平面直角坐标系与一次函数、反比例函数

合集下载

反比例函数的图像和性质的综合应用

反比例函数的图像和性质的综合应用
函数的解析式。
解析
根据题意,将点 A(-2 ,3)和点 B(3,-2 )分别代入两个函数中 ,得到关于 m、k、b 的方程组,解方程组求 得 m、k、b 的值,即 可得到两个函数的解析
式。
05
反比例函数在几何图形中应用
相似三角形判定定理推广
预备定理
平行于三角形的一边,并且和 其他两边相交的线段,所截得 的三角形的三边与原三角形三 边对应成比例。
反比例函数图像在平面直角坐标系中 ,沿y轴方向平移,函数表达式不变, 图像沿y轴平移。
伸缩变换规律
01
当k>0时,图像分别位于第一、三象限,每一个象限内,从 左往右,y随x的增大而减小;
02
当k<0时,图像分别位于第二、四象限,每一个象限内,从 左往右,y随x的增大而增大。
03
k>0时,函数在x<0上同为减函数、在x>0上同为减函数; k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3
平行四边形面积问题
通过已知相邻两边及其夹角求解面积,或已知面 积和一边长度及夹角求解另一边长度,应用反比 例函数进行求解。
速度、时间、距离关系分析
匀速直线运动问题
通过已知速度和时间求解距离,或已 知距离和时间求解速度,利用反比例 关系建立方程。
变速直线运动问题
曲线运动问题
通过已知速度和方向的变化规律,求 解某时刻的速度或某段时间内的平均 速度及运动轨迹,结合反比例函数进 行综合分析。
解析
根据题意,将点(-2, -1)代入两个函数中, 得到关于 k、m、n 的 方程组,解方程组求得 k、m、n 的值,即可 得到两个函数的解析式 。再将 x = 3 代入两个 函数中,得到关于 k、 m、n 的另一个方程, 与前面的方程组联立求 解,即可得到最终的解

中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)

中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)

中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)责编:常春芳【考纲要求】⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.【知识网络】【考点梳理】考点一、平面直角坐标系1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点点P(x,y)在第一象限0,0>>⇔y x ;点P(x,y)在第二象限0,0><⇔y x ; 点P(x,y)在第三象限0,0<<⇔y x ; 点P(x,y)在第四象限0,0<>⇔y x ;点P(x,y)在x 轴上0=⇔y ,x 为任意实数;点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0). 3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等;点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数. 4.和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同; 位于平行于y 轴的直线上的各点的横坐标相同. 5.关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ′关于x 轴对称⇔横坐标相等,纵坐标互为相反数; 点P 与点p ′关于y 轴对称⇔纵坐标相等,横坐标互为相反数; 点P 与点p ′关于原点对称⇔横、纵坐标均互为相反数. 6.点P(x,y)到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x +.要点诠释:(1)注意:x 轴和y 轴上的点,不属于任何象限; (2)平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标. 考点二、函数 1.函数的概念设在某个变化过程中有两个变量x 、y,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它相对应,那么就说y 是x 的函数,x 叫做自变量.2.自变量的取值范围对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.3.表示方法⑴解析法;⑵列表法;⑶图象法. 4.画函数图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来. 要点诠释:(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量; (2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.考点三、几种基本函数(定义→图象→性质)1.正比例函数及其图象性质(1)正比例函数:如果y=kx(k 是常数,k ≠0),那么y 叫做x 的正比例函数. (2)正比例函数y=kx ( k ≠0)的图象: 过(0,0),(1,K )两点的一条直线.(3)正比例函数y=kx (k ≠0)的性质①当k >0时,图象经过第一、三象限,y 随x 的增大而增大; ②当k <0时,图象经过第二、四象限,y 随x 的增大而减小 . 2.一次函数及其图象性质(1)一次函数:如果y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数. (2)一次函数y=kx+b (k ≠0)的图象(3)一次函数y=kx+b (k ≠0)的图象的性质一次函数y =kx +b 的图象是经过(0,b )点和)0,(kb点的一条直线.①当k>0时,y 随x 的增大而增大; ②当k<0时,y 随x 的增大而减小.要点诠释:(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;(2)确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k.确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b. 解这类问题的一般方法是待定系数法.3.反比例函数及其图象性质 (1)定义:一般地,形如xky =(k 为常数,o k ≠)的函数称为反比例函数. 三种形式:ky x=(k ≠0)或kx y =1-(k ≠0)或xy=k(k ≠0). (2)反比例函数解析式的特征:①等号左边是函数y ,等号右边是一个分式.分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1; ②比例系数0≠k ;③自变量x 的取值为一切非零实数; ④函数y 的取值是一切非零实数.(3)反比例函数的图象①图象的画法:描点法列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数); 描点(由小到大的顺序); 连线(从左到右光滑的曲线).②反比例函数的图象是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.③反比例函数的图象是轴对称图形(对称轴是x y =和x y -=)和中心对称图形(对称中心是坐标原点). ④反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意点引x 轴、y 轴的垂线,所得矩形面积为k .(4)反比例函数性质:反比例函数 )0(≠=k xky k 的符号k>0k<0图像性质①x的取值范围是x≠0,y的取值范围是y≠0;②当k>0时,函数图像的两个分支分别在第一、三象限.在每个象限内,y 随x 的增大而减小.①x的取值范围是x≠0,y的取值范围是y≠0;②当k<0时,函数图像的两个分支分别在第二、四象限.在每个象限内,y随x 的增大而增大.(5)反比例函数解析式的确定:利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出k)(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky=中的两个变量必成反比例关系. 要点诠释:(1)用待定系数法求解析式(列方程[组]求解);(2)利用一次(正比例)函数、反比例函数的图象求不等式的解集.【典型例题】类型一、坐标平面有关的计算1.已知点A(a,-5),B(8,b),根据下列要求确定a,b的值.(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点都在一、三象限的角平分线上.【思路点拨】(1)关于y轴对称,y不变,x变为相反数;(2)关于原点对称,x变为相反数,y变为相反数;(3)AB∥x轴,即两点的纵坐标不变即可;(4)在一、三象限两坐标轴夹角的平分线上的点的横纵坐标相等,即可得出a,b.【答案与解析】(1)点A(a,-5),B(8,b)两点关于y轴对称,则a=-8且b=-5.(2)点A(a,-5),B(8,b)两点关于原点对称,则a=-8且b=5.(3)AB∥x轴,则a≠8且b=-5.(4)A,B两点都在一、三象限的角平分线上,则a=-5且b=8.【总结升华】运用对称点的坐标之间的关系是解答本题的关键.在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.举一反三:【变式】已知点A 的坐标为(-2,-1).(1)如果B 为x 轴上一点,且10AB =,求B 点的坐标;(2)如果C 为y 轴上的一点,并且C 到原点的距离为3,求线段AC 的长; (3)如果D 为函数y =2x -1图象上一点,5AD =,求D 点的坐标. 【答案】(1)设B (x ,0),由勾股定理得22(2)(01)10AB x =+++=.解得x 1=-5,x 2=1. 经检验x 1=-5,x 2=1均为原方程的解.∴ B 点的坐标为(-5,0)或(1,0).(2)设C (0,y ),∵ OC =3,∴ C 点的坐标为(0,3)或(0,-3).∴ 由勾股定理得22(2)(31)25AC =-++=;或22AC =.(3)设D (x ,2x -1),AD =5,由勾股定理得22(2)(211)5x x ++-+=.解得115x =,21x =-. 经检验,115x =,21x =-均为原方程的解. ∴ D 点的坐标为(15,35-)或(-1,-3).2.已知某一函数图象如图所示.(1)求自变量x 的取值范围和函数y 的取值范围;(2)求当x =0时,y 的对应值; (3)求当y =0时,x 的对应值; (4)当x 为何值时,函数值最大; (5)当x 为何值时,函数值最小;(6)当y 随x 的增大而增大时,求x 的取值范围; (7)当y 随x 的增大而减小时,求x 的取值范围. 【思路点拨】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 【答案与解析】(1)x 的取值范围是-4≤x ≤4,y 的取值范围是-2≤y ≤4; (2)当x =0时,y =3;(3)当y =0时,x =-3或-1或4;(4)当x=1时,y的最大值为4;(5)当x=-2时,y的最小值为-2;(6)当-2≤x≤1时,y随x的增大而增大;(7)当-4≤x≤-2或1≤x≤4时,y随x的增大而减小.【总结升华】本题主要是培养学生的识图能力.举一反三:【变式1】下图是韩老师早晨出门散步时,离家的距离y与时间x的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( )【答案】理解题意,读图获取信息是关键,由图可知某段时间内韩老师离家距离是常数,联想到韩老师是在家为圆心的弧上散步,分析四个选项知D项符合题意.答案:D【高清课程名称:平面直角坐标系与一次函数高清ID号:406069关联的位置名称(播放点名称):例1】【变式2】下列图形中的曲线不表示y是x的函数的是( ).【答案】C.类型二、一次函数3.(2015•盘锦)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a= ,b= ;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?【思路点拨】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.【答案与解析】解:(1)由y1图象上点(10,480),得到10人的费用为480元,∴a=×10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,800+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.【总结升华】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.举一反三:【高清课程名称:平面直角坐标系与一次函数高清ID号:406069关联的位置名称(播放点名称):例6】【变式1】(1)直线y=2x+1向下平移2个单位,再向右平移2个单位后的直线的解析式是_____ ___.(2)直线y=2x+1关于x轴对称的直线的解析式是___ _____;直线y=2x+l关于y轴对称的直线的解析式是___ ______;直线y=2x+1关于原点对称的直线的解析式是____ _____.(3)如图所示,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB平移后经过(3,4)点,则平移后的直线的解析式是__ ______.【答案】(1)y=2x-5;(2)y=-2x-1,y=-2x+1,y=2x-1;(3)y=2x-2.【变式2】某地夏天旱情严重.该地10号、15号的人日均用水量的变化情况如图所示.若该地10号、15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A.23 B.24 C.25 D.26【答案】解析:设图中直线解析式为y =kx+b , 将(10,18),(15,15)代入解析式得1018,1515,k b k b +=⎧⎨+=⎩解得 3,524,k b ⎧=-⎪⎨⎪=⎩∴3245y x =-+.由题意知,324105x -+<,解得1233x >,∴送水号数应为24. 答案:B类型三、反比例函数4.(2015•安顺)如图,在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与反比例函数m y x=的图象交于A (2,3)、B (﹣3,n )两点.(1)求一次函数和反比例函数的解析式;(2)若P 是y 轴上一点,且满足△PAB 的面积是5,直接写出OP 的长.【思路点拨】(1)用待定系数法即可确定出反比例函数解析式;再将B 坐标代入反比例解析式中求出n 的值,确定出B 坐标,根据A 与B 坐标即可确定出一次函数解析式;(2)如图所示,对于一次函数解析式,令x=0求出y 的值,确定出C 坐标,得到OC 的长,三角形ABP 面积由三角形ACP 面积与三角形BCP 面积之和求出,由已知的面积求出PC 的长,即可求出OP 的长. 【答案与解析】解:(1)∵反比例函数my x=的图象经过点A (2,3), ∴m=6.∴反比例函数的解析式是y=,∵B 点(﹣3,n )在反比例函数y=的图象上,∴n=﹣2,∴B (﹣3,﹣2),∵一次函数y=kx+b 的图象经过A (2,3)、B (﹣3,﹣2)两点, ∴,解得:,∴一次函数的解析式是y=x+1;(2)对于一次函数y=x+1,令x=0求出y=1,即C (0,1),OC=1, 根据题意得:S △ABP =PC ×2+PC ×3=5, 解得:PC=2,则OP=OC+CP=1+2=3或OP=CP ﹣OC=2﹣1=1.【总结升华】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键. 举一反三:【变式】已知正比例函数y kx =(k 为常数,0k ≠)的图象与反比例函数5ky x-=(k 为常数,0k ≠)的图象有一个交点的横坐标是2. (1)求两个函数图象的交点坐标;(2)若点11()A x y ,,22()B x y ,是反比例函数5ky x-=图象上的两点,且12x x <,试比较12y y ,的大小. 【答案】(1)由题意,得522kk -=, 解得1k =.所以正比例函数的表达式为y x =,反比例函数的表达式为4y x=. 解4x x=,得2x =±.由y x =,得2y =±.所以两函数图象交点的坐标为(2,2),(22)--,.(2)因为反比例函数4y x=的图象分别在第一、三象限内, y 的值随x 值的增大而减小,所以当120x x <<时,12y y >. 当120x x <<时,12y y >.当120x x <<时,因为1140y x =<,2240y x =>,所以12y y <.类型四、函数综合应用5.如图,直线b x y +-=(b >0)与双曲线xky =(k >0)在第一象限的一支相交于A 、B 两点,与坐标轴交于C 、D 两点,P 是双曲线上一点,且PD PO =.(1)试用k 、b 表示C 、P 两点的坐标;(2)若△POD 的面积等于1,试求双曲线在第一象限的一支的函数解析式; (3)若△OAB 的面积等于34,试求△COA 与△BOD 的面积之和.【思路点拨】(1)根据直线的解析式求得点D 的坐标,再根据等腰三角形的性质即可求得点P 的横坐标,进而根据双曲线的解析式求得点P 的纵坐标;(2)①要求双曲线的解析式,只需求得xy 值,显然根据△POD 的面积等于1,即可求解;②由①中的解析式可以进一步求得点B 的纵坐标,从而求得直线的解析式,然后求得点B 的坐标,即可计算△COA 与△BOD 的面积之和. 【答案与解析】(1)C (0,b ),D (b ,0)∵PO =PD∴22b OD x P ==,b ky P 2=∴P (2b ,bk2)(2)∵1=∆POD S ,有1221=⋅⋅bkb ,化简得:k =1∴xy 1=(x >0)(3)设A (1x ,1y ),B (2x ,2y ),由AOB COD BOD COA S S S S ∆∆∆∆-=+得:34212121221-=+b by bx ,又b x y +-=22得38)(221-=+-+b b x b bx , 即38)(12=-x x b 得,再由⎪⎩⎪⎨⎧=+-=x y bx y 1得012=+-bx x , 从而b x x =+21,121=x x ,从而推出0)12)(4)(4(2=++-b b b ,所以4=b . 故348-=+∆∆BOD COA S S【总结升华】利用面积建立方程求解析式中的字母参数是常用方法.求两函数图像的交点坐标,即解由它们的解析式组成的方程组. 举一反三:【变式1】如图所示是一次函数y 1=kx+b 和反比例函数2my x=的图象,观察图象写出y 1>y 2时x 的取值范围________.【答案】利用图象比较函数值大小时,要看对于同一个自变量的取值,哪个函数图象在上面,哪个函数的函数值就大,当y 1>y 2时,-2<x <0或x >3. 答案:-2<x <0或x >3 【变式2】已知函数232(21)my m x -=-,m 为何值时,(1)y 是x 的正比例函数,且y 随x 的增大而增大? (2)函数的图象是位于第二、四象限的双曲线? 【答案】(1)要符合题意,m 需满足2210,32 1.m m ->⎧⎨-=⎩ 解得1,21.m m ⎧>⎪⎨⎪=±⎩ ∴ m =1.(2)欲符合题意,m 需满足2210,32 1.m m -<⎧⎨-=-⎩ 解得1,23.3m m ⎧<⎪⎪⎨⎪=±⎪⎩∴ 33m =-.6.已知直线11:n n l y x n n+=-+(n 是不为零的自然数).当n =1时,直线1:21l y x =-+与x 轴和y 轴分别交于点A 1和B 1,设△A 1OB 1(其中O 是平面直角坐标系的原点)的面积为S 1;当n =2时,直线231:22l y x =-+与x 轴和y 轴分别交于点A 2和B 2,设△A 2OB 2的面积为S 2,…,依此类推,直线n l 与x轴和y 轴分别交于点A n 和B n ,设△A n OB n 的面积为S n .(1)求11A OB △的面积S 1;(2)求S 1+S 2+S 3+…+S 6的面积.【思路点拨】此题是一道规律探索性题目,先根据函数解析式的通项公式得出每一个函数解析式,画出图象,总结出规律,便可解答. 【答案与解析】解:直线1:21l y x =-+,∴ 11OB =,112OA =.(1)111111112224S OB OA =⨯⨯=⨯⨯=. (2)由11n y x n n+=-+得,A 12123611A (0),(0,).n+1n11,,n+1n 1111,2n n+12(1)11,,212223111121222323426711111()21223346711(1)273.7n n n n n n OB B OA OB S n n S S S S S S ===⨯⨯=+==⨯⨯⨯⨯++++=++++⨯⨯⨯⨯⨯⨯⨯⨯=++++⨯⨯⨯⨯=-=△,【总结升华】借助直觉思维或对问题的整体把握运用归纳、概括、推理等思想获得合理的猜测.。

