2013年北师大版九年级上数学期未模拟试题及答案(二)
北师大版九年级上数学期末测试模拟卷及答案(2)
北师大版九年级上数学期末测试模拟卷及答案(2)(全卷满分100分限时90分)一、选择题(每小题3分 共36分) 1.sin 30º=( ) A .3B .23C .33 D .21 2.若1-=x 是关于x 的一元二次方程02=+-c x x 的一个根,则c 的值是( ) A .2B .–2C .0D .13.某几何体如图1所示,则它的主视图为( )4.如图2,下列各组条件中,不能判定△ABC ≌△ABD 的是( ) A .AC =AD ,BC =BD B .∠C =∠D ,∠BAC =∠BAD C .AC =AD ,∠ABC =∠ABD D .AC =AD ,∠C =∠D =90º 5.已知点(–2,3)在函数xky =的图象上,则下列说法中,正确的是( ) A .该函数的图象位于一、三象限 B .该函数的图象位于二、四象限 C .当x 增大时,y 也增大D .当x 增大时,y 减小6.如图3,将矩形ABCD 沿对角线AC 折叠,使B 落在E 处,AE 交CD 于点F ,则下列结论中不一定成立的是( )A .AD = CEB .AF = CFC .△ADF ≌△CEFD .∠DAF =∠CAF7.如图4,小明为测量一条河流的宽度,他在河岸边相距80m 的P 和Q 两点分别测定对岸一棵树R 的位置,R 在Q 的正南方向,在P 东偏南36°的方向,则河宽为( ) A .80tan 36° B .80tan 54° C .︒36tan 80D .80sin 36°8.如图5,随机闭合开关S 1、S 2、S 3中的两个,能让灯泡⊗发光的概率是( )A .43 B .32 C .21 D .31 9.如图6,四边形ABCD 中,AD //BC ,AB =CD =2,AC ⊥AB ,AC = 4,则sin ∠DAC =( )A .21 B .55 C .552 D .2 10.如图7,当小颖从路灯AB 的底部A 点走到C 点时,发现自己在路灯B 下的影子顶部落在正前方E 处。
2012-2013北师大版九年级数学上期期末检测试卷
2012-2013学年度上期期末调研测试九年级数学试题注意事项:1、全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
2、考生必须在答题卷上作答,答在试卷上、草稿纸上无效。
3、试卷中横线上及方框内注有“▲”的地方,是需要考生在答题卷上作答的内容或问题。
请按照题号在答题卷上各题目对应的答题区域内作答,超出答题区域书写的答案无效。
A卷(100分)一、选择题(每小题3分,共30分)下列各小题给出的四个选项中,只有一个符合题目要求,请将正确选项前的字母填在答题卷上对应的表格内。
1. 方程的解是(▲)A.B.,C.,D.2. 下列函数中,图象经过点的反比例函数解析式是(▲)A. B. C. D.3.等腰三角形的底角为15°,腰长为,则腰上的高是(▲)A. B. C. D.4.如图所示,该几何体的左视图是(▲)A B C D5. 方程的根的情况是(▲)A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与的取值有关6. 如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AB的长是(▲)A.2 B.4C. D. 6题图7. 在Rt△ABC中,∠C=90°,AC=5,AB=13,则cosB等于(▲)A. B. C. D.8.将抛物线先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是(▲)A. B.C. D.9. 顺次连接菱形四边的中点,得到的四边形是(▲)A.矩形 B.平行四边形 C.正方形 D.菱形10.如图,一次函数y=ax+b与二次函数y=ax2+bx+c的大致图象是(▲)A B C D二、填空题(每小题4分,共16分)11. 关于的一元二次方程的一个根是3,则= ▲12.如图,光源P在横杆AB的上方,CD在AB的下面,AB∥CD,若PA=2cm,PC=6cm,AB=3cm,那么CD= ▲ cm.12题图14题图13. 某口袋中有红色、黄色和蓝色的玻璃球共有72个.小明通过多次摸球试验后,发现摸到红球和蓝球的频率分别是35%和40%,那么估计口袋中黄色玻璃球的数目是 ▲ 个.14. 如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT=4,则此函数的表达式为 ▲三、解答题(每小题6分,共18分)15.(1)(2)16.如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D与点C、B在同一直线上,已知AC=32米,CD=16米,求荷塘宽BD为多少米?(取≈1.73,结果保留整数)四、解答题(每题8分,共16分)17.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.18.假期,某市教育局组织部分教师分别到A、B、C、D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是 ▲ 张,补全统计图.(2)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.五、解答题(每小题10分,共20分)19.如图,已知A(-2,1)、B(n,-2)是一次函数y=kx+b的图象与反比例函数的图象的两个交点;(1)求此反比例函数和一次函数的解析式;(2)求△AOB的面积.20.已知:如图,梯形ABCD中,AB∥DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF.(1)求证:AB=CF;(2)若将梯形沿对角线AC折叠恰好D点与E点重合,梯形ABCD应满足什么条件,能使四边形ABFC为菱形?并加以证明;(3)在(2)的条件下求sin∠CAF的值.B卷(50分)一、填空题(每小题4分,共20分)21.设是一元二次方程的两个根,则= ▲22.如图是二次函数的部分图象,由图象可知不等式的解集是 ▲23.如图,在△ABC中,AD⊥BC于D,如果BD=9,DC=5,cosB=,E为AC的中点,那么sin∠EDC的值为 ▲22题图 23题图 24题图 25题图24. 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为 ▲25.如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2…A n …,连接A1P2,A2P3,…,A n-1P n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是 ▲ .(结果用含n代数式表示)二、解答题(本题满分10分)26.已知关于的一元二次方程.(1)求证:该方程必有两个实数根;(2)设方程的两个实数根分别是,,若是关于的函数,且,其中,求这个函数的解析式;(3)设,若该一元二次方程只有整数根,且k是小于0的整数.结合函数的图象回答:当自变量x满足什么条件时,y2>y1?三、解答题(本题满分10分)27.已知:如图,O正方形ABCD的对角线BD的中点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1)求证:△BCE≌△DCF;(2)OG与BF有什么数量关系?证明你的结论;(3)若GE•GB=,求正方形ABCD的面积.四、解答题(本题满分10分)28. 在平面直角坐标系中,已知抛物线经过点A,0)、B(0,3)、C(1,0)三点.(1) 求抛物线的解析式和顶点D的坐标;(2) 如图1,将抛物线的对称轴绕抛物线的顶点D顺时针旋转,与直线交于点N.在直线DN上是否存在点M,使得∠MON=.若存在,求出点M的坐标;若不存在,请说明理由;(3) 点P、Q分别是抛物线和直线上的点,当四边形OBPQ是直角梯形时,直接写出点Q的坐标.2012-2013学年度上期期末调研测试九年级数学试题参考答案及评分标准1—5:CBBCA 6—10:CBBAC11. 1 12. 9 13. 18 14.15.解:(1) -----2分∴ -----5分∴, ----------6分(2)原式= ----------5分= -----------6分16.解:由题意知:∠CAB=60°,△ABC是直角三角形,在Rt△ABC中,tan60°=,即------------2分∴BC= -----4分∴BD=-16≈39 ---------5分答:荷塘宽BD为39米.-------------(6分)17.解:∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,∴DE=CD=4cm --------1分∵AC=BC,∴∠B=∠BA C,∵∠C=90°,∴∠B=90°=45°∴∠BDE=90°-45°=45°,∴ BE=DE -------------2分在等腰直角三角形BDE中,BD=cm --------3分∴AC=BC=CD+BD=cm -------4分(2)证明:由(1)的求解过程易知:≌,∴AC=AE -------6分∵BE=DE=CD,∴AB=AE+BE=AC+CD -------------------8分18.解:(1)30 ---------------2分---------3分(2)根据题意列表如下:------------6分因为两个数字之和是偶数时的概率是,所以票给李老师的概率是,所以这个规定对双方公平. --------------8分19.解:(1)把A(-2,1)代入得:m=xy=-2,∴, --------------2分把B(n,-2)代入上式得:-2=-,∴n=1,∴B(1,-2), --------------3分把A(-2,1),B(1,-2)代入y=kx+b得:,解得:,∴y=-x-1 --------------5分(2)y=kx+b与图象的两个交点是A(-2,1),B(1,-2) ------------7分设一次函数y=-x-1交y轴于D,把x=0代入y=-x-1得:y=-1,∴OD=|-1|=1, --------------8分∴S△AOB=S△AOD+S△BOD=×1×|-2|+×1×1=1,即△AOB的面积是1. ---------------10分20.(1)证明:∵AB∥DC,∴∠FCE=∠ABE,∠CFE=∠BAE.------------1分又E是BC的中点,∴△ABE≌△FCE. --------------------2分∴AB=CF. ---------------------3分(2)梯形ABCD应满足∠ADC=90°,CD=BC. ---------------------5分理由如下:∵AB∥CF,AB=CF,∴四边形ABFC是平行四边形. --------------------6分要使它成为菱形,只需AF⊥BC.根据将梯形沿对角线AC折叠恰好D点与E点重合,得∠ADC=90°,CD=BC. ----------------------7分(3)解:∵四边形ABFC为菱形,∴AC=CF.∴∠CAF=∠AFC.-----------8分∴∠ACD=∠CAF+∠AFC=2∠CAF.由于是折叠,得∠CAD=∠CAF.∴∠ACD=2∠CAD. ---------------------9分又∠ADC=90°,∴∠CAF=∠CAD=30°.∴sin∠CAF=. ------------------10分21. 4 22. x<-1或x>5 23. 24. 1或2 25.26.(1)证明:∵a=k,b=3k+1,c=2k+1,∴△=b2-4ac=9k2+6k+1-4k(2k+1)=9k2+6k+1-8k2-4k=k2+2k+1=(k+1)2≥0∴方程必有两个实数根; ------------3分(2)∵方程的两个实数根分别是x1,x2,∴x1x2=2+, -------------4分而m=x1x2,y1=mx-1,∴y1=(2+)x-1 --------------6分(3)∵方程两根为:, ---------7分方程只有整数根且k是小于0的整数,∴x2=-2-要为整数,只能为整数,∴k=-1, -------------8分∴y2=-x2-2x-1,y1=x-1,∴y1与y2的交点坐标为A(-3,-4)B(0,-1), -------------9分∴在坐标系中画出两函数的图象如图所示,由图象可知:当-3<x<0时,y2>y1. ------------------10分27.(1)证明:在正方形ABCD中,BC=CD,∠BCD=90°.∵∠DCF=∠BCD=90°,CF=CE,∴△BCE≌△DCF. ------------3分(2)解:OG=BF. --------------------- 4分事实上:由△BCE≌△DCF,得到∠EBC=∠FDC.