蔡氏电路matlab仿真报告
基于蔡氏电路的MATLAB仿真
1、引 言 作为一种普遍存在的非线性现象, 混沌的发现对科学的发
展 具 有 深 远 的 影 响[1 ,2 ].混 沌 行 为 是 确 定 性 因 素 导 致 的 类 似 随 机 运动的行为,即:一个可由确定性方程描述的 非 线 性 系 统,其 长 期 行为表现为明显的随机性和不可预测性, 我们就认为该系统存 在 混 沌 现 象.混 沌 具 有 三 个 特 点[1-3 ]:随 机 性;遍 历 性;规 律 性.混 沌 有 一 个 很 重 要 的 性 质:系 统 行 为 对 初 始 条 件 非 常 敏 感.近 年 来 许 多学者通过非线性电路对混沌行为进行了广泛地研究, 其中最 典型的是蔡氏电路[4-7],它是能产生混沌行为的最 小 、最 简 单 的 三 阶自治电路. 2、蔡 氏 电 路 模 型
a0 = 0.8, a1 = 0.1
初始值为:[0.1,0.1,0.1],其仿真如图 3 所示. 在 2005 年,W ei Lin 等 提 出 一 种 新 型 的 蔡 氏 电 路 简 化 后 无
量 纲 的 标 准 型 [8]:
(2)
其中,
g ( x )
=
m0 x
+
1 2
(m1
- m0 )(
x +1
参考文献: 1.盛昭瀚,马军海.非线性动力系统分析引论[M ].科学出版社,2001 2.胡岗,萧井华,郑志刚.混沌控制[M ].上海科技教育出版社,2000. 3.曹建 福 ,韩 崇 昭 ,方 洋 旺.非 线 性 系 统 理 论 及 应 用[M ].西 安 交 通 大 学 出 版 社 ,2001 4.J C Sprott. C om plex B ehavior of Sim ple System [C ].InternationalC onfer- ence on com plex System s,2000. 5.M T Y assen.A daptive control and synchronization of a m odified C hua's circuit system [J].A pplied M athem atics and C om putation,2001,(11):1- 9. 6.T zuyin W u,M in - Shin C hen.C haos control of m odified C hua's circuit system [J].Physics D ,2002,(2867):1- 6. 7.A S Elw akil,M P K ennedy.C hua's circuit decom position:a system atic de- sign approach for chaotic oscillators [J].Journal of the Franklin Institute, 2000,(337):251- 265. 8.W ei Lin and Y angbo H e. C om plete synchronization of the noise- per- turbed C hua's circuits C haos 15,023705 (2005)
matlab电路仿真报告
matlab电路仿真报告一. 仿真背景和目的在电路设计和验证过程中,电路仿真技术是非常重要的。
Matlab这一强大的仿真软件,可快速有效地在仿真环境中进行电路设计验证,确保电路设计在实际应用中的可靠性和稳定性。
二. 仿真内容介绍本次仿真实验主要涉及四个方面的内容:交流电路、直流电路、半导体器件、功率放大器。
1. 交流电路仿真交流电路仿真是电路设计的基础。
本次仿真实验中,我们构建了简单的交流电路,通过仿真计算得到了交流电流、交流电压以及电路功率等参数。
2. 直流电路仿真直流电路仿真实验中,我们建立了稳定的直流电源和直流电路,在仿真环境中模拟了直流电路的工作状态,包括电流、电压、功率等参数。
通过仿真结果可以得到直流电路的性能评估。
3. 半导体器件仿真半导体器件在现代电子电路中广泛应用。
本次仿真中,我们针对开关电路的应用设计了半导体管,通过仿真计算得到了开关电路在不同工作状态下的输出特性,包括开关电压、开通电流等。
4. 功率放大器仿真功率放大器是实际应用中常见的一种电路结构。
仿真实验中,我们设计了基本的功率放大器电路,在仿真环境中计算得到了频率响应、增益、输出功率等参数,用于评估该功率放大器的性能和稳定性。
三. 仿真结果分析通过仿真计算和实验结果分析,可以得出以下几点结论:1. 交流电路仿真结果表明,输入交流电源的电流和电压随时间变化而变化,同时可以计算得到电路的功率和电阻等参数。
2. 直流电路仿真结果表明,直流电路的电流和电压稳定,可以计算得到直流电路的电流、电压和功率等参数。
3. 半导体器件仿真结果表明,半导体器件可以有效地用于开关电路应用,可以计算得到器件的开通电流、开关电压等参数。
4. 功率放大器仿真结果表明,功率放大器可以在一定的频率范围内实现较大的增益和输出功率。
同时,该电路还具有一定的稳定性和可靠性。
四. 总结和展望通过对电路仿真实验的分析和总结,我们可以发现,电路仿真技术在电路设计和验证过程中具有不可替代的作用。
matlab仿真实验报告
matlab仿真实验报告Matlab仿真实验报告引言:Matlab是一种广泛应用于科学和工程领域的数值计算软件,它提供了强大的数学和图形处理功能,可用于解决各种实际问题。
本文将通过一个具体的Matlab 仿真实验来展示其在工程领域中的应用。
实验背景:本次实验的目标是通过Matlab仿真分析一个电路的性能。
该电路是一个简单的放大器电路,由一个输入电阻、一个输出电阻和一个放大倍数组成。
我们将通过Matlab对该电路进行仿真,以了解其放大性能。
实验步骤:1. 定义电路参数:首先,我们需要定义电路的各个参数,包括输入电阻、输出电阻和放大倍数。