《平面直角坐标系与函数》复习建议

《平面直角坐标系与函数》复习建议

《平面直角坐标系与函数》复习建议胡鹏程一、与函数学习有关的基本思想方法函数体系基本架构在学习“函数”的过程中,支撑研究函数知识体系的桥梁为“描点法”。

在初中阶段,无论学习一次函数、反比例函数还是二次函数,“描点法”都是研究函数性质、应用等的核心方法。

只有通过“描点法”才能将抽象的函数转化为直观的图象,进而方便地研究各类函数及其性质,并且在这一过程中初步地体现了一个重要的数学思想——数形结合的数学思想。

二、复习建议1. 认真“省指导意见”及课程标准,明确复习方向和目标,制定课时计划;2. 设计复习课模式,避免与新课雷同,调动学生积极性。

可利用前测了解学生掌握水平,利用课堂重点讲解突破,再利用后测进一步巩固落实。

3.注重解题后的总结反思,特别是解题方法和解题经验的总结,达到举一反三的目的,提高复习课的效率。

4.重视学生自己操作探究新函数的图象和性质,积累研究函数性质的一般方法和经验。

5.注重对数学思想方法的渗透和复习,特别是函数与方程、数形结合、分类与整合思想在解决函数问题中的应用,提高学生的解题能力。

(一) 平面直角坐标系考试要求1.了解有序数对的概念;知道用有序数对可以表示物体的位置;理解平面直角坐标系的有关概念;会选择合适的直角坐标系的写出给定正方形的顶点坐标;了解可以用坐标描述一个简单图形2.能画出平面直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置或由点的位置写出它的坐标;能在实际问题中建立适当的直角坐标系,描述物体的位置;能用方位角和距离描述两个物体的相对位置3.在平面直角坐标系中,知道已知顶点坐标的多边形经过轴对称(对称轴为坐标轴)、平移(沿坐标轴方向)、中心对称(对称中心为原点)、位似(位似中心为原点)后的对应顶点坐标之间的关系;了解多边形平移(沿坐标轴方向)后的图形与原图形的平移关系,并了解图形顶点坐标的变化;了解将多边形的顶点坐标(有一个顶点为原点、有一条边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形位似4.在平面直角坐标系中,能写出已知顶点坐标的多边形经过轴对称(对称轴为坐标轴)、平移(沿坐标轴方向)、中心对称(对称中心为原点)、位似(位似中心为原点)后的图形的顶点坐标5.运用坐标与图形运动的有关内容解决有关问题习题举例1.已知点M (3a -8,a -1).(1) 若点M 在y 轴上,则点M 的坐标为 ___________________;(2) 若点M 在第二、四象限角平分线上,则点M 的坐标为 ___________________;(3) 若点M 在第二象限,并且a 为整数,则点M 的坐标为 ___________________;2. 如果点)32,(+x x 到x 轴的距离为5,则这点的坐标是 .3. 已知点A 的坐标为(-2,-1).(1) 如果B 为y 轴上一点,并且B 到原点的距离为3,求线段AB 的长;(2) 如果C 为x 轴上一点,且AC=10,求点C 的坐标;(3) 如果D 为函数y=2x-1图像上一点,AD=5,求点D 的坐标.4. 点A (–1 ,2) 先向___平移___个单位长度,再向__平移___个单位长度,可得到点 A 2 ( 3 ,–2)5. 在数轴上,用有序数对表示点的平移,若(2,1)得到的数为1,(1,-2)得到的数为3,则(3,5)得到的数为______.6. 在平面直角坐标系中,点A 的坐标是(2,﹣3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是(______ ,_____).7. 已知A 点的坐标为(-1,3),将A 点绕坐标原点顺时针90°,则点A 的对应点的坐标为________.8.在平面直角坐标系中,点P (﹣2,x 2+1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9. 如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是 .10. 观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B 点,则表示B 点位置的数对是: .(二)函数及其图象考试要求1.了解常量、变量的意义;了解函数的概念和三种表示方法;会用描点法画出函数的图象;会求函数的值2.能举出函数的实例;能用适当的表示法描述简单实际问题中变量之间的关系,并能确定函数自变量的取值范围;能结合图象对简单实际问题中的函数关系进行分析;能用函数的有关知识解决简单的实际问题3.运用函数的有关内容,探索有关问题中的数量关系和变化规律,并结合对函数关系的分析,对变量之间的对应关系和变化情况进行初步探究习题举例1. 矩形的一边长为6,矩形的面积S 与另一边长x 之间的函数关系式 .2. 已知水池的容积为503m ,每小时灌水量为m (3m ),灌满水池所需的时间为t (h),那么t 与m 之间的函数关系式是 .3. 周长为18的等腰三角形的腰长为x ,底边长为y , y 与x 之间的函数关系式为_______, x 的取值范围是________.4. 在一块长为35m,宽为20m 的矩形空地上建花坛,如果在四周留出宽度为x m 的小路,中间花坛的面积为2ym .y 与x 之间的函数关系式为_______,x 的取值范围是________.5. 某商场今年一月份的销售额为50万元,二、三月份平均每月的销售额增长率为x ,三月份的销售额为y 万元,y 与x 之间的函数关系式为_______.6. 某油箱容量为60 L 的汽车,加满汽油后行驶了100 Km 时,油箱中的汽油大约消耗了51, 如果加满汽油后汽车行驶的路程为x Km ,邮箱中剩油量为y L ,则y 与x 之间的函数解析式和自变量取值范围分别是( )A .y =0.12x ,x >0 B . y =60﹣0.12x ,x >0 C . y =0.12x ,0≤x ≤500D . y =60﹣0.12x ,0≤x ≤500 7. 如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点A (﹣1,2),B (1,3),C (2,1),D (6,5),则此函数( )A .当x <1时,y 随x 的增大而增大B .当x <1时,y 随x 的增大而减小C .当x >1时,y 随x 的增大而增大D .当x >1时,y 随x 的增大而减小 8. 甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论: ① A ,B 两城相距300千米; ②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后2.5小时追上甲车; ④当甲、乙两车相距50千米时,45t 或415.其中正确的结论有( )A .1个B .2个C .3个D .4个 9. 如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm /s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm /s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A.B.C.D.10.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y 关于x的函数的图象大致为()A.B.C.D.11.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象.如左下图所示.小明选择的物体可能是12. 如图,AD ,BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB =y (单位:度),点P 运动的时间为x (单位:秒),那么表示y 与x 关系的图象是( )13. 如图1,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发沿图中某一个扇形顺.时针..匀速运动,设∠APB =y (单位:度),如果y 与点P 运动的时间x (单位:秒)的函数关系的图象大致如图2所示,那么点P 的运动路线可能为( )A .O →B →A →O .O →A →C →O.O →C →D →O .O →B →D →O 14. 一个寻宝游戏的寻宝通道如图1所示,四边形ABCD 为矩形,且AB >AD >AB 21,为记录寻宝者的行进路线,在AB 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,A B CD图2图1寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )A .O →D →C →B B .A →B →C C .D →O →C →B D .B →C →O →A15.小红帮弟弟荡秋千(如图1),秋千离地面的高度h (m )与摆动时间t (s )之间的关系如图2所示.(1)根据函数的定义,请判断变量h 是否为关于t 的函数?(2)结合图象回答:①当t=0.7s 时,h 的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?(三)一次函数考试要求1.理解正比列函数;了解一次函数的意义;会利用待定系数法确定一次函数的表达式; 了解一次函数与二元一次方程的关系2.能根据已知条件确定一次函数的表达式;能画出一次函数的图象;结合图象与表达式, 掌握0>k 和0<k 时,一次函数图象的变化情况3.运用一次函数、方程、不等式的有关内容解决有关问题习题举例图11.若一次函数y=(k ﹣2)x +1的函数值y 随x 的增大而增大,则( ) A .k <2 B .k >2 C .k >0 D .k <02.一次函数y=x +2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,﹣2)C .(2,0)D .(﹣2,0)3.如图,直线l 是一次函数y=kx +b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5 B. C. D .73. 11()A x y ,、22()B x y ,是一次函数2(0)y kx k =+>图象上不同的两点,若1212()()t x x y y =--,则( )A .0t <B .0t =C .0t >D .0t ≤4.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ).A .0k >,0b >B .0k >,0b <C .0k <,0k >D .0k <,0b <5.当0b <时,函数y x b =-+的图象不经过...( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限6. 若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是( )D C B A7. 已知直线(0)y kx b k =+≠与直线2y x =-平行,且经过点(1,1),则直线(0)y kx b k =+≠可以看作由直线2y x =-向_______平移_______个单位长度而得到.8. 把直线x y 2-=沿x 轴向右平移2个单位,所得直线的函数解析式为 .9.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为2.(写出一个即可)10.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?11.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;=S△BOC,求点D的坐标.(2)若点D在y轴负半轴上,且满足S△COD12.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min 回到家中.设小明出发第t min 时的速度为vm/min ,离家的距离为s m ,v 与t 之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2min 时离家的距离为 200 m ;(2)当2<t ≤5时,求s 与t 之间的函数表达式;(3)画出s 与t 之间的函数图象.(四)反比例函数考试要求1.了解反比例函数的意义;结合图象与表达式,理解当0>k 和0<k 时,反比例函数图象的变化情况2.已知条件确定反比例函数的表达式;能画出反比例函数的图象习题举例1.对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2A.2B.2-C.4D.4-4.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.5.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A .8B .﹣8C .4D .﹣46. 已知点),(11b a A ,点(B ),22b a 在反比例函数2y x-=的图象上,且1a <2a <0,那么1b 与2b 的大小关系是1b 2b .7.