∵∠BEC=∠DEG,∴∠DGE=∠BCE=90°,即BG⊥DF.∵BE平分∠DBC,BG=BG,∴△BGF≌△BGD.∴BD=BF ,G为DF的中点.∵O为正方形ABCD的对角线BD的中点,∴OG=BF. -----------------------7分(3)解:设BC=x,则DC=x,BD=x.由(2),得BF= BD=x.∴CF=BF-BC=(-1)x.在Rt△DCF中,(第27题)ABCDOEFGDF2=DC2+CF2= x2+(-1)2x2.……①∵∠GDE=∠GBC=∠GBD,∠DGE=∠BGD=90°,∴△DGE∽△BGD.∴,即DG2=GE·GB=4-2.∵DF=2DG,∴DF2=4DG2=4(4-2).……②由①,②两式,得x2+(-1)2x2=4(4-2).解得x2=4.∴正方形ABCD的面积为4个平方单位. -----------------10分28.(1)解:由题意把A(-3,0)、B(0,3)、C(1,0)代入列方程组得,解得.-----------------1分∴抛物线的解析式是. -----------------2分∵,∴抛物线的顶点D的坐标为(-1,4).------------------ 3分(2)存在.理由:方法(一):由旋转得∠EDF=60°,在Rt△DEF中,∵∠EDF=60°,DE=4,EF=DE×tan60°=4.∴OF=OE+EF=1+4.F点的坐标为(,0). ------------4分设过点D、F的直线解析式是,把D(-1,4),F(,0)代入求得.------------5分分两种情况:①当点M在射线ND上时,MON=75°,∠BON=45°,∴∠MOB=∠MON﹣∠BON=30°.∴∠MOC=60°.∴直线OM的解析式为y =x ------------6分点M的坐标为方程组.的解,解方程组得,.点M的坐标为(,).--------------7分②当点M在射线NF上时,不存在点M使得∠MON=75°理由:∵∠MON=75°,∠FON=45°,∴∠FOM=∠MON-∠FON=30°.DFE=30°,∴∠FOM=∠DFE.∴OM∥FN.∴不存在-------8分综上所述,存在点M ,且点M的坐标为(,).方法(二)①M在射线ND上,过点M作MP ⊥x轴于点P,由旋转得∠EDF=60°,在Rt△DEF中,∵∠EDF=60°,DE=4EF=DE×tan60°=4.∴OF=OE﹢EF=1+4.----------5分MON=75°,∠BON=45°,∴∠MOB=∠MON﹣∠BON=30°.∴∠MOC=60°.在Rt△MOP中,∴MP=OP.△MPF中,∵tan∠MFP=,∴.----------6分∴OP=2﹢.∴MP=6﹢.∴M点坐标为(2﹢,6﹢).------------7分M在射线NF上,,不存在点M使得∠MON=75°理由:∵∠MON=75°,∠FON=45°,∴∠FOM=∠MON﹣∠FON=30°.DFE=30°.∴∠FOM=∠DFE.∴OM∥DN.∴不存在.------------8分综上所述,存在点M ,且点M的坐标为(,).(3)符合条件的点Q有两个,坐标分别为:(-2,2),(-,).------------10分。
北师大九年级(上)期末数学模拟试卷(含答案解析)
九年级(上)期末数学模拟试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.菱形具有而平行四边形不一定具有的性质是()A. 对角相等B. 对边相等C. 邻边相等D. 对边平行2.既是轴对称,又是中心对称图形的是()A. 矩形B. 平行四边形C. 正三角形D. 等腰梯形3.已知正比例函数y=k1x(k1≠0)与反比例函数y=k2(k2≠0)的图象有一个交点的坐x标为(-2,-1 ),则它们的另一个交点的坐标是()A. (2,1)B. (−2,−1)C. (−2,1)D. (2,−1)4.在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A. 垂直B. 相等C. 垂直且相等D. 不再需要条件5.已知点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4的图象上,则x ()A. y1<y2<y3B. y3<y2<y1C. y3<y1<y2D. y2<y1<y36.下列说法中,错误的是()A. 一组对边平行且相等的四边形是平行四边形B. 两条对角线互相垂直且平分的四边形是菱形C. 四个角都相等的四边形是矩形D. 邻边都相等的四边形是正方形7.若二次函数y=x2+x+m(m-2)的图象经过原点,则m的值必为()A. 0或2B. 0C. 2D. 无法确定8.如图,已知二次函数y=ax2+bx+c的图象,下列结论:①a+b+c<0;②a-b+c>0;③abc<0;④b=2a;⑤△<0.正确的个数是()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题,共18.0分)9.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是______.10.菱形的两条对角线的长分别为6和8,则它的面积是______ .11.在Rt△ABC中,∠C=90°,sin A=12,则sin B= ______ .1312.如果反比例函数y=k−3的图象过点(2,-3),那么k= ______ .x13.为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有______ 个白球.14.已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数是______%.按此年平均增长率,预计第4年该工厂的年产量应为______万台.三、计算题(本大题共2小题,共18.0分)15.点A是双曲线y=k与直线y=-x-(k+1)在第二象限的x;交点,AB垂直x轴于点B,且S△ABO=32(1)求两个函数的表达式;(2)求直线与双曲线的交点坐标和△AOC的面积.16.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?四、解答题(本大题共7小题,共60.0分)17.解方程:3x2-2x-3=-2(x-2)2.18.画出图中三棱柱的三视图.19.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(x,y)落在第二象限内的概率;图象上的概率.(2)直接写出点(x,y)落在函数y=−1x20.如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.21.星期天,小强去水库大坝游玩,他站在大坝上的A处看到一棵大树的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面成60°角.在A处测得树顶D的俯角为15°.如图所示,已知AB与地面的夹角为60°,AB为8米.请你帮助小强计算一下这颗大树的高度?(结果精确到1米.参考数据√2≈1.4√3≈1.7)22.如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.23.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.答案和解析1.【答案】C【解析】解:菱形具有平行四边形的全部性质,(A)平行四边形对角相等,故本选项错误;(B)平行四边形对边相等,故本选项错误;(C)邻边平行的平行四边形为菱形,故本选项正确,(D)平行四边形对边平行,故本选项错误.故选C.菱形拥有平行四边形的全部性质,且菱形的各边长相等且对角线互相垂直,分析A、B、C、D选项的正确性,即可解题.本题考查了平行四边形对边平行且相等的性质,考查了菱形各边长相等的性质,本题中熟练掌握菱形的性质是解题的关键.2.【答案】A【解析】解:A、矩形是轴对称图形,也是中心对称图形,故本选项正确;B、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;C、正三角形是轴对称图形,不是中心对称图形,故本选项错误;D、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误.故选A.根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】A【解析】解:∵两函数图象的一个交点坐标为(-2,-1),∴-1=-2k1,-1=,解得k1=,k2=2,∴正比例函数为y=x,反比例函数为y=,联立两函数解析式可得,解得或,∴两函数图象的另一交点坐标为(2,1),故选A.把已知点的坐标代入两函数解析式可求出函数解析式,再联立两函数解析式可求得另一个交点的坐标.本题主要考查函数图象的交点,利用待定系数法求得两函数解析式是解题的关键.4.【答案】B【解析】解:∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选:B.因为菱形的四边相等,再根据三角形的中位线定理可得,对角线AC与BD需要满足条件是相等.本题很简单,考查的是三角形中位线的性质及菱形的性质.解题的关键在于牢记有关的判定定理,难度不大.5.【答案】D【解析】解:∵k>0,函数图象在一,三象限,由题意可知,点A、B在第三象限,点C在第一象限,∵第三象限内点的纵坐标总小于第一象限内点的纵坐标,∴y3最大,∵在第三象限内,y随x的增大而减小,∴y2<y1.故选:D.根据反比例函数图象上点的坐标特点解答即可.在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.6.【答案】D【解析】解:A、一组对边平行且相等的四边形是平行四边形,正确;B、两条对角线互相垂直且平分的四边形是菱形,正确;C、四个角都相等的四边形是矩形,正确;D、邻边都相等的四边形是正方形,也可能是菱形,故错误,故选:D.根据矩形、菱形、平行四边形以及正方形的判定定理逐一进行判断,可得选项.此题主要考查了平行四边形、菱形、正方形及矩形的判定.7.【答案】A【解析】解:∵y=x2+x+m(m-2)的图象经过原点,把点(0,0)代入得:m(m-2)=0,解得m=0或m=2.故选:A.由二次函数y=x2+x+m(m-2)的图象经过原点,把点(0,0)代入即可求解.本题考查了二次函数图象上点的坐标特征,属于基础题,关键是把原点代入函数求解.8.【答案】B【解析】解:①正确,由图象可知,当x=1时,y=a+b+c<0;②正确,由图象可知,当x=-1时,y=a-b+c>0③错误,由函数图象开口向下可知,a<0,由图象与y轴的交点在y轴正半轴可知,c>0,由对称轴x=-<0,a<0,可知b<0,所以abc>0;④正确,由图,因为-=-1,所以b=2a;⑤错误,因为函数图象与x轴有两个交点,所以△>0.正确的个数有3个,故选B.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.【答案】y=3(x-3)2+2【解析】解:y=3x2先向上平移2个单位,得到y=3x2+2,再向右平移3个单位y=3(x-3)2+2.故得到抛物线的解析式为y=3(x-3)2+2.故答案为:y=3(x-3)2+2.按照“左加右减,上加下减”的规律得出即可.此题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.10.【答案】24【解析】解:∵菱形的面积等于对角线乘积的一半,∴面积S=×6×8=24.故答案为24.菱形的面积等于对角线乘积的一半.此题考查菱形的面积计算方法,属基础题.菱形的面积=底×高=对角线乘积的一半.11.【答案】513【解析】解:Rt△ABC中,∠C=90°,sinA=,即=,设CB=12x,则AB=13x,∴根据勾股定理可得:AC=5x.∴sinB===.故答案为:.根据勾股定理及三角函数的定义解答.本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12.【答案】-3【解析】解:∵反比例函数y=的图象过点(2,-3),∴-3=,解得k=-3.故答案为:-3.直接把点(2,-3)代入反比例函数y=即可.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.【答案】100【解析】解:∵摸出10个球,发现其中有一个球有标记,∴带有标记的球的频率为,设袋中大约有x个白球,由题意得=,∴x=100.故答案为100.根据概率公式,设袋中大约有x 个白球,由题意得=,求解即可.