6.4数据的离散程度

合集下载

6.4 数据的离散程度(课件)北师大版数学八年级上册

6.4 数据的离散程度(课件)北师大版数学八年级上册

感悟新知
知2-讲
特别提醒 方差、标准差是描述一组数据离散程度的量,方差、
标准差越小,这组数据的离散程度越小,这组数据越稳 定;方差、标准差越大,这组数据的离散程度越大,这 组数据波动越大.
感悟新知
方差与平均数的变化规律:
样本数据
x1,x2,…,xn x1+a, x2+a,…, xn+a kx1,kx2,…,kxn kx1+a, kx2+a,…, kxn+a
感悟新知
特别提醒
知3-讲
◆用计算器求一组数据的标准差时,由于计算器型
号的不同,按键顺序也会有所不同,注意参考说
明书.
◆计算器一般不具有求方差的功能,可以先求出标
准差,再平方即可求出方差.
感悟新知
知3-练
例5 用计算器求数据7,7,7,8,5,9,7,7,6,7的
标准差、方差.
解题秘方:按照计算器求标准差的步骤先求出标
解:因为6,4,a,3,2 的平均数是5, 所以(6+4+a+ 3+2)÷5=5,解得a=10. 所以s2=15 [(6-5)2+(4-5)2+(10-5)2+(3-5)2+ (2-5)2]=8.
2-1.若样本 x1,x2,…,xn的 方 差 为 2,则样本 2x1+5,2x2+5, …,2xn+5 的方差是( D )
位: cm)的 平 均数与方差为 ͞x甲 = ͞x丙 =13 cm, ͞x
乙 = ͞x丁 =15 cm,s2甲= s 2丁 = 3.6 , s 2乙 =s2丙=6.3.
则麦苗又 高又整齐的是D(
)
A. 甲
B. 乙
C. 丙
D. 丁
感悟新知

6.4.1数据的离散程度

6.4.1数据的离散程度

课下作业 • 完成《全品学练考》课时作 业()
由方差的 定义,要 注意:
S2=
1 n
[ (x1-x)2+(x2-x)2+ +(xn-x)2 ]
计算方差的一般步骤:
1、利用平均数公式计算这组数据的平均 数X 2、利用方差公式计算这组数据的方差S2
例: 为了考察甲、乙两种小麦的长势,分别从中抽出 10株苗,测得苗高如下(单位:cm): 甲: 12 乙: 11 13 16 14 17 15 14 10 13 16 13 11 15 19 6 8 10 11 16
1、自主预习课本P255-P256的内容。
算术平方根 3、标准差:方差的_________,叫做 标准差。 _ _ _ 公式: 1 2 s s [( x1 x) ( x2 x) ( xn x)] n 4、方差、标准差与极差的意义 数据离散程度 方差、标准差与极差都是描述______ 的量。一般而言,一组数据的极差、 方差或标准差越小,这组数据就越 稳定 ________。
2 2 乙 2 甲 2 乙
随堂练习
甲乙两支仪仗队队员的身高(单位:cm) 如下:
甲队
乙队
178
178
177
177
179
179
178
176
178
178
177
180
178
180
178
178
177
176
179
178
哪支依仗队更为整齐?你是怎么判断的?
甲、乙两支仪仗队队员的身高的平均数都是 178cm,极差分别是2cm、4cm,方差分别是0.6 、1.8,可以认为,甲仪仗队更为整齐一些.

6.4+数据的离散程度++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册

6.4+数据的离散程度++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册

6.4 数据的离散程度






[解题思路]
极差=最大值-最小值


极差= 95 分 - 80 分 =15 分
[答案] 15 分
返回目录
6.4 数据的离散程度






■考点二
返回目录
方差和标准差
1. 方差
定义
方差是各个数据与平均数差的平方的平均数,即

2
s = [(x

1-x)
2+(x
2-x)
(3)派 A 去参赛较合理.理由:从题图中折线走势可

题 知,尽管 A 的成绩前面起伏大,但后来逐渐稳定,误差小

突 ,预测 A 的潜力大,而 B 比较稳定,潜力小,所以派 A 去

参赛较合适(答案不唯一,合理即可).
返回目录
归纳总结


一般而言,极差越大,该组数据的分布面越大,离散程

单 度也越大;极差越小,该组数据的分布面越小,离散程度也

读 越小.
6.4 数据的离散程度
返回目录
对点典例剖析


典例1 在校数学竞赛中,10 名学生的参赛成绩统计如


解 图所示,则这 10 名学生的参赛成绩的极差是_________.




