探索直线平行的条件

合集下载

北师大版数学七年级下册2.2《探索直线平行的条件》教案1

北师大版数学七年级下册2.2《探索直线平行的条件》教案1

北师大版数学七年级下册2.2《探索直线平行的条件》教案1一. 教材分析《探索直线平行的条件》是北师大版数学七年级下册第2章第2节的内容。

本节课主要让学生通过探索活动,掌握直线平行的条件,理解平行线的性质,并能运用这些性质解决一些简单问题。

本节课的内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的基本概念,对图形的基本性质有所了解。

但是,对于直线平行的条件和平行线的性质,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。

三. 教学目标1.理解直线平行的条件,掌握平行线的性质。

2.能够运用直线平行的条件和平行线的性质解决一些简单问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.教学重点:直线平行的条件,平行线的性质。

2.教学难点:直线平行的条件的推导,平行线的性质的理解和运用。

五. 教学方法采用问题驱动的教学方法,引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。

在教学过程中,注重学生的主体地位,鼓励学生积极参与,培养学生的动手能力和思维能力。

六. 教学准备1.准备一些直线和平行线的模型,用于直观展示直线平行的条件和平行线的性质。

2.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用直尺和三角板,展示一些直线和平行线,引导学生观察和思考:什么是直线?什么是平行线?直线和平行线有哪些性质?2.呈现(10分钟)呈现一些直线平行的例子,引导学生观察和思考:这些直线为什么是平行的?直线平行有哪些条件?3.操练(10分钟)让学生分组合作,利用直尺和三角板,尝试画出一些平行线,并总结直线平行的条件。

4.巩固(10分钟)让学生独立完成一些关于直线平行的练习题,巩固所学知识。

5.拓展(10分钟)引导学生思考:平行线除了具有直线平行的条件外,还有哪些性质?让学生通过探索活动,发现和总结平行线的性质。

七年级下册数学第一课探索直线平行的条件

七年级下册数学第一课探索直线平行的条件

七年级下册数学第一课探索直线平行的条件1.直线平行是指两条直线永远不会相交。

Parallel lines refer to two lines that will never intersect.2.直线平行的条件是它们具有相同的斜率。

The condition for lines to be parallel is that they have the same slope.3.斜率是指直线上任意两点的纵坐标差与横坐标差的比值。

Slope refers to the ratio of the vertical difference to the horizontal difference between any two points on a line.4.如果两条直线的斜率相同,那么它们是平行的。

If two lines have the same slope, then they are parallel.5.两条直线的斜率相同但不相交,则它们平行。

Two lines with the same slope but do not intersect are parallel.6.另一种判断直线平行的方法是它们的斜率乘积为-1。

Another way to determine if lines are parallel is if the product of their slopes is -1.7.这个方法适用于垂直线。

This method applies to perpendicular lines.8.垂直线是指它们的斜率互为倒数的直线。

Perpendicular lines are lines with slopes that are reciprocal of each other.9.如果两条直线的斜率互为倒数,那么它们是垂直的。

If two lines have slopes that are reciprocal, then they are perpendicular.10.平行线和垂直线在几何图形中有着重要的应用。

2.2.2探索直线平行的条件(教案)

2.2.2探索直线平行的条件(教案)
突破方法:在课堂上,教师应当提供准确的数学语言示范,并要求学生在口头和书面表达中使用规范的语言,通过不断的练习和反馈,提高他们的表达能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“探索直线平行的条件”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线看起来永远不会相交的情况?”比如,铁轨或者操场的跑道。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索直线平行的奥秘。
c.逻辑推理能力的培养:在探索直线平行条件的过程中,学生需要运用逻辑推理来理解为何这些条件能证明直线平行。
突破方法:通过小组讨论、问题驱动的教学方法,鼓励学生提出假设、进行验证、总结规律,从而培养他们的逻辑推理能力。
d.数学语言的准确表达:学生需要学会使用准确的数学语言描述直线平行的条件,这对于他们的数学表达和交流能力是一个挑战。
在总结回顾环节,大多数学生能较好地掌握直线平行的判定条件,但也有少数学生表示还存在疑问。为了确保每个学生都能跟上教学进度,我计划在课后对这部分学生进行个别辅导,解答他们的疑问,巩固所学知识。
二、核心素养目标
本节课的核心素养目标致力于培养学生的几何直观、逻辑推理和数学建模能力:
1.通过观察和操作几何图形,培养学生识别同位角、内错角、同旁内角的能力,增强几何直观。
2.引导学生运用逻辑推理,探究直线平行的条件,理解同位角相等、内错角相等、同旁内角互补与直线平行之间的关系。
3.培养学生运用数学语言表达几何图形关系,建立数学模型,解决实际问题,提升数学建模能力。
重点难点解析:在讲授过程中,我会特别强调同位角相等、内错角相等、同旁内角互补这三个重点。对于难点部分,我会通过图形示例和逐步引导来帮助大家理解。

《探索直线平行的条件》教案

《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案第一章:引言1.1 教学目标:让学生了解直线平行的概念及实际应用。

激发学生对探索直线平行条件的兴趣。

1.2 教学内容:直线平行的定义及实例。

直线平行的实际应用场景。

1.3 教学方法:通过图片、实例等方式引入直线平行的概念。

引导学生思考直线平行的实际应用场景。

1.4 教学步骤:1. 引入直线平行的概念,引导学生理解直线平行的定义。

2. 展示直线平行的实例,让学生通过观察和分析来理解和记忆直线平行的特征。

3. 引导学生思考直线平行的实际应用场景,如交通运输、建筑设计等,激发学生对直线平行的兴趣。

第二章:直线平行的判定2.1 教学目标:让学生掌握直线平行的判定方法。

培养学生运用判定方法解决实际问题的能力。

2.2 教学内容:直线平行的判定方法。

判定方法的证明和解释。

2.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的判定方法。

通过证明和解释来说明判定方法的合理性。

2.4 教学步骤:1. 引导学生回顾直线平行的定义,复习相关知识。

2. 引入直线平行的判定方法,让学生通过观察和分析几何图形来理解和记忆判定方法。

3. 通过证明和解释来说明判定方法的合理性,帮助学生深入理解判定方法。

第三章:直线平行的性质3.1 教学目标:让学生掌握直线平行的性质。

培养学生运用性质解决实际问题的能力。

3.2 教学内容:直线平行的性质。

性质的证明和解释。

3.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的性质。

通过证明和解释来说明性质的合理性。

3.4 教学步骤:1. 引导学生回顾直线平行的判定方法,复习相关知识。

2. 引入直线平行的性质,让学生通过观察和分析几何图形来理解和记忆性质。

3. 通过证明和解释来说明性质的合理性,帮助学生深入理解性质。

第四章:直线平行的应用4.1 教学目标:让学生学会运用直线平行的条件解决实际问题。

培养学生的实际问题解决能力。

4.2 教学内容:直线平行的条件在实际问题中的应用。

2、2探索直线平行的条件

2、2探索直线平行的条件

预习提纲:
问题1:在同一平面内两条直线的位置关系有几种?分别是什么?
问题2:如图,两条直线相交所构成的四个角中分别有何关系?
问题3:什么叫两条直线平行?
问题4:如课本彩图,装修工人正在向墙上钉木条。