本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据带有标记的球的频率得到相应的等量关系.14.【答案】10;146.41【解析】解:设年平均增长率为x ,依题意列得100(1+x )2=121解方程得x 1=0.1=10%,x 2=-2.1(舍去)所以第4年该工厂的年产量应为121(1+10%)2=146.41万台.故答案为:10,146.41根据提高后的产量=提高前的产量(1+增长率),设年平均增长率为x ,则第一年的常量是100(1+x ),第二年的产量是100(1+x )2,即可列方程求得增长率,然后再求第4年该工厂的年产量.本题运用增长率(下降率)的模型解题.读懂题意,找到等量关系准确的列出方程是解题的关键.15.【答案】解:(1)设A 点坐标为(x ,y ),且x <0,y >0,则S △ABO =12•|BO |•|BA |=12•(-x )•y =32,∴xy =-3,又∵y =k x ,即xy =k ,∴k =-3,∴所求的两个函数的解析式分别为y =-3x ,y =-x +2;(2)由y =-x +2,令x =0,得y =2.∴直线y =-x +2与y 轴的交点D 的坐标为(0,2),A 、C 两点坐标满足 {y =−3x y =−x +2, 解得x 1=-1,y 1=3,x 2=3,y 2=-1,∴交点A 为(-1,3),C 为(3,-1),∴S △AOC =S △ODA +S △ODC =12•|OD |•(|y 1|+|y 2|)=12×2×(3+1)=4.【解析】(1)欲求这两个函数的解析式,关键求k 值.根据反比例函数性质,k 的绝对值为3且为负数,由此即可求出k ;(2)交点A 、C 的坐标是方程组的解,解之即得;从图形上可看出△AOC 的面积为两小三角形面积之和,根据三角形的面积公式即可求出. 本题主要考查反比例函数与一次函数的交点问题的知识点,此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.16.【答案】解:(1)设每千克应涨价x 元,则(10+x )(500-20x )=6 000(4分) 解得x =5或x =10,为了使顾客得到实惠,所以x =5.(6分)(2)设涨价z 元时总利润为y ,则y =(10+z )(500-20z )=-20z 2+300z +5 000=-20(z 2-15z )+5000=-20(z 2-15z +2254-2254)+5000=-20(z -7.5)2+6125当z =7.5时,y 取得最大值,最大值为6 125.(8分)答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元; (2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.(10分)【解析】本题的关键是根据题意列出一元二次方程,再求其最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y=-x 2-2x+5,y=3x 2-6x+1等用配方法求解比较简单.17.【答案】解:由原方程,得x 2-2x +1=0,配方,得(x-1)2=0,解得x1=x2=1.【解析】将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.【答案】解:【解析】主视图应为一个长方形里有一条竖直的虚线;左视图为一个长方形,俯视图为一个三角形.考查三视图的画法;用到的知识点为:三视图为主视图,左视图,俯视图,分别是从物体的正面,左面,上面看得到的图形.注意实际存在,没有被其他棱挡住,从某个方向看又看不到的棱应用虚线表示.19.【答案】解:(1)根据题意,画树状图:由上图可知,点(x ,y )的坐标共有12种等可能的结果:(1,-1),(1,-13),(1,12)(1,2),(-2,-1),(-2,-13)(-2,12),(-2,2),(3,-1),(3,-13),(3,12),(3,2);其中点(x ,y )落在第二象限的共有2种:(-2,12),(-2,2),所以,P (x ,y )落在第二象限=212=16;1 -23 -1(1,-1) (-2,-1) (3,-1) -13(1,−13) (-2,−13) (3,−13) 12(1,12) (-2,12) (3,12) 2 (1,2) (-2,2) (3,2)由表格知共有12种结果,其中点(x ,y )落在第二象限的共有2种:(-2,12),(-2,2),所以,P (点(x ,y )落在第二象限)=212=16;(2)P (点(x ,y )落在y =-1x 上的概率为312=14.【解析】通过树状图或列表,列举出所有情况,再计算概率即可.此题为一次函数与概率的综合,考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.反比例函数上的点的横纵坐标的积为反比例函数的比例系数.第二象限点的符号为(-,+).20.【答案】证明:∵点E ,F 分别为AB ,AD 的中点∴AE =12AB ,AF =12AD ,又∵四边形ABCD 是菱形,∴AB =AD ,∴AE =AF ,又∵菱形ABCD 的对角线AC 与BD 相交于点O∴O 为BD 的中点,∴OE ,OF 是△ABD 的中位线.∴OE ∥AD ,OF ∥AB ,∴四边形AEOF 是平行四边形,∵AE =AF ,∴四边形AEOF 是菱形.【解析】要证明四边形AEOF 是菱形,可根据“四条边相等的四边形是菱形”或“一组邻边相等的平行四边形是菱形”进行证明.菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法: ①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.21.【答案】解:∵AF ∥CE ,∠ABC =60°, ∴∠FAB =60°.∵∠FAD =15°,∴∠DAB =45°.∵∠DBE =60°,∠ABC =60°,∴∠ABD =60°.过点D 作DM ⊥AB 于点M ,则有AM =DM .∵tan ∠ABD =DMBM ,∴tan60°=DM BM, ∴DM =√3BM .设BM =x ,则AM =DM =√3x .∵AB =AM +BM =8,∴√3x +x =8,∴x =8√3+1≈3.0,∴DM =√3x ≈5.∵∠ABD =∠DBE =60°,DE ⊥BE ,DM ⊥AB ,∴DE =DM ≈5(米).答:这棵树约有5米高. 【解析】 利用题中所给的角的度数可得到△ABD 中各角的度数,进而把已知线段AB 整理到直角三角形中,利用相应的三角函数即可求得所求线段的长度.通常把已知长度的线段整理到直角三角形中,利用公共边及相应的三角函数求解;所求的线段的长度也要进行代换,整理到相应的直角三角形中.22.【答案】解:(1)∵抛物线与y 轴交于点(0,3),∴设抛物线解析式为y =ax 2+bx +3(a ≠0)根据题意,得{9a +3b +3=0a−b+3=0,解得{b =2a=−1.∴抛物线的解析式为y =-x 2+2x +3;(2)如图,设该抛物线对称轴是DF ,连接DE 、BD .过点B 作BG ⊥DF 于点G . 由顶点坐标公式得顶点坐标为D (1,4)设对称轴与x 轴的交点为F∴四边形ABDE 的面积=S △ABO +S 梯形BOFD +S △DFE=12AO •BO +12(BO +DF )•OF +12EF •DF=12×1×3+12×(3+4)×1+12×2×4 =9;(3)相似,如图,BD =√BG 2+DG 2=√12+12=√2;∴BE =√BO 2+OE 2=√32+32=3√2DE =√DF 2+EF 2=√22+42=2√5∴BD 2+BE 2=20,DE 2=20即:BD 2+BE 2=DE 2,所以△BDE 是直角三角形∴∠AOB =∠DBE =90°,且AO BD =BO BE =√22, ∴△AOB ∽△DBE .【解析】(1)易得c=3,故设抛物线解析式为y=ax 2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a 、b 的值,即可得解析式;(2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE 的面积=S△ABO+S梯形BOFD+S△DFE,代入数值可得答案;(3)根据题意,易得∠AOB=∠DBE=90°,且,即可判断出两三角形相似.本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.23.【答案】(1)证明:①如图2:∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE,②∵△BPM≌△CPE,∴PM=PE∴PM=12ME,∴在Rt△MNE中,PN=12ME,∴PM=PN.(2)解:成立,如图3.证明:延长MP与NC的延长线相交于点E,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,在△BPM和△CPE中,{∠MBP=∠ECP BP=CP∠BPM=∠CPE,∴△BPM≌△CPE,∴PM=PE,∴PM=12ME,则Rt△MNE中,PN=12ME∴PM=PN.(3)解:如图4,四边形BMNC是矩形,理由:∵MN∥BC,BM⊥AM,CN⊥MN,∴∠AMB=∠ANC=90°,∠AMB+∠CBM=180°,∴∠CBM=∠AMB=∠CNA=90°,∴四边形BMNC是矩形.【解析】(1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到;②由△BPM≌△CPE,得到PM=PE则PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN;(2)证明方法与②相同;(3)四边形MBCN是矩形,只要证明三个角是直角即可;本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.。
北师大版九年级(上)期末数学试卷(含答案)二
北师大版九年级(上)期末数学试卷及答案一、选择题(本大题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)如图所示的几何体的左视图是()A.B.C.D.2.(2分)如图,a∥b∥c,,DF=12,则BD的长为()A.2B.3C.4D.63.(2分)育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:抽查小麦粒数100300800100020003000发芽粒数962877709581923a则a的值最有可能是()A.2700B.2780C.2880D.29404.(2分)若关于x的一元二次方程ax2﹣4x+2=0有两个实数根,则a的取值范围是()A.a≤2B.a≤2且a≠0C.a<2D.a<2且a≠05.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD 于点F,则OE+EF的值为()A.B.2C.D.26.(2分)对于反比例函数y=,下列结论错误的是()A.函数图象分布在第一、三象限B.函数图象经过点(﹣3,﹣2)C.函数图象在每一象限内,y的值随x值的增大而减小D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y27.(2分)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,若∠CDE=∠B,则∠A等于()A.36°B.40°C.48°D.54°8.(2分)如图,在正方形ABCD中,E为BC的中点,F为CD的中点,AE和BF相交于点G,延长CG交AB于点H,下列结论:①AE=BF;②∠CBF=∠DGF;③=;④.其中结论正确的是()A.①②③B.①②④C.①③④D.②③④二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)若m是方程3x2+2x﹣3=0的一个根,则代数式6m2+4m的值为.10.(3分)在一个暗箱里放有x个大小相同、质地均匀的白球,为了估计白球的个数,再放入5个和白球大小、质地均相同,只有颜色不同的黄球,将球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回暗箱中,通过大量重复试验,发现摸到黄球的频率稳定在0.2,推算x的值大约是.11.(3分)为了响应全民阅读的号召,某校图书馆利用节假日面向社会开放.据统计,第一个月进馆560人次,进馆人次逐月增加,第三个月进馆830人次.设该校图书馆第二个月、第三个月进馆人次的平均增长率为x,则可列方程为.12.