这些参数将作为Matlab仿真的输入。
2. 构建电路模型:接下来,我们需要在Matlab中构建电路模型。
可以使用电路元件的模型来表示电路的行为,并使用Matlab的电路分析工具进行仿真。
3. 仿真分析:在电路模型构建完成后,我们可以通过Matlab进行仿真分析。
可以通过输入不同的信号波形,观察电路的输出响应,并计算放大倍数。
4. 结果可视化:为了更直观地观察仿真结果,我们可以使用Matlab的图形处理功能将仿真结果可视化。
可以绘制输入信号波形、输出信号波形和放大倍数的变化曲线图。
实验结果:通过仿真分析,我们得到了以下实验结果:1. 输入信号波形与输出信号波形的对比图:通过绘制输入信号波形和输出信号波形的变化曲线,我们可以观察到电路的放大效果。
可以看到输出信号的幅度大于输入信号,说明电路具有放大功能。
2. 放大倍数的计算结果:通过对输出信号和输入信号的幅度进行计算,我们可以得到电路的放大倍数。
通过比较不同输入信号幅度下的输出信号幅度,可以得到放大倍数的变化情况。
讨论与分析:通过对实验结果的讨论和分析,我们可以得出以下结论:1. 电路的放大性能:根据实验结果,我们可以评估电路的放大性能。
通过观察输出信号的幅度和输入信号的幅度之间的比值,可以判断电路的放大效果是否符合设计要求。
四阶蔡氏电路的建模与仿真
四阶蔡氏电路的建模与仿真摘要:混沌现象是一种确定性的非线性运动,在非线性控制领域,混沌控制的研究受到人们越来越多的关注。
典型蔡氏电路结构简单,但有复杂的混沌动力学特征,因而在混沌控制领域中成为研究的重要对象。
本次设计简单介绍了混沌学基本理论,从理论分析和仿真实验两个角度分别研究Chua's Circuit 的混沌行为,用Multisim 软件对电路进行仿真实验,通过改变参数,得到了系统各周期的相轨图,并对实验中遇到的现象进行简单的讨论。
在三阶蔡氏电路的基础上添加一个电感,可以建立四阶蔡氏电路,在此四阶蔡氏电路的基础上,进行了简单的数值分析与仿真分析。
由于普通蔡氏电路在产生混沌现象时, 其元件参数可调围很小,且对初始条件极为敏感,不易于搭建实验电路。
所以引入了电感等效电路,在本文中将蔡氏电路中的电感用等效电路替代,从而实现了无感蔡氏电路。
关键词:混沌;蔡氏电路;Multisim ;等效电感Experimental Study of Chua's circuit chaoticAbstract :Chaos is a deterministic non-linear movement, in the field of nonlinear control, chaotic control get more and more attention by people. Typical Chua's circuit is simple, but complex and chaotic dynamics characteristics, so become an important research object in the field of chaos control . The design simple introduced the basic theory of chaos, study the chaotic behavior of Chua'sCircuit from two angles of the theoretical analysis and experimental with Multisim circuit simulation software, by changing the parameters, get each cycle tracks phase diagram of the system, simple discuss the experimental phenomena encountered, couple the second-order Chua's circuit with a linear circuit ("oscillation absorber"), get even more chaotic behavior of the rich. As the general chaos in Chua's circuit in the production, its range of component parameters adjustable is very small, and extremely sensitive to initial conditions, hard to set up experimental circuit. Therefore introduce the inductor equivalent circuit, in this final, change the inductor of Chua's circuit with the equivalent circuit, thus achieving non- inductor of Chua's circuit.Key words :chaos; Chua's circuit; Multisim; vibration absorber; equivalent inductance目录第一章混沌学基本理论. (5)1.1 混沌的简单介绍 (5)1.1.1 混沌的定义. (5)1.1.2 混沌的主要特征. (6)1.1.3 混沌的现实意义和应用. (7)1.1.4 混沌的前景展望. (8)1.2 蔡氏电路简介 (9)1.3 蔡氏电路的研究 (10)1.4 软件介绍 (10)1.4.1 数值仿真软件. (10)1.4.2 电路仿真软件. (11)第二章三阶蔡氏电路分析. (12)2.1 电路原理与数学建模 (12)2.2 数值仿真分析 (13)2.3 蔡氏二极管等效电路设计 (15)2.4 三阶蔡氏电路制作和电路仿真 (17)2.5 蔡氏电路的平衡点及稳定性 (19)第三章四阶蔡氏电路分析. (22)3.1 四阶蔡氏电路数学建模 (22)3.2 四阶蔡氏电路数值仿真分析 (24)3.3 四阶蔡氏电路电路仿真分析. (25)3.4 三阶蔡氏电路等效电感分析 (27)第四章总结与分析. (30)参考文献. (31)致. (32)附录Matlab 程序 (33)第一章混沌学基本理论1.1 混沌的简单介绍1.1.1 混沌的定义混沌是非线性动力学系统所特有的一种运动形式,是自然界及社会中的一种普遍现象,它是一种在确定性系统中所出现的类似随机而无规则运动的动力学行为。