返回目录
(1)根据图示填写下表:
班级
中位数/分
众数/分
八(1)班
85
_
八(2)班
_
100
(2)通过计算得知八(2)班的平均成绩为 85 分,请

初中数学_数据的离散程度方差教学设计学情分析教材分析课后反思

初中数学_数据的离散程度方差教学设计学情分析教材分析课后反思

6.4数据的离散程度方差一、备课标(一)内容标准:1、经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据。

2、体会刻画数据离散程度的意义,会计算简单数据的方差。

(二)核心概念:了解在现实生活中,我们对一些数据进行分析时,不仅需要看这些数据的集中趋势,有时还要关注数据的离散程度。

经历用方差刻画数据离散程度的过程,体会刻画数据离散程度的意义。

十大核心概念在本节课中突出培养的是数感、符号意识、数据分析观念、运算能力、推理能力、应用意识、模型思想。

二、备重点、难点:(一)教材分析:本节课是八年级上册第六章《数据的分析》的第四节“数据的离散程度”的第一课时,属于统计部分的内容。

通过本节课的学习,主要是引导学生在具体的情境中让学生感受到仅依靠集中趋势难以准确地刻画数据,还需要关注数据的离散程度,进而引出刻画数据离散程度的三个统计量---极差、方差、标准差,逐渐理解极差、方差、标准差等概念及其计算方法,理解一组数据的稳定性与极差、方差、标准差等数值的大小相关.(二)重点、难点分析:重点:在具体情境中逐渐理解极差、方差、标准差等概念及其计算方法,领悟极差、方差、标准差都是刻画一组数据的离散程度。

难点:在解决问题的过程中体会刻画数据离散程度的意义。

三、备学情(一)学习条件和起点能力分析:1.学习条件分析:(1)必要条件:学生已经研究过描述数据集中趋势的三个量---平均数、中位数、众数,并会求这三个量。

(2)支持性条件:学生已经学习过平均数、中位数等几个刻画数据的“平均水平”的统计量,具备了一定的数据处理能力和初步的统计思想与计算能力。

2.起点能力分析:学生已经具备了一定的搜集数据信息和分析处理数据的能力,还需要老师帮助解决的是在数据分析的过程中抽象出极差、方差和标准差的概念,体会用方差刻画数据离散程度的过程。

(二)学生可能达到的程度和存在的普遍性问题:在前面的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用,有了一定数据分析处理能力和经验。

6.4.1数据的离散程度

6.4.1数据的离散程度

6.4.1 数据的离散程度【学习目标】1.经历表示数据离散程度的几个量度的探索过程;2.了解刻画数据离散程度的三个量度——极差、方差、标准差;3.能借助计算器求出相应的数值,并在具体问题情境中加以应用;4.通过实例体会用样本估计总体的思想。

过程与方法:经历表示数据离散程度的几个量度的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力。

一、复述回顾:(二人小组完成)1.我们研究过刻画数据的“平均水平”的统计量有哪些?分别是怎样刻画数据的“平均水平”的?2.求平均数有哪几种方法?二、设问导读:阅读课本P149-151完成下列问题:1.甲、乙两厂被抽取鸡腿的平均质量分别是x甲=_____,x乙=______,甲厂抽取的这20只鸡腿质量的最大值是_____,最小值是______,极差为_____克, 乙厂抽取的这20只鸡腿质量的最大值是_____,最小值是______,极差为_____克. 如果只考虑鸡腿的规格,外贸公司应购买____厂的鸡腿,因为___厂鸡腿规格比较_____,在______左右摆动幅度较___.2.如果两组数据的平均值一样,这种情况下,人们除了关心数据的“平均值”即“_______”外,人们往往还关注数据的________,即相对于“________”的_________.从上图也能很直观地观察出:甲厂相对于“平均水平”的偏离程度比乙厂相对于“平均水平”的偏离程度____.3. 甲、丙厂20只鸡腿的质量与其平均数的差的和都为____,由此可知不能用各数据与平均数的差的和来衡量这组数据的_______.这种情况下,可以用各个数据与平均数之___的____的______来刻画,即方差.4. 描述一组数据的波动大小的量不止一种,最常用的_____、_____、_______;标准差就是_____的_____平方根. 一般而言,一组数据的极差、方差或标准差越小,这组数据就越_____.5.阅读P150例题,并仿照例题格式完成做一做:(1)丙厂20只鸡腿的平均质量x丙=___,方差S2丙=___.(2)∵___________,___________∴_____厂的产品更符合规格.6.使用计算器计算一组数据的标准差与方差的大体步骤是;进入_______状态,输入_____,按键就可得出_______.再______即可求出_______.利用器可求s甲2=______ s丙2=________.根据计算的结果,____厂的产品更符合要求.三、自学检测:1.一组数据:473、865、368、774、539、474的极差是 .2.下列几个常见统计量中能够反映一组数据波动范围的是()A.平均数B.中位数C.众数D.极差3.为了判断甲、乙两个小组学生英语口语测验成绩哪一组比较整齐,通常需要知道两组成绩的()A.平均数B.方差C.众数D.中位数4.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数相同,但S2甲S2乙,所以确定去参加比赛。