如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角是多少度时,才能使木条a 与木条b 平行?
问题:实际问题中在判断两根木条平行时,借助了墙壁作为参照,你能将上述问题抽象为数学问题吗?试着画出图形,并结合图形说明。

问题5:1、图中的直线b 与直线c 不垂直,直线a 应满足什么条件才能与直线b 平行呢?请你利用教具亲自动手操作。

做一做:利用纸条和图钉自己制作学具,如图,三根纸条相交成∠1,∠2, 固定纸条b,c,转动纸条a, 在操作的过程中让学生观察∠2的变化以及它
与∠1的关系,你发现纸条a 与纸条b 的位置关系发生了什么变化?纸条a 何时与纸条b 平行?改变图中∠1的大小再试一试,与同学交流你的发现。

2.由∠1与∠2的位置关系引出对“三线八角”的认识和同位角的概念。

问题1:图中还有其他的同位角吗?
问题2:这些角相等也可以得出两直线平行吗?
3.综上探索,引导学生归纳出两直线平行的条件 A B D
C O。

《探索直线平行的条件》教案

《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案一、教学目标1. 让学生理解直线平行的概念,掌握直线平行的条件。

2. 培养学生运用几何知识解决实际问题的能力。

3. 提高学生逻辑思维能力和团队协作能力。

二、教学内容1. 直线平行的定义2. 直线平行的条件3. 平行线的性质4. 平行线的判定5. 直线平行在实际问题中的应用三、教学重点与难点1. 教学重点:直线平行的概念、条件、性质和判定。

2. 教学难点:直线平行条件的推理和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探索直线平行的条件。

2. 利用几何画板软件,直观展示直线平行的过程,增强学生直观感知。

3. 组织小组讨论,培养学生团队协作能力和口头表达能力。

4. 运用例题讲解,让学生在实践中掌握直线平行的应用。

五、教学准备1. 教学课件:包括直线平行的图片、动画、例题等。

2. 几何画板软件:展示直线平行的过程。

3. 练习题:巩固直线平行的知识和应用。

4. 小组讨论卡片:分配给各小组,用于记录讨论成果。

教案一、导入新课1. 展示生活中常见的平行现象,如的道路、书本排版等。

2. 引导学生思考:这些平行现象背后有什么共同的规律?3. 引入本节课的主题:《探索直线平行的条件》。

二、自主学习1. 让学生阅读教材,了解直线平行的定义。

三、课堂讲解1. 讲解直线平行的条件,引导学生通过几何画板软件直观展示。

2. 利用几何画板软件,展示直线平行的过程,引导学生观察、思考。

3. 讲解平行线的性质,如同位角相等、内错角相等等。

4. 讲解平行线的判定方法,如同位角相等、内错角相等等。

四、巩固练习1. 让学生运用几何画板软件,自主探究直线平行的条件。

2. 学生完成练习题,教师点评并讲解答案。

五、小组讨论1. 发放小组讨论卡片,让学生分组讨论直线平行的应用。

六、课堂小结2. 强调直线平行在实际问题中的应用。

七、作业布置1. 让学生完成课后练习题,巩固直线平行的知识。

2. 选择一道实际问题,运用直线平行的知识解决。

2.2.2探索直线平行的条件(教案)

2.2.2探索直线平行的条件(教案)
学生小组讨论部分,我尝试作为一个引导者,鼓励学生们提出自己的观点。在这个过程中,我发现学生们其实有很多独特的见解。这让我反思,平时可能过于注重知识的传授,而忽略了学生们的主动性和创造性。今后,我要更加注重培养学生的独立思考能力和团队合作精神。
此外,我还注意到,在总结回顾环节,有些同学仍然存在疑问。这说明我在课堂上的讲解可能还不够透彻,或者是课堂互动不够充分。因此,我需要在课后及时了解学生的掌握情况,针对性地进行辅导,确保每位同学都能跟上教学进度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探索了直线平行的条件,我发现学生们对于这个概念的理解程度不尽相同。有的同学能够迅速抓住同位角、内错角、同旁内角这些关键点,但也有一些同学对这些概念感到困惑。我意识到,在接下来的教学中,我需要采取更加多样的教学方法,以帮助不同水平的学生更好地理解平行线的性质。
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
课堂上,我通过引入日常生活中的例子来激发学生的兴趣,这是一个不错的开始。然而,我发现在理论介绍部分,我的语言可能过于专业化,导致一些同学难以跟上。在今后的教学中,我需要用更贴近学生生活的语言来解释抽象的几何概念,使它们更加直观易懂。

《探索直线平行的条件》教案

《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案第一章:引言1.1 课程背景本节课旨在引导学生探索直线平行的条件,通过观察、思考、交流等活动,让学生理解直线平行的概念,掌握判断直线平行的方法,为后续学习几何知识打下基础。

1.2 教学目标1. 了解直线平行的概念;2. 掌握判断直线平行的方法;3. 培养观察、思考、交流能力。

1.3 教学重难点1. 直线平行的概念;2. 判断直线平行的方法。

第二章:直线平行的概念2.1 教学内容通过观察生活中实例,引导学生认识直线平行的概念,理解直线平行的特点。

2.2 教学方法采用直观演示、小组讨论的教学方法,让学生在观察、思考中掌握直线平行的概念。

2.3 教学步骤1. 展示生活中的实例,引导学生观察直线平行的特点;2. 引导学生思考直线平行的定义;3. 组织小组讨论,让学生交流直线平行的理解;4. 总结直线平行的概念及特点。