如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道y=(x ≥1)交于点A ,且AB=1米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M ,A 的水平距离是vt 米. (1)求k ,并用t 表示h ;(2)设v=5.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t 的值及v 乙的范围.(五)一次函数和反比例函数综合1. 正比例函数1y k x =与反比例函数2ky x=的图象交于A 、B 两点,若点A 的坐标是(1,2),则点B 的坐标是___________. 2.设函数2y x =与1y x =-的图象的交点坐标为(a ,b ),则11a b-的值为____________.3. 在同一直角坐标系中,函数y=和y=kx ﹣3的图象大致是( )A .B .C .D .A .B .C .D .4. 如图,正比例函数x y 2=的图象与反比例函数xky =的图象交于A 、B 两点,过点A 作AC 垂直x 轴于点C ,连结B C .若△ABC 的面积为2. (1)求k 的值;(2)x 轴上是否存在一点D ,使△ABD 为直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.5.如图,已知反比例函数y=(x >0)的图象与一次函数y=﹣x +4的图象交于A 和B (6,n )两点. (1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y=(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.6.设一次函数y=kx +b (k ,b 是常数,k ≠0)的图象过A (1,3),B (﹣1,﹣1)两点.(1)求该一次函数的表达式;(2)若点(2a +2,a 2)在该一次函数图象上,求a 的值.(3)已知点C (x 1,y 1)和点D (x 2,y 2)在该一次函数图象上,设m=(x 1﹣x 2)(y 1﹣y 2),判断反比例函数y=的图象所在的象限,说明理由.7. 在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与双曲线8y x=的一个交点为(2,)P m ,与x 轴、y 轴分别交于点A ,B .(1)求m 的值;(2)若2PA AB =,求k 的值.(六)二次函数考试要求1.了解二次函数的意义;会用描点法画出二次函数的图象;通过图象了解二次函数的性质;会用配方法将数字系数的二次函数的表达式转化为k h x a y +-=2)(的形式;会利用二次函数的图象求一元二次方程的近似解2.能根据已知条件确定二次函数的表达式;能确定二次函数图象的开口方向;能用配方法确定二次函数图象的顶点坐标和对称轴3.运用二次函数的有关内容解决有关问题习题举例1.已知(2)2my m x =-+是y 关于x 的二次函数,那么m 的值为 A .-2 B. 2 C. 2± D. 02.二次函数224y x x =-++的最大值为A .3B .4C .5D .63.抛物线y=3(x ﹣1)2+1的顶点坐标是( ) A .(1,1)B .(﹣1,1)C .(﹣1,﹣1)D .(1,﹣1)4.已知二次函数y=ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且﹣2≤x ≤1时,y 的最大值为9,则a 的值为( )A .1或﹣2B .或C .D .15.如图,若二次函数y=ax 2+bx +c (a ≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a +b +c ; ②a ﹣b +c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .46.在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(﹣1,2),(2,1),若抛物线y=ax 2﹣x +2(a ≠0)与线段MN 有两个不同的交点,则a 的取值范围是( )A .a ≤﹣1或≤a <B .≤a <C .a ≤或a >D .a ≤﹣1或a ≥7.已知二次函数22(3(1)22)t y t x x =++++在0x =与2x =的函数值相等. (1)求二次函数的解析式;(2)若一次函数6y kx =+的图象与二次函数的图象都经过点A (3-,m ),求m 与k 的值8.已知直线l :y=kx +1与抛物线y=x 2﹣4x . (1)求证:直线l 与该抛物线总有两个交点;(2)设直线l 与该抛物线两交点为A ,B ,O 为原点,当k=﹣2时,求△OAB 的面积.9. 如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长;(2)求矩形菜园ABCD 面积的最大值.一10. 一次函数x y 43=的图象如图所示,它与二次函数c ax ax y +-=42的图象交于A 、B 两点(其点A 在点B 的左侧),与这个二次函数图象的对称轴交于点C .(1)求点C 的坐标;(2)设二次函数图象的顶点为D .①若点D 与点C 关于x 轴对称,且△ACD 的面积等于3,求此二次函数的关系式;②若CD =AC ,且△ACD 的面积等于10,求此二次函数的关系式.答案:(1)点C (2,)23;(2)①x x y 23832-=;②321812--=x x y ;292212++-=x x y11. 在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(1,4)A ,(,)B m n . (1) 求代数式mn 的值;(2) 若二次函数2(1)y x =-的图象经过点B ,求代数式32234m n m n mn n -+-的值; (3) 若反比例函数k y x=的图象与二次函数2(1)y a x =-的图象只有一个交点,且该交点在直线y x =的下方,结合函数图象,求a 的取值范围.答案:(1)4mn =;(2)32234m n m n mn n -+-8=;(3)由图象可知,符合题意的a 的取值范围是02a <<或29a <-. 12. 在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线1y x =-交于点A ,点A 关于直线1x =的对称点为B ,抛物线21:C y x bx c =++经过点A ,B 。

中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点()2,1A -和()1,B n .(1)求反比例函数与一次函数的解析式.(2)连接OA 、OB ,求△AOB 的面积.(3)直接写出当12y y <时,自变量x 的取值范围.2.定义:在平面直角坐标系中,如果一个点的纵坐标等于它的横坐标的三倍,则称该点为“纵三倍点”.例如()()()1,3,2,6,2,32--都是“纵三倍点”. (1)下列函数图象上只有一个“纵三倍点”的是______;(填序号)△21y x =-+;△21y x=;△21y x x =++. (2)已知抛物线2y x mx n =++(,m n 均为常数)与直线4y x =+只有一个交点,且该交点是“纵三倍点”,求抛物线的解析式;(3)若抛物线232y ax bx (,a b 是常数,0a >)的图象上有且只有一个“纵三倍点”,令226w b b a =-+,是否存在一个常数t ,使得当1t b t ≤≤+时,w 的最小值恰好等于t ,若存在,求出t 的值;若不存在,请说明理由.3.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ⊥轴于点B ,且24OB AB ==.(1)求反比例函数的解析式; (2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标. 4.如图,在平面直角坐标系中,一次函数3yx 的图象与反比例函数(0)k y x x=>的图象交于点(,4)A a ,求此反比例函数的表达式.5.如图,一次函数()10y mx n m =+≠的图象与反比例函数()20k y k x=≠的图象交于(),1A a -,()1,3B -两点,且一次函数的图象交x 轴于点C ,交y 轴于点D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的反比例图象上有一点P ,使得4=△△OCP OBD S S ,请求出点P 的坐标;(3)对于反比例函数()20k y k x=≠,当3y ≤时,直接写出x 的取值范围. 6.如图,已知反比例函数11k y x =的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.7.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.8.如图,一次函数5y x =-+的图象与函数(0,0)n y n x x=>>的图象交于点(4,)A a 和点B .(1)求n 的值;(2)若0x >,根据图象直接写出当5n x x-+>时x 的取值范围; (3)点P 在线段AB 上,过点P 作x 轴的垂线,交函数n y x =的图象于点Q ,若POQ △的面积为1,求点P 的坐标.9.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()2,3A 和(),1B a -,设直线AB 交x 轴于点C .(1)求反比例函数和一次函数的表达式;(2)若点P 是反比例函数图象上的一点,且POC △是以OC 为底边的等腰三角形,求P 点的坐标. 10.如图,在平面直角坐标系xOy 中,一次函数1152y x =+和22y x =-的图象相交于点A ,反比例函数3k y x =的图象经过点A .(1)则反比例函数的表达式为________;(2)当13y y <时,x 的取值范围为________.(3)求AOB 的面积.11.如图,已知反比例函数k y x=的图象与一次函数y mx =图象的一个交点为()4,,A m AB x ⊥轴,且AOB 的面积为4.(1)求k 和m 的值;(2)若两函数图象的另一交点为C ,直接写出点C 的坐标__________.12.已知 ()()4428A B --,,,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求AOC 的面积;(3)结合图象直接写出不等式m kx b x +>的解集. 13.如图,直线32y x =与双曲线(0)k y k x=≠交于A ,B 两点,点A 的坐标为(,3)m -,点C 是双曲线第一象限分支上的一点,连结BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值,并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连结GB ,GC ,求GB GC +的最小值和点G 坐标;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,直线3y x b =+与x 轴交于点()1,0A -,与反比例函数()0ky x x=>的图象相交于点()1,B m .(1)求反比例函数的表达式;(2)C 是反比例函数()0k y x x=>的图象上的一点,连接AC ,若45CAO ∠=︒,求直线BC 的函数表达式. 15.如图,一次函数1=y ax b +的图象过点()40A -,,与y 轴交于点B ,与反比例函数(2>0)k y x x =的图象交于点C .D 为AB 的中点,过点D 作x 轴的平行线,交反比例函数的图象于点E ,连接OE .(1)当=3OB ,=6DE 时,求k 的值;(2)若635OB OE ==,,求一次函数的解析式和点C 的坐标.参考答案: 1.(1)2y x=- =1y x -- (2)1.5(3)20x -<<或1x >2.(1)△△(2)238y x x =-+(3)1t =3.(1)8y x= (2)()4,2C4.反比例函数的表达式为4y x =. 5.(1)一次函数的解析式为12y x =-+;(2)点P 的坐标为3,44⎛⎫- ⎪⎝⎭(3)1x ≤-或0x >6.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.7.(1)一次函数的关系式为1y x =+;40x -<<或3x >(2)1:68.(1)4(2)14x <<(3)(2,3)P 或(3,2)9.(1)6y x = 122y x =+(2)()2,3P --10.(1)38y x =-(2)8x <-或20x -<<(3)1511.(1)18,2k m ==(2)()4,2--12.(1)16y x = 24y x =+(2)8(3)40x -<<或2x >13.(1)623k B =,,(2)217(3)存在,点P 的坐标为1302⎛⎫ ⎪⎝⎭, 或1303⎛⎫⎪⎝⎭,14.(1)反比例函数的表达式为6y x =;(2)直线BC 的函数表达式为39y x =-+.15.(1)6k =(2)162y x =+,点C 的坐标为()29,。