2017-2018学年北师大版八年级数学上册教师用书(pdf版):6.4数据的离散程度

2017-2018学年北师大版八年级数学上册教师用书(pdf版):6.4数据的离散程度

㊀ ( 其中 x 1 ᶄꎬ x 2 ᶄꎬ x 3 ᶄꎬ������ꎬ x n ᶄ 分别等于 x 1 - aꎬ x 2 - aꎬ x 3 - aꎬ 2. 标准差:方差的算术平方根. ������ꎬx n - aꎬxᶄ是数据组 x 1 ᶄꎬx 2 ᶄꎬx 3 ᶄꎬ������ꎬx n ᶄ的平均数)
3. 方差( 标准差 ) 的意义: 方差 ( 标准差 ) 越大ꎬ 数据的波 齐. 差) 越小ꎬ数据的波动就 ㊀ 越小 ㊀ ꎬ 数据就越稳定ꎬ 越整 才利用方差来判断它们的波动情况. 动就㊀ 越大㊀ ꎬ数据就越不稳定ꎬ 越不整齐ꎻ 方差 ( 标准
归纳:
kx 1 ꎬkx 2 ꎬ������ꎬkx n kx 1 + aꎬkx 2 + aꎬ������ꎬkx n + a
样本 x 1 ꎬx 2 ꎬ������ꎬx n x 1 + aꎬx 2 + aꎬ������ꎬx n + a
平均数 x x +aFra bibliotek方差 s

ȵ
s2 k s
2 2
kx k x +a
6+6.5 25 = ꎻ (3) 第四次调价后ꎬ对于 A 产品ꎬ这四次单价的中位数为 2 4 对于 B 产品ꎬȵ m >0ꎬʑ 第四次单价大于 3ꎬ ȵ 3. 5+4 13 25 ˑ2-1 = > ꎬʑ 第四次单价小于 4ꎬ 2 2 4 3( 1+m% ) +3. 5 25 ˑ2-1 = ꎬʑ m = 25. ʑ 2 4
1 43 < ꎬʑ B 产品的方差小ꎬʑ B 产品的单价波动小ꎻ 6 150
1 1 [( 3. 5-3. 5) 2 +( 4-3. 5) 2 +( 3-3. 5) 2 ] = ꎬ 3 6
k2 s2
方差在实际问题中的评价作用 ʌ 例 2ɔ (2015 河北 ) 某厂生产 AꎬB 两种产品ꎬ 其单价随 市场变化而做相应调整. 营销人员根据前三次单价变化 的情况ꎬ绘制了如下统计表及不完整的折线图. AꎬB 产品单价变化统计表 第一次 3.5 6 第二次 5.2 4

6.4数据的离散程度(1)练习题

6.4数据的离散程度(1)练习题

6.4 数据的离散程度(1)练习题1、刻画数据离散程度的统计量是、.2、极差是指.3、方差是,即S2= .标准差就是.4、一组数据的越小,这组数据就越.5、甲、乙两支仪仗队队员的身高(单位:cm)如下:甲队:178,177,179,179,178,178,177,178,177,179;乙队:178,177,179,176,178,180,180,178,176,178;甲队队员的平均身高是,甲队队员身高的方差是;乙队队员的平均身高是,乙队队员身高的方差是;对更为整齐.6、人数相等的甲、乙两班学生参加了同一次数学测验, 班级平均分和方差如下:平均分都为110,甲、乙两班方差分别为340、280,则成绩较为稳定的班级为( )A.甲班B.乙班C.两班成绩一样稳定D.无法确定7、一组数据13,14,15,16,17的标准差是( )A B.10 C.0 D.28、在方差的计算公式()()()22221210120202010s x x x⎡⎤=-+-+⋅⋅⋅+-⎣⎦中,数字10和20分别表示的意义可以是( )A.数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.数据组的方差和平均数9、如图是某一天A、B两地的气温变化图。

问:(1)这一天A、B两地的平均气温分别是多少?(2)A地这一天气温的极差、方差分别是多少?B地呢?(3)A、B两地的气候各有什么特点?讨论:一组数据的方差越小,这组数据就越稳定,那么,是不是方差越小就表示这组数据离散程度越低?10、某校从甲、乙两名优秀选手中选一名参加全市中学生运动会跳远比赛.预先对这两名选手测试了10次,他们的成绩(单位:cm )如下: (1)甲、乙的平均成绩分别是多少?(2)甲、乙这10次比赛成绩的方差分别是多少? (3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到596cm 就很可能夺冠,你认为为了夺冠应选谁参加这项比赛? (5)如果历届比赛表明,成绩达到610cm 就能打破记录,你认为为了打破记录应选谁参加这项比赛?11、某校从甲乙两名优秀选手中选一名选手参加全市中学生田径百米比赛(100米记录为12.2秒,通常情况下成绩为12.5秒可获冠军)。

北师大版初中数学八年级上册6.4 数据的离散程度2

北师大版初中数学八年级上册6.4  数据的离散程度2

北师大初中数学八年级重点知识精选掌握知识点,多做练习题,基础知识很重要!北师大初中数学和你一起共同进步学业有成!6.4 数据的离散程度第一环节:情境引入内容:为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿.现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近。

