) X (t)服从的分布为:P { X ( t ) = k } = ( λ t ) k e − λ t k ! P\left\{ X\left( t \right) =k \right\} =\frac{\left( \lambda t \right) ^ke^{-\lambda t}}{k!} P {X (t)=k}=k!(λt)k e −λt其他单位时间到达的顾客平均数为 λ \lambda λ, [ 0 , t ] \left[ 0,t \right] [0,t]时间内到达的顾客平均数为 λ t \lambda t λt。
顾客接受服务的时间服从负指数分布,单位时间服务的顾客平均数 μ \mu μ,服务时间的分布为:f ( t ) = { μ e − μ t t > 0 0 f\left( t \right) =\begin{cases} \mu e^{-\mu t}\,\,t>0\\ 0\\ \end{cases} f (t)={μe −μt t >00哪个顾客接受服务的平均时间为 1 μ \frac{1}{\mu} μ1只有⼀个服务台 S = 1 S=1 S =1情形当系设稳定状态下系统有 i i i个顾客的概率为 P i ( i = 0 , 1 , 2 , … ) P_i \left(i=0,1,2,\cdots \right) Pi (i =0,1,2,…)。
数学建模:第五章 排 队 论
令 T0 = 0 Tn :第 n 个顾客到达时刻, Xn:第 n 个顾客与第 n-1 个顾客到达的时间间隔。 则有
T0 T1 Tn
X n Tn Tn1 , n 1,2,
18
一般假定 { Xn }是独立同分布的,并记其分布函数 为 A( t )。关于{ Xn }的分布,排队论中经常用到的 有以下两种: ➢定长分布(D):顾客相继到达时间间隔为确定 的常数。
Wq(t):时刻 t 到达系统的顾客在系统中的等待时间。
pn(t):时刻 t ,系统中有 n 个顾客的概率。
44
pn(t)
过渡状态
平稳状态
t
45
上述指标一般都是和系统运行的时间有关的随机变量 ,求这些随机变量的瞬时分布一般都是很困难的。 相当一部分排队系统,在运行了一定时间后,都会趋 于一个平稳状态(或称平衡状态),平稳状态下这些 指标和系统所处的时刻无关。
19
➢Poisson流(M):顾客相继到达时间间隔的密度 函数为:
e t
a(
2. 排队
损失制排队系统
有限排队
队长有限排队系统
排队
混合制排队系统 等待时间有限排队系统
逗留时间有限排队系统 无限排队(等待制排队系统)
21
(1)有限排队
有限排队:排队系统中的顾客数是有限的,即系统 的空间是有限的,当系统被占满时,后面再来的顾 客将不能进入排队系统。
顾客相继到达时间 单个服务台
间隔为负指数分布
顾客源无限
M / M / 1 / ∞ / ∞ / FCFS
服务时间为负指数
分布
系统容量为无限
先到先服务
39
X/Y/Z/A/B/C
省略后三位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1、排队模型
——排队系统的的一般表示
顾客源 排队系统
排队结构
排队规则
服务 机构
服务规则
接受服务 后离去
服务机构
(a) 一个队列、单服务台(阶段)
服务台
服务机构
(b) 一个队列、s个服务阶段
服务台1
服务台2
服务机构
(c) 一个队列、s个服务台 一个服务阶段
服务台1
服务台2
服务机构
(d) s个队列、s个服务阶段
顾客到达就能理发的概率 -------相当于理发店内没有顾客
1 1 3 / 4 P0 0.2778 N 1 8 1 1 (3 / 4)
等待顾客数的期望值
( N 1) N 1 3/ 4 8(3 / 4)8 Ls 2.11 N 1 8 1 1 1 3 / 4 1 (3 / 4) Lq Ls (1 P0 ) 2.11 (1 0.2778) 1.39
n 2 3
( 2 3 ...) ( 2 ...) ... Ls
1
0 1
计算有关指标
队列长
Lq
(n 1) P nP P
n 0 n n 1 n n 1
e t t0 a(t ) 0 t0
排队及排队规则
即时制(损失制) 等待制
先到先服务: FCFS 后到先服务: LCFS 随机服务 优先权服务:PS
队容量: 有限, 无限; 有形, 无形. 队列数目: 单列, 多列.
服务时间分布:
设某服务台的服务时间为V,其密度函数 为b(t),常见的分布有: (1)定长分布(D):每个顾客接受服务的时间 μ-- 单位时间平均服务完成的顾客数 是一个确定的常数。 1/μ -- 每个顾客的平均服务时间 (2)负指数分布(M):每个顾客接受服务时间 相互独立,具有相互的负指数分布:
解:
每小时病人平均到达率
完成手术时间 到达的病人数 出现次数
nu
100
n
(人/小时) 2.1
n r 0.0~0.2 0 0.2~0.4 1 0.4~0.6 2 0.6~0.8 3 0.8~1.0 4 1.0~1.2 5 1.2 以上 6 以上 合计
每次手术平均时间
rv
100
r
0.(小时/人) 4
pn 1 p0 p0 2 p0 N p0 1
n 0
求排队系统顾客数的分布状况
P0 (1 ) 1
2 N
1 P 0 1 N 1 P 1 n n N 1 1
每小时完成手术人数 (平均服务率)
1 (人/小时) 2.5 0.4
解:
2.1, 2.5
2.1 Ls 5.25 2.5 2.1
2.1 Lq Ls 5.25 4.41 2.5
1 Ws
Wq
求解:
令: ,且当 1 时
n0 n 1
P 1 0 P (1 ) n n
n 1
关于 的几点说明:
(1)
(2)
1/ 1/
1 p0
顾客平均到达率 顾客平均服务率 一个顾客服务时间 一个顾客到达时间
扩展符号表示: X/Y/Z/A/B/C
A -- 系统容量 B -- 顾客源中顾客的数量 C -- 服务规则: FCFS, LCFS, 等等.