中考数学与反比例函数有关的压轴题附答案解析

中考数学与反比例函数有关的压轴题附答案解析

中考数学与反比例函数有关的压轴题附答案解析一、反比例函数1.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).(1)求反比例函数和一次函数的解析式;(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B在反比例函数y=﹣的图形上,∴﹣2m=﹣6,∴m=3,∴B(3,﹣2),∵点A,B在直线y=ax+b的图象上,∴,∴,∴一次函数的解析式为y=﹣x+1(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,∴AB=PQ,AB∥PQ,设直线PQ的解析式为y=﹣x+c,设点Q(n,﹣),∴﹣ =﹣n+c,∴c=n﹣,∴直线PQ的解析式为y=﹣x+n﹣,∴P(1,n﹣﹣1),∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,∵A(﹣2,3).B(3,﹣2),∴AB2=50,∵AB=PQ,∴50=2(n﹣1)2,∴n=﹣4或6,∴Q(﹣4. )或(6,﹣1)【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.2.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

备考2023年中考数学一轮复习-函数_反比例函数_反比例函数与一次函数的交点问题-综合题专训及答案

备考2023年中考数学一轮复习-函数_反比例函数_反比例函数与一次函数的交点问题-综合题专训及答案

备考2023年中考数学一轮复习-函数_反比例函数_反比例函数与一次函数的交点问题-综合题专训及答案反比例函数与一次函数的交点问题综合题专训1、(2019宿迁.中考真卷) 如图,一次函数的图象与反比例函数的图象相交于点、两点.(1)求一次函数表达式;(2)求的面积.2、(2019山西.中考模拟) 如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).(1)求m的值和点D的坐标.(2)求的值.(3)根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?3、(2016乐山.中考真卷) 如图,反比例函数y= 与一次函数y=ax+b的图象交于点A(2,2)、B(,n).(1)求这两个函数解析式;(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求m的值.4、(2018济南.中考真卷) 如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D.(1)求和a的值;(2)直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值.5、(2022新余.中考模拟) 如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= (n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤ 的解集.6、(2019武汉.中考模拟) 矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF∥AB;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.7、(2022邯郸.中考模拟) (2018·南充) 如图,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.=3,求点P的坐标.(2)点P在x轴上,如果S△ABP8、(2016资阳.中考真卷) 如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y= (k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.9、(2020镇江.中考真卷) 如图,正比例函数y=kx(k≠0)的图象与反比例函数y =﹣的图象交于点A(n,2)和点B.(1) n=________,k=________;(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.10、(2020河南.中考模拟) 如图,一次函数的图像与反比例函数的图像交于,两点,与轴分别交于两点,且.(1)求一次函数和反比例函数的解析式;(2)若点与点关于轴对称,连接,求的面积. 11、(2020北京.中考模拟) 如图,在平面直角坐标系中,直线与轴交于点,与反比例函数的图象交于点和点B.(1)求的值及点C的坐标;(2)若点是轴上一点,且,直接写出点P的坐标.12、已知反比例函数的图象与一次函数的图象交于点A(1,4)和点B(, -2).(1)求m的值及一次函数的关系式;(2)求△OAB的面积;(3)当时,求的取值范围.13、(2022九下·株洲开学考) 如图,一次函数y=kx+b(k>0)的图象经过点C(−3,0),且与两坐标轴围成的三角形的面积为3.(1)求一次函数的解析式;(2)若反比例函数的图象与该一次函数的图象交于一、三象限内的A,B 两点,且AC=2BC,求m的值.14、对于平面直角坐标系中的两条直线,给出如下定义:若不平行的两条直线与x轴相交所成的锐角相等,则称这两条直线为“等腰三角线”.如图(1)中,若,则直线与直线称为“等腰三角线”;反之,若直线与直线为“等腰三角线”,则.(1)如图(1),若直线与直线为“等腰三角线”,且点P、Q的坐标分别为(1,4)、(-3,0).求直线的解析式;(2)如图(2),直线与双曲线交于点A、B,点C是双曲线上的一个动点,点A、C的横坐标分别为m、,直线、分别与x轴于点D、E;①求证:直线与直线为“等腰三角线”;②过点D作x轴的垂线,在直线上存在一点F,连结,当时,求出线段的值.(用含n的代数式表示)15、如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,3),B(﹣3,n).(1)求一次函数的表达式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)过点B作BC⊥x轴,垂足为C,求△ABC的面积.反比例函数与一次函数的交点问题综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

备考2022年中考数学二轮复习-函数_反比例函数_反比例函数与一次函数的交点问题-综合题专训及答案

备考2022年中考数学二轮复习-函数_反比例函数_反比例函数与一次函数的交点问题-综合题专训及答案

备考2022年中考数学二轮复习-函数_反比例函数_反比例函数与一次函数的交点问题-综合题专训及答案反比例函数与一次函数的交点问题综合题专训1、(2017山西.中考真卷) 如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y= (k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y= 的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.2、(2017峄城.中考模拟) 如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y= (m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.3、(2019宁江.中考模拟) 如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,-1)、B(,n)两点,点C的坐标为(0,2),过点C的直线l与x轴平行。

(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积。

4、(2019丹阳.中考模拟) 如图,在平面直角坐标系中,函数(,是常数)的图像经过A(2,6),B(m,n),其中m>2.过点A作轴垂线,垂足为C,过点作轴垂线,垂足为,AC与BD交于点E,连结AD,,CB.(1)若的面积为3,求m的值和直线的解析式;(2)求证:;(3)若AD//BC,求点B的坐标 .5、(2013衢州.中考真卷) 如图,函数y1=﹣x+4的图象与函数y2= (x>0)的图象交于A(a,1)、B(1,b)两点.(1)求函数y2的表达式;(2)观察图象,比较当x>0时,y1与y2的大小.6、(2017宿州.中考模拟) 如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(n,6),点B的坐标为(12,1).(1)分别求m、k、b的值.(2)点C为y轴上一动点,若S△ABC=15,求点C的坐标.7、(2017巨野.中考模拟) 如图,已知直线y=﹣x+4与反比例函数y= 的图象相交于点A(﹣2,a),并且与x轴相交于点B.(1)求反比例函数的表达式;(2)求△AOB的面积.8、(2018武汉.中考模拟) 如图,四边形ABCD是平行四边形,点A(1,0),B (4,1),C(4,3),反比例函数的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围.(不必写过程)9、(2017黄石.中考模拟) 如图,已知直线l:y=kx+b(k<0,b>0,且k、b为常数)与y轴、x轴分别交于A点、B点,双曲线C:y= (x>0).(1)当k=﹣1,b=2 时,求直线l与双曲线C公共点的坐标;(2)当b=2 时,求证:不论k为任何小于零的实数,直线l与双曲线C只有一个公共点(设为P),并求公共点P的坐标(用k的式子表示).(3)①在(2)的条件下,试猜想线段PA、PB是否相等.若相等,请加以证明;若不相等,请说明理由;②若直线l与双曲线C相交于两点P1、P2,猜想并证明P1A与P2B之间的数量关系.10、(2017东莞.中考模拟) 如图,一次函数y=﹣x+4的图象与反比例函数y= (k 为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;(3)求△PAB的面积.11、(2015佛山.中考真卷) 若正比例函数y=x的图象与反比例函数y=的图象有一个交点坐标是(﹣2,4)(1)(1)求这两个函数的表达式;(2)(2)求这两个函数图象的另一个交点坐标.12、(2018天水.中考真卷) 如图,在平面直角坐标系xOy中,函数(x>0)的图象与一次函数y=kx-k的图象交点为A(m,2).(1)求一次函数的表达式;(2)设一次函数y=kx-k的图象与y轴交于点B,如果P是x轴上一点,且满足△PAB的面积是4,请直接写出P的坐标.13、(2020兰州.中考真卷) 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.(1)求一次函数和反比例函数的表达式;(2)请直接写出时,x的取值范围;(3)过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.14、(2019江西.中考模拟) 如图在平面直角坐标系中反比例函数y=的图象经过点P(4,3)和点B(m,n)(其中0<m<4),作BA⊥x轴于点A,连接PA、OB,过P、B两点作直线PB,且S△AOB =S△PAB(1)求反比例函数的解析式;(2)求点B的坐标.15、(2020宝应.中考模拟) 如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点,训练时要求A、B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线y=上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A、B两船恰好在直线y=x上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A(,)、B(,)和C(,);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由.反比例函数与一次函数的交点问题综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。

定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。

水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。

两坐标轴的交点为平面直角坐标系的原点。

建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。

2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。

定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。

这种式子叫做函数的解析式。

表示函数的方法:解析式法、列表法和图象法。

解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。

画函数图象的方法——描点法:第1步,列表。

表中给出一些自变量的值及其对应的函数值;第2步,描点。

在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。

按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。

1、结合实例进一步体会用有序数对可以表示物体的位置。

2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。

中考数学专题训练第8讲平面直角坐标系一次函数反比例函数(知识点梳理)

中考数学专题训练第8讲平面直角坐标系一次函数反比例函数(知识点梳理)
⑵分母中含有自变量:分母不为 .
⑶实际问题:符合实际意义.
8.函数图象:函数的图象是由平面直角中的一系列点组成的.描点法画函数图象的步骤:
⑴列表.
⑵描点.
⑶连线.
9.函数解析式与函数图象的关系:
⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上.
⑵函数图象上点的坐标满足函数解析式.
考点03一次函数
(3)函数关系式在书写时有顺序性.例如: 是表示 是 的函数,若写成 就表示 是 的函数.
(4)求 与 的函数关系时,必须是只用变量 的代数式表示 ,得到的等式右边只含 的代数式.
自变量的取值范围:
7.自变量取值范围:在初中阶段,自变量的取值范围考虑下面几个方面:
⑴根式:当根指数为偶数时,被开方数为非负数.
10.用坐标表示地理位置:根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,一般地只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起。利用平面直角坐标系绘制区域内一些地点分布情况,也就是绘制平面图的过程:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向.
3.一次函数的图象及其画法:
(1)一次函数 ( , , 为常数)的图象是一条直线.
(2)由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.如果这个函数是正比例函数,通常取 , 两点.如果这个函数是一般的一次函数( ),通常取 , ,即直线与两坐标轴的交点.
(3)反比例函数与一次函数的联系.
③解方程(组),得到待定系数的值.
④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.
8.一次函数与一元一次方程的关系:

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像
工程设计和优化
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。