质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75 74 74 76 73 76 75 77 77 7474 75 75 76 73 76 73 78 77 72乙厂:75 78 72 77 74 75 73 79 72 7580 71 76 77 73 78 71 76 73 75把这些数据表示成下图:7878(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线。

(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由。

在学生讨论交流的的基础上,教师结合实例给出极差的概念:极差是指一组数据中最大数据与最小数据的差。

它是刻画数据离散程度的一个统计量。

目的:通过一个实际问题情境,让学生感受仅有平均水平是很难对所有事物进行分析,从而顺利引入研究数据的其它量度:极差。

注意事项:当一组数据的平均数与中位数相近时,学生在原有的知识与遇到问题情境产生知识碰撞时,才能较好地理解概念。

第二环节:合作探究内容1: 如果丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,它们的质量数据如下图:78(1)丙厂这20只鸡腿质量的平均数和极差分别是多少?(2)如何刻画丙厂这20只鸡腿的质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与其相应平均数的差距。

6.4第1课时 极差、方差和标准差3

6.4第1课时  极差、方差和标准差3
6.4 数据的离散程度
第1课时 极差、方差和标准差
学习目标
1.了解刻画数据离散程度的三个统 计量:极差、方差和标准差
2.经历表示数据离散程度的几个 统计量的探索过程,通过实例体会 用样本估计总体的统计思想.
第一次先学后教(6分钟)定义极差
为了提高农副产品的国际竞争力,一些行业协会对 农副产品的规格进行了划分,某外贸公司要出口一批规 格为75g的鸡腿.现有2个厂家提供货源,它们的价格相 同,鸡腿的品质也相近.质检员分别从甲、乙两厂的产 品中抽样调查了20只鸡腿,它们的质量(单位:g)如下: 甲厂:75 74 74 76 73 76 75 77 77 74
准差越小,这组数据就越稳定。
作业
名校课堂:P96
扩展训练
射箭时,新手的成绩通常不大稳定,小明和 小华练习射箭,第一局12枝箭射完后,两人的成 绩如下图所示:
小明和小华谁是新手?说明你的理由。
1.1 3.1 2.1 3.1 2.9 较 0.9 1.9 1.9 1.9 3.9 大
方差的定义:
方差是各个数据与平均数之差的平方的平均 数,即
S2 1 n
2
2
2
x1 x x2 x xn x
其中,x是x1,x2 ,… ,xn的平均数,s2是方差。
组数据说法不正确的是( )B
A.平均数是5 B.中位数是6
C.众数是4
D.方差是3.2
4.绝对值不超过3的所有整数组成的一
组数据的极差是 6 ,方差是 4 .
5.有一组数据如下:2,3,a,5,6,它 们的平均数是4,则这组数据的标准差
是 2.
课堂小结
1、极差的定义: 极差是指一组数据中最大数据与最小数

原创新课堂八年级上册数学(北师)习题课件:6.4 第2课

原创新课堂八年级上册数学(北师)习题课件:6.4 第2课

A 20
sA2
5
B 20
sB2
2
解:(2)∵SA2=0.008,SB2=0.026,∴A更稳定,A的成绩更好 (3)从折线走势看,成绩越来越接近20 mm,并趋于稳定,所以派B 去更合格
6.甲、乙两名射击选手各自射击十组,按射击的时间顺序把每组射中 靶的环数值记录如下表:
(1)根据上表数据,完成下列分析表:
第1次 9 7
第2次 4 5
第3次 7 7
第4次 4 a
第5次 6 7
(1)a=__4__,x乙=__6__; (2)请完成图中表示乙成绩变化情况的折线;
(3)①观察图,可看出__乙__的成绩比较稳定(填“甲”或“乙”).参照 小宇的计算方法,计算乙成绩的方差,并验证你的判断.
②请你从平均数和方差的角度分析,谁将被选中. 小宇的作业:
解:乙组的平均数高于甲组;乙组的中位数高于甲组,所以乙组的成 绩要好于甲组
8.某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射 了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下尚
不完整的统计图表,并计算了甲成绩的平均数和方差.(见小宇的作业)
甲、乙两人射箭成绩统计表
甲成绩 乙成绩
2.某工厂为了选拔1名车工参加直径为5 cm精密零件的加工技术比赛, 随机抽取甲、乙两名车工加工的5个零件.现测得的结果如下表,平均数 依C次为x甲,x乙,方差依次为s甲2,s乙2,则下列关系中完全正确的是( )
A.x甲<x乙,s甲2<s乙2 B.x甲=x乙,s甲2<s乙2 C.x甲=x乙,s甲2>s乙2 D.x甲>x乙,s甲2>s乙2
第六章 数据的分析
6.4 数据的离散程度