第三章:判断直线平行的方法3.1 教学内容本节课引导学生学习判断直线平行的方法,包括平行公理、平行线的性质等。

3.2 教学方法采用讲解、示范、练习的教学方法,让学生在理解判断直线平行的方法的基础上,能够独立进行判断。

3.3 教学步骤1. 讲解平行公理及其实际意义;2. 示范判断直线平行的方法;3. 组织学生进行练习,巩固判断方法;4. 引导学生总结判断直线平行的关键点。

第四章:直线平行的应用4.1 教学内容本节课让学生学会运用直线平行的知识解决实际问题,提高学生的应用能力。

4.2 教学方法采用案例分析、小组合作的方法,让学生在解决实际问题中,巩固直线平行的知识。

4.3 教学步骤1. 展示实际问题,引导学生运用直线平行的知识进行分析;2. 组织小组合作,让学生共同探讨解决问题的方法;3. 分析、评价小组成果,总结直线平行在实际问题中的应用;4. 进行课堂练习,巩固所学知识。

第五章:总结与拓展5.1 教学内容本节课对本节课内容进行总结,引导学生思考直线平行在几何学中的重要性,并进行拓展学习。

第8讲 探索直线平行的条件(解析版)

第8讲 探索直线平行的条件(解析版)

第8讲探索直线平行的条件【知识点拨】考点1:同位角、内错角、同旁内角的概念1. “三线八角”模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图1.图1细节剖析⑴两条直线AB,CD与同一条直线EF相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.2. 同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.细节剖析(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.知识点2:同位角、内错角、同旁内角位置特征及形状特征细节剖析巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.平行线的判定知识点1:平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.细节剖析(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条直角边与已知直线重合.②靠:用直尺紧靠三角板另一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点.④画:沿着这条直角边画一条直线,所画直线与已知直线平行.考点2:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.细节剖析(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.考点3:直线平行的判定判定方法1:两直线平行,同位角相等,.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)细节剖析平行线的判定是由角相等或互补,得出平行,即由数推形.【考点精讲】考点1:同位角、内错角、同旁内角【例1】(2021春•西湖区期末)如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是.【解答】解:①能与∠DEF构成内错角的角的个数有2个,即∠EF A和∠EDC,故正确;②能与∠EFB构成同位角的角的个数只有1个:即∠F AE,故正确;③能与∠C构成同旁内角的角的个数有5个:即∠CDE,∠B,∠CED,∠CEF,∠A,故错误;所以结论正确的是①②.故答案为:①②.【例2】(2021秋•南沙区期中)下列图中,∠1与∠2是同位角的是()A.B.C.D.【解答】解:选项A中的两个角是同旁内角,因此不符合题意;选项C中的两个角既不是同位角、也不是内错角、同旁内角,因此不符合题意;选项D不是两条直线被一条直线所截出现的角,不符合题意;只有选项B中的两个角符合同位角的意义,符合题意;故选:B.【变式训练1】(2021春•高州市期中)如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于,∠3的内错角等于,∠3的同旁内角等于.【解答】解:如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于80°,∠3的内错角等于80°,∠3的同旁内角等于100°,故答案为:80°;80°;100°【变式训练2】(2021春•瑞安市期中)如图,∠1的同旁内角是()A.∠2 B.∠3 C.∠4 D.∠5【解答】解:A、∠1和∠2是对顶角,不是同旁内角,故本选项不符合题意;B、∠1和∠3是同位角,不是同旁内角,故本选项不符合题意;C、∠1和∠4是内错角,不是同旁内角,故本选项不符合题意;D、∠1和∠5是同旁内角,故本选项符合题意;故选:D.【变式训练3】(2021春•滦南县期末)下列说法正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.有一条公共边并且和为180°的两个角互为邻补角D.若三条直线两两相交,则共有6对对顶角【解答】解:A、应该是“若两条平行直线被第三条直线所截,则同旁内角互补”,故错误;B、相等的角不一定都是对顶角,如两直线平行,其中的同位角相等但不是对顶角,故错误;C、如果这两个角在公共边的同侧,则不是邻补角,故错误;D、正确.故选:D.【变式训练4】(2021春•城关区校级月考)如图所示,同位角共有()A.6对B.8对C.10对D.12对【解答】解:如图,由AB、CD、EF组成的“三线八角”中同位角有四对,射线GM和直线CD被直线EF所截,形成2对同位角;射线GM和直线HN被直线EF所截,形成2对同位角;射线HN和直线AB被直线EF所截,形成2对同位角.则总共10对.故选:C.【变式训练5】(2021春•麻城市校级月考)如图,∠1和∠3是直线和被直线所截而成的角;图中与∠2是同旁内角的角有个.【解答】解:∠1和∠3是直线AB和AC被直线DE所截而成的内错角;图中与∠2 是同旁内角的角有∠6、∠5、∠7,共3个,故答案为:AB、AC、DE、内错,3.【变式训练6】(2021春•杭州期中)如图两条直线被第三条直线所截,∠2是∠3的同旁内角,∠1是∠3的内错角,若∠2=4∠3,∠3=2∠1,则∠1的度数是【解答】解:如图,设∠1=x°,则∠3=2x°,∠2=4∠3=8x°,∵∠1+∠2=180°,∴x°+8x°=180°,解得:x=20,∴∠1=20°.故答案为:20°.考点2:平行线的判定【例1】(2021秋•双阳区期末)如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②【解答】解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.【例2】(2021春•江阴市期中)如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A=∠3 B.∠A+∠2=180°C.∠1=∠4 D.∠1=∠A【解答】解:A、因为∠A=∠3,所以AB∥DF(同位角相等,两直线平行),故本选项不符合题意.B、因为∠A+∠2=180,所以AB∥DF(同旁内角互补,两直线平行),故本选项不符合题意.C、因为∠1=∠4,所以AB∥DF(内错角相等,两直线平行),故本选项不符合题意.D、因为∠1=∠A,所以AC∥DE(同位角相等,两直线平行),不能证出AB∥DF,故本选项符合题意.故选:D.【变式训练1】(2021春•越秀区校级期中)如图,要得到AB∥CD的结论,则需要角相等的条件是(写出一个即可).【解答】解:要得到AB∥CD的结论,则需要角相等的条件是∠EDC=∠BCD(答案不唯一).