一次函数与反比例函数 知识点

一次函数与反比例函数 知识点

一次函数与反比例函数知识点一、一次函数一次函数,也叫线性函数,是数学中最简单的函数之一。

它的特点是自变量的最高次数为1,即一次方程。

一次函数的一般形式可以表示为y = kx + b,其中k和b为常数,k代表斜率,b代表截距。

一次函数的图像是一条直线,斜率k决定了直线的倾斜程度,当k>0时,直线向右上方倾斜;当k<0时,直线向右下方倾斜。

截距b决定了直线与y轴的交点位置,当b>0时,直线在y轴上方与之交点;当b<0时,直线在y轴下方与之交点。

一次函数在实际生活中有广泛的应用。

例如,我们可以利用一次函数来描述物体的匀速直线运动,其中x表示时间,y表示位置;我们还可以利用一次函数来描述成本和产量之间的关系,从而帮助企业做出经济决策。

二、反比例函数反比例函数,也叫倒数函数,是一种特殊的函数关系,其自变量和因变量之间的关系可以表示为y = k/x,其中k为常数。

反比例函数的特点是自变量和因变量之间的乘积为常数。

反比例函数的图像是一条双曲线,其对称轴为坐标轴。

当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。

因此,反比例函数的图像会有一个渐近线,与x轴和y轴分别交于一点。

反比例函数在实际生活中也有很多应用。

例如,我们可以利用反比例函数来描述人的行驶速度和所需时间之间的关系,从而帮助规划交通路线;我们还可以利用反比例函数来描述电阻和电流之间的关系,从而帮助设计电路。

三、一次函数与反比例函数的比较一次函数和反比例函数在数学上具有不同的特点和应用。

一次函数是一条直线,其斜率决定了直线的倾斜程度,截距决定了直线与y 轴的交点位置;反比例函数是一条双曲线,其渐近线与x轴和y轴分别交于一点。

在实际应用中,一次函数常用于描述线性关系,如物体的运动和经济成本与产量的关系;而反比例函数常用于描述反比关系,如速度与时间的关系和电阻与电流的关系。

一次函数和反比例函数的图像形状也有所不同。

一次函数的图像是一条直线,可以通过两个点确定;而反比例函数的图像是一条双曲线,可以通过渐近线和一个点确定。

反比例函数单元教学设计

反比例函数单元教学设计
情景3:已知北京市的总面积为,16800平方千米,人均占有的土地面积S(单位:平方千米/人)随全市总人口n(单位:人)的变化而变化.
2、上述情景中,变量间的对应关系可用怎样的函数解析式表示?这些函数有什么共同特点?
3、若把自变量和函数的乘积用k(k是常数)表示,用x表示自变量,用y表示函数,则y与x 的函数解析式依次为
3、画函数图象的方法和步骤是什么?
活动二:试一试
【活动步骤】
1、在坐标纸上画出反比例函数y=6/x与y=-6/x的图象(同桌分工:两人各做一个).
2、观察:反比例函数y=6/x与y=-6/x的图象是什么形状,分别在哪几个象限?
3、思考:
(1)、为什么图象的两个分支没有连接点?
(2)、决定图象位置(所在象限)的因素是什么?
4、充分运用小组合作学习,师生互动,提高学生自主探究、讨论交流的参与热情,培养学生的团队精神.
单元
问题设计
1、什么是反比例函数?
2、反比例函数的图象有哪些性质?
3、如何运用几何画板探究反比例函数的图象和性质?
4、如何运用反比例函数解决生活中的实际问题?
专题划分
专题一:反比例函数的意义 1课时
专题二:反比例函数的图象与性质 3课时
活动四:反思总结
【活动步骤】
1、总结反比例函数的图象和性质基本题型;
2、归纳运用反比例函数的图象和性质解题的方法与思路.
第三课时(课外) 探究反比例函数的图象和性质
活动一:学习几何画板的使用
活动二:运用几何画板制作函数图象
活动三:观察图象
【活动步骤】
1、当k>0时,关注图象的形状、位置、在每一个象限内,y随x的变化情况.
4、能否根据图象和性质,正确解答相关问题.

2018年中考数学专题训练反比例函数与一次函数的综合

2018年中考数学专题训练反比例函数与一次函数的综合

2018级中考数学专题复习—反比例函数与一次函数的综合1.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.2.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.3.如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.4.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?5.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.6.如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.7.已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.8.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.9.如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.10.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.11.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.12.已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.13.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(3)观察图象,直接写出y1>y2时x的取值范围.14.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.15.如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;16.如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.17.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.18.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.19.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴、y轴交于点C、D两点,点B的横坐标为1,OC=OD,点P在反比例函数图象上且到x轴、y轴距离相等.(1)求一次函数的解析式;(2)求△APB的面积.20.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数的图象交于点C,连接CO,过C作CD⊥x轴于D,已知tan∠ABO=,OB=4,OD=2.(1)求直线AB和反比例函数的解析式;(2)在x轴上有一点E,使△CDE与△COB的面积相等,求点E的坐标.21.如图,在平面直角坐标系中,点A是反比例函数y=(k≠0)图象上一点,AB⊥x轴于B点,一次函数y=ax+b(a≠0)的图象交y轴于D(0,﹣2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.22.如图,已知一次函数y=k1x+b的图象分别x轴,y轴交于A、B两点,且与反比例函数y=交于C、E 两点,点C在第二象限,过点C作CD⊥x轴于点D,OD=1,OE=,cos∠AOE=(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.23.如图,一次函数y=x+2的图象与x轴交于点B,与反比例函数y=(k≠0)的图象的一个交点为A(2,m).(1)求反比例函数的表达式;(2)过点A作AC⊥x轴,垂足为点C,设点D在反比例函数图象上,且△DBC的面积等于6,请求出点D的坐标;(3)请直接写出不等式x+2<成立的x取值范围.24.如图,已知反比例函数y1=的图象与一次函数y2=k2x+b的图象交于A、B两点,A(2,n),B(﹣1,﹣4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式y1>y2的解集.25.如图,已知反比例函数y=(k<0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB的面积为2.(1)求k和m的值;(2)若一次函数y=ax+1的图象经过点A,并且与x轴的交点为点C,试求出△ABC的面积.26.如图,已知一次函数y=k1x+b的图象分别与x轴、y轴的正半轴交于A、B两点,且与反比例函数y=交于C、E两点,点C在第二象限,过点C作CD⊥x轴于点D,OA=OB=2,OD=1.(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.27.如图,已知直线y=mx+b(m≠0)与双曲线y=(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.28.如图,直线y=﹣2和双曲线y=相交于A(b,1),点P在直线y=x﹣2上,且P点的纵坐标为﹣1,过P作PQ∥y轴交双曲线于点Q.(1)求Q点的坐标;(2)求△APQ的面积.29.如图,在一次函数y=ax+b的图象与反比例函数y=的图象相交于A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)求△AOB的面积.30.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q (4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.2018级中考数学专题复习-反比例函数与一次函数的交点参考答案与试题解析一.解答题(共30小题)1.(2016•重庆)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.【分析】(1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;(2)根据待定系数法,可得函数解析式.【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法是解题关键.2.(2016•重庆)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【分析】(1)过点A作AE⊥x轴于点E,设反比例函数解析式为y=.通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可;(2)由点B在反比例函数图象上可求出点B的坐标,设直线AB的解析式为y=ax+b,由点A、B的坐标利用待定系数法求出直线AB的解析式,令该解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A的坐标;(2)求出直线AB的解析式.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.3.(2016•南充)如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.4.(2014•资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?【分析】(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.【解答】解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.5.(2010•成都)如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【分析】(1)把A(1,﹣k+4)代入解析式y=,即可求出k的值;把求出的A点坐标代入一次函数y=x+b的解析式,即可求出b的值;从而求出这两个函数的表达式;(2)将两个函数的解析式组成方程组,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【解答】解:(1)∵已知反比例函数经过点A(1,﹣k+4),∴,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.(2010•泸州)如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=﹣,再求出B的坐标是(1,﹣2),利用待定系数法求一次函数的解析式;(2)在一次函数的解析式中,令x=0,得出对应的y2的值,即得出直线y2=﹣x﹣1与y轴交点C的坐标,从而求出△AOC的面积;(3)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围﹣2<x<0或x>1.