(3分)某天上午的大课间,小明和小刚站在操场上,同一时刻测得他们的影子长分别是2m和2.2m,已知小明的身高是1.6m,则小刚的身高是m.13.(3分)如图,在△ABC中,AB=12,BC=15,D为BC上一点,且BD=BC,在AB边上取一点E,使以B,D,E为顶点的三角形与△ABC相似,则BE=.14.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为.15.(3分)如图,点A在反比例函数y=(x<0)的图象上,点B在y轴负半轴上,AB交x轴于点C,若AC:BC=3:2,S△AOC=6,则k的值为.16.(3分)如图,已知正方形ABCD的边长为2,在BC的延长线上取点B1,使∠CB1D=60°,分别过点D,B1作DB1,BC的垂线,两垂线交于点A1,再以A1B1为边向右侧作正方形A1B1C1D1;在BC1的延长线上取点B2,使∠C1B2D1=60°,分别过点D1,B2作D1B2,BC1的垂线,两垂线交于点A2,再以A2B2为边向右侧作正方形A2B2C2D2;……,按此规律继续作下去,则正方形A2022B2022C2022D2022的面积为.三、解答题(本大题共3题,17题8分,18,19题各6分,共20分)17.(8分)用适当方法解下列一元二次方程:(1)x2﹣6x=1;(2)x2﹣4=3(x﹣2).18.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,﹣2),B(2,﹣1),C(4,﹣4).(1)画出△ABC绕点A顺时针旋转90°得到的△AB1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为2:1;(3)若P(a,b)是△ABC边AB上任意一点,通过(2)的位似变换后,点P的对应点为P2,请写出点P2的坐标.19.(6分)如图,一盏路灯(点O)距地面6.4m,身高1.6m的小明从距离路灯的底部(点P)9m的A处,沿AP 所在的直线行走到点D处时,小明在路灯下的影子长度缩短了1.8m,求小明行走的距离.四、解答题(本大题共2题,每题7分,共14分)20.(7分)李老师参加“新星杯”教学大赛,在课堂教学的练习环节中,设计了一个学生选题活动,即从4道题目中任选两道作答.李老师用课件在同一页面展示了A,B,C,D四张美丽的图片,其中每张图片链接一道练习题目,李老师找甲、乙两名同学随机各选取一张图片,并要求全班同学作答选取图片所链接的题目.(1)甲同学选取A图片链接题目的概率是;(2)求全班同学作答图片A和B所链接题目的概率.(请用列表法或画树状图法求解)21.(7分)某电商销售一种商品,售价为85元时,每天能销售100件,获得销售利润为1000元,根据销售经验可知,当售价每上涨1元时,销售量减少5件.(1)该商品的成本价为元/件;(2)该电商销售这种商品,每天想获得1080元的利润,问该商品的售价应定为多少元.五、解答题(本大题共3题,22,23题各8分,24题10分,共26分)22.(8分)如图,在▱ABCD中,对角线AC,BD相交于点O,E为AO上一点,BF⊥BD交DE的延长线于点F,且EF=DE.(1)求证:四边形ABCD是菱形;(2)DF交AB于点G,若OD2=OE•OA,求证:DF•AG=AE•BD.23.(8分)初中阶段关于函数性质的研究都是建立在图象基础之上的.学习了反比例函数的图象与性质后,小强带领数学兴趣小组进步研究形如y =(k是常数,k≠0)的函数图象与性质.(1)k取某一个有理数时,如表列举出满足函数y =的多组x,y的对应值:x……﹣2﹣1﹣0234……y =……﹣﹣﹣﹣1﹣2﹣4421……①有理数k=;②描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象(如图所示).请你把没画完的图象补充完整;(2)在(1)的条件下,请结合图象,总结函数y=的相关性质;①该函数图象的对称中心是点(填点的坐标);②具体描述y的值随x值的变化情况:;③该函数的图象可以看作反比例函数y=的图象向平移个单位长度得到的.24.(10分)在△ABC中,∠BAC=90°,P是线段AC上一动点,CQ⊥BP于点Q,D是线段BQ上一点,E是射线CQ上一点,且满足,连接AE,DE.(1)如图1,当AB=AC时,用等式表示线段DE与AE之间的数量关系,并证明;(2)如图2,当AC=2AB=6时,用等式表示线段DE与AE之间的数量关系,并证明;(3)在(2)的条件下,若,AE⊥CQ,直接写出A,D两点之间的距离.参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分。
北师大版九年级数学上册期末模拟考试(及参考答案)
北师大版九年级数学上册期末模拟考试(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a --C .2a -D .-2a - 2.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.已知二次函数y=(x ﹣h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或﹣5B .﹣1或5C .1或﹣3D .1或35.若α,β是方程2x 2x 20180+-=的两个实数根,则2α3αβ++的值为( )A .2015B .2016-C .2016D .20196.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位7.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4 8.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.31π+B.32C.2342π+D.231π+9.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(-2,3),AD=5,若反比例函数kyx=(k>0,x>0)的图象经过点B,则k的值为()A.163B.8 C.10 D.323二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是____________.2.分解因式:34x x -=________.3.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.4.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__________.5.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是________.6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2 (2)解方程;13223x x =--2.先化简,再求值:233()111a a a a a -+÷--+,其中2.3.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.()求证:ACD≌BCE;1()当AD BF2∠的度数.=时,求BEF41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.请根据图中信息完成下列各题.(1)将频数分布直方图补充完整人数;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、C6、B7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、x(x+2)(x﹣2).3、22()1 y x=-+4、135、﹣3<x<16、2 5三、解答题(本大题共6小题,共72分)1、(1)72;(2)x=32、3、()1略;()2BEF67.5∠=.4、(1)略;(2)5、(1)答案见解析(2)54% (3)1 66、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
北师大版九年级上册数学期末模拟考试及答案2
北师大版九年级上册数学期末模拟考试及答案2 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13C .18D .9 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.分解因式:x 3﹣16x =_____________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 2+1.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、B6、B7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、x (x +4)(x –4).3、x 1≥-且x 0≠4、125.5、406、24三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1),P 2352,),P 3),P 4). 4、(1)2(2)略5、(1)34;(2)1256、(1)4元或6元;(2)九折.。
北师大版九年级上册数学《期末》模拟考试及参考答案
北师大版九年级上册数学《期末》模拟考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13C .18D .92.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)6.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤27.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .149.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度B .C .线段PC 的长度D .线段PD 的长度10.如图,在平面直角坐标系中,ABCD 的三个顶点坐标分别为()()()1,04,22,3A B C ,,,第四个顶点D 在反比例函数()0k y x x=<的图像上,则k 的值为( )A .1-B .2-C .3-D .4-二、填空题(本大题共6小题,每小题3分,共18分)1123=____.2.分解因式:x 2﹣9x =________.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?3.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.5.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、D5、D6、C7、D8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)12、x (x-9)3、60°或120°4、140°5、1276、①③④.三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、(1)34m ≥-;(2)m 的值为3.3、(1)略;(2)结论:四边形ACDF 是矩形.理由略.4、(1)-1;(2)7.5;(3)x >1或﹣4<x <0.5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h 的学生人数约为720.6、(1)5500y x =-+;(2)当降价10元时,每月获得最大利润为4500元;(3)当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.。
新北师大版九年级数学上册期末模拟考试及答案2
