2017年高三年级数学一轮复习(知识点归纳和总结)-定积分和微积分的基本定理

合集下载

高考数学总复习:定积分与微积分基本定理

高考数学总复习:定积分与微积分基本定理

⾼考数学总复习:定积分与微积分基本定理定积分的性质(1)(为常数),(2),(3)(其中),(4)利⽤函数的奇偶性求积分:若函数在区间上是奇函数,则;若函数在区间上是偶函数,则.微积分基本定理如果,且在上连续,则,其中叫做的⼀个原函数.由于也是的原函数,其中c为常数.⼀般地,原函数在上的改变量简记作.因此,微积分基本定理可以写成形式:.说明:求定积分主要是要找到被积函数的原函数,也就是说,要找到⼀个函数,它的导函数等于被积函数.由此,求导运算与求原函数运算互为逆运算.定积分的⼏何意义设函数在区间上连续.在上,当时,定积分在⼏何上表⽰由曲线以及直线与轴围成的曲边梯形的⾯积;在上,当时,由曲线以及直线与轴围成的曲边梯形位于轴下⽅,定积分在⼏何上表⽰上述曲边梯形⾯积的负值;在上,当既取正值⼜取负值时,定积分的⼏何意义是曲线,两条直线与轴所围成的各部分⾯积的代数和. 在轴上⽅的⾯积积分时取正号,在轴下⽅的⾯积积分时,取负号.应⽤1. 如图,由三条直线,,轴(即直线)及⼀条曲线()围成的曲边梯形的⾯积:;2. 如图,由三条直线,,轴(即直线)及⼀条曲线()围成的曲边梯形的⾯积:;3. 如图,由曲线及直线,围成图形的⾯积公式为:.4.利⽤定积分求平⾯图形⾯积的步骤:(1)画出草图,在直⾓坐标系中画出曲线或直线的⼤致图像;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;(3)写出定积分表达式;(4)求出平⾯图形的⾯积.1、由直线与曲线y=cosx所围成的封闭图形的⾯积为()A、B、1 C、D、2、由曲线y=x2,y=x3围成的封闭图形⾯积为()A、B、C、D、3、已知甲、⼄两车由同⼀起点同时出发,并沿同⼀路线(假定为直线)⾏驶.甲车、⼄车的速度曲线分别为V甲和V已(如图所⽰).那么对于图中给定的t0和t1,下列判断中⼀定正确的是()A、在t1时刻,甲车在⼄车前⾯B、t1时刻后,甲车在⼄车后⾯C、在t0时刻,两车的位置相同D、t0时刻后,⼄车在甲车前⾯4、由曲线xy=1,直线y=x,y=3所围成的平⾯图形的⾯积为A、B、2﹣ln3 C、4+ln3 D、4﹣ln35、从如图所⽰的正⽅形OABC区域内任取⼀个点M(x,y),则点M取⾃阴影部分的概率为()A、B、C、D、6、如图中阴影部分的⾯积是()A、B、C、D、7、由曲线y=,直线y=x﹣2及y轴所围成的图形的⾯积为()A、B、4 C、D、68、(e x+2x)dx等于()A、1B、e﹣1C、eD、e2+19、dx等于()A、﹣2ln2B、2ln2C、﹣ln2D、ln210、已知则∫﹣a a cosxdx=(a>0),则∫0a cosxdx=()A、2B、1C、D、11、曲线y=x2+2与直线y=3x所围成的平⾯图形的⾯积为()B 、C 、D 、112、若∫0k(2x ﹣3x 2)dx=0,则k 等于() A 、0 B 、1 C 、0或1 D 、以上均不对13、如图所⽰,曲线y=x 2和曲线y=围成⼀个叶形图(阴影部分),其⾯积是()A 、1B 、C 、D 、14、由曲线y 2=2x 和直线y=x ﹣4所围成的图形的⾯积为 _________ . 15、由曲线和直线y=x ﹣4,x=1,x=2围成的曲边梯形的⾯积是 _________ .16、从如图所⽰的长⽅形区域内任取⼀个点M (x ,y ),则点M 取⾃阴影部分部分的概率为 _________ . 17、设函数f (x )=ax 2+c (a≠0),若,0≤x 0≤1,则x 0的值为 _________ . 18.设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成⽴,则实数m 的取值范围为。