【解答】解:(1)∵函数y1=的图象过点A(﹣2,1),即1=;∴m=﹣2,即y1=﹣,又∵点B(a,﹣2)在y1=﹣上,∴a=1,∴B(1,﹣2).又∵一次函数y2=kx+b过A、B两点,即.解之得.∴y2=﹣x﹣1.(2)∵x=0,∴y2=﹣x﹣1=﹣1,即y2=﹣x﹣1与y轴交点C(0,﹣1).设点A的横坐标为x A,∴△AOC的面积S△OAC==×1×2=1.(3)要使y1>y2,即函数y1的图象总在函数y2的图象上方.∴﹣2<x<0,或x>1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.这里体现了数形结合的思想.7.(2008•甘南州)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.【分析】(1)反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点,把A点坐标代入反比例函数解析式,即可求出k,得到反比例函数的解析式.将B(n,﹣1)代入反比例函数的解析式求得B点坐标,然后再把A、B点的坐标代入一次函数的解析式,利用待定系数法求出一次函数的解析式;(2)根据图象,分别在第一、三象限求出反比例函数的值大于一次函数的值时x的取值范围.【解答】解:(1)∵A(1,3)在y=的图象上,∴k=3,∴y=.又∵B(n,﹣1)在y=的图象上,∴n=﹣3,即B(﹣3,﹣1)∴解得:m=1,b=2,∴反比例函数的解析式为y=,一次函数的解析式为y=x+2.(2)从图象上可知,当x<﹣3或0<x<1时,反比例函数的值大于一次函数的值.【点评】本类题目的解决需把点的坐标代入函数解析式,灵活利用方程组求出所需字母的值,从而求出函数解析式,另外要学会利用图象,确定x的取值范围.8.(2008•南充)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.【分析】(1)把A(﹣4,n),B(2,﹣4)分别代入一次函数y=kx+b和反比例函数y=,运用待定系数法分别求其解析式;(2)把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6.【点评】本题考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式;要能够熟练借助直线和y轴的交点运用分割法求得不规则图形的面积.9.(2007•资阳)如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【分析】(1)由A和B都在反比例函数图象上,故把两点坐标代入到反比例解析式中,列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A的坐标及反比例函数解析式,把确定出的A坐标及B的坐标代入到一次函数解析式中,得到关于k与b的方程组,求出方程组的解得到k与b的值,确定出一次函数解析式;(2)令一次函数解析式中x为0,求出此时y的值,即可得到一次函数与y轴交点C的坐标,得到OC的长,三角形AOB的面积分为三角形AOC及三角形BOC面积之和,且这两三角形底都为OC,高分别为A和B的横坐标的绝对值,利用三角形的面积公式即可求出三角形ABC的面积;(3)根据图象和交点坐标即可得出结果.【解答】解:(1)∵m=﹣8,∴n=2,则y=kx+b过A(﹣4,2),B(n,﹣4)两点,∴解得k=﹣1,b=﹣2.故B(2,﹣4),一次函数的解析式为y=﹣x﹣2;(2)由(1)得一次函数y=﹣x﹣2,令x=0,解得y=﹣2,∴一次函数与y轴交点为C(0,﹣2),∴OC=2,∴S△AOB=S△AOC+S△BOC=OC•|y点A横坐标|+OC•|y点B横坐标|=×2×4+×2×2=6.S△AOB=6;(3)一次函数的值小于反比例函数值的x的取值范围:﹣4<x<0或x>2.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有利用待定系数法求函数解析式,两函数交点坐标的意义,一次函数与坐标轴交点的求法,以及三角形的面积公式,利用了数形结合的思想.第一问利用的方法为待定系数法,即根据题意把两交点坐标分别代入两函数解析式中,得到方程组,求出方程组的解确定出函数解析式中的字母常数,从而确定出函数解析式,第二问要求学生借助图形,找出点坐标与三角形边长及边上高的关系,进而把所求三角形分为两三角形来求面积.10.(2005•四川)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【分析】(1)根据tan∠AOC=,且OA=,结合勾股定理可以求得点A的坐标,进一步代入y=中,得到反比例函数的解析式;然后根据反比例函数的解析式得到点B的坐标,再根据待定系数法求一次函数解析式;(2)三角形AOB的面积可利用,求和的方法即等于S△AOC+S△COB来求.【解答】解:(1)过点A作AH⊥x于点H.在RT△AHO中,tan∠AOH==,所以OH=2AH.又AH2+HO2=OA2,且OA=,所以AH=1,OH=2,即点A(﹣2,1).代入y=得k=﹣2.∴反比例函数的解析式为y=﹣.又因为点B的坐标为(,m),代入解得m=﹣4.∴B(,﹣4).把A(﹣2,1)B(,﹣4)代入y=ax+b,得,∴a=﹣2,b=﹣3.∴一次函数的解析式为y=﹣2x﹣3.(2)在y=﹣2x﹣3中,当y=0时,x=﹣.即C(,0).∴S△AOB=S△AOC+S△COB=(1+4)×=.【点评】此题综合考查了解直角三角形、待定系数法、和函数的基本知识,难易程度适中.11.(2016•乐至县一模)如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.【分析】(1)把点A(﹣2,4),B(4,﹣2)代入一次函数y=kx+b即可求出k及b的值;(2)先求出C点的坐标,根据S△AOB=S△AOC+S△BOC即可求解;(3)由图象即可得出答案;【解答】解:(1)由题意A(﹣2,4),B(4,﹣2),∵一次函数过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设直线AB与y轴交于C,则C(0,2),∵S△AOC=×OC×|A x|,S△BOC=×OC×|B x|∴S△AOB=S△AOC+S△BOC=•OC•|A x|+•OC•|B x|==6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x的取值范围是x<﹣2或0<x<4.【点评】本题考查了反比例函数与一次函数的交点问题,属于基础题,关键是掌握用待定系数法求解函数解析式.12.(2016•重庆校级模拟)已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.【分析】(1)先根据解直角三角形求得点D和点B的坐标,再利用C、D两点的坐标求得一次函数解析式,利用点B的坐标求得反比例函数解析式;(2)先根据解方程组求得两个函数图象的交点A的坐标,再将x轴作为分割线,求得△AOB的面积;(3)根据函数图象进行观察,写出一次函数图象在反比例函数图象下方时所有点的横坐标的集合即可.【解答】解:(1)∵∴直角三角形OCD中,=,即CD=OD又∵OC=1∴12+OD2=(OD)2解得OD=,即D(0,﹣)将C(1,0)和D(0,﹣)代入一次函数y=ax+b,可得,解得∴一次函数的解析式为y=x﹣过B作BE⊥x轴,垂足为E∵直角三角形BCE中,BC=5,∴BE=3,CE==4∴OE=4﹣1=3,即B(﹣3,﹣3)将B(﹣3,﹣3)代入反比例函数,可得k=9∴反比例函数的解析式为y=;(2)解方程组,可得,∴A(4,)∴S△AOB=S△AOC+S△COB=×1×+×1×3=+=;(3)根据图象可得,不等式的解集为:x<﹣3或0<x<4.【点评】本题主要考查了反比例函数与一次函数的交点问题,需要掌握待定系数法求函数解析式的方法,以及根据两个函数图象的交点坐标求有关不等式解集的方法.解答此类试题的依据是:①函数图象上点的坐标满足函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.13.(2016•重庆校级一模)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.【分析】(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(2)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.【解答】解:(1)设点A坐标为(﹣2,m),点B坐标为(n,﹣2)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点∴将A(﹣2,m)B(n,﹣2)代入反比例函数y2=﹣可得,m=4,n=4∴将A(﹣2,4)、B(4,﹣2)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+2;(2)在一次函数y1=﹣x+2中,当x=0时,y=2,即N(0,2);当y=0时,x=2,即M(2,0)∴S△AOB=S△AON+S△MON+S△MOB=×2×2+×2×2+×2×2=2+2+2=6;(3)根据图象可得,当y1>y2时,x的取值范围为:x<﹣2或0<x<4【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是掌握根据函数图象的交点坐标求一次函数解析式和有关不等式解集的方法.解答此类试题的依据是:①函数图象的交点坐标满足两个函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.14.(2016•重庆校级模拟)如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.【分析】(1)根据反比例函数图象上点的坐标特征求出m和n,利用待定系数法求出一次函数的解析式;(2)根据函数图象得到答案;(3)求出直线与x轴的交点坐标,根据三角形的面积公式计算即可.【解答】解:(1)∵反比例函数的图象经过A(2,3),∴m=2×3=6,∴反比例函数的解析式为:y=,∵反比例函数的图象经过于B(﹣3,n),∴n==﹣2,∴点B的坐标(﹣3,﹣2),由题意得,,解得,,∴一次函数的解析式为:y=x+1;(2)由图象可知,不等式kx+b>的解集为:﹣3<x<0或x>2;(3)直线y=x+1与x轴的交点C的坐标为(﹣1,0),则OC=1,则S△ABO=S△OBC+S△ACO=×1×2+×1×3=.【点评】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤是解题的关键,注意数形结合思想的运用.15.(2016•成华区模拟)如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【分析】(1)由B点的坐标根据待定系数法即可求得在反比例函数的解析式,代入A(﹣2,m)即可求得m,再由待定系数法求出一次函数解析式;(2)由直线解析式求得C点的坐标,从而求出△AOB的面积.【解答】解:(1)∵B(4,﹣2)在反比例函数y=的图象上,∴k=4×(﹣2)=﹣8,又∵A(﹣2,M)在反比例函数y=的图象上,∴﹣2m=﹣8,∴m=4,∴A(﹣2,4),又∵AB是一次函数y=ax+b的上的点,∴解得,a=﹣1,b=2,∴一次函数的解析式为y=﹣x+2,反比例函数的解析式y=﹣;(2)由直线y=﹣x+2可知C(2,0),所以△AOB的面积=×2×4+×2×2=6.【点评】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.16.(2016•重庆校级一模)如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.【分析】(1)把A点坐标代入反比例函数解析式可求得k,再把B点坐标代入可求得b,再利用待定系数法可求得一次函数解析式;(2)可先求得D点坐标,再利用三角形的面积计算即可.【解答】解:(1)∵反比例函数y=(k≠0)的图象过A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣,当x=2时,y=﹣1,即B点坐标为(2,﹣1),∵一次函数y=mx+n(m≠0)过A、B两点,∴把A、B两点坐标代入可得,解得,∴一次函数解析式为y=﹣x+1;(2)在y=﹣x+1中,当x=0时,y=1,∴C点坐标为(0,1),∵点D与点C关于x轴对称,∴D点坐标为(0,﹣1),∴CD=2,∴S△ABD=S△ACD+S△BCD=×2×1+×2×2=3.【点评】本题主要考查一次函数和反比例函数的交点,掌握两函数图象的交点坐标满足每一个函数解析式是解题的关键.。