故答案为:∠EDC=∠BCD(答案不唯一).【变式训练2】(2021秋•南关区期末)如图,能判定AB∥EF的条件是()A.∠ABD=∠FEC B.∠ABC=∠FEC C.∠DBC=∠FEB D.∠DBC=∠FEC【解答】解:A、当∠ABD=∠FEC,无法判定AB∥EF,故选项错误;B、当∠ABC=∠FEC时,AB∥EF,故选项正确;C、当∠DBC=∠FEB时,无法判定AB∥EF,故选项错误;D、当∠DBC=∠FEC时,BD∥EF,故选项错误.故选:B.【变式训练3】(2021秋•郫都区期末)光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,∠1+∠2=103°,则∠3﹣∠4的度数为.【解答】解:如图,∵AB∥CD,∴∠5=180°﹣∠2,∵AC∥BD,∴∠3=∠5,∵AE∥BF,∴∠1=∠6,∵EF∥AB,∴∠4=∠6,∴∠3﹣∠4=180°﹣∠2﹣∠1=180°﹣(∠1+∠2)=77°.故答案为:77°.【变式训练4】(2021秋•建平县期末)如图,△ABC中,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,BD,CE交于点O,F,G分别是AC,BC延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G,指出图中所有平行线,并说明理由.【解答】解:EC∥BF,DG∥BF,DG∥EC.理由:∵∠EOD+∠OBF=180°,又∠EOD+∠BOE=180°,∴∠BOE=∠OBF,∴EC∥BF;∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ECB,又∵EC∥BF,∴∠ECB=∠CBF,∴∠DBC=∠CBF,又∵∠DBC=∠G,∴∠CBF=∠G,∴DG∥BF;∵EC∥BF,DG∥BF,∴DG∥EC.【变式训练5】(2021春•江都区期中)一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=时,CD∥AB.【解答】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【变式训练6】(2021春•夏邑县期末)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上.对于给出的四个条件:①∠1=25.5°,∠2=55°30';②∠2=2∠1;③∠1+∠2=90°;④∠ACB=∠1+∠2;⑤∠ABC=∠2﹣∠1.能判断直线m∥n的有.(填序号)【解答】解:①∵∠1=25.5°+∠ABC=55.5°=∠2=55°30',所以,m∥n;②没有指明∠1的度数,当∠1≠30°,∠2≠∠1+30°,不能判断直线m∥n,故∠2=2∠1,不能判断直线m∥n;③∠1+∠2=90°,不能判断直线m∥n;④∠ACB=∠1+∠2,不能判断直线m∥n;⑤∠ABC=∠2﹣∠1,判断直线m∥n;故答案为:①⑤【课后巩固】一.选择题1.(2021秋•双阳区期末)如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②【解答】解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.2.(2021秋•南关区期末)如图,能判定AB∥EF的条件是()A.∠ABD=∠FEC B.∠ABC=∠FEC C.∠DBC=∠FEB D.∠DBC=∠FEC【解答】解:A、当∠ABD=∠FEC,无法判定AB∥EF,故选项错误;B、当∠ABC=∠FEC时,AB∥EF,故选项正确;C、当∠DBC=∠FEB时,无法判定AB∥EF,故选项错误;D、当∠DBC=∠FEC时,BD∥EF,故选项错误.故选:B.3.(2021秋•雨花区期末)如图,点E在CB的延长线上,下列条件中,能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3C.∠A=∠ABE D.∠A+∠ABC=180°【解答】解:A.由∠1=∠4,不能判定AB∥CD,故本选项错误;B.由∠2=∠3,能判定AB∥CD,故本选项正确;C.由∠A=∠ABE,不能判定AB∥CD,故本选项错误;D.由∠A+∠ABC=180°,不能判定AB∥CD,故本选项错误.故选:B.4.(2021春•老城区校级月考)如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有()个.A.1个B.2个C.3个D.4个【解答】解:(1)∵∠3=∠4,∴BD∥AC;(2)∵∠1=∠2,∴AB∥CD;(3)∵∠A=∠DCE,∴AB∥CD;(4)∵∠D+∠ABD=180°,∴AB∥CD,故选:C.5.(2021秋•昌平区校级期末)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为()A.60°和135°B.45°、60°、105°和135°C.30°和45°D.以上都有可能【解答】解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故选:B.6.(2021春•兴国县期末)如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个【解答】解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.7.(2021春•织金县期末)如图,能够证明a∥b的是()A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5 【解答】解:∵∠4=∠5,∴a∥b(内错角相等两直线平行).故选:B.8.(2021春•新泰市期末)如图,下列四组条件中,能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABC+∠BCD=180°D.∠BAD+∠ABC=180°【解答】解:∵∠ABC+∠BCD=180°,∴AB∥CD.故选:C.9.(2021春•娄星区期末)如图,下列各选项不能得出AB∥CD的是()A.∠2=∠A B.∠3=∠BC.∠BCD+∠B=180°D.∠2=∠B【解答】解:∵∠2=∠A,∴AB∥CD,∵∠3=∠B,∴AB∥CD,∵∠BCD+∠B=180°,∴AB∥CD,故选:D.二.填空题10.(2021春•官渡区期末)如图,下列条件:①∠1=∠2;②∠BAD+∠ADC=180°;③∠ABC=∠ADC;④∠3=∠4;其中能判定AB∥CD的是①②(填序号).【解答】解:①∵∠1=∠2,∴AB∥CD;②∵∠BAD+∠ADC=180°,∴AB∥CD;③∵∠ABC=∠ADC,不能判定AB∥CD;④∵∠3=∠4,∴AD∥BC;故答案为:①②.11.(2021春•黄陵县期末)如图,将两个含30°角的直角三角板的最长边靠在一起滑动,可知直角边AB ∥CD,依据是内错角相等,两直线平行.【解答】解:如图所示:∵∠1=∠2=30°,∴AB∥CD(内错角相等,两直线平行),故答案为:内错角相等,两直线平行.12.(2021•咸宁)如图,请填写一个条件,使结论成立:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.13.(2021春•常德期末)如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠ABC+∠C=180°.其中,能推出AB∥CD的条件是①③④(填序号).【解答】解:①∵∠1=∠2,∴AB∥CD;②∵∠3=∠4,∴AD∥BC;③∵∠A=∠CDE,∴AB∥CD;④∵∠ABC+∠C=180°,∴AB∥CD.故答案为:①③④.14.