新北师大版九年级数学上册期末模拟考试及答案2班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .7 4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .16.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.因式分解:x 3﹣4x=_______.3.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.4.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为________.5.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__________.6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、C5、A6、C7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、x (x+2)(x ﹣2)3、30°或150°.4、5、136、9三、解答题(本大题共6小题,共72分)1、x =52、(1)证明见解析(2)1或23、(1)略;(2)结论:四边形ACDF 是矩形.理由略.4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a ;(3)m 的值为72或.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)4元或6元;(2)九折.。
北师大版九年级数学上册期末模拟考试及参考答案
北师大版九年级数学上册期末模拟考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a --C .2a -D .-2a - 2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差5.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥36.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 ( )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .89.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD=20°,则下列说法中正确的是( )A .AD=2OB B .CE=EOC .∠OCE=40°D .∠BOC=2∠BAD二、填空题(本大题共6小题,每小题3分,共18分)12(3)-_________.2.分解因式:2x 3﹣6x 2+4x =__________.3.若a ,b 都是实数,b 12a -21a -﹣2,则a b 的值为__________.4.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为__________.5.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.6.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:22x 1x 4x 2+=--2.在平面直角坐标系xOy 中,抛物线21y ax bx a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2P a,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.3.如图,一次函数y=x+4的图象与反比例函数y=kx(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C (1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =32S△BOC,求点P的坐标.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、D6、D7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、32、2x (x ﹣1)(x ﹣2).3、44、(4,3)5、3166、14三、解答题(本大题共6小题,共72分)1、x 3=-2、(1)点B 的坐标为1(2,)a -;(2)对称轴为直线1x =;(3)当12a ≤-时,抛物线与线段PQ 恰有一个公共点.3、(1)y=-3x(2)点P (﹣6,0)或(﹣2,0) 4、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165. 5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价25元时,商场日盈利可达到2000元.。
北师大版九年级数学上册期末模拟考试及答案2
北师大版九年级数学上册期末模拟考试及答案2班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大3.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B . 2C .+2D .7.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .438.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.已知,ab 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D .10.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25D .13二、填空题(本大题共6小题,每小题3分,共18分)1.计算:169=__________. 2.分解因式:3x -x=__________.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的根为________.5.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为__________.6.如图.在44⨯的正方形方格图形中,小正方形的顶点称为格点.ABC ∆的顶点都在格点上,则BAC ∠的正弦值是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m =2+1.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan 48 1.11︒≈,tan58 1.60︒≈.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.为满足市场需求,某服装超市在六月初购进一款短袖T恤衫,每件进价是80元,超市规定每件售价不得少于90元,根据调查发现:当售价定为90元时,每周可卖出600件,一件T恤衫售价每提高1元,每周要少卖出10件.(1)试求出每周的销售量y(件)与每件售价x元之间的函数表达式;(不需要写出自变量取值范围)(2)该服装超市每周想从这款T恤衫销售中获利850元,又想尽量给客户实惠,该如何给这款T恤衫定价?(3)超市管理部门要求这款T恤衫售价不得高于110元,则当每件T恤衫售价定为多少元,每周的销售利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、D6、B7、A8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、432、x (x+1)(x -1)3、增大.4、1-或356、三、解答题(本大题共6小题,共72分)1、x=12、11m m +-,原式=.3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A 种支付方式所对应的圆心角为108;(3)使用A 和B 两种支付方式的购买者共有928名.6、(1)101500y x =-+;(2)销售单价为95元;(3)当销售单价为110元时,该超市每月获得利润最大,最大利润是12000元.。
北师大版九年级(上)期末数学综合检测试题及答案(二)
北师大版九年级(上)期末数学综合检测试题及答案(二)(120分钟120分)一、选择题(每小题3分,共30分)1.(2014•毕节中考)如图是某一几何体的三视图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥2.(2014•玉林中考)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的是结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立;D.不存在3.(2014•玉林中考)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形4.(2014•玉林中考)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.125.(2014•贺州中考)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.6. (2014·台湾)有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?( ) A .16B .14C .13D .127. (2014•湖州中考)已知Rt △ABC 中,∠C =90°,AC =4,tanA =,则BC 的长是( ) A .2B . 8C . 2D . 48.(2014•泰州中考)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( ) A .1,2,3 B .1,1,C .1,1,D .1,2,9. (2014•资阳中考)二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论: ①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1), 其中正确结论的个数是 ( )A .4个B .3个C .2个D .1个10.(2014•泰安中考)二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:X ﹣1 0 1 3 y﹣1353下列结论:(1)ac <0;(2)当x >1时,y 的值随x 值的增大而减小.(3)3是方程ax 2+(b ﹣1)x +c =0的一个根;(4)当﹣1<x <3时,ax 2+(b ﹣1)x +c >0.其中正确的个数为 ( ) A .4个 B .3个 C .2个 D .1个二、填空题(每小题3分,共24分)11.(2014•济宁中考)若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m ﹣4,则= .12. (2014•天津中考)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.13.(2014•温州中考)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.14. (2014•资阳中考)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.15. (2013•青岛中考)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x,根据题意,可得方程___________16.(2014•广东中考)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.17. (2014•云南中考)抛物线y=x2﹣2x+3的顶点坐标是.18. (2014•天津)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.三、解答题(共66分)19. (10分) (2014•玉林中考)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.20.(12分) (2014•毕节中考)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.21. (10分)(2014•泉州中考)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.22. (10分) (2014•珠海中考)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.23. (12分) (2014•泉州中考)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断:四边形DECF一定是什么形状?②裁剪:当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠:请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.24. (12分) (2014•泉州中考)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?