一次函数和反比例函数知识点总结

一次函数和反比例函数知识点总结

一次函数知识点总结:一次函数:一次函数图像与性质是中考必考的内容之一。

中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。

甚至有存在探究题目出现。

主要考察内容:①会画一次函数的图像,并掌握其性质。

②会根据已知条件,利用待定系数法确定一次函数的解析式。

③能用一次函数解决实际问题。

④考察一ic函数与二元一次方程组,一元一次不等式的关系。

突破方法:①正确理解掌握一次函数的概念,图像和性质。

②运用数学结合的思想解与一次函数图像有关的问题。

③掌握用待定系数法球一次函数解析式。

④做一些综合题的训练,提高分析问题的能力。

函数性质:1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。

2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

4.在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。

若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。

(3)连线,可以作出一次函数的图象——一条直线。

因此,作一次函数的图象只需知道2点,并连成直线即可。

2023年北京市部分名校中考数学备考——一次函数与反比例函数(学生版)

2023年北京市部分名校中考数学备考——一次函数与反比例函数(学生版)

2023年北京市部分名校中考数学备考——一次函数与反比例函数1.(2023•朝阳区清华附中朝阳学校模拟)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴交于点A(﹣4,0),与y轴正半轴交于点B,且AB=4(1)求这个一次函数的解析式;(2)当x=2时,函数y=mx(m≠0)的值与一次函数y=kx+b(k>0)的值相等,求m 的值;(3)当x<2时,对于x的每一个值,函数y=nx(n≠0)的值小于一次函数y=kx+b(k >0)的值,直接写出n的取值范围.2.(2023•海淀区人大附中经开校区模拟)在平面直角坐标系xOy中,一次函数y=kx+b(k ≠0)的图象由函数y=﹣x的图象平移得到,且经过点(1,1).(1)求该函数的解析式;(2)当x>﹣1时,对于x的每一个值,函数y=mx﹣1(m≠0)的值都小于一次函数y =kx+b(k≠0)的值,直接写出m的取值范围.图象与直线y=2x平行,且经过点(1,3).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,反比例函数的值都小于一次函数y =kx+b(k≠0)的值,直接写出m的取值范围.4.(2023•海淀区首师大附中模拟)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=﹣x的图象平移得到,且经过点(0,1).(1)求这个一次函数的表达式;(2)当x<﹣1时,对于x的每一个值,函数y=mx(m≠0)的值小于一次函数y=kx+b 的值,直接写出m的取值范围.的图象平行于直线y=x,且经过点A(2,2).(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,一次函数y=kx+b(k≠0)的值大于一次函数y=mx﹣1(m≠0)的值,直接写出m的取值范围.6.(2023春•顺义区仁和中学月考)平面直角坐标系xOy中,一次函数y=kx﹣1的图象经过点(2,3).(1)求这个一次函数的解析式;(2)当x<2时,对于x的每一个值,函数y=x+a的值都大于一次函数y=kx﹣1的值,直接写出a的取值范围.的图象由函数y=﹣x的图象平移得到,且经过点(1,1).(1)求这个一次函数的表达式;(2)当x>﹣1时,对于x的每一个值,函数y=mx﹣1(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.8.(2023•海淀区清华附中模拟)如图,一次函数y=kx+4k(k≠0)的图象与x轴交于点A,与y轴交于点B,且经过点C(2,m).(1)当m=2时,求一次函数的解析式及点A的坐标;(2)当x>﹣1时,对于x的每一个值,函数y=x的值大于一次函数y=kx+4k(k≠0)的值,求k的取值范围.9.(2023•东城区广渠门中学模拟)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.10.(2023•海淀区清华附中开学)在平面直角坐标系xOy中,直线x=1与x轴交于点A,直线l1:y=kx﹣2经过点A,且与y轴交于点B.(1)求点A和点B的坐标及直线l1的解析式;(2)直线l2与直线l1关于直线x=1对称,若直线y=m与直线l1,l2围成的区域W内(不包含边界)恰有1个整点,直接写出m的取值范围.(注:横、纵坐标都是整数的点叫做整点.)11.(2023•石景山区首师大附中苹果园校区模拟)在平面直角坐标系xOy中,一次函数y=k(x﹣1)+6(k>0)的图象与反比例函数的图象的一个交点的横坐标为1.(1)求这个反比例函数的解析式;(2)当x<﹣3时,对于x的每一个值,反比例函数的值大于一次函数y=k(x﹣1)+6(k>0)的值,直接写出k的取值范围.12.(2023•海淀区玉渊潭中学模拟)在平面直角坐标系xOy中,直线l:y=ax+b与双曲线y=交于点A(1,m)和B(﹣2,﹣1).点A关于x轴的对称点为点C.(1)①求k的值和点C的坐标;②求直线l的表达式;(2)过点B作y轴的垂线与直线AC交于点D,经过点C的直线与直线BD交于点E.若30°≤∠CED≤45°,直接写出点E的横坐标t的取值范围.13.(2023•海淀区中关村中学模拟)如图,一次函数y1=kx+b与反比例函数y2=的图象交于A(2,3),B(6,n)两点,与x轴、y轴分别交于C,D两点.(1)求一次函数与反比例函数的解析式.(2)求当x为何值时,y1>0.14.(2023春•丰台区十二中月考)已知直线l:y=kx(k≠0)经过点A(﹣1,2).点P为直线l上一点,其横坐标为m.过点P作y轴的垂线,与函数y=(x>0)的图象交于点Q.(1)求k的值;(2)①求点Q的坐标(用含m的式子表示);②若△POQ的面积大于3,直接写出点P的横坐标m的取值范围.15.(2023春•海淀区人大附中月考)在平面直角坐标系xOy中,函数的图象经过点(1,4).(1)求该函数的解析式;(2)当x>1时,对于x的每一个值,函数的值都小于函数y=mx(m≠0)的值,直接写出m的取值范围.(3)若反比例函数的图象与函数y=x+b的图象交于点A,B.若,直接写出b的取值范围.16.(2023春•西城区三帆中学月考)在平面直角坐标系xOy中,一次函数y=m(x﹣2)+3(m>0)的图象与反比例函数的图象的一个交点的横坐标为2.(1)求这个反比例函数的解析式;(2)当x<﹣2时,对于x的每一个值,反比例函数的值大于一次函数y=m(x﹣2)+3(m>0)的值,直接写出m的取值范围.17.(2023春•海淀区101中学月考)已知一次函数y1=2x+m的图象与反比例函数的图象交于A,B两点,点A的坐标为(2,1).(1)求m,k的值;(2)求B点坐标;(3)当x>2时,结合图象比较y1与y2的大小.18.(2023•海淀区人大附中开学)如图,在平面直角坐标系xOy中,过点A(a,0)作x轴的垂线,分别交直线y=2x﹣1与反比例函数y=图象于M,N两点,点M,N的纵坐标分别为m,n.(1)若点M与点N重合,且m=a,求k的值;(2)当a>2时,总有m>n,直接写出k的取值范围.19.(2023•西城区铁路二中模拟)在平面直角坐标系xOy中,直线l1:y=x+b与双曲线G:y=的一个交点为A(2,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=有两个公共点,它们的横坐标分别为x1,x2(x1<x2).直线l1与直线l2的交点横坐标记为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.20.(2023•海淀区首师大附中开学)在平面直角坐标系xOy中,直线l与y轴交于点A(0,m),与反比例函数的图象交于点B,过点B作BH⊥x轴于点H.(1)若A(0,1),B(n,2),求直线l的解析式;(2)平移(1)中的直线l,若AO>BH,直接写出m的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系与一次函数、反比例函数【考纲要求】⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.【知识网络】【考点梳理】考点一、平面直角坐标系 1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点 点P(x,y)在第一象限0,0>>⇔y x ;点P(x,y)在第二象限0,0><⇔y x ; 点P(x,y)在第三象限0,0<<⇔y x ; 点P(x,y)在第四象限0,0<>⇔y x ;点P(x,y)在x 轴上0=⇔y ,x 为任意实数;点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0). 3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等;点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数. 4.和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同; 位于平行于y 轴的直线上的各点的横坐标相同. 5.关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ′关于x 轴对称⇔横坐标相等,纵坐标互为相反数; 点P 与点p ′关于y 轴对称⇔纵坐标相等,横坐标互为相反数; 点P 与点p ′关于原点对称⇔横、纵坐标均互为相反数. 6.点P(x,y)到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x +. 7.在平面直角坐标系内两点之间的距离公式如果直角坐标平面内有两点()()2211,,y x B y x A 、,那么A 、B 两点的距离为:()()221221y y x x AB -+-=.两种特殊情况:(1)在直角坐标平面内,x 轴或平行于x 轴的直线上的两点()()y x B y x A ,,21、的距离为:()()()212212221x x x x y y x x AB -=-=-+-=(2)在直角坐标平面内,y 轴或平行于y 轴的直线上的两点()()21,,y x B y x A 、的距离为:()()()212212212y y y y y y x x AB -=-=-+-=要点诠释:(1)注意:x 轴和y 轴上的点,不属于任何象限; (2)平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标. 考点二、函数 1.函数的概念设在某个变化过程中有两个变量x 、y,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它相对应,那么就说y 是x 的函数,x 叫做自变量.2.自变量的取值范围对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.3.表示方法⑴解析法;⑵列表法;⑶图象法.4.画函数图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.要点诠释:(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;(2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.考点三、几种基本函数(定义→图象→性质)1.正比例函数及其图象性质(1)正比例函数:如果y=kx(k是常数,k≠0),那么y叫做x的正比例函数.(2)正比例函数y=kx( k≠0)的图象:过(0,0),(1,K)两点的一条直线.(3)正比例函数y=kx(k≠0)的性质①当k>0时,图象经过第一、三象限,y随x的增大而增大;②当k<0时,图象经过第二、四象限,y随x的增大而减小 .2.一次函数及其图象性质(1)一次函数:如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.(2)一次函数y=kx+b(k≠0)的图象(3)一次函数y=kx+b (k ≠0)的图象的性质一次函数y =kx +b 的图象是经过(0,b )点和)0,(kb-点的一条直线.①当k>0时,y 随x 的增大而增大; ②当k<0时,y 随x 的增大而减小. (4)用函数观点看方程(组)与不等式①任何一元一次方程都可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:一次函数y =kx +b (k ,b 为常数,k ≠0),当y =0时,求相应的自变量的值,从图象上看,相当于已知直线y =kx +b ,确定它与x 轴交点的横坐标. ②二元一次方程组⎩⎨⎧+=+=2211b x k y b x k y 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.③任何一元一次不等式都可以转化ax +b >0或ax +b <0(a 、b 为常数,a ≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围. 要点诠释:(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;(2)确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k.确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b. 解这类问题的一般方法是待定系数法.(3)直线y 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系.①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行;④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.3.反比例函数及其图象性质 (1)定义:一般地,形如xky =(k 为常数,o k ≠)的函数称为反比例函数. 三种形式:k y x=(k ≠0)或kx y =1-(k ≠0)或xy=k(k ≠0). (2)反比例函数解析式的特征:①等号左边是函数y ,等号右边是一个分式.分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1; ②比例系数0≠k ;③自变量x 的取值为一切非零实数; ④函数y 的取值是一切非零实数.(3)反比例函数的图象①图象的画法:描点法列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数); 描点(由小到大的顺序); 连线(从左到右光滑的曲线).②反比例函数的图象是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.③反比例函数的图象是轴对称图形(对称轴是x y =和x y -=)和中心对称图形(对称中心是坐标原点). ④反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意点引x 轴、y 轴的垂线,所得矩形面积为k .(4)反比例函数性质:反比例函数)0(≠=kxkyk的符号k>0 k<0 图像性质①x的取值范围是x≠0,y的取值范围是y≠0;②当k>0时,函数图像的两个分支分别在第一、三象限.在每个象限内,y随x 的增大而减小.①x的取值范围是x≠0,y的取值范围是y≠0;②当k<0时,函数图像的两个分支分别在第二、四象限.在每个象限内,y随x 的增大而增大.(5)反比例函数解析式的确定:利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出k)(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky=中的两个变量必成反比例关系. (7)反比例函数的应用反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=kxky图像上任一点),(yxP 作x轴、y轴的垂线PM,PN,垂足为M、N,则所得的矩形PMON的面积S=PM∙PN=xyxy=∙.,yxk=∴||kSkxy==,.(8)正比例函数和反比例函数的交点问题若正比例函数1y k x=(1k≠0),反比例函数22(0)ky kx=≠,则当12k k<时,两函数图象无交点;当120k k >时,两函数图象有两个交点,坐标分别为(21k k ,12k k ),(21kk -,12k k -). 由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.要点诠释:(1)用待定系数法求解析式(列方程[组]求解);(2)利用一次(正比例)函数、反比例函数的图象求不等式的解集.【典型例题】类型一、坐标平面有关的计算1.已知:如图所示,(1)写出△ABC 三个顶点的坐标;(2)作出△ABC 关于x 轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标; (3)作出△ABC 关于y 轴对称的△A″B″C″,并写出△A″B″C″三个顶点的坐标.【变式】如图所示,△ABC 的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B 点向右平移2个单位后再向上平移4个单位到达B 1点,若设△ABC 的面积为S 1,△AB 1C 的面积为S 2,则S 1,S 2的大小关系为( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不能确定类型二、一次函数3.已知点A(3,1),B(0,0),C(3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE 对应的函数解析式是( ).A. 233y x =-B. 2y x =-C. 31y x =-D. 32y x =- 【变式】已知:如图所示,在直角坐标平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴.点B 与点A 关于原点对称,直线y =x+b(b 为常数)经过点B ,且与直线CM 相交于点D ,连接OD .类型三、反比例函数4.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数ky=x(k≠0)在第一象限内的图象经过点D 、E ,且tan∠BOA=. (1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长...