(2021春•江都区期中)一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=30°或150°时,CD∥AB.【解答】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.15.(2021春•凌海市期末)如图,点E在AC的延长线上,给出四个条件:①∠1=∠2;②∠3=∠4:③∠A=∠DCE;④∠D+∠ABD=180°.其中能判断AB∥CD的有①③④.(填写所有满足条件的序号)【解答】解:①∵∠1=∠2,∴AB∥BC,根据内错角相等,两直线平行即可证得AB∥BC;②∠3=∠4,根据内错角相等,两直线平行即可证得BD∥AC,不能证AB∥CD;③∠A=∠DCE,根据同位角相等,两直线平行即可证得AB∥CD;④∠D+∠ABD=180°,根据同旁内角互补,两直线平行,即可证得AB∥CD.故答案为:①③④.16.(2021秋•胶州市期末)如图,∠C=120°,请添加一个条件,使得AB∥CD,则符合要求的其中一个条件可以是∠BEC=60°(答案不唯一).【解答】解:因为∠C=120°,要使AB∥CD,则要∠BEC=180°﹣120°=60°(同旁内角互补两直线平行).故答案为:∠BEC=60°(答案不唯一).17.(2021秋•卧龙区期末)如图,下列结论:①∠2与∠3是内错角;②∠2与∠B是同位角;③∠A与∠B 是同旁内角;④∠A与∠ACB不是同旁内角,其中正确的是①②③(只填序号).【解答】解:∠2与∠3是直线AB、直线BC,被直线CD所截的一对内错角,因此①符合题意;∠2与∠B是直线CD、直线BC,被直线AB所截的一对同位角,因此②符合题意;∠A与∠B是直线AC、直线BC,被直线AB所截的一对同旁内角,因此③符合题意,∠A与∠ACB是直线AB、直线BC,被直线AC所截的一对同旁内角,因此④不符合题意,故答案为:①②③.三.解答题18.(2021春•雨花区校级月考)如图,已知∠1=∠3,∠2+∠3=180°,请说明AB与DE平行的理由.解:将∠2的邻补角记作∠4,则∠2+∠4=180°(邻补角的意义)因为∠2+∠3=180°(已知)所以∠3=∠4(同角的补角相等)因为∠1=∠3(已知)所以∠1=∠4(等量代换)所以AB∥DE(同位角相等,两直线平行)【解答】解:将∠2的邻补角记作∠4,则∠2+∠4=180°(邻补角的意义)因为∠2+∠3=180°(已知)所以∠3=∠4 (同角的补角相等)因为∠1=∠3(已知)所以∠1=∠4 (等量代换)所以AB∥DE(同位角相等,两直线平行)故答案为:180,邻补角的意义;已知;同角的补角相等;∠1=∠3;等量代换;同位角相等,两直线平行.19.(2021春•防城港期末)光线在不同介质的传播速度是不同的,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也平行.如图标注有∠1~∠8共8个角,其中已知∠1=64°,∠7=42°.(1)分别指出图中的两对同位角,一对内错角,一对同旁内角;(2)直接写出∠2,∠3,∠6,∠8的度数.【解答】解:(1)同位角:∠1与∠2,∠3与∠4,∠5与∠6(写两对即可);内错角:∠5与∠7;同旁内角:∠6与∠8;∠1与∠3;∠2与∠4(写一对即可);(2)∠2=∠1=64°,∠3=180°﹣∠1=116°,∠6=∠5=∠7=42°,∠8=180°﹣∠6=138°.20.(2021秋•官渡区校级月考)如图,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE,∠ECG =90°﹣∠HAE.求证:BH∥CD.【解答】证明:过点E作EF∥BH,∴∠HAE=∠AEF,∵AE⊥CE,∴∠AEC=90°即∠AEF+∠CEF=90°,∴∠HAE+∠CEF=90°,∴∠CEF=90°﹣∠HAE,∵∠ECG=90°﹣∠HAE,∴∠CEF=∠ECG,∴EF∥CD,∵EF∥BH,∴BH∥CD.21.(2021春•三门峡期末)如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.试判断CD和AB 的位置关系,并说明理由.【解答】解:CD∥AB.理由:∵CE⊥DG,∴∠ECG=90°,∵∠ACE=140°,∴∠ACG=∠ACE﹣∠ECG=50°,∵∠BAF=50°,∴∠BAF=∠ACG,∴AB∥DG,即CD∥AB.22.(2021秋•达川区期末)小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD、MF的位置关系是平行;如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是垂直;如图③,M为边AC延长线上一点,则BD、MF的位置关系是垂直;(2)请就图①、图②、或图③中的一种情况,给出证明.我选图①来证明.【解答】解:(1)①BD∥FM;②BD⊥FM;③BD⊥FM;(2)选择①证明:∵∠A=90°,ME⊥BC,∴∠A=∠CEM,∴∠CME=∠ABC,∴∠ABC+∠AME=180°(三角形的内角和等于180°),∵BD平分∠ABC,MF平分∠AME,∴∠AMF+∠ABD=90°,∴∠AFM=∠ABD,∴BD∥FM(同位角相等,两直线平行).23.(2021春•岱岳区期末)如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD ∥CE.【解答】证明:∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).24.(2021春•西湖区校级月考)如图,已知∠C=60°,∠ADE=65°,∠CED比∠A的2倍大10°,请判断DE与BC的位置关系,并说明理由.【解答】解:DE∥BC,理由如下:设∠A为x°,所以∠CED为2x°+10°,∵∠CED=∠A+∠ADE,可得:2x°+10°=x°+65°,解得:x=55,∴∠DEC=2×55°+10°=120°,∵∠C=60°,∴∠C+∠CED=180°,∴DE∥BC25.(2021春•姜堰区期中)如图,已知FG⊥AB,CD⊥AB,垂足分别为G、D,∠1=∠2.求证:DE∥BC.【解答】证明:∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠2=∠BCD,又∠1=∠2,∴∠1=∠BCD,∴DE∥BC.26.(2021春•鄄城县期末)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试说明CD∥AB.【解答】证明:∵AE平分∠BAC,CE平分∠ACD,∴∠2=∠BAC,∠1=∠ACD.∵∠1+∠2=90°,∴∠BAC+∠ACD=180°,∴CD∥AB.27.(2021春•泰安期中)如图,直线a⊥b,垂足为O,△ABC与直线a、b分别交于点E、F,且∠C=90°,EG、FH分别平分∠MEC和∠NFC.(1)填空:∠OEC+∠OFC=180°;(2)求证:EG∥FH.【解答】解:(1)在四边形OECF中由∠C=90°,a⊥b,得∠OEC+∠OFC=180°,故答案为:180°;(2)证明:在四边形OECF中由∠C=90°,a⊥b,得∠OEC+∠OFC=180°,因为∠MEC=180°﹣∠OEC,∠NFC=180°﹣∠OFC,所以∠MEC+∠NFC=(180°﹣∠OEC)+(180°﹣∠OFC)=360°﹣(∠OEC+∠OFC)=360°﹣180°=180°,因EG,FH分别平分∠MEC和∠NFC,所以∠CEG=∠MEC,∠CFH=∠NFC,所以∠CEG+∠CFH=(∠MEC+∠NFC)=×180°=90°,过C点作CD∥EG,所以∠CEG=∠DCE,因为∠DCE+∠DCF=90°,∠CEG+∠CFH=90°,所以∠DCF=∠CFH,所以CD∥FH,又因为CD∥EG,所EG∥FH.。