蔡氏电路仿真报告
非线性电路理论及应用课程作业XXXXXXXXX蔡氏对偶混沌电路仿真报告一、蔡氏对偶混沌电路分析应用一个三阶自治电路进行仿真,电路如图1所示,其中包含一个电流控制型的非线性电阻元件,其伏安特性关系如图2所示。
L 2L 2i 1CR 2u r u c+-+-i 2i-2-1120.20.1-0.1-0.2O u r /Vi 1/A图1 蔡氏对偶电路 图2 流控型非线性电阻伏安特性对于图1中所示的电路,其状态方程推导如下:2c c 21022112011d d )(d d )()(d d i t uC u i i R t iL i r i i R t i L -=+-=--= 整理上述各式得2c c 22120211121011d d 1)(d d )(1)(d d i Ct u u L i i L R t i i r L i i L R t i -=+-=--=为分析方便,对方程进行归一化处理 令20()L t R τ=,t L Rd d 20=τ 且令 120,,c x i y i z u R ===则上述各方程变为y CR L t z z y x t yx r x y L L t x 0212d d d d )]([d d -=+-=--=上述方程中,将时间τ任记为t ,则方程变为标准蔡氏方程,即为:y tzz y x t yx f y t xβα-=+-=-=d d d d )]([d d 其中21L a L =,220L b CR = 001()()0.5()(11)r x f x m x m m x x ==+-+--二、计算机仿真1、参数设置上述蔡氏对偶电路的微分方程描述的动态系统关于原点对称,对应于分段线性电流控制型电阻的特性,若将f (x )特性分为三段考虑,即为⎪⎩⎪⎨⎧-≤--≤≥-+=1)(1||1)()(1010101x m m x m x x m x m m x m x f为了进行计算机仿真计算分析,我们令 8001.0008.012===L L α,5.121104.6008.0402=⨯⨯==-CR L β 而取2.0510-=-=m ,4.0521==m取初始值为(0.025,-0.022,0.8)应用MATLAB 进行仿真。
三阶蔡氏电路matlab仿真代码
一、背景介绍三阶蔡氏电路是一种经典的电路结构,在信号处理、滤波等领域有着重要的应用。
利用MATLAB对三阶蔡氏电路进行仿真分析,可以帮助工程师和研究人员更好地理解电路的特性和行为,对于电路设计和优化具有重要意义。
二、三阶蔡氏电路的基本原理三阶蔡氏电路由三个积分器和两个比例放大器组成,是一种具有强大信号处理能力的电路结构。
它可以用于实现各种滤波器,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
在电子电路和通信系统中有广泛的应用。
三、MATLAB仿真环境的搭建1. 安装MATLAB软件,并确保其正常运行。
2. 新建一个MATLAB脚本文件,用于编写三阶蔡氏电路的仿真代码。
3. 导入必要的工具箱和函数库,确保能够进行电路仿真分析所需的基本操作和函数调用。
四、三阶蔡氏电路的参数设置1. 根据具体的电路结构和设计要求,设置电路的参数,包括电阻值、电容值、放大倍数等。
2. 考虑电路中可能存在的噪声以及非线性元件的影响,进行适当的参数修正和补偿。
五、三阶蔡氏电路的MATLAB仿真代码实现1. 编写三阶蔡氏电路的节点方程,建立电路的数学模型。
2. 利用MATLAB的数值计算工具,如ode45函数等,对电路进行仿真计算。
3. 对仿真结果进行分析和后处理,得到电路的频率响应、相位特性等重要信息。
六、仿真结果与分析1. 利用MATLAB绘制三阶蔡氏电路的幅频特性曲线和相频特性曲线,观察电路的频率响应特性。
2. 对比不同参数设置下的仿真结果,分析电路性能随参数变化的规律和特点。
3. 考虑电路可能存在的非线性特性,对其进行深入分析和讨论,为实际应用提供参考依据。
七、结论与展望通过MATLAB对三阶蔡氏电路的仿真分析,我们深入了解了电路的特性和行为。
这对于电路的设计和优化具有重要意义。
在未来的研究中,可以进一步探究电路在实际应用中的性能表现,以及对其进行更加精细的仿真和分析。
也可以考虑将仿真结果与实际测试数据进行对比,验证仿真模型的准确性和可靠性。
基于蔡式电路的仿真
一、选题背景混沌(chaos)研究是20 世纪物理学的重大事件。
混沌现象普遍存在于自然界和人类社会中,是在确定性系统中出现的一种貌似无规则、类似随机的现象,是非线性动力学系统特有的一种运动形式。
混沌具有三个特点:随机性;遍历性;规律性。
随着高精度电子器件的广泛应用,电路中出现了大量的非线性现象。
已有的线性电路理论无法解释非线性电路的行为,又不能指导非线性电路的分析与综合,于是有关非线性电路的理论研究迅速展开,非线性电路中的混沌现象研究也开始兴起。
1984 年,Chua 提出著名的“蔡氏电路”,这个电路为非线性电路中分岔、混沌现象的研究提供了经典的范例。
1、蔡氏电路模型蔡氏电路是一种物理结构和数学模型简单的混沌系统,该混沌系统也常被用来进行混沌理论及应用方面的研究。