【变式1】已知:如图,正比例函数y =ax 的图象与反比例函数xky =的图象交于点A(3,2). (1)求上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值;(3)M(m ,n)是反比例函数图象上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B ;过点A 作直线AC ∥y 轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.【变式2】已知双曲线xy 3=和直线2y kx =+相交于点11()A x y ,和点22()B x y ,,且102221=+x x . 求k 的值.【答案】由⎪⎩⎪⎨⎧=+=x y kx y 32得232230kx kx x x =++-=,.∴121223x x x x k k +=-=-,. 故()222121212246210x x x x x x k k+=+-=+=. ∴25320k k --=.∴11k =或225k =-. 又24412b ac k -=+>0即13k >-,舍去225k =-,故所求k 的值为1.类型四、函数综合应用5.如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x 轴、y 轴分别交于点A 和点B ,且OA =OB =1.这条曲线是函数xy 21=的图像在第一象限的一个分支,点P 是这条曲线上任意一点,它的坐标是(a 、b ),由点P 向x 轴、y 轴所作的垂线PM 、PN ,垂足是M 、N ,直线AB 分别交PM 、PN 于点E 、F.(1)分别求出点E 、F 的坐标(用a 的代数式表示点E 的坐标,用b 的代数式表示点F 的坐标,只须写出结果,不要求写出计算过程);(2)求△OEF 的面积(结果用含a 、b 的代数式表示);(3)△AOF 与△BOE 是否一定相似,请予以证明.如果不一定相似或一定不相似,简要说明理由;(4)当点P 在曲线xy 21=上移动时,△OEF 随之变动,指出在△OEF 的三个内角中,大小始终保持不变的那个角的大小,并证明你的结论.【思路点拨】在证明三角形相似时,∠EBO =∠OAF 是较明显的,关键是证明两夹边对应成比例,这里用到了点P (a ,b )在双曲线xy 21=上这一重要条件,挖掘形的特征,并把形的因素转化为相应的代数式形式是解本题的关键.【答案与解析】(1)点E (a ,a -1),点F (b -1,b ) (2)EPF FNO EMO MONP EOF S S S S S ∆∆∆∆---=矩形 =2)1(21)1(21)1(21-+-----b a b b a a ab =)1(21-+b a (3)△AOF 与△BOE 一定相似,下面给出证明∵OA =OB =1 ∴∠FAO =∠EBOBE =a a a 2)11(22=+-+ AF =b b b 2)11(22=++- ∵点P (a ,b )是曲线xy 21=上一点 ∴12=ab ,即AF ·BE =OB ·OA =1 ∴BEOAOB AF =∴△AOF ∽△BOE(4)当点P 在曲线xy 21=上移动时,△OEF 中∠EOF 一定等于45°,由(3)知,∠AFO =∠BOE ,于是由∠AFO =∠B +∠BOF 及∠BOE =∠BOF +∠EOF∴∠EOF =∠B =45°. 【总结升华】此题第(3)(4)问均为探索性问题,(4)以(3)为基础,在肯定(3)的结论后,(4)的解决就不难了.举一反三:【高清课程名称:平面直角坐标系与一次函数 高清ID 号: 406069 关联的位置名称(播放点名称):例4-例5】【变式1】如图所示,点A 的坐标为(1,0),点B 在直线y =-x 上运动,当线段AB 最短时,点B 的坐标为( ).)(b a P ,yx 问题图 FE NM B A OA .(0,0)B .(12,-12) C .(22,22-) D .(12-,12)【答案】当AB 与直线y =-x 垂直时,AB 最短.(如图所示)∵直线y =-x ,∴∠AOB =45°.∴△AOB 是等腰直角三角形. 过B 作BC ⊥x 轴于C .∵ A(1,0),∴OA =1,1122BC AO ==. ∴此题选B .【变式2】在同一坐标系中,一次函数y =(1-k)x+2k+l 与反比例函数ky x=的图象没有交点,则常数k 的取值范围是________.【答案】由题意知(1)21,.y k x k ky x =-++⎧⎪⎨=⎪⎩∴(1)21kk x k x=-++. ∴ 两函数图象无交点,∴ 10,0,0.k k -≠⎧⎪≠⎨⎪<⎩△∴ 18k <-.6.如图所示,点A(m,m+1),B(m+3,m-1)都在反比例函数kyx=的图象上.(1)求m、k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的解析式.【思路点拨】(1)直接把A、B两点的坐标代入解析式中就可以得到关于m的方程,解方程即可;(2)存在两种情况:当M点在x轴的正半轴上,N点在y轴的正半轴上时和当M点在x轴的负半轴上,N点在y轴的负半轴上时.无论哪种情况都可以利用平移知识求出M、N的坐标,然后利用待定系数法确定直线MN的解析式;【答案与解析】(1)由题意可知m(m+1)=(m+3)(m-1).解得m=3.∴ A(3,4),B(6,2).∴ k=4×3=12.(2)存在两种情况,如图所示.①当M点在x轴的正半轴上,N点在y轴的正半轴上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).∵四边形AN1M1B为平行四边形,∴点A对应点N1,点B对应点M1.∵点A的横坐标为3,点B的纵坐标为2.∴线段N1M1可看做由线段AB向左平移3个单位,再向下平移2个单位得到的.∴ N1点的坐标为(0,4-2),即N1(0,2);M1点的坐标为(6-3,0),即M1(3,0).设直线M1N1的函数表达式为y=k1x+2,把x=3,y=0代入,解得12 3k=-.∴直线M1N1的函数表达式为223y x=-+.②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2).∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,DBAyxOC ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称. ∴ M 1点坐标为(-3,0),N 2点坐标为(0,-2).设直线M 2N 2的函数表达式为22y k x =-,把x =-3,y =0代入,解得223k =-. ∴ 直线M 2N 2的函数表达式为223y x =--. 综上所述,直线MN 的函数表达式为223y x =-+或223y x =--.【总结升华】本题主要考查了一次函数与反比例函数的综合应用.中考总复习:平面直角坐标系与一次函数、反比例函数—巩固练习(提高)【巩固练习】 一、选择题1. 无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ) A.k<13 B. k>1 C. 13<k<1 D.k>1或k<13 3.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,•则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )4.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x 和y 2=4x的图像交于点A 和点B .若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( ) A .1B .2C .3D .4第4题图 5题图 5.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( ) A .12 B .9 C .6 D .4 6.已知abc ≠0,而且a b b c c ac a b+++===p ,那么直线y=px+p 一定通过( ) A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限 二、填空题7.如图,正比例函数y x =与反比例函数1y x=图象相交于A 、C 两点,过点A 做x 轴的垂线交x 轴于点B ,连接BC ,若ABC ∆的面积为S ,则S = .8.如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线xky =交OB 于D , 且OD :DB=1:2,若△OBC 的面积等于3,则k 的值是 .CBA O xy第7题图 第8题图 第11题图9.点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .10.函数y=-3x+2的图像上存在点P ,使得P•到x•轴的距离等于3,•则点P•的坐标为__________. 11.如图,已知函数y=2x 和函数ky=x的图象交于A 、B 两点,过点A 作AE⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则满足条件的P 点坐标是 . 12.已知n 是正整数,111222(,),(,),,(,),n n n P x y P x y P x y 是反比例函数ky x=图象上的一列点,其中121,2,,,n x x x n ===.记112A x y =,223A x y =,1n n n A x y +=,,若1A a =(a 是非零常数),则A 1·A 2·…·A n 的值是________________________(用含a 和n 的代数式表示).三、解答题13.已知正比例函数y kx =(0)k ≠与反比例函数(0)my m x=≠的图象交于A B 、两点,且点A 的坐标为(23),.(1)求正比例函数及反比例函数的解析式;(2)在所给的平面直角坐标系中画出两个函数的图象,根据图象直接写出点B 的坐标及不等式m kx x>的解集.14. 如图,将直线x y 4=沿y 轴向下平移后,得到的直线与x 轴交于点A (0,49),与双曲线ky x=(0x >)交于点B .(1)求直线AB 的解析式;(2)若点B 的纵坐标为m , 求k 的值(用含m 的代数式表示).xyOA6246 -2 -2-6 2-8-4 415.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止到15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量))请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)销售量x为多少时,销售利润为4万元?(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O1A,AB,BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)16. 如图所示,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案与解析】一、选择题1.【答案】C;【解析】直线y=-x+4经过第一,二,四象限,一定不经过第三象限,因而直线y=x+2m与y=-x+4的交点不可能在第三象限.2.【答案】C;【解析】解关于x ,y 的方程组31y x y x k =-⎧⎨=-⎩解得:12132k x ky -⎧=⎪⎪⎨-⎪=⎪⎩∵交点在第四象限,∴得到不等式组1021302k k -⎧⎪⎪⎨-⎪⎪⎩>< 解得:13k <<1.3.【答案】B ; 【解析】由方程组y bx ay ax b =+⎧⎨=+⎩的解知两直线的交点为(1,a+b ),•而图A 中交点横坐标是负数,故图A 不对;图C 中交点横坐标是2≠1, 故图C 不对;图D•中交点纵坐标是大于a ,小于b 的数,不等于a+b , 故图D 不对;故选B .4.【答案】A ;5.【答案】B ;【解析】由A (-6,4),可得△ABO 的面积为124621=⋅⋅,同 时由于D 为OA 的中点,所以D (-3,2),可得反比例 函数解析式为xy 6-=,设C (a ,b ),则ab 6-=, ∴ab =-6,则BO ×BC=6,∴ △CBO 的面积为3,所以△AOC 的面积为12-3=9.6.【答案】B ; 【解析】∵a b b c c ac a b+++===p , ∴①若a+b+c ≠0,则p=()()()a b b c c a a b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1, ∴当p=2时,y=px+q 过第一、二、三象限; 当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限.二、填空题 7.【答案】1;【解析】∵无法直接求出ABC ∆的面积∴将ABC ∆分割成OBC ∆和OAB ∆ 由题意,得1y xy x =⎧⎪⎨=⎪⎩,解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩ ∴(1,1)A 、(1,1)B --∴ABC ∆的面积=11122AOB COB S S ∆∆+=+= 8.【答案】43=k ; 【解析】设B 点坐标为(a ,b ),∵OD :DB=1:2,∴D 点坐标为(a 31,b 31), ∵D 在反比例函数x k y =的图象上,得k b a =∙3131,∴k ab 9= --------------①,∵BC ∥AO ,AB ⊥AO ,C 在反比例函数xky =的图象上,C 点的纵坐标是b ,∴C 点坐标为(b bk,)将(b b k ,)代入x k y =得,b k x =,bka BC -=,又因为△OBC 的高为AB ,所以OBC 1()32kS a b b =-∙=△,6=-k ab -----------②,把①代入②得,9k-k=6, 解得 43=k .9.【答案】6;【解析】设A (a,a ),B (b,b),则C (1,a a ),D (1,b b), AC=1a a -,BD =1b b-, ∵BD=2AC ,∴112()b a b a-=-,2222221144()()OC OD a b a b-=+-+22114()2()2a b a b ⎡⎤⎡⎤=-+--+⎢⎥⎢⎥⎣⎦⎣⎦22114()84()2a a aa=-+--- 6= 10.【答案】(13,3)或(53,-3); 【解析】∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为(13,3)或(53,-3). “点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.11.【答案】(0,﹣4),(﹣4,﹣4),(4,4);【解析】先求出B 、O 、E 的坐标,再根据平行四边形的性质画出图形,即可求出P 点的坐标:如图,∵△AOE 的面积为4,函数ky=x的图象过一、三象限,∴k=8.∴反比例函数为8y=x∵函数y=2x 和函数8y=x的图象交于A 、B 两点, ∴A、B 两点的坐标是:(2,4)(﹣2,﹣4), ∵以点B 、O 、E 、P 为顶点的平行四边形共有3个,∴满足条件的P 点有3个,分别为:P 1(0,﹣4),P 2(﹣4,﹣4),P 3(4,4).12.【答案】(2)1na n +;【解析】由题意可知:12.....n A A A ∙∙∙=12231n n x y x y x y +∙∙∙∙......,又ky x=,即xy k =, 所以原式=111n n x k y -+∙∙.又112A x y a ==,22k x y =,所以2k a =,所以原式1111112(2)1(2)1(2)11n n n n n n k a a x ky a a x n n ---++∙∙=⨯⨯=⨯⨯=++.三、解答题13.【答案与解析】(1)∵点A (2,3)在正比例函数y kx =的图象上,∴ 23k =. 解得 32k =. ∴ 正比例函数的解析式为 32y x =. ∵点A (2,3)在反比例函数my x=的图象上,∴ 32m=.解得 6m =.∴ 反比例函数的解析式为6y x=.…… 2分(2)点B 的坐标为(2,3)--, …………… 3分 不等式mkx x>的解集为20x -<<或2x >.14.【答案与解析】(1)将直线x y 4=沿y 轴向下平移后经过x 轴上点A (0,49),设直线AB 的解析式为b x y +=4. 则0494=+⨯b . 解得9-=b .∴直线AB 的解析式为94-=x y .(2)设点B 的坐标为(x B ,m ),∵直线AB 经过点B ,∴94-=B x m . ∴49+=m x B . ∴B 点的坐标为(49+m ,m ), ∵点B 在双曲线k y x =(0x >)上, ∴49+=m km . ∴492m m k +=.15.【答案与解析】解法一:(1)由题意知,当销售利润为4万元时,销售量4÷(5-4)=4万升.答:销售量x 为4万升时,销售利润为4万元.(2)点A 的坐标为(4,4),从13日到15日利润为5.5-4=1.5,所以销售量为1.5÷(5.5-4)-1, 所以点B 的坐标为(5,5.5).设线段AB 所对应的函数关系式为y =kx+b ,则44,5.55.k b k b =+⎧⎨=+⎩ 解得 1.5,2.k b =⎧⎨=-⎩∴ 线段AB 所对应的函数关系式为 y =1.5x-2(4≤x ≤5).从15日到31日共销售5万升,利润为l ×1.5+4×1=5.5(万元).∴ 本月销售该油品的利润为5.5+5.5=11(万元),则点C 的坐标为(10,11).设线段BC 所对应的函数关系式为y =mx+n , xyOA6 2 4 6-2-2 -62 -8 -44则 5.55,1110.m n m n =+⎧⎨=+⎩ 解得 1.1,0.m n =⎧⎨=⎩所以线段BC 所对应的函数关系式为 y =1.1x(5≤x ≤10).(3)线段AB 段的利润率最大.解法二:(1)根据题意,线段OA 所对应的函数关系式为y =(5-4)x ,即y =x(0≤x ≤4). 当y =4时,x =4,所以销售量为4万升时,销售利润为4万元.答:销售量x 为4万升时,销售利润为4万元.(2)根据题意,线段AB 对应的函数关系式为y =1×4+(5.5-4)×(x-4),即y =1.5x-2(4≤x ≤5).把y =5.5代入y =1.5x-2,得x =5,所以点B 的坐标为(5,5.5).此时库存量为6-5=1.当销售量大于5万升时,即线段BC 所对应的销售关系中, 每升油的成本价144 4.5 4.45⨯+⨯==(元), 所以,线段BC 所对应的函数关系式y =(1.5×5-2)+(5.5-4.4)(x-5)=1.1x(5≤x ≤10).(3)线段AB 段的利润率最大.16.【答案与解析】解:(1)过点N 作BA 的垂线NP ,交BA 的延长线于点P .由已知,AM =x ,AN =20-x ,∵ 四边形ABCD 是等腰梯形,AB ∥CD ,∠D =∠C =30°,∴ ∠PAN =∠D =30°.在Rt △APN 中,1sin (20)2PN AN PAN x =∠=-, 即点N 到AB 的距离为1(20)2x -. ∵ 点N 在AD 上,0≤x ≤20,点M 在AB 上,0≤x ≤15,∴ x 的取值范围是0≤x ≤15.(2)根据(1),2111(20)5244AMN S AM NP x x x x ==-=-+△. ∵ 104-<,∴ 当x =10时,AMN S △有最大值. 又∵ AMN BCDNM S S S =-△五边形梯形,且S 梯形为定值,当x =10时,即ND =AM =10,AN =AD-ND =10,即AM =AN .则当五边形BCDNM 面积最小时,△AMN 为等腰三角形.。

相关文档
最新文档