七年级数学下册《探索直线平行的条件》优秀教学案例

七年级数学下册《探索直线平行的条件》优秀教学案例
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1. 回顾平行线的定义,让学生明确平行线的性质。
2. 介绍平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等。
3. 结合实例,讲解如何运用这些判定方法判断两条直线是三角板等工具准确画出平行线的方法。
四、教学内容与过程
(一)导入新课
在导入新课环节,我会从学生的生活经验出发,提出以下问题:“同学们,你们在日常生活中见过哪些直线平行的例子?这些平行线有什么特点?”通过这个问题,让学生回顾已知的平行线概念,为新课的学习做好铺垫。接着,我会展示一些图片,如铁路轨道、楼梯扶手等,引导学生观察这些图片中的平行线,从而引出本节课的主题——《探索直线平行的条件》。
五、案例亮点
1. 生活化情境导入,激发学生学习兴趣
本案例从学生的生活经验出发,创设生活化的教学情境,让学生在观察和思考中自然地进入新课的学习。通过这种方式,激发了学生的学习兴趣,使他们更加主动地参与到课堂学习中,增强了学习动机。
2. 问题导向,培养学生的思维能力和探究精神
本案例以问题为导向,设计了一系列具有启发性和挑战性的问题。这些问题引导学生进行深入思考,培养他们的逻辑思维能力和探究精神。学生在解决问题的过程中,不仅掌握了知识,还提高了分析问题和解决问题的能力。
七年级数学下册《探索直线平行的条件》优秀教学案例
一、案例背景
《探索直线平行的条件》是七年级数学下册的教学内容,该章节旨在帮助学生理解平行线的概念,掌握判定直线平行的条件,并运用这些条件解决实际问题。在教学过程中,我以培养学生的空间想象能力和逻辑推理能力为目标,设计了一系列富有启发性和探究性的教学活动。通过小组合作、动手实践、问题驱动等方式,让学生在轻松愉快的氛围中探索直线平行的奥秘。

2.2探索直线平行的条件 第一课时-七年级数学下册课件(北师大版)

2.2探索直线平行的条件 第一课时-七年级数学下册课件(北师大版)
所以∠1=∠3(同角的补角相等).
所以AB∥CD (同位角相等,两直线平行).
总结
判断两条直线是否平行,可以找出这两条直线 被第三条直线所截得到的一对同位角,并利用相关 角的条件判断其是否相等,如果相等,那么这两条 直线平行.
1 找出下面点阵(点阵中相邻的四个点构成正方形)中互相平行的线段.
解:AB∥CD,EF∥GH.
导引:要说明AB 与CD 平行,需找出AB, CD 被第三条直线所截形成的一组
同位角相等,即要说明∠1=∠3 即可;要说明∠1=∠3,由于已 知∠1+∠2=180°,因此只需说明∠2+∠3=180° 即可,这可由补角定义得出.
解: AB∥CD. 理由如下:
因为∠1+∠2=180°(已知), ∠2+∠3=180°(补角定义),
程中,什么角始终保持相等?
同位角 B
由此你能发现判定两直线平行的方法吗?
一般地,判断两直线平行有下面的方法:
两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行. 简单地说,同位角相等,两直线平行.
例2 如图,已知∠1=∠2,则下列结论正确的是( C )
A.AD∥BC B.AB∥CD C.AD∥EF D.EF∥BC
例1 如图,下列四个图形中,∠1和∠2不是同位角的是( B )
导引:根据同位角的概念,找出“三线”之后再看是否为 “F”形即可判定.选项B中的∠1与∠2的边有四条,
分别为PA,PC,QB,QD,不满足“三线”的条
件,故选项B中的∠1与∠2不是同位角;其他A,C, D三项中的∠1,∠2均满足同位角的条件,故选B.
b
C
B D
(3) 通过画图,你发 现了什么?
经过直线外一点,有且只有一条直 线与这条直线平行;

苏科版七年级数学下册《7-1探索直线平行的条件(1)》优秀教学设计

苏科版七年级数学下册《7-1探索直线平行的条件(1)》优秀教学设计

苏科版七年级数学下册《7-1探索直线平行的条件(1)》优秀教学设计一. 教材分析《7-1探索直线平行的条件(1)》是苏科版七年级数学下册的一个重要章节。

本章节主要引导学生探索直线平行的条件,通过实验和证明,让学生了解和掌握平行线的性质。

教材中安排了丰富的例题和练习题,帮助学生巩固所学知识。

二. 学情分析七年级的学生已经掌握了基本的数学运算能力和一定的几何知识。

但是,对于直线平行的概念和性质,学生可能还比较陌生。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出直线平行的概念,并通过实验和证明让学生理解和掌握平行线的性质。

三. 教学目标1.让学生了解直线平行的概念,能够识别平行线。

2.引导学生通过实验和证明探索直线平行的条件。

3.培养学生运用几何知识解决实际问题的能力。

四. 教学重难点1.直线平行的概念和识别。

2.探索直线平行的条件,并能够运用到实际问题中。

五. 教学方法1.实验法:通过引导学生进行实验,让学生直观地了解直线平行的性质。

2.证明法:通过证明过程,让学生深入理解直线平行的条件。

3.实例教学法:通过实际问题,让学生运用所学知识解决问题。

六. 教学准备1.准备相关的实验器材,如直尺、三角板等。

2.准备一些实际的例子,用于引导学生理解和运用直线平行的知识。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生关注直线平行的现象,并提出问题:“什么是平行线?如何判断两条直线是否平行?”2.呈现(10分钟)介绍直线平行的概念,并展示一些平行线的图片,让学生识别。

同时,解释平行线的性质,如同位角相等、内错角相等等。

3.操练(15分钟)引导学生进行实验,观察和记录平行线的性质。

可以使用直尺和三角板搭建不同的图形,让学生通过观察和测量来验证平行线的性质。

4.巩固(10分钟)给出一些实际的例子,让学生运用所学知识解决问题。

可以通过小组合作的方式,让学生互相讨论和解答问题。

5.拓展(10分钟)引导学生进一步探索直线平行的条件,如通过给出两条直线的斜率,让学生判断它们是否平行。

专题2.2 探索直线平行的条件 (分层练习,五大类型)-2023-2024学年七年级(原卷版)