该电路使用三个储能元件和一个分段线性电阻。
这样可以把电路分为线性和非线性两部分。
其中线性部分包括:电阻R、电感L(含内阻r)和两个电容C1 与C2;非线性部分由分段线性电阻N R来完成。
电路原理图如下:图一蔡氏电路原理图图二分段线性电阻N R的伏安特性曲线2、蔡氏电路理论基础由Kirchhoff结点电流定律(KCL)得到蔡氏电路的动力学状态方程为:蔡氏电路中的非线性电阻又称为蔡氏二极管,可采用多种方式实现。
一种较简单的实现电路见图三。
图三用集成运放组成蔡氏二极管电路二、电路实现和仿真验证(1)用直流扫描分析蔡氏二极管的伏安特性。
已知R1=3.3kΩ,R2=22kΩ,R3=22kΩ,R4=2.2kΩ,R5=220Ω,R6=220Ω。
通过双运算放大器(型号:TL082)和6个电阻来实现非线性电阻。
在仿真时,除集成运算放大器外均使用的是虚拟元件。
电路原理图如下:通过直流扫描(DC Sweep),得到蔡氏二极管的伏安特性曲线如下:从而得到分段线性电阻N R的伏安特性曲线中U0=0.966V(2)R=1.6kΩ,L =18mH,C1=10nF,C2=100nF,初值为零,蔡氏二极管按(1)中参数实现。
蔡氏电路数值仿真图像与实测图像的对比研究
关 键 词: 蔡氏电路ꎻ混沌ꎻMATLABꎻ数值仿真ꎻ实测图像ꎻ结果对比
中图分类号: O 4 ̄34源自文献标志码: ADOI:10.14139 / j.cnki.cn22 ̄1228.2018.04.014
混沌现象是一种广泛存在且长期表现出不可 预测的非线性行为ꎮ 混沌具有三个特点:规律性、 遍历性、随机性[1ꎬ2] ꎮ 随着计算科学和社会科学 的发展ꎬ混沌的不可预测性与规律性使其成为了 物理、数学等众多学科领域的一个热点研究课题ꎮ 近年来ꎬ非线性电路是许多学者研究混沌的重要 途径之一ꎬ其中一个最典型的非线性电路就是三 阶自治蔡氏电路( Chua’ s circuit) [3] ꎮ
在此基础上ꎬ蔡少棠教授提出了一个将物理 模型与数学模型相结合的典型混沌系统—蔡氏电 路ꎮ 它是一个三阶自治电路ꎬ包含两个电容 C1、 C2ꎬ一个电感 Lꎬ一个线性电阻 R 及一个非线性电 阻元件 RN( 也称作蔡氏二极管) [3] ꎮ 蔡氏电路物 理模型如图 1 所示:
在蔡氏电路模型中ꎬ非线性电阻元件 RN 可
MATLAB 平台下描述蔡氏电路的混沌图像ꎮ 为了更好的与实测图像进行对比分析ꎬ我们
设置数值仿真的初始参数与真实实验电路中的参 数保持一致即:电容 C1 值为 0.022 μF、电容 C2 值 为 0.1 μF、电感 L 为 10 mHꎬ电阻 R 的变化范围设 置在 0 ~ 3 KΩꎮ
图 3 实际电路图
下图 4 所示的就是在电容 C1 值为 0.022 μF、 电容 C2 值为 0.1 μF、电感 L 为 10 mH 的条件下ꎬ 电阻 R 阻值从 3 KΩ 减小至 0 KΩ 的过程中所得 到的混沌图像:
实测结果分析: 如上图 4 所示ꎬ非周期变化的混沌行为中存 在一倍周期ꎬ单吸引子等混沌图像ꎻ但是很难观测 到清晰的二倍周期和双吸引子等混沌图像ꎬ这主 要由于通过调节滑动变阻器我们不能给定这些特 殊混沌图像所需的电阻 R 的精确参数值[6] ꎮ
蔡氏混沌电路的分析和MATLAB仿真
参考文献
刘崇新. 非线性电路理论及应用. 西安:西安交通大学出版社, 2007
附 MATLAB 仿真程序
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4]); [t,x]=ode45(@mysolve,[0 100],[ 1 0 0],options); subplot(2,3,1);plot(x(:,1),x(:,2));title('x-y平面相图') subplot(2,3,2);plot(x(:,1),x(:,3));title('x-z平面相图') subplot(2,3,3);plot(x(:,2),x(:,3));title('y-z平面相图') subplot(2,3,4);plot(t,x(:,1));title('x时域波形') subplot(2,3,5);plot(t,x(:,2));title('y时域波形') subplot(2,3,6);plot(t,x(:,3));title('z时域波形')
2
0
0
0
-2
-2
-4
-0.5
-4
0
50
100
0
50
100
0
50
100
结论
蔡氏电路所代表的非线性动力学系统的确是混沌系统。该系统具有丰富的混沌动力学行 为。仿真结果印证了震荡过程中出现的双涡卷混沌奇怪吸引子。
利用系统平衡点处的线性化矩阵,可以定性分析系统的动力学行为,以便寻找能使系统 产生混沌的参数。
计算仿真
取
基于蔡氏电路的混沌仿真研究
式中微分都是相对变量!。 将 (() 式可以化为: / 2! / 2# $ / 2( ’"
通过调整系统初始值或 + 的阻值, 可以观察到蔡氏电路丰富 的非线性动态特性。 仿真中步长定为 " ? "! 秒, 运行 #"""" 次。 ( 3 /! ) ()) " 当系统初始值为 "# $ " ? ""!, + 固定为 ! ? ’#+4, "# $ ", !. $ ! # 出现双涡卷混沌吸引子, 如图 ’ 所示; 当初始值为 "# $ " 时, ! 出现如图 ) 所示的稳 ( ? ",,(#, "# $ ’ ! ? "’#(,!. $ * ? +(!)), # 定周期轨道。 当固定初始值为 "# $ " ? ""!, "# $ ", !. $ " 时, ! # 当 + $ ! ? #,)4 时, 开始出现稳定周期轨道; 当+ + 由小变大, 开始出现双涡卷混沌吸引子。 $ ! ? ’#+4 时, (*)