高三数学一轮复习知识点归纳与总结:定积分与微积分的基本定理

高三数学一轮复习知识点归纳与总结:定积分与微积分的基本定理

届高三数学一轮复习(知识点归纳与总结):定积分与微积分的基本定理————————————————————————————————作者:————————————————————————————————日期:第十四节定积分与微积分基本定理[备考方向要明了]考什么怎么考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题.2.考查简单定积分的求解.如2012年江西T11等.3.考查曲边梯形面积的求解.如2012年湖北T3,山东T15,上海T13等.4.与几何概型相结合考查.如2012年福建T6等.[归纳·知识整合]1.定积分(1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.(2)定积分的几何意义①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x =b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.(3)定积分的基本性质①∫b a kf(x)d x=k∫b a f(x)d x.②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x.③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x.[探究] 1.若积分变量为t ,则∫b a f (x )d x 与∫ba f (t )d t 是否相等?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分∫b a [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么?提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积. 2.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F (b )-F (a )记成F (x )|b a ,即∫b a f (x )d x =F (x )|b a =F (b )-F (a ).[自测·牛刀小试]1.∫421xd x 等于( ) A .2ln 2 B .-2ln 2 C .-ln 2D .ln 2解析:选D ∫421xd x =ln x |42=ln 4-ln 2=ln 2. 2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( )A.176B.143 C.136D.116解析:选A S =∫21(t 2-t +2)d t =⎝⎛⎪⎪⎭⎫13t 3-12t 2+2t 21=176.3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________.解析:∫20x 2d x =13x 3 |20=83. 答案:834.(教材改编题)∫101-x 2d x =________.解析:由定积分的几何意义可知,∫101-x 2d x 表示单位圆x 2+y 2=1在第一象限内部分的面积,所以∫101-x 2d x =14π. 答案:14π5.由曲线y =1x ,直线y =-x +52所围成的封闭图形的面积为________.解析:作出图象如图所示.解方程组可得交点为A ⎝⎛⎭⎫12,2,B ⎝⎛⎭⎫2,12,所以阴影部分的面积,212⎰⎝⎛ -x +52-⎭⎫1x d x = ⎝⎛⎭⎫-12x 2+52x -ln x 212=158-2ln 2. 答案:158-2ln 2利用微积分基本定理求定积分[例1] 利用微积分基本定理求下列定积分:(1)∫21(x 2+2x +1)d x ;(2)∫π0(sin x -cos x )d x ;(3)∫20x (x +1)d x ;(4)∫21⎝⎛⎭⎫e 2x +1x d x ; (5)20π⎰sin 2x 2d x .[自主解答](1)∫21(x 2+2x +1)d x =∫21x 2d x +∫212x d x +∫211d x =x 33 |21+x 2 |21+x |21=193. (2)∫π0(sin x -cos x )d x=∫π0sin x d x -∫π0cos x d x =(-cos x ) |π0-sin x |π0=2. (3)∫20x (x +1)d x =∫20(x 2+x )d x=∫20x 2d x +∫20x d x =13x 3 |20+12x 2 |20 =⎝⎛⎭⎫13×23-0+⎝⎛⎭⎫12×22-0=143.(4)∫21⎝⎛⎭⎫e 2x +1x d x =∫21e 2x d x +∫211x d x =12e 2x |21+ln x |21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (5)20π⎰ sin 2x 2d x =20π⎰⎝⎛⎭⎫12-12cos x d x =20π⎰12d x -1220π⎰cos x d x =12x 20π-12sin x 20π=π4-12=π-24. ———————————————————求定积分的一般步骤计算一些简单的定积分,解题的步骤是:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值.1.求下列定积分: (1)∫20|x -1|d x ; (2)20π⎰1-sin 2x d x .