专题2.2 探索直线平行的条件 (分层练习,五大类型)-2023-2024学年七年级(原卷版)
(1)请指出∠1的同旁内角与∠2的内错角;
(2)若测得∠AOE=65°,∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.
考查题型二、利用定义判断是否为同位角、内错角、同旁内角
4.如图,∠1与∠2,∠3与∠4是内错角,它们分别是由哪两条直线被哪一条直线所截得到的?
5.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?
6.如图,把一根筷子一端放在水里,一端露出水面,筷子变弯了?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.
(1)请指出∠1的同旁内角与∠2的内错角;
18.《七彩云南》少数民族传统艺术表演,是七彩云南欢乐世界的王牌演艺节目,它荟萃云南人文之美,深受观众喜爱.在展演中,舞台上的灯光由灯带上位于点A和点C的两盏激光灯控制.如图,光线AB与灯带AC的夹角∠A=40°,当光线CB'与灯带AC的夹角∠ACB′=时,CB'∥AB.
三、解答题
19.如图,点B是射线AC上一点,利用尺规作BE∥AD,依据是:.(保留作图痕迹,不写作法)
4.如图,直线a,b被直线c所截,下列各组角属于同旁内角的是( )
A.∠1与∠2B.∠2与∠3C.∠3与∠4D.∠1与∠3
5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )
A.同位角相等,两直线平行B.内错角相等,两直线平行
C.同旁内角互补,两直线平行D.对顶角相等,两直线平行
6.如图,直线a,b被直线c所截,能使a∥b的条件是( )
(2)若测得∠AOE=65°,∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.

苏科版数学七年级下册7.1《探索直线平行的条件》教学设计2

苏科版数学七年级下册7.1《探索直线平行的条件》教学设计2

苏科版数学七年级下册7.1《探索直线平行的条件》教学设计2一. 教材分析《探索直线平行的条件》是苏科版数学七年级下册第七章第一节的内容。

本节课主要让学生通过探索,理解并掌握直线平行的条件。

学生在学习了直线、射线、线段的基础上,进一步探索直线平行的条件,有助于提高他们的空间想象能力和抽象思维能力。

教材通过实例引入,引导学生探究并发现直线平行的条件,然后通过练习巩固所学知识。

二. 学情分析七年级的学生已经学习了直线、射线、线段等基础知识,对图形的认识有一定的基础。

但是,他们对直线平行的条件的理解和应用还需要进一步的引导和培养。

此外,学生的空间想象能力和抽象思维能力有待提高,因此,在教学过程中,需要通过实例和操作活动,让学生在实践中理解和掌握直线平行的条件。

三. 教学目标1.理解直线平行的概念,掌握直线平行的条件。

2.能够运用直线平行的条件判断两直线是否平行。

3.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.重点:直线平行的条件。

2.难点:直线平行的条件的运用和理解。

五. 教学方法1.实例引入:通过生活中的实例,引导学生关注直线平行的现象,激发学生的学习兴趣。

2.合作学习:分组讨论,让学生在合作中发现问题、解决问题,培养学生的团队协作能力。

3.操作活动:让学生动手操作,通过实践加深对直线平行条件的理解。

4.引导发现:教师引导学生发现直线平行的条件,培养学生的抽象思维能力。

六. 教学准备1.准备实例:收集生活中的直线平行的实例。

2.准备教学工具:黑板、粉笔、直尺、三角板等。

3.准备练习题:设计一些有关直线平行的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实例,如自行车的车轮、铁轨等,引导学生关注直线平行的现象,激发学生的学习兴趣。

提问:你们在生活中还见过哪些直线平行的例子?2.呈现(10分钟)展示直线平行的图片,让学生观察并说出直线平行的特点。

教师引导学生用语言描述直线平行的条件。

北师大版数学七年级下册2.2《探索直线平行的条件》说课稿1

北师大版数学七年级下册2.2《探索直线平行的条件》说课稿1

北师大版数学七年级下册2.2《探索直线平行的条件》说课稿1一. 教材分析《北师大版数学七年级下册2.2》这一节的内容,是在学生已经掌握了直线、射线、线段的基本概念,以及学会了如何用直尺和圆规作图的基础上进行讲解的。

本节课的主要内容是探索直线平行的条件,通过学生自主探究、合作交流的方式,引导学生发现并证明两条直线平行的条件。

教材中安排了丰富的探究活动,让学生在实践中掌握知识,提高解决问题的能力。

二. 学情分析面对七年级的学生,他们在数学方面已经具备了一定的基础,例如掌握了基本的几何图形,会用直尺和圆规作图等。

但学生在学习过程中,可能会对直线平行的条件理解不深,特别是对证明过程感到困惑。

因此,在教学过程中,我将会关注学生的学习需求,针对性地进行引导和讲解,帮助学生更好地理解和掌握知识。

三. 说教学目标根据课程标准和学生的实际情况,我制定了以下教学目标:1.让学生了解直线平行的概念,掌握直线平行的条件。

2.培养学生用几何语言表达直线平行的能力。

3.培养学生通过合作交流,自主探究的学习习惯,提高解决问题的能力。

四. 说教学重难点本节课的教学重点是让学生掌握直线平行的条件,教学难点是如何引导学生理解并证明直线平行的条件。

五. 说教学方法与手段为了更好地实现教学目标,我采用了以下教学方法与手段:1.引导探究法:在教学过程中,我将会引导学生通过自主探究、合作交流的方式,发现并证明直线平行的条件。

2.案例分析法:通过分析具体案例,让学生理解直线平行的概念,掌握直线平行的条件。

3.几何画图软件:利用几何画图软件,直观地展示直线平行的过程,帮助学生更好地理解知识。

六. 说教学过程1.导入新课:通过复习直线、射线、线段的知识,引出本节课的内容——探索直线平行的条件。

2.自主探究:让学生利用直尺和圆规,自己尝试画出两条平行线,并观察、总结平行线的特征。

3.合作交流:学生分组讨论,分享自己画图的过程和发现,共同探讨直线平行的条件。

探索直线平行的条件

探索直线平行的条件

探索直线平行的条件一、知识点概述(一)同位角、内错角、同旁内角1、同位角:如右图所示,具有∠1和∠6这样位置关系的角称为同位角,同位角还有∠2和∠5.同位角的特征:①在被截两直线的同一方;②在截线的同侧。