# ,( " )$ ( "## ! ,- #! ( "# ! ## ,( "# )$ # , ,!. . ,- $ ’ "##
#
’ "#! ) ! "# ) ’( ! + ’ "## ) & !. +
{
( ( 6 ’ <) 1) = ", #, ( = 0) 6 ", #, ( ( 6 & <) = 1) ", #,
蔡氏混沌电路的混沌现象及其simulink仿真PPT
从上图中可以看出,当电阻的值为 2.1K时,蔡氏电路的运行状态有一个渐进稳定点,并 且在稳定点附近运动。
2、蔡氏电路simulink数值仿真分析
• 2.1.2、R 1.91 K • 当 R 1.91 K 时,b=21.2098,simulink仿真结果如下:
• 当电阻的值减小到 R 1.91K 时,蔡氏电路的运动状态出现单漩涡混沌振荡。 从以上相轨图中可以观察到明显的倍周期现象。
2、蔡氏电路simulink数值仿真分析
• 2.2、调节电容 • 给定初始值:u1 0.1V , u 2 0.1V , iL 0.001 A ,固定电路参数 ,C2=100nF 、 L2=17.2mH、,此时b的值是14.51395保持不变,与以上内容不同,下面的内容 保持b的值不变,改变a的值。电容c1的值可变,simulink数值仿真可得到在不 同C1值时蔡氏电路的运行状态。
0、混沌现象及混沌电路介绍
• 0.4、混沌吸引子 • 混沌吸引子也称奇异吸引子,是反映混沌系统运动特征的产物,也是一种 混沌系统中无序稳态的运动形态,它具有复杂的拉伸、扭曲的结构。奇异吸引 子是系统总体稳定性和局部不稳定性共同作用的产物,具有自相似性,具有分 形结构。从整体上讲,系统是稳定的,即吸引之外的一切运动最终都要收敛到 吸引子上。但就局部来说,吸引子内的运动又是不稳定的,即相邻运动轨道要 相互排斥而按指数型分离。
2、蔡氏电路simulink数值仿真分析
• 2.2.1、令C1=20nF,则a=5,simulink仿真结果为:
• 有以上图可以得出,改变电容的值改变a系数同样可以得到蔡氏电路的稳定状 态,此时的运动轨迹基本上在一点处,是稳定状态。
2、蔡氏电路simulink数值仿真分析
基于MATLAB的蔡氏混沌非线性电路的仿真研究
c h a o s a n d i t s c h a r a c t e is r t i c s t h e p r o d u c t i o n me c h ni a s m a nd c o n d i t i o ns o f t h e s t u d y a n d t h e o r e t i c a l a n a l y s i s a n d M二 4 B s i mul a t i o n f r o m t wo a n g l e s
【 A b s t r a c t ] C h a o s e x i s t s i n n a t u r e i n v a r l O U S i f e l d s , i n t h e i f e l d o f m o d e m s c i e n c e a n d e n g i n e e i r n g a p p l i c a t i o n s a r e v e r y e x t e n s i v e . T h r o u g h t h e
【 摘 要】 混沌现 象存在 于 自然界各 个领域 , 在现代科 学与工程 学领域的应 用也十分广泛 。 通过对混沌现 象及其特征 , 产生的机理和条件的 研 究. 并从理论 分析 与 M A T L A B仿真两个角度 分别研 究了蔡 氏混沌电路 的演化过程 和混沌电路 状态 . 进而构造 出符合三 阶混沌 系统的非线性 电路 和数 学模 型。研 究结果表 明, 蔡 氏混沌非线性 电路 中元件参数影响 电路混沌状 态的演化 。 仿真数据与理论分析 结论一致 , 随着线性 电阻阻 值 的减小电路状 态大致 经历 : 稳定 态。 周期 态, 混沌 态。 负阻尼振 荡态。
蔡氏电路的混沌仿真研究
蔡氏电路的混沌仿真研究摘要:蔡氏电路是能产生混沌现象的典型且最简单三阶自治电路。
该文通过对该非线性电路建立数学模型,解释了产生混沌现象的原因,由李雅普诺夫指数分析了系统的动力学行为,从理论分析和Matlab仿真两个方面分别进行了研究。
结果表明,在一定条件下蔡氏电路能够产生双涡旋混沌吸引子,混沌行为复杂,从而理论分析在仿真实验中得到了证实。
关键词:蔡氏电路;李雅普诺夫指数;混沌1引言物理、化学、生物学,以及社会讲科学等等各个学科领域中都有混沌现象。
作为一种普遍存在的非线性现象,今年来许多专家和学者对非线性电路的混沌行为进行了广泛研究[1-6],其中最典型的是由美国Berkeley大学的Leon.O.Chua提出的蔡氏电路(Chua’sCircuit),它是能产生混沌行为的最小、最简单的三阶自治电路[7],其非线性动力学行为复杂丰富,这使得该混沌电路有可能在更广的领域得到应用,如混沌保密通信技术,传感器应用,混沌扩频通信技术等。
基于这些特点,对蔡氏电路的讨论和研究也有较高的实践意义。
2蔡氏电路模型一般自治动力系统产生混沌现象需要具备一定的条件:系统至少有三个状态变量,并且存在一定的非线性环节[8]。
蔡氏电路使用三个储能元件(电感L、两个电容C1和C2)和一个非线性电阻NR,电路如图1所示。
由Kirchhoff电流定律(KCL)和Kirchhoff电压定律(KVL),可推出图1电路的状态方程为:(1)其中,VC1为电容C1两端的电压,VC2为电容C2两端的电压,iL为通过电感L的电流,i(VC1)为非线性电阻NR的伏安特性函数:(2)非线性电阻NR是分段线性的蔡氏二极管,是核心元件,它由两个非线性电阻RN1与RN2并联构成,每个非线性电阻又分别由1个运算放大器和3个电阻组成,两个非线性电阻及其伏安特性如图2所示。