解:(1)|x -1|=⎩⎪⎨⎪⎧1-x , x ∈[0,1)x -1, x ∈[1,2]故∫20|x -1|d x =∫10(1-x )d x +∫21(x -1)d x=⎝⎛⎭⎫x -x 22 |10+⎝⎛⎭⎫x 22-x |21 =12+12=1. (2) 20π⎰1-sin 2x d x=20π⎰|sin x -cos x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x=(sin x+cos x)4π+(-cos x-sin x) 24ππ=2-1+(-1+2)=22-2.利用定积分的几何意义求定积分[例2]∫10-x2+2x d x=________.[自主解答]∫10-x2+2x d x表示y=-x2+2x与x=0,x=1及y=0所围成的图形的面积.由y=-x2+2x得(x-1)2+y2=1(y≥0),又∵0≤x≤1,∴y=-x2+2x与x=0,x=1及y=0所围成的图形为14个圆,其面积为π4.∴∫10-x2+2x d x=π4.在本例中,改变积分上限,求∫20-x2+2x d x的值.解:∫20-x2+2x d x表示圆(x-1)2+y2=1在第一象限内部分的面积,即半圆的面积,所以∫20-x2+2x d x=π2.———————————————————利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.(2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.2.(2013·福建模拟)已知函数f(x)=∫x0(cos t-sin t)d t(x>0),则f(x)的最大值为________.解析:因为f(x)=∫x02sin⎝⎛⎭⎫π4-t d t=2cos⎝⎛⎭⎫π4-t|x0=2cos⎝⎛⎭⎫π4-x-2cosπ4=sin x+cos x-1=2sin⎝⎛⎭⎫x+π4-1≤2-1,当且仅当sin⎝⎛⎭⎫x+π4=1时,等号成立.答案:2-1利用定积分求平面图形的面积[例3] (2012·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A.103 B .4 C.163D .6[自主解答] 由y =x 及y =x -2可得,x =4,即两曲线交于点(4,2).由定积分的几何意义可知,由y =x 及y =x -2及y 轴所围成的封闭图形面积为∫40(x -x +2)d x =⎝⎛⎭⎫23x 32-12x 2+2x |40=163. [答案] C若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解?解:如图所示,由y =x 及y =-x +2可得x =1.由定积分的几何意义可知,由y =x ,y =-x +2及x 轴所围成的封闭图形的面积为∫20f (x )d x =∫1x d x +∫21(-x +2)d x =23x 32 |10+⎝⎛⎭⎫2x -x 22 |21=76.——————————————————— 利用定积分求曲边梯形面积的步骤(1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案.3.(2013·郑州模拟)如图,曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )A.23B.13C.12D.14解析:选D 由⎩⎪⎨⎪⎧y =14,y =x 2⇒x =12或x =-12(舍),所以阴影部分面积S =120⎰⎝⎛⎭⎫14-x 2d x +112⎰⎝⎛⎭⎫x 2-14d x=⎝⎛⎭⎫14x -13x 3120+⎝⎛⎭⎫13x 3-14x 112=14.定积分在物理中的应用[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2,问列车应在进站前多长时间,以及离车站多远处开始制动?[自主解答] a =-0.4 m/s 2,v 0=72 km/h =20 m/s. 设t s 后的速度为v ,则v =20-0.4t . 令v =0,即20-0.4 t =0得t =50 (s). 设列车由开始制动到停止所走过的路程为s ,则s =∫500v d t =∫500(20-0.4t )d t =(20t -0.2t 2) |500=20×50-0.2×502=500(m),即列车应在进站前50 s 和进站前500 m 处开始制动. ———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从时刻t =a 到t =b 所经过的路程为∫b a v (t )d t ;如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫b a v (t )d t .2.变力做功问题物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫b a F (x )d x .4.一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:选B 力F (x )做功为∫2010d x +∫42(3x +4)d x=10x |20+⎝⎛⎪⎪⎭⎫32x 2+4x 42=20+26=46.1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质 (1)常数可提到积分号外; (2)和差的积分等于积分的和差; (3)积分可分段进行.3个注意——定积分的计算应注意的问题(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量; (2)定积分式子中隐含的条件是积分上限不小于积分下限; (3)面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点[典例] (2012·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1,与x 轴围成图形的面积为120⎰10x 2d x +112⎰错误!未找到引用源。