答案及解析1【解析】选C.∵三视图中有两个视图为矩形,∴这个几何体为柱体,∵另外一个视图的形状为圆,∴这个几何体为圆柱体,故选C.2【解析】选A.∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选D.5【解析】选B.∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.故选B.6【解析】选A.画树状图得:∵每次取一张且取后不放回共有6种可能情况,其中组成的二位数为6的倍数只有54,故选D.9【解析】选B.∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.10【解析】选B.由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;答案:.13【解析】tanA==,答案:.14【解析】连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.答案:6.15【解析】2010年为40,在年增长率为x的情况下,2011年应为40(1+x),2012年为40(1+x)2,所以,40(1+x)2=48.4答案:40(1+x)2=48.416【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.答案:﹣1.17【解析】∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).答案:(1,2).18【解析】∵反比例函数的图象在一、三象限,∴k>0,理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,∴∠BAM=∠CMQ,又∵∠B=∠C=90°,∴△ABM∽△MCQ,∴=,∵△MCQ∽△AMQ,∴△AMQ∽△ABM,∴=,∴=,∴BM=MC.20【解析】(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天生产量减少5件.(2)画树状图得:∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:=.22【解析】(1)边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,∴A(1,0),D(﹣1,0),B(1,﹣2).∵反比例函数y =的图象过点B,∴,m=﹣2,∴反比例函数解析式为y=﹣,设一次函数解析式为y=kx+b,- 11 -∵y=kx+b的图象过B、D点,∴,解得.设DF=EC=x,平行四边形的高为h,则AH =12h,∵DF∥BC ,∴=,∵BC=20cm ,即:=∴x =×20,∵S=xh=x •×20=20h ﹣h2.∴﹣=﹣=6,∵AH =12,∴AF=FC,∴在AC中点处剪四边形DECF,能使它的面积最大.(2)第一步,沿∠ABC的对角线对折,使C与C1重合,得到三角形ABB1,第二步,沿B1对折,使DA1⊥BB1.理由:对角线互相垂直平分的四边形是菱形.24【解析】(1)∵二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).∴抛物线的对称轴为直线x=1;- 12 -(2)点A′是该函数图象的顶点.理由如下:如图,作A′B⊥x轴于点B,∵线段OA绕点O逆时针旋转60°到OA′,∴OA′=OA=2,∠A′OA=2,在Rt△A′OB中,∠OA′B=30°,∴OB =OA′=1,∴A′B =OB =,∴A′点的坐标为(1,),∴点A′为抛物线y=﹣(x﹣1)2+的顶点.- 13 -。
北师大版初三数学数学九年级上册期末数学模拟试题及答案
北师大版初三数学数学九年级上册期末数学模拟试题及答案一、选择题1.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º2.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76°3.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1 B .m ≤1C .m ≥-1D .m ≤-14.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20205.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,956.如图,某水库堤坝横断面迎水坡AB 的坡比是13BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m7.一元二次方程x 2-x =0的根是( ) A .x =1B .x =0C .x 1=0,x 2=1D .x 1=0,x 2=-18.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x9.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .210.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .23B .25C .4D .611.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值312.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .3B .234C 1433D 223313.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( )A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 14.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个15.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③二、填空题16.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.17.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.18.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.19.抛物线2(-1)3y x =+的顶点坐标是______.20.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.21.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 22.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒23.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.24.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .25.若a b b -=23,则ab的值为________. 26.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.27.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.28.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .29.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____. 30.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题31.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.32.如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.(1)求证:BDE CAD ∆∆∽;(2)若13AB =,10BC =,求线段DE 的长.33.如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B→C→D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t=时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?34.已知二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),若这个二次函数与x轴交于A.B 两点,与y轴交于点C,求出△ABC的面积.35.如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).四、压轴题36.(2015秋•惠山区期末)如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q是线段BC上一点,且点Q的横坐标为m.①求点Q的纵坐标;(用含m的代数式表示)②若点P是⊙A上一动点,求PQ的最小值;(2)若点A从原点O出发,以1个单位/秒的速度沿折线OBC运动,到点C运动停止,⊙A 随着点A的运动而移动.①点A从O→B的运动的过程中,若⊙A与直线BC相切,求t的值;②在⊙A整个运动过程中,当⊙A与线段BC有两个公共点时,直接写出t满足的条件.37.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.38.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 39.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.40.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D 【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.3.C解析:C 【解析】 【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧,y 随x 的增大而减小. 【详解】解:∵函数的对称轴为x=222b m m a -=-=-, 又∵二次函数开口向上,∴在对称轴的右侧y 随x 的增大而增大, ∵x >1时,y 随x 的增大而增大, ∴-m≤1,即m ≥-1 故选:C . 【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.4.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.5.B解析:B 【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.故选B .6.A解析:A【解析】∵堤坝横断面迎水坡AB 的坡比是1,∴BCAC ,∵BC=50,∴,∴100==(m ).故选A 7.C解析:C【解析】【分析】利用因式分解法解方程即可解答.【详解】x 2-x =0x(x-1)=0,x=0或x-1=0,∴x 1=0,x 2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.8.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.9.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 10.B解析:B【解析】【分析】点E 在以F 为圆心的圆上运到,要使AE 最大,则AE 过F ,根据等腰三角形的性质和圆周角定理证得F 是BC 的中点,从而得到EF 为△BCD 的中位线,根据平行线的性质证得CD ⊥BC ,根据勾股定理即可求得结论.【详解】解:点D 在⊙C 上运动时,点E 在以F 为圆心的圆上运到,要使AE 最大,则AE 过F , 连接CD ,∵△ABC 是等边三角形,AB 是直径,∴EF ⊥BC ,∴F 是BC 的中点,∵E 为BD 的中点,∴EF 为△BCD 的中位线,∴CD ∥EF ,∴CD ⊥BC ,BC=4,CD=2,故==故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.11.