数据的离散程度1

数据的离散程度1
2 1 ( x 20) 2 ( x 20) 2 ... ( x 20) 2 s 10 n 2 1
中, 数字10 表示 ,数字20表示 ____. 3.数据-2,-1,0,1,2的方差是_________,标准差是 _____ . 4.五个数1,3,a,5,8,的平均数是4,则a =________,这五 个数的标准差________. 5.注:一个样本的方差为 一个样本的方差是零,若中位数是 a,则它的平均数________. 0,说明该样本中所有数据
75 74 甲厂 74 75 乙厂 75 78 74 75 72 76 76 77 73 73 74 76 76 75 75 73 73 77 78 79 77 77 72 74 72 75
80 71
76
77
73
78
71
76
73
75
79 78 77 76 75 74 73 7295 90
计算两名同学的平均成绩;
x甲 90(分)
x 乙 90(分)
老师的烦恼
甲,乙两名同学的测试成绩统计如下:


85
95
90
85
90
95
_
90
85
成绩(分)
95
90
x 乙 90(分)
_
⑴ 请分别计算两名同学的平均成绩;x甲
⑵ 请根据这两名同学的成绩在 下图中画出折线统计图; ⑶ 现要挑选一名同学参加竞 赛,若你是老师,你认为挑 选哪一位比较适宜?为什么?
100 95
90(分)
90 85 80
考 试 次 数
0
1
2
3
4
5
拓展提高

北师大版八年级数学上册《6.4 数据的离散程度(2)》公开课课件

北师大版八年级数学上册《6.4 数据的离散程度(2)》公开课课件
两地日平均气温相近;A地日温差较大,B 地日温差较小;A地日气温不稳定,B地日气温 较稳定 。

9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。2021/7/222021/7/22Thur sday, July 22, 2021
1 2 3 4 5 6 7 8 9 10 选手甲 585 596 610 598 612 597 604 600 613 601
选手乙 613 618 580 574 618 593 585 590 598 624
(1)甲、乙的平均成绩分别是多少?
解:(1) x甲 601.6cm,
x乙 599.3cm.
பைடு நூலகம்
巩固练习
2、2012年8月6日,我国选手吴敏霞、何姿分别获 得伦敦奥运会女子三米板跳水冠和亚军,获得前6 名的选手的决赛成绩如下:
吴敏霞 (中国) 何姿(中国)
劳拉桑切斯(墨西哥) 卡格诺托(意大利) 沙林斯特拉顿(澳大利亚)
阿贝尔(加拿大)
第一跳 79.50 76.50 75.50 76.50 70.50 66.00

新知归纳
数据的比较: 两组数据可以从平均数、极差、方差或标准
差等方面进行比较。
合作交流
甲、乙、丙三人的射击成绩如图所示,三人 中,谁的射击成绩更好?谁更稳定?你是怎么判 断的?
范例讲解 例1 、某校从甲、乙两名跳远运动员中选一人参加 一项比赛。在最近的10次选拔赛中,他们的成绩 (单位:cm)如下:
选手甲 585 596 610 598 612 597 604 600 613 601
选手乙 613 618 580 574 618 593 585 590 598 624

6.4 数据的离散程度(1)

6.4  数据的离散程度(1)

15
20
25
甲厂
乙厂
问题4: 你能求出甲厂抽查的这20只鸡腿质 量的最大值是多少吗?
最小值呢? 它们差几克?
乙厂呢?
82
79
78
80
77
78
76
75
76
74
74
73
72
72
71
70
0
5
10
15
20
25
0
5
10
15
20
25
甲厂
乙厂
问题5 : 现在你认为外贸公司应该购买哪
个厂的鸡腿?为什么呢?
82
79
乙厂:75 78 72 77 74 75 73 79 72 75 80 71 76 77 73 78 71 76 73 75
问题1: 如果只考虑鸡腿的规格,你认为外贸 公司应该购买哪个厂的鸡腿?
问题2:你能从图中估计出甲、乙两厂被抽
查鸡腿平均质量吗?
79
82
78 77
80
76
78
75
76
74
73
74
72
72
71
0
5
10
15
20
25 70
0
5
10
15
20
25
甲厂
乙厂
请你写出甲、乙两厂被抽查鸡腿平均质
量,并在图中画出表示平均质量的直线.
问题3: 观察两幅图表,看看被抽查的鸡腿 质量的分布情况你有什么发现?
82
79
78
80
77
78
76
75
76
74
74
73