若省略后三项,即是指下面的情形: X/Y/Z/ / /FCFS
例:M/M/s/K表示?
排队问题的求解
已知: 顾客到达间隔时间分布, 服务时间分布. 求系统指标:
•系统中至少有 一个顾客的概 率; •服务台处于忙 的状态的概率; •反映系统繁忙 程度
(3)
——服务强度
(4)
1,
即顾客的顾客平均到达率 小于顾客平均服务率时, 系统才能达到统计平稳。
计算有关指标
队长
Ls
nP n(1 )
n 0 n 2 n 1 3 2 3
n
Ls (1 P0 ) Ls
1
2
计算有关指标
逗留时间: 可以证明, Ws服从参数为μ-λ的 负指数分布. 则:
1 Ws
等待时间
Wq Ws W服务
1
Wq Ws
Ls 计算有关指标
求排队系统顾客数的分布状况 n 1 n 2 ... 0 Cn n n 1 ...1
p
n
n
1
p0
pn Cn p0 , n 1,2,...
n
其中
where
N
n 1n 2 ...0 n Cn n n 1...1
服务强度:( P0) e / 1 Lq Ls Ls 1 Ws e ( P0) ( PN) 1 1
系统已满顾客不能 到达的概率---损失 率
根据Little 公式
等待时间
Wq Ws
1
举例:单人理发馆排队问题
有6个椅子接待人们排队,超过6人 顾客就离开,平均到达率3人/小时,理 发需时平均15分钟。 N=7为系统中的最大顾客数。 平均到达率: =3人/小时 平均服务率: =4人/小时
服务台1 服务台3
服务台2
服务台4
服务机构
(e)混合型
: 1–2–4 : 2–4–3 : 3–2–1–4
服务台1
服务台2
服务台3
服务台4
排队结构
(f) 一个队列
服务台
服务台
(g) s个队列
2.2、 排队系统的组成和特征
输入过程
顾客总体:有限,无限. 顾客到达方式:单个,成批. 顾客到达间隔时间: 确定的、 随机的. 顾客到达的独立性: 独立,不独立. 输入过程的平稳性: 与时间无关(平稳的), 与时间有 关(非平稳的).
排队系统的分类
符号表示: X/Y/Z
X – 顾客到达间隔时间分布 Y -- 服务时间分布 Z -- 服务台个数 X, Y 可以是: M -- 负指数分布 D -- 确定性的 Ek -- k阶Erlang分布 GI -- 一般相互独立的到达时间间隔分布 G -- 一般(General)时间分布
n 1,2,..., N
计算有关指标
队长
( N 1) N 1 Ls nP n 1 1 N 1 n 0
N
队列长
Lq (n 1) Pn Ls (1 P0 )
n 0
N
计算有关指标
逗留时间
有效到达率:e ( PN)或 e ( P0) 1 1
3.1 M/M/1模型
3.2 M/M/1/N/ 模型(即系统的容量有限)
3.3 M/M/1/ 模型(即顾客源为有限) /m
3.1 M/M/1模型
输入过程服从 顾客源 参数为 的 Poisson过程
生灭过程
排队系统
服务时间服从 参数为 的 负指数分布
无 限
排队结构
排队规则
服务 机构
服务规则
un 10 28 29 16 10 6 1 100
r 0.0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1.0 1.0~1.2 1.2 以上 合计
vr 38 25 17 9 6 5 0 100
解:
?, ?
到达的病人数 出现次数
每小时病人平均到达率
nu
顾客到达时间间隔的分布:
设
Tn :第n个顾客到达的时刻; T0 0 T1 Tn
令
X n Tn Tn1 , n 1,2,,
X n:第n个顾客与第n-1个顾客到达的时间间隔;
Xn
T0 T1 T2
Tn 1 Tn Tn 1
顾客到达时间间隔的分布:
因为负指数分布 具有无后效性 假定 { X n } 是独立同分布,分布函数为 A(t ), (即Markov性) 排队论中常用的有两种: (1)定长分布(D):顾客到达时间间隔为确定的。 (2)最简流(即Poisson流)(M): 顾客到达时间间隔 { X n } 为独立的, 服从负指数分布,其密度函数为
接受服务 后离去
单队 队长无限 先到先服务
pn C n p0 ,
n 1,2,...
p
n 1 n 2 ... 0 其中 Cn n n :系统达到平稳后,系统有n个顾客的概率。 n 1 ...1
平衡方程:
p
n
n
1
p0
P0 P1 0 P P ( ) P 0 n 1 n n1
小
1 Ws
Lq Wq
有效到达率
Little公式(相互关系)
结
Ls Ws Ws Wq
平均服务 时间
Lq Wq 1
Ls Lq
平均在忙的服务 台数/正在接受 服务的顾客数
计算有关指标
忙期与闲期