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.12.C解析:C【解析】【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴PA=PC,∴PC+PE=PA+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=∴PC+PE的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k ≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k ≥0且k ≠0, 解得:116k ≤且k ≠0. 故选:C .【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k ≠0.14.C解析:C【解析】【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC ∽△BCD ,从而确定②是否正确,根据AD =BD =BC ,即BC AC BC AC BC -=解得AC ,故④正确. 【详解】①BC 是⊙A 的内接正十边形的一边,因为AB =AC ,∠A =36°,所以∠ABC =∠C =72°,又因为BD 平分∠ABC 交AC 于点D ,∴∠ABD =∠CBD =12∠ABC =36°=∠A , ∴AD =BD ,∠BDC =∠ABD +∠A =72°=∠C ,∴BC =BD ,∴BC =BD =AD ,正确;又∵△ABD 中,AD+BD >AB∴2AD >AB, 故③错误.②根据两角对应相等的两个三角形相似易证△ABC ∽△BCD , ∴BC CD AB BC=,又AB =AC , 故②正确, 根据AD =BD =BC ,即BC AC BC AC BC -=,解得AC ,故④正确, 故选C .【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 15.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x=1时,有a+b+c=0,故结论③错误;④∵抛物线的开口向下,对称轴x=﹣1,∴当x<﹣1时,函数值y随着x的增大而增大,∵﹣5<﹣1则y1<y2,则结论④正确故选:C.【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b2-4ac决定:△>0时,抛物线与x轴有2个交点;△= 0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.二、填空题16.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.17.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.18.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x 轴的交点,正确数形结合分析是解题关键.19.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.20.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x+m )2+b =0的解是x1=2,x2=﹣1,(a ,m , 解析:x 3=0,x 4=﹣3.【解析】【分析】把后面一个方程中的x +2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x +m )2+b =0的解是x 1=2,x 2=﹣1,(a ,m ,b 均为常数,a ≠0),∴方程a (x +m +2)2+b =0变形为a [(x +2)+m ]2+b =0,即此方程中x +2=2或x +2=﹣1, 解得x =0或x =﹣3.故答案为:x 3=0,x 4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.21.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.22.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA , ∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.23..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的解析:mx ny m n++. 【解析】【分析】 根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx ny m n+=+.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.24.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 25.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.26.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.27.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y =x 2﹣2x ﹣3,设y =0,∴0=x 2﹣2x ﹣3,解得:x 1=3,x 2=﹣1,即A 点的坐标是(﹣1,0),B 点的坐标是(3,0),∵y =x 2﹣2x ﹣3,=(x ﹣1)2﹣4,∴顶点C 的坐标是(1,﹣4),∴△ABC 的面积=12×4×4=8, 故答案为8.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中. 28.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.29.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM ⊥AF∵六边形ABCDEF 为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a ,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323a a π⋅⋅= 则r 13 同理:扇形DEF 的弧长为:120241803a a ππ⋅⋅= 则r 2=23a r 1:r 23: 3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF ,∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7,∴3437DB BD =++, ∴BD =9,BF =9+3=12,∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.32.(1)见解析;(2)6013DE =. 【解析】【分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明; 对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得2212AD AB BD =-=. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD =, 即51312DE =,∴6013 DE .【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.33.(1)7;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+24,当6<t≤7时,S=t2﹣10t+24,②t=3时,△PBQ的面积最大,最大值为9【解析】【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=12(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=12(t﹣6)•(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.34.【解析】【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=12×AB×OC,即可得答案.【详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=12×AB×OC=12×4×6=12.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.35.(1)见解析,(2)见解析,(313π【解析】【分析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾顺次连接可得;(3)根据弧长公式计算可得.【详解】解:(1)如图所示,△A′B′C′即为所求.。
北师版九年级上数学期末模拟题及答案
初 三 第 一 学 期 期 末 数 学 模 拟 题班级__________________ 姓名 ______________________ 成绩___________________一、选择题1.下列方程中,不是一元二次方程的是 ( ) A. 2x 2+7=0 B. 2x 2+2x+1=0 C. 5x 2+x1+4=0 D. 3x 2+1=7x 2. 不能确定两个三角形全等的条件是 ( ) A 三条边对应相等 B 两边及其夹角对应相等C 两角及其中一角的对边对应相等D 两边及其中一边的对角对应相等 3.已知x=3是关于x 方程012342=+-a x 的一个解,则2a 的值是( ) A.11 B.12 C.13 D.144.反比例函数的图像经过点(-3,1),则此反比例函数图像过( ) A. 一三象限 B.二四象限 C.一四象限 D.二三象限5. 下面的三视图所对应的物体是( )6.如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,, 则对角线AC 的长( )A .2B .4C.D.7.一件产品原来每件的成本是100元,由于连续两次降低成本,现在成本是81元,则平 均每次降低成本 ( ) A .8.5% B .9% C .9.5% D .10%8.某中学举行了演讲比赛.经预赛,七、八年纪各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( ) A .12 B .13C .14D .16 9. 用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( ) A .(x -1)2=4 B .(x +1)2=4 C .(x -1)2=16 D .(x +1)2=1610. 如图,AB AC BD BC ==,,40A ∠=,则ABD ∠是( )A .20 B .30 C .35 D .40A. B. C. D.第5题O D CA B6题图BAD C则C ∠度数为( ) A . 30 B . 40 C . 50 D .6012. 如图点A 是反比例函数y=2x (x >0)的图象上任一点,AB ∥x 轴交反比例函数y=-3x图象于点B ,以AB 为边作□ABCD ,C 、D 在x 轴上,则S □ABCD 为( ) A .2 B .3 C .4 D .513.一次函数)0(≠+=m m x y 与反比例函数xmy =的图像在同一平面直角坐标系中是()13题14 如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4,则四边形CODE 的周长( )15. (提高题)如图,已知正方形ABCD 的边长为1,连结AC 、BD,CE 平分∠ACD 交BD 于点E,则DE 长()A.12- B.22 C. 1 D. 221-第12题图ADB二、填空题16. 等腰三角形两边长分别为3cm 和7cm ,则周长=______17如图□ABCD 中,E 、F 分别在BC 、AD 边,要使BF DE =,需添加一个条件: _(只写一个). 18.关于x 的一元二次方程210kx x -+=有两个不相等的实数根,则k 的取值范围是 .19. 箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是 .20.如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在 反比例函数1y x=的图象上,则图中阴影部分的面积等于 . 21. (提高题)如图,菱形ABCD 对角线长分别为b a 、,以菱形ABCD 各边中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1中点为顶点作菱形A 2B 2C 2D 2,……,得到四边形A 2012B 2012C 2012D 2012面积用含 b a 、的代数式表示为三、解答题 22.(本题7分)(1)解方程.①0322=--x x ; ②01432=+-x x ;23.小明、小亮利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m 的小明()AB 的影子BC 长是3m ,而小亮()EH 刚好在路灯灯泡的正下方H 点,并测得6m HB =.(1)请在图中画出形成影子的光线,交确定路灯灯泡所在的位置G ; ABCEDF17题图B 第20题图321题图24.(本题8分) 现在“校园手机”越来越受到社会的关注,为此某校九(1)班随机调查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下统计图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大九年级(上)数学期未考试模拟试卷(二)亲爱的同学:你好!数学就是力量,自信决定成绩。