6.4数据的离散程度例题与讲解

6.4数据的离散程度例题与讲解

4 数据的离散程度1.极差定义:一组数据中的最大数据与最小数据的差叫做这组数据的极差,即极差=最大值-最小值.极差反映了这组数据的波动范围.谈重点 极差(1)极差是最简单、最便于计算的一种反映数据波动情况的量,极差能够反映一组数据的波动范围;(2)在对一组数据的波动情况粗略估计时经常用到极差;(3)极差仅仅反映了数据的波动范围没有提供数据波动的其他信息,且受极端值的影响较大;(4)一组数据的极差越小,这组数据就越稳定.【例1】 在一次体检中,测得某小组5名同学的身高分别是170,162,155,160,168(单位:cm),则这组数据的极差是__________cm.解析:根据极差的概念,用最大值减去最小值即可,170-155=15(cm).答案:152.方差(1)定义:设有n 个数据x 1,x 2,x 3,…,x n ,各数据与它们的平均数的差的平方分别是(x 1-x )2,(x 2-x )2,(x 3-x )2,…,(x n -x )2,用它们的平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差.(2)方差的计算公式:通常用s 2表示一组数据的方差,用x 表示这组数据的平均数.s 2=1n[(x 1-x )2+(x 2-x )2+(x 3-x )2+…+(x n -x )2]. (3)标准差:标准差就是方差的算术平方根.谈重点 方差(1)方差是用来衡量一组数据的波动大小的重要的量,方差反映的是数据在它的平均数附近波动的情况;(2)对于同类问题的两组数据,方差越大,数据的波动越大,方差越小,数据的波动越小;(3)一组数据的每一个数据都加上(或减去)同一个常数,所得的一组新数据的方差不变;(4)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差将变为原数据方差的k 2倍.【例2】 已知两组数据分别为:甲:42,41,40,39,38;乙:40.5,40.1,40,39.9,39.5.计算这两组数据的方差. 解:x 甲=15×(42+41+40+39+38)=40, s 2甲=15×[(42-40)2+…+(38-40)2]=2. x 乙=15×(40.5+40.1+40+39.9+39.5)=40, s 2乙=15×[(40.5-40)2+…+(39.5-40)2]=0.104.3.极差与方差(或标准差)的异同相同之处:(1)都是衡量一组数据的波动大小的量;(2)一组数据的极差、方差(或标准差)越小,这组数据的波动就越小,也就越稳定. 不同之处:(1)极差反映的仅仅是数据的变化范围,方差(或标准差)反映的是数据在它的平均数附近波动的情况;(2)极差的计算最简单,只需要计算数据的最大值与最小值的差即可,而方差的计算比较复杂.【例3】 已知甲、乙两支仪仗队队员的身高如下(单位:cm):甲队:178,177,179,178,177,178,177,179,178,179乙队:178,179,176,178,180,178,176,178,177,180(1)(2);(3)这两支仪仗队队员身高的极差、方差分别是多少?解:(1)甲队从左到右分别填:0,3,乙队从左到右分别填:4,2;(2)178,178;(3)经过计算可知,甲、乙两支仪仗队队员身高数据的极差分别为2 cm 和4 cm ,方差分别是0.6和1.8.4.运用方差解决实际问题方差是反映一组数据的波动大小的统计量,通过计算方差,可以比较两组数据的稳定程度,进而解决一些实际问题.对于一般两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,因此从平均数看或从方差看,各有长处.方差的计算可用一句话“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的程度.方差的单位是原数据的平方单位,方差反映了数据的波动大小,在实际问题中,例如长得是否整齐一致、是否稳定等都是波动体现.点技巧 方差反映波动情况在实际问题中,如果出现要求分析稳定性的问题,因为方差是反映数据的波动大小的量,所以一般就要计算出各组数据的方差,通过方差的大小比较来解决问题.【例4】 某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的(1)(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.解:(1)x 甲=18(95+82+88+81+93+79+84+78)=85, x 乙=18(83+92+80+95+90+80+85+75)=85. 这两组数据的平均数都是85.这两组数据的中位数分别为83,84.(2)派甲参赛比较合适.理由如下:由(1)知x 甲=x 乙,s 2甲=18[(95-85)2+(82-85)2+(88-85)2+(81-85)2+(93-85)2+(79-85)2+(84-85)2+(78-85)2]=35.5,s2乙=18[(83-85)2+(92-85)2+(80-85)2+(95-85)2+(90-85)2+(80-85)2+(85-85)2+(75-85)2]=41,∵x甲=x乙,s2甲<s2乙,∴甲的成绩较稳定,派甲参赛比较合适.5.运用用样本估计总体的思想解决实际问题统计学的基本思想是用样本估计总体,它主要研究两个基本问题:一是如何从总体中抽取样本,二是如何通过对所抽取的样本进行计算和分析,从而对总体的相应情况作出推断.用样本估计总体是统计的基本思想,正像用样本的平均数估计总体的平均数一样,考察总体方差时,如果所要考察的总体包含很多个体,或考察本身带有破坏性,实际中常常用样本的方差来估计总体的方差.方差是反映已知数据的波动大小的一个量.在日常生活中,有时只用平均数、中位数和众数难以准确地分析一组数据时,就要用方差来评判.但是并不是方差越小越好,要根据问题的实际情况灵活运用数据分析问题,作出正确的判断.注:在解决问题或决策时,应运用统计思想,搞清楚特殊和一般的关系,具体问题具体对待.全方位、多角度地分析与评判是关键.【例5】某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预7好?为什么?解:x甲=18(9.6+9.7+…+10.6)=10.0,x乙=18(9.5+9.9+…+9.8)=10.0.s2甲=0.12,s2乙=0.102 5.结果甲、乙两选手的平均成绩相同,s2甲>s2乙.乙的方差小,波动就小,似乎应该选乙选手参加比赛.但是就这个问题而言,我们不能仅看平均成绩和方差就妄下结论.在这里平均成绩和方差不是最重要的,重要的是看他们的发展潜力或比赛时的竞技状态.从甲、乙两选手的最后四次成绩看,甲的状态正逐步回升,成绩越来越好,而乙明显不如甲的状态好.所以从这个角度看,应选甲选手参加比赛更好.。