当适当选取电阻的参数值,使E2>>E1,同时也使E2远大于蔡氏电路正常工作时|VC1|的变化范围,则在电路工作范围内,RN2是一个线性负电阻,RN1与RN2并联后可实现非线性电阻NR的伏安特性,其中,,,。
蔡氏电路matlab仿真报告
蔡氏电路仿真分析学院:电气工程学院班级:硕6036姓名:张东海学号:3116312053目录1.基本分析 (2)2.MATLAB仿真 (5)蔡氏电路蔡氏电路是著名的非线性混沌电路,结构简单,但却出现双涡卷奇怪吸引子和及其丰富的混沌动力学行为。
1.基本分析蔡氏电路是一个典型的混沌电路,最早由著名华裔科学家、美国加州大学蔡少堂教授设计。
他证明了在满足以下条件时能够产生混沌现象。
(1) 非线性元件不少于1 个; (2) 线性有效电阻不少于1 个; (3) 储能元件不少于3 个。
根据以上条件,在图1.1中给出蔡氏电路方框图。
图中R 为线性有效电阻,L 、C 1、C 2为储能元件,R N 为非线性元件。
图2.2给出非线性电阻伏安特性曲线。
图1.1 蔡氏电路方框图图1.2 非线性电阻伏安特性曲线对于图2.1提出的蔡氏电路,其状态方程推导如下12112122121()()1()(1)C C C C C C C L LC du C u u g u dt R du C u u i dt R di L u dt ⎧=--⎪⎪⎪=-+⎨⎪⎪=-⎪⎩ 其中函数1()C g u 是分段线性函数,其形式为:-11111()()()2C b C a b C C g u G u G G u E u E =+-⨯+--作变量代换:1222221,,,,1C C Lu u i x y z E E EGC C tGC C LG G R ταβ=======式(1)可以写为如下形式[]()(2)dxy x f x d dyx y zd dzy d αττβτ⎧=--⎪⎪⎪=--⎨⎪⎪=-⎪⎩式(2)即是蔡氏电路的标准方程形式。
其中()f x 可表示为如下形式1010101(),1(),1(),1m x m m x f x m x x m x m m x +-≥⎧⎪=≤⎨⎪--≤-⎩其中01,a b m G E m G E ==蔡氏电路的三个状态方程式在状态空间的三个子空间为101={(,,)| 1}={(,,)| 1}={(,,)| 1}D x y z x D x y z x D x y z x -≥≤≤- 在状态空间的三个子空间内分别具有唯一平衡点如下1011(,0,),(0,0,0),(,0,).P k k D Q D P k k D +--=-∈=∈=-∈其中,1011m m k m -=+ 在P +、1P -和Q 处的雅可比矩阵分别为:1(1)011100P P m J J ααβ+--+⎛⎫ ⎪==- ⎪ ⎪-⎝⎭,0(1)011100Q m J ααβ-+⎛⎫ ⎪=- ⎪ ⎪-⎝⎭取10α=,15β=,0 1.2m =-,10.6m =-,则在P +、1P -处的特征值为一个实数值和一对共轭复数值。
MATLAB电路仿真报告
MATLAB电路仿真实验报告一、实验目的:1、加深对直流电路的节点电压法和网孔电流法的理解。
2、学习MATLAB的矩阵运算方法。
二、实验示例1、节点分析示例一电路如图所示,求节点电压V1、V2和V3。
MATLAB求解:Y = [ 0.15 -0.1 -0.05;-0.1 0.145 -0.025;-0.05 -0.025 0.075 ];I = [ 5;0;2 ];fprintf('½ÚµãV1,V2ºÍV3: \n')v = inv(Y)*I仿真结果:节点V1,V2和V3:v =404.2857350.0000412.85712、回路分析示例二使用解析分析得到通过电阻R B的电流。
另外,求10V电压源提供的功率。
MATLAB求解:Z = [40 -10 -30;-10 30 -5;-30 -5 65];V = [10 0 0]';I = inv(Z)*V;IRB = I(3)-I(2);fprintf('the current through R is %8.3f Amps \n',IRB)PS = I(1)*10;fprintf('the power bupplied by 10V source is %8.4f watts \n',PS)仿真结果:the current through R is 0.037 Ampsthe power bupplied by 10V source is 4.7531 watts三、实验内容:1、电阻电路的计算如图,已知:R1=2,R2=6,R3=12,R4=8,R5=12,R6=4,R7=2.(1) 如Us=10V,求i3,u4,u7;(2) 如U4=4V,求Us,i3,i7.(1)Z = [20 -12 0;-12 32 -12;0 -12 18];V = [10 0 0]';I = inv(Z)*V;i3 = I(1)-I(2);u4 = 8*I(2);u7 = 2*I(3);fprintf('i3=%f \n',i3)fprintf('u4=%f \n',u4)fprintf('u7=%f \n',u7)仿真结果:i3=0.357143u4=2.857143u7=0.476190(2)Z = [0 8 0;-12 32 -12;0 -12 18];V = [4 0 0]';I = inv(Z)*V;Us = 20*I(1)-12*I(2);i3 = I(1)-I(2);i7 = I(3);fprintf('Us=%f \n',Us)fprintf('i3=%f \n',i3)fprintf('i7=%f \n',i7)仿真结果:Us=14.000000i3=0.500000i7=0.3333332、求解电路里的电压,例如V1,V2,……V5.Y = [1 -1 2 -2 0;0 5 -13 8 0;2 0 4 -11 0;176 -5 5 -196 0;0 0 0 0 1];I = [0 -200 -120 0 24]';V = inv(Y)*I;fprintf('V1=%fV\nV2=%fV\nV3=%fV\nV4=%fV\nV5=%fV\n',V(1),V(2), V(3),V(4),V(5))仿真结果:V1=117.479167VV2=299.770833VV3=193.937500VV4=102.791667VV5=24.000000V3、如图,已知R1=R2=R3=4,R4=2,控制常数k1=0.5,k2=4,is=2,求i1和i2.Z = [1 0 0 0;-4 16 -8 -4;0 0 1 0.5;0 -8 4 6];V = [2 0 0 0]';I = inv(Z)*V;i1 = I(2)-I(3);i2 = I(4);fprintf('i1=%f V\ni2=%f V\n',i1,i2)仿真结果:i1=1.000000 Vi2=1.000000 V四、实验总结1、仿真前需进行准确的计算,列出节点或回路表达式方可列出矩阵惊醒计算。
蔡氏电路报告
非线性电路课程报告电气工程学院蔡氏混沌电路的MATLAB仿真摘要:混沌是非线性系统中的常见现象。
本文应用MATLAB软件对蔡氏电路进行了仿真分析,并对仿真结果作了讨论,指出了这种研究方法的应用前景。
关键词:蔡氏电路混沌动力学吸引子系统仿真1.引言作为一种普遍存在的非线性现象, 混沌的发现对科学的发展具有深远的影响。
混沌行为是确定性因素导致的类似随机运动的行为,即:一个可由确定性方程描述的非线性系统,其长期行为表现为明显的随机性和不可预测性, 我们就认为该系统存在混沌现象.混沌具有三个特点:随机性;遍历性;规律性。
混沌有一个很重要的性质:系统行为对初始条件非常敏感。
混沌理论是架起确定论和概率论两大理论体系之间的桥梁,与相对论、量子力学一起被称为20世纪物理学的三大革命。
近年来,混沌现象及其应用成为一个研究热点,学者们对混沌在通讯工程、电子工程、生物工程、经济学等领域中的应用进行着广泛的研究。
许多学者通过非线性电路对混沌行为进行了广泛地研究, 其中最典型的是蔡氏电路,它是能产生混沌行为的最小、最简单的三阶自治电路。
在电路与系统领域,由于蔡氏电路的提出,对混沌理论及其应用的研究也变得十分活跃。
蔡氏混沌电路是一个物理结构及数学模型都相对简单的混沌系统,然而它也是一个典型的混沌电路,对蔡氏电路的研究有助于理解混沌的演化过程及其了解混沌相关特性。
由于混沌动力学系统的复杂性,绝大多数混沌动力学系统难以用已知的函数表示其通解,所以通过数值计算对混沌行为的时空演化进行描述是研究混沌的一种重要方法。
MATLAB软件是以矩阵计算为基础的数值计算、模型仿真的优秀数学工具。
借助MATLAB软件强大的数值计算及仿真能力,使得对许多复杂的混沌系统的研究变得相对容易和直观。
本文对其进行深入的数学分析;在MATIAB环境下,建立了该电路的仿真模型,通过改变电路中的线性电阻值和系统状态变量初始值,对其非线性动力学行为进行仿真分析。
蔡氏电路混沌现象的仿真
目录引言 (1)1 混沌学概述 (2) (2)1.2 混沌的含义 (3)2 混沌理论 (4) (4)2.2奇怪吸引子与分形 (5)2.3研究混沌的主要方法 (7)——分岔 (8)3蔡氏电路模型及MALAB仿真 (9)3.1 电路模型 (9)3.2 蔡氏电路数学模型及其分析 (12)3.3蔡氏电路仿真研究 (13)3.4 实验结论 (18)结束语 (19)致谢 (20)附录A 英文文献原文 (21)附录B 英文文献翻译 (27)附录C 仿真源代码 (30)蔡氏电路混沌现象的仿真[摘要]本文从理论分析与Matlab仿真两个角度分别研究非线性电路中的混沌现象。
简要介绍了混沌及其特征,混沌产生的机理和条件,以及非线性电路分析仿真的算法。
在分析与仿真蔡氏电路的基础上,构造一个变形蔡氏电路模型,对其电路的非线性元件利用分段线性化方法处理,用MATLAB编程语言对该非线性微分方程进行分析与仿真该变形蔡氏电路通向混沌的道路。
结果表明该变形蔡氏电路也和蔡氏电路一样,在不同的参数下存在有丰富的分岔和混沌现象,并在特定参数下存在所谓的“双涡卷”混沌吸引子。
混沌理论运用于各种学科,如通信的保密通信;利用分形研究物质结构及性能;经济混沌和经济波动的非线性动力学理论等。
[关键字]:混沌;MATLAB仿真分析;蔡氏电路模型;Simulation of Chaos in Chua’s Curcuit[Abstract]: The chaos phenomenon in nonlinear circuit is studied by MATLAB simulation and theoretical analysis in the paper. This paper introduces simply chaos and its characteristic, the chaos output mechanism and condition, and the calculable method of analytic simulation of nonlinear circuit. In the foundation of the analysis and simulation of Chua’s circuit, a modified Chua’s circuit model is constructed. Its nonlinear component is processed using the way of the segment lining. Then the language of MATLAB are used to analyze the nonlinear differential equation and to si mulate the way of this modified Chua’s circuit to the chaos. The result is that the modified Chua’s circuit exists abundantly bifurcation and chaos phenomenon under the different parameter, and exists so-called" double scroll" chaos attractor under the par ticular parameter as soon as Chua’s one.