请你灵动智慧,缜密思考,细致作答,努力吧,祝你成功!第一卷(选择题,共2页,满分30分)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的).1、如图,在△ABC 中,∠C=90°,AB=13,BC=5,则cosA 的值是( )A .135 B. 1312 C.125 D. 5132、已知1是关于x 的一元二次方程(m-1)x 2+x+1=0的一个根,则m 的值是( ) A. 1 B. 0 C. -1 D. 无法确定 3、下面四个几何体中,主视图是圆形的几何体共有( )A. 1个B. 2个C. 3个D. 4个 4、抛物线y=x 2-2x+1的顶点坐标是( )A.(-1,0)B.(1,0)C.(-2,1)D.(2,-1) 5、已知反比例函数xy 1=,下列结论中不正确的是( ) A.图象经过点(-1,-1) B.图象在第一、三象限C.当1>x 时,10<<yD.当0<x 时,y 随着x 的增大而增大 6、已知下列命题:①对角线互相平分的四边形是平行四边形; ②等腰梯形的对角线相等; ③对角线互相垂直的四边形是菱形; ④内错角相等.其中假命题有( )A.1个B.2个C.3个D.4个7、由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( ) A.3块 B.4块 C.6块 D.9块8、如图,P (x ,y )是反比例函数xy 3=的图象在第一象限分支上的一个动点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,随着自变量x 的增大,矩形OAPB 的面积( )A.增大B.减小C.不变D.无法确定9、在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为( )A. 12.36cmB. 13.6cmC. 32.36cmD. 7.64cm10、函数2-=ax y (0≠a )与2ax y =(0≠a )在同一平面直角坐标系中的图象可能是( )A. B.C. D.第二卷(非选择题,共8页,满分90分)二、细心填一填(本大题共5小题,每小题3分,共15分.请你把答案填在横线的上方).11、方程02=-x 的根是 .12、将二次函数3)2(2+-=x y 的图象向右平移2个单位,再向下平移2个单位, 所得二次函数的解析式为 .13、为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么 你估计袋中大约有 个白球.14、如图,在梯形ABCD 中,AB ∥DC ,∠ADC 的平分线与∠BCD 的平分线的交点E 恰在AB 上.若AD=7cm ,BC=8cm ,则AB 的长度是 cm .15、观察下列有序整数对: (1,1). (1,2),(2,1). (1,3),(2,2),(3,1)(1,4),(2,3),(3,2),(4,1). (1,5),(2,4),(3,3),(4,2),(5,1). …它们是按一定规律排列的,依照此规律,第10行从左到右第5个整数对是 .三、用心做一做 (本大题共3小题,每小题7分,共21分).16、计算:︒---+30sin 2)1(4)3-(2011π 解:17、如图,现有m 、n 两堵墙,两个同学分别在A 处和B 处,请问小明在哪个区域内活动才不会被这两个同学发现(画图用阴影表示). 解:18、(2011•株洲)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.解:四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分).1、2、3、5的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树状图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,试改动红盒子中的一个小球的编号,使游戏规则公平.解:20、我市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?解:五、满怀信心,再接再厉(本大题共3小题,每小题8分,共24分).解:22、(本题满分8分)如图,在一正方形ABCD中,E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.解:23、(本题满分8分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优惠?解:六、灵动智慧,超越自我(本大题共2小题,每小题8分,共16分).24、(本题满分8分)如图,已知直线AB 与x 轴交于点C ,与双曲线x k y =交于A (3,320)、B (-5,a )两点.AD ⊥x 轴于点D ,BE ∥x 轴且与y 轴交于点E . (1)求点B 的坐标及直线AB 的解析式;(2)判断四边形CBED 的形状,并说明理由. 解:25、(本题满分8分)如图,在直角坐标系中,已知点A (0,1),B (-4,4),将点B 绕点A 顺时针方向90°得到点C ;顶点在坐标原点的拋物线经过点B . (1)求抛物线的解析式和点C 的坐标;(2)抛物线上一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明112+=d d ; (3)在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值. 解:数学试题(二)参考答案一、选择题(本大题共10小题,每小题3分,共30分.)二、填空题(本大题共5小题,每小题3分,共15分.)11、2,221-==xx 12、(1)4(2+-=xy 13、10014、15 15、(5,6)三、(本大题共3小题,每小题7分,共21分.)31421212116=-=⨯-++=、解:原式17、解:小明在阴影部分的区域就不会被发现.18、解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC长是5.四、(本大题共2小题,每小题7分,共14分)19、解:(1)画树状图得:∴一共有12种等可能的结果,两球编号之和为奇数有5种情况, ∴P (甲胜)=125;(2)∵P (乙胜)=127, ∴P (甲胜)≠P (乙胜),∴这个游戏规则对甲、乙双方不公平;将红盒子中装有编号分别为1、2、3、5的四个红球,改为1、2、3、4的四个红球即可.20、解:(1)一等奖所占的百分比是:100%-46%-24%-20%=10%; (2)在此次比赛中,一共收到:20÷10%=200份;条形图如图所示:(3)一等奖有:20人, 二等奖有:200×20%=40人, 三等奖有:200×24%=48人, 优秀奖有:200×46%=92人.五、(本大题共3小题,每小题8分,共24分)21、解:(1)AD= 226045 =75, ∴车架当AD 的长为75cm ,(2)过点E 作EF⊥AB,垂足为点F ,距离EF=AEsin75°=(45+20)sin75°≈62.7835≈63cm, ∴车座点E 到车架档AB 的距离是63cm. 22、(1)证明:∵四边形ABCD 是正方形, ∴CD=CB,∠DCA=∠BCA, ∵CE=CE, ∴△BEC≌△DEC.(2)解:∵∠DEB=140°, ∵△BEC≌△DEC, ∴∠DEC=∠BEC=70°,∴∠AEF=∠BEC=70°,∵∠DAB=90°,∴∠DAC=∠BAC=45°,∴∠AFE=180°-70°-45°=65°.答:∠AFE 的度数是65°.23、解:(1)设平均每次下调的百分率为x ,则4050)1(50002=-x .81.0)1(2=-x ,∴9.01±=-x∴)(9.1%,101.021舍去===x x答:平均每次下调的百分率为10%;(2)方案一的总费用为:100×4050× 98%=396900元;方案二的总费用为:100×4050-2×12×1.5×100=401400元;∴方案一优惠.六、(本大题共2小题,每小题8分,共16分)24、解:(1)∵双曲线x ky =过A (3,320),∴k=20.把B (-5,a )代入x y 20= ,得a=-4.∴点B 的坐标是(-5,-4).设直线AB 的解析式为n mx y +=,将A (3,320)、B (-5,-4)代入,得⎪⎩⎪⎨⎧-=+-=+453203n m n m解得:⎪⎪⎩⎪⎪⎨⎧==3834n m .∴直线AB 的解析式为:3834+=x y (2)四边形CBED 是菱形.理由如下:点D 的坐标是(3,0),点C 的坐标是(-2,0).∵BE∥x 轴,∴点E 的坐标是(0,-4).而CD=5,BE=5,且BE∥CD.∴四边形CBED 是平行四边形.(6分)在Rt△OED 中,222OD OE ED +=, ∴54322=+=ED ,∴ED=CD.∴四边形CBED 是菱形.25、解:(1)对称轴是2242=--=-=aa ab x , ∵点A (1,0)且点A 、B 关于x=2对称,∴点B (3,0);(2)点A (1,0),B (3,0),∴AB=2,∵CP ⊥对称轴于P ,∴CP ∥AB ,∵对称轴是x=2,∴AB ∥CP 且AB=CP ,∴四边形ABPC 是平行四边形,设点C (0,x )(x <0),在Rt △AOC 中,AC= 12+x ,∴BP=12+x ,在Rt △BOC 中,BC= 92+x ,∵31==BO BE BC BD , ∴BD= 3192+x , ∵∠BPD=∠PCB 且∠PBD=∠CBP ,∴△BPD ∽△BCP ,∴BP 2=BD •BC , 即22)1(+x =3192+x ∙92+x ∴3,321-==x x ,∵点C 在y 轴的负半轴上,∴点C (0,3-),∴y=ax 2-4ax- 3,∵过点(1,0),∴a-4a- 3=0,解得:a=33-. ∴解析式是:3334332-+-=x x y 25、解:(1)设抛物线的解析式:2ax y =,∵拋物线经过点B (-4,4),∴4=a •42,解得a=41,所以抛物线的解析式为:241x y =; 过点B 作BE ⊥y 轴于E ,过点C 作CD ⊥y 轴于D ,如图,∵点B 绕点A 顺时针方向90°得到点C ,∴Rt △BAE ≌Rt △ACD ,∴AD=BE=4,CD=AE=OE-OA=4-1=3,∴OD=AD+OA=5,∴C 点坐标为(3,5);(2)设P 点坐标为(a ,b ),过P 作PF ⊥y 轴于F ,PH ⊥x 轴于H ,如图, ∵点P 在抛物线241x y =上,∴241a b =, ∴2141a d =, ∵AF=OF-OA=PH-OA=141121-=-a d ,PF=a , 在Rt △PAF 中,PA=141)141(2222222+=+-=+=a a a PF AF d , ∴112+=d d ;(3)由(1)得AC=5,∴△PAC 的周长=PC+PA+5=PC+PH+6,要使PC+PH 最小,则C 、P 、H 三点共线, ∴此时P 点的横坐标为3,把x=3代入241x y =,得到49=y , 即P 点坐标为(3,49),此时PC+PH=5, ∴△PAC 的周长的最小值=5+6=11.。