北师大版八年级数学上册6.4 数据的离散程度(第2课时)课件

北师大版八年级数学上册6.4 数据的离散程度(第2课时)课件
方差越小,数据的波动越小,可用样本方差估计总体方差. (2)运用方差解决实际问题的一般步骤是怎样的?
先计算样本数据平均数,当两组数据的平均数相等或相 近时,再利用样本方差来估计总体数据的波动情况.
巩固练习
变式训练
甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差
统计如表,现要根据这些数据,从中选出一人参加比赛,如果
课堂小结
方差的作用:比较数据的稳定性
根据方差做 决策
利用方差解答实际问题
你是教练员,你的选择是( C )
A. 甲
B. 乙
C.丙 D.丁
队员 平均成绩 方差

9.7
2.12

9.6
0.56

9.8
0.56

9.6
1.34
巩固练习
变式训练
某撑杆跳队准备从甲、乙两名运动员中选取成绩 稳定的一名参加比赛.下表是这两名运动员10次测 验成绩(单位:m).
甲 4.85 4.93 5.07 4.91 4.99 5.13 4.98 5.05 5.00 5.19
北师大版 数学 八年级 上册
6.4 数据的离散程度 (第2课时)
导入新知
某工厂研制甲、乙两种电灯泡,从两种电灯泡中各抽取了 20只进行寿命试验,得到如下数据(单位:小时): 灯泡甲:1610 1590 1540 1650 1450 1650 1570 1630 1690 1720 1580 1620 1500 1700 1530 1670 1520 1690 1600 1590 灯泡乙:1670 1610 1550 1490 1430 1610 1530 1430 1410 1580 1520 1440 1500 1510 1540 1400 1420 1530 1520 1510 根据上述两个样本,你准备选哪种灯泡?请说明理由!

第1课时数据的离散程度-北师大版八年级数学上册课件

第1课时数据的离散程度-北师大版八年级数学上册课件

5.在样本方差的计算公式
s2
1 10
(x1 20)2 (x2 20)2... (xn
20)2
中, 数字10 表示__数__据__的__个__数_ ,数字20表示 _平__均__数__.
6.五个数1,3,a,5,8的平均数是4,则a =___3__,这 五个数的方差__5_.6__.
7、某班有甲、乙两名同学,他们某学期的五次数学测验 成绩如下:(单位:分)
+(xn -x)2]
来而标准差就是方差的算术平方根.
计算方差的步骤可概括为“先平均,后求差,平方后, 再平均”.
2.方差的意义
方差用来衡量一组数据的波动大小(即这组数据偏 离平均数的大小).
方差越大,数据的波动越大;
方差越小,数据的波动越小.
3、方差的适用条件: 当两组数据的平均数相等或相近时,
问题引入
用图表整理这两组 数据,分析你画出 的图表,看看你能 得出哪些结论?
在一次女子排球比赛中,甲、乙两队参赛选手的年龄如下: 甲队 26 25 28 28 24 28 26 28 27 29 乙队 28 27 25 28 27 26 28 27 27 26 ⑴ 两队参赛选手的平均年龄分别是多少?
3.人数相同的八年级(1)、(2)两班学生在同一次
数学单元测试中,班级平均分和方差下:
x甲 x乙 80 s甲2 24 s,乙2 18
,
,则成绩较为稳定的班级是( B )
A.甲班 B.乙班 C.两班成绩一样稳定
D.
无法确定
4、已知一组数据:1,3,5,5,6;则这组数据的方差是
( D)
A. 16 B. 5 C. 4 D. 3.2
才利用方差来判断它们的波动情况. 友谊提示: 1、方差是个平均值