形如字母“F”.2、内错角:如右图所示,具有∠1和∠3这样位置关系的角称为内错角,内错角还有∠2和∠4。

内错角的特征:①在被截两直线之间;②在截线的两侧。

形如字母“Z”.3、同旁内角:如右图所示,具有∠1和∠4这样位置关系的角称为同旁内角,同旁内角还有∠2和∠3.同位角的特征:①在被截两直线之间;②在截线的同侧。

形如字母“U”. (二)两条直线平行的条件1、两条直线平行的条件1:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行。

简称为:同位角相等,两直线平行。

2、两条直线平行的条件2:两条直线被第三条直线所截,如果内错角相等,那么两条直线平行。

简称为:内错角相等,两直线平行。

3、两条直线平行的条件3:两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行。

简称为:同旁内角互补,两直线平行。

(三)平行线基本公理1、过直线外一点有且只有一条直线与已知直线平行。

2、平行于同一条直线的两条直线平行。

二、典型例题讲解例1、如图,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角例2、指出下图中的同位角、内错角、同旁内角。

例3、如图,在下列条件中,不能判定判定直线a与b平行的是()A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°例4、如图,下列能判定AB‖CD的条件有()个。

(1)∠B+∠BCD=180°(2)∠1=∠2(3)∠3=∠4 (4)∠B=∠5A.1B.2C.3D.4例4、如图,直线AB与CD相交于点O,∠AOD+∠C=180°,直线AB与CE一定平行吗?试说明你的理由.例5:如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC‖AB.例6、如图,∠1=∠2,∠3=∠4,试说明b‖c.例6、如图所示,有平面镜A与B,光线由水平方向射来,传播线路为a⟶ b⟶ c,已知a⊥b,b⊥c,∠1=∠3=45°,你知道平面镜A与平面镜B之间的位置关系吗?例7:如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB‖EF.练习1、如图,直线a,b被直线c所截,则下列说法中错误的是()A.∠1和∠2是邻补角B.∠1和∠3是对顶角C.∠2和∠4是同位角D.∠3和∠4是内错角2、下列图形中,∠1和∠2是同位角的是()4、过一点画一只直线的平行线()A.有且只有一条B.不存在C.有两条D.不存在或有且只有一条5、下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.两直线被第三条直线所截,同旁内角互补C.不相交的两条直线叫平行线D.邻补角的平分线互相垂直2、如图,直线a,b被直线c所截,下列条件能使a‖b的是()A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠73、如图,能判定EC‖AB的条件是()A.∠B=∠ACEB.∠A=∠ECDC.∠B=∠ACBD. ∠A=∠ACE4、如图,点E是AD延长线上一点,如果添加一个条件,使BC‖AD,则可添加的条件为____________________.(写出一个符合题意的条件即可)5、如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是____________________.4、如果a‖b,a‖c,那么b与c的位置关系式()A.不一定平行B.一定平行C.一定不平行D.以上都有可能5.下列说法正确的个数为()(1)过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交A.1个B.2个C.3个D.4个6.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)),从图中可知,小敏画平行线的依据是()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④4、如图,在四边形ABCD中,∠B=∠D=90°,AE平分∠BAD交CD于点E,CF平分∠BCD交AB于点F,求证:AE‖CF.5、如图所示,如果∠ACE=∠BDF,那么CE‖DF吗?6、如图是一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.7、如图,已知直线l1、l2、l3被直线l所截,∠1=72°,∠2=108°,∠3=72°,试说明:l1‖l2‖l3.8、如图,∠BEC=95°,∠ABE=120°,∠DCE=35°,则AB与CD平行吗?请说明理由.7.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为_______________;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《探索直线平行的条件》说课稿
一、教材分析
主要内容是让学生在充分感性认识的基础上体会平行线的三种判定方法,它是空间与图形领域的基础知识,是《相交线与平行线》的重点,学习它会为后面的学习平行线性质、三角形、四边形等知识打下坚实的“基石”。

同时,本节学习将为加深“角与平行线”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,提高运用数学的能力。

二、教学目标
了解同位角、内错角、同旁内角等角的特征,认识“直线平行”的三个充分条件及在实际生活中的应用。

(1)、通过观察、思考探索等活动归纳出三种判定方法,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。

(2)、通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题。

三、教学重点、难点
重点:三种位置关系的角的特征;会根据三种位置关系的角来判断两直线平行的方法。

难点:“转化”的数学思想的培养。

四、教学方法
1、采用指导探究法进行教学,主要通过二个师生双边活动:①动——师生互动,共同探索。

②导——知识类比,合理引导等突出学生主
体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习几何方法的缺乏,和学无所用的思想顾虑。

对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

3、利用课件辅助教学,突破教学重难点,扩大学生知识面,使每个学生稳步提高。

五、教学流程
1、创设情境,孕育新知:
①师生欣赏三幅图片,让学生观察、思考从几何图形上看有什么共同点。

②从学生经历过的事入手,让学生比较两张奖状粘贴的好坏,并说明理由,让学生留心实际生活,欣赏木工画平行线的方法。

③落实到学生是否会画平行线?本环节教师展示图片,学生观察思考,交流回答问题,了解实际生活中平行线的广泛应用。

2、实验操作,探索新知1
①由学生是否会画平行线导入,用小学学过的方法过点P画直线AB 的平行线CD,学生动手画并展示。

②学生思考三角尺起什么作用(教师点拨)?
③学生动手操作:用学具塑料条摆两条平行线被第三条直线所截的模型,并探讨图中角的关系(同位角)。

3、教师展示一组练习,学生独立完成,巩固新知。

在这一环节中,教师应关注:
①学生能否画平行线,动手操作是否准确
②学生能否独立探究、参与、合作、交流
4、学生独立完成练习。

本环节教师关注:
①学生能否主动参与数学活动,敢于发表个人观点。

②小组团结协作程度,创新意识。

③表扬优秀小组
5、总结新知,布置作业
通过设问回答补充的方式小结,学生自主回答三个问题,教师关注全体学生对本节课知识的程度,学生是否愿意表达自己的观点,采用必做题和选做题的方式布置作业。

设计意图:通过提问方式引导学生进行小结,养成学习——总结——再学习的良好习惯,发挥自我评价作用,同时可培养学生的语言表达能力。

作业分层要求,做到面向全体学生,给基础好的学生充分的空
间,满足他们的求知欲。

六、归纳总结
本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从画平行线的方法出发到平行线的三个充分条件的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。

在教学设计时,利用学具及多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。

以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。

相关文档
最新文档