[Key words]: Chaos ; Analysis of MATLAB simulation.;Chua’s circuit model ;引言混沌研究最先起源于Lorenz研究天气预报时用到的三个动力学方程.后来的研究表明,无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨,但实际是非周期有序运动,即混沌现象.现在混沌研究涉及的领域包括数学、物理学、生物学、化学、天文学、经济学及工程技术的众多学科,并对这些学科的发展产生了深远影响.随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蔡氏电路仿真分析
学院:电气工程学院
班级:硕6036
姓名:张东海
学号:53
目录
1.基本分析 ............................................................... 错误!未定义书签。
仿真 (5)
蔡氏电路
蔡氏电路是著名的非线性混沌电路,结构简单,但却出现双涡卷奇怪吸引子和及其丰富的混沌动力学行为。
1.基本分析
蔡氏电路是一个典型的混沌电路,最早由著名华裔科学家、美国加州大学蔡少堂教授设计。
他证明了在满足以下条件时能够产生混沌现象。
(1) 非线性元件不少于1 个; (2) 线性有效电阻不少于1 个; (3) 储能元件不少于3 个。
根据以上条件,在图中给出蔡氏电路方框图。
图中R 为线性有效电阻,L 、C 1、C 2为储能元件,R N 为非线性元件。
图给出非线性电阻伏安特性曲线。
图 蔡氏电路方框图
图 非线性电阻伏安特性曲线
对于图提出的蔡氏电路,其状态方程推导如下
121121221
2
1
()()1
()(1)C C C C C C C L L
C du C u u g u dt R du C u u i dt R di L u dt ⎧=--⎪⎪
⎪=-+⎨⎪⎪=-⎪⎩ 其中函数1()C g u 是分段线性函数,其形式为:
11111
()()()2
C b C a b C C g u G u G G u E u E =+-⨯+--
作变量代换:
1
2
22221,,,,1C C L
u u i x y z E E EG
C C tG
C C LG G R ταβ=
=
=
====
式(1)可以写为如下形式
[]()(2)dx
y x f x d dy
x y z
d dz
y d αττβτ⎧=--⎪⎪⎪=--⎨⎪⎪=-⎪⎩
式(2)即是蔡氏电路的标准方程形式。
其中()f x 可表示为如下形式
10101
01(),1(),1(),1
m x m m x f x m x x m x m m x +-≥⎧⎪
=≤⎨⎪--≤-⎩
其中
01,a b m G E m G E ==
蔡氏电路的三个状态方程式在状态空间的三个子空间为
101={(,,)| 1}={(,,)| 1}={(,,)| 1}
D x y z x D x y z x D x y z x -≥≤≤- 在状态空间的三个子空间内分别具有唯一平衡点如下
1011(,0,),(0,0,0),(,0,).
P k k D Q D P k k D +--=-∈=∈=-∈
其中,
10
11
m m k m -=
+ 在P +、1P -和Q 处的雅可比矩阵分别为:
1(1)011100P P m J J ααβ+-
-+⎛⎫ ⎪==- ⎪ ⎪-⎝⎭,0(1)011100Q m J ααβ-+⎛⎫ ⎪=- ⎪ ⎪-⎝⎭
取10α=,15β=,0 1.2m =-,10.6m =-,则在P +、1P -处的特征值为
一个实数值和一对共轭复数值。
其中的一个实数值为
-5.3938P λ=
而一对共轭复数值为
j 0.1969 j 3.3294P P σω+=±
可见0P λ<,而0P σ>。
在Q 处的特征值也为一个实数值和一对共轭复数值。
其中的一个实数值为
3.1201P λ=
而一对共轭复数值为
j -1.0601 j2.9140P P σω+=±
可见0P λ>,而0P σ<。
因此,所有的平衡点P +、1P -和Q 均为鞍焦点。
仿真
在对蔡氏电路进行建模过程中,要用到加法器、积分器、增益模块、常数
模块等单元,这些可以方便地从 Simulink 标准库模块中直接提取。
除此之外,还需用到显示 x 和 y 信号相图的平面图形显示器(XY Graph )模块和示波器模块;最后,把模型顺序连接起来,得到用基本模块元素建立的数学仿真模型,如下图所示。
取0.1,0.1,0.1x y z ===为初值,作为系统的初始值,在t=[0,300]的时间范围内求解系统的运动轨迹,其投影相图及时域波形如下:
图 x-y-z 立体相图
图x时域波形
图y时域波形
图z时域波形图
图x-y平面相图
图y-z平面相图
图x-z平面相图
从仿真结果图可以,蔡氏电路的正规化状态方程描述了一个连续时间系统,这个系统在所给参数和初值的条件下可以产生双涡卷吸引子的混沌现象。
改变参数和初值,还可以产生其它很多有趣的混沌现象。
利用系统平衡点处的线性化矩阵,可以定性分析系统的动力学行为,以便寻找能使系统产生混沌的参数。