《6.4.2用样本估计总体的离散程度》知识清单

《6.4.2用样本估计总体的离散程度》知识清单

《用样本估计总体的离散程度》知识清单知识点1数据离散程度的估计1.极差在统计学中,我们将一组数据中的最大值与最小值统称为极值,将最大值与最小值之差称为极差,也称全距,用R 表示.2.方差(1)总体方差:统计上,常采用方差来刻画一组数据波动的大小:若设12,,,N y y y 是总体的全部个体,μ是总体均值,则称______总体方差或方差.(2)样本方差:类似地,若从总体中随机抽样,获得n 个观测数据12,,,n x x x ,用x 表示这n 个数据的均值,则称_______为这n 个数据的样本方差,也简称为方差.3.标准差(1)标准差是方差的算术平方根.如果2σ是总体方差,则称σ=;如果2s 是样本方差,则称s =是样本标准差.(2)标准差的意义:标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.平均数和标准差一起能反映数据取值的信息.一般情况下,大部分数据落在区间[,]x s x s -+内,绝大部分数据落在区间[2,2]x s x s -+内.【答案】 ①222212()()()N y y y N μμμσ-+-++-=②222212..).]1[()(()n s x x x x x x n=---+++ 【知识辨析】判断正误, 正确的画“ √”, 错误的画 “ ×”.1.利用极差能够明确地反映一组数据的离散程度.( )2.标准差越大,表明各个样本数据在样本平均数周围越集中;标准差越小,表明各个样本数据在样本平均数周围越分散.( )3.计算分层随机抽样中总样本的平均数与方差时,必须已知各层的权重.( )【答案】1.×2.×3.√由计算分层随机抽样中总样本的平均数与方差的公式知,结论正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.4数据的离散程度
第一课时
同步练习
1.某次考试5个班级的平均成绩如下(单位:分)53,62,63,48,54则这5个班级的平
2.已知一组数据:-1,x,0,1,-2的平均数是0
3.在方差的计算公式
()()()
222
2
1210
1
202020
10
s x x x
⎡⎤
=-+-+⋅⋅⋅+-
⎣⎦
中,数字10和20
分别表示的意义可以是( ) .
A.数据的个数和方差B.平均数和数据的个数
C.数据的个数和平均数D.数据组的方差和平均数
4.已知样本甲的平均数=60,方差=0.05,样本乙的平均数=60,方差=0.1,那么这两组数据的波动情况为( ) .
A.甲、乙两样本波动一样大B.甲样本的波动比乙样本大
C.乙样本的波动比甲样本大D.无法比较两样本波动的大小
5.人数相等的甲、乙两班学生参加了同一次数学测验, 班级平均分和方差如下:平均分都为110,甲、乙两班方差分别为340、280,则成绩较为稳定的班级为( ) .A.甲班B.乙班C.两班成绩一样稳定D.无法确定
观察与思考
6.甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:
若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?
7.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
(1)根据表格中的数据,分别计算甲、乙的平均成绩.
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.
6.4数据的离散程度
第二课时
同步练习
1.下列说法正确的是().
A.两组数据的极差相等,则方差也相等
B.数据的方差越大,说明数据的波动越小
C.数据的标准差越小,说明数据越稳定
D.数据的平均数越大,则数据的方差越大
2.某校一年级学生的平均年龄为7岁,方差为3,5年后该校六年级学生的年龄中().
A.平均年龄为7岁,方差改变B.平均年龄为12岁,方差不变
C.平均年龄为12岁,方差改变D.平均年龄不变,方差不变
3.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:
对这两名运动员的成绩进行比较,下列四个结论中,不正确
...的是().
A.甲运动员得分的极差大于乙运动员得分的极差
B.甲运动员得分的中位数大于乙运动员得分的中位数
C.甲运动员得分的平均数大于乙运动员得分的平均数
D.甲运动员的成绩比乙运动员的成绩稳定
4.“恒盛”超市购进一批大米,大米的标准包装为每袋30kg,售货员任选6袋进行了称重检
验,超过标准重量的记作“+”,不足标准重量的记作“-”,他记录的结果是0.5
+,
-,1+,那么这6袋大米重量
-,0.5
-,0,0.5
0.5
..的平均数和极差分别是().A.0,1.5 B.29.5,1 C. 30,1.5 D.30.5,0
观察与思考
5.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:
(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)
(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;
(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.
走进生活
6.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.
请你回答下列问题:
(1)计算两班的优秀率.
(2)求两班比赛成绩的中位数.
(3)两班比赛数据的方差哪一个小?
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.
6.4数据的离散程度
第一课时
1.15分
2.2
3.C
4.C
5.B
6.解:甲、乙两人射击成绩的平均成绩分别为:
1
X =72+82+101=85⨯⨯⨯甲(),
1
X =71+83+91=85⨯⨯⨯乙()
()()()2222
1=278288108=1.25s ⎡⎤-+-+-⎣
⎦甲
()()()2222
1=7838898=0.45s ⎡⎤-+-+-⎣
⎦乙
∵2s 甲<2
s 乙,∴乙同学的射击成绩比较稳定。

7. 解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9, 乙的平均成绩是:(10+7+10+10+9+8)÷6=9;
(2)甲的方差= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.
乙的方差= [(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=. (3)推荐甲参加全国比赛更合适,理由如下:
两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.
6.4数据的离散程度
第二课时
1.C
2.B
3.D
4.C
5.解:(1)填表如下:
(2)如图:
(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.
6.解:(1)甲班的优秀率:40% ,乙班的优秀率:60% ; (2)甲班5名学生比赛成绩的中位数是97个; 乙班5名学生比赛成绩的中位数是100个. (3)甲班的平均数=
1005
97
+118+96+100+89 (个),
甲班的方差
;
乙班的平均数=
1005
104
+91+110+95+100 (个),
乙班的方差
.
∴ .
∴ 乙班比赛数据的方差小.
(4)冠军奖状应发给乙班.因为乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,综合评定乙班踢毽子水平较高.。

相关文档
最新文档