高考数学第一轮知识点总复习 第四节 定积分与微积分基本定理

高考数学第一轮知识点总复习 第四节  定积分与微积分基本定理

答案:2
11.一条水渠横断面为抛物线型,如图,渠宽AB=4 m,渠深CO=2 m, 12.当水面距地面0.5 m时,求水的横断面的面积.
解析:如图,建立直角坐标系,设抛物线方程为x2=2py(p>0), 把点(2,2)代入抛物线得2p=2,∴x2=2y, 将点(x,1.5)代入得x=±3,
S 3 (1.5 1x2 )dx
dx
2 (4 x2 )dx
3 (x2 4)dx
0
0
2
(4x
1 3
x3 )
|02
(1 3
x3
4x) |32
23 . 3
题型三 定积分的几何意义
【例3】利用定积分的性质和定义表示下列曲线围成的平面区域的面积. (1)y=0,y= x,x=2; (2)y=x-2,x=y2.
分析 先将区域面积表示成若干个定积分的和或差,再运用牛顿—莱布尼 兹公式计算.
【例4】列车以72 km/h的速度行驶,当制动时,列车获得加速度为a=0.4 m/s2,问:列车应在进站前多少秒的时候,以及离车站多远处开始制动? 分析 因为列车停在车站时速度为0,故应先求出速度的表达式之后, 令v=0,求出t,再根据v和t应用定积分求出路程.
解 列车的初速度v0=72 km/h=20 m/s.
2
xdx
2 x2dx
21 dx
1
x
1
1
1x
x2 2
|12
x3 3
|12
ln
x |12
3 2
7 3
ln 2
ln 2 5 . 6
(4)设y= 16 6,x 则x(2x-3)2+y2=25(y≥0).
∵ 3 16 6x表示x2半dx径为5的圆的四分之一的面积, 2

高三数学人教版A版数学(理)高考一轮复习教案 定积分与微积分基本定理1

高三数学人教版A版数学(理)高考一轮复习教案 定积分与微积分基本定理1

第十三节 定积分与微积分基本定理积分的运算及应用(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. (2)了解微积分基本定理的含义.知识点一 定积分 1.定积分的性质(1)⎠⎛a bkf (x )d x =k⎠⎛a bf (x )d x (k 为常数).(2)⎠⎛a b [f (x )±g (x )]d x =⎠⎛a b f (x )d x ±⎠⎛a bg (x )d x .(3)⎠⎛a bf (x )d x =⎠⎛a cf (x )d x +⎠⎛c bf (x )d x (其中a <c <b ). 2.定积分的几何意义(1)当函数f (x )在区间[a ,b ]上恒为正时,定积分⎠⎛a bf (x )d x 的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(图(1)中阴影部分).(2)一般情况下,定积分⎠⎛a bf (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a 、x =b 之间的曲边梯形面积的代数和(图(2)中阴影所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.易误提醒 (1)若积分式子中有几个不同的参数,则必须先分清谁是被积变量. (2)定积分式子中隐含的条件是积分上限大于积分下限.(3)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.[自测练习]1.设f (x )=⎩⎪⎨⎪⎧x 2 (x ≥0),2x (x <0),则⎠⎛1-1f (x )d x 的值是( ) A.⎠⎛1-1x 2d x B.⎠⎛1-12xd x C.⎠⎛0-1x 2d x +⎠⎛102x d x D.⎠⎛0-12x d x +⎠⎛10x 2d x解析:由分段函数的定义及积分运算性质,∴⎠⎛1-1f (x )d x =⎠⎛0-12xd x +⎠⎛10x 2d x . 答案:D2.已知f (x )是偶函数,且⎠⎛06f (x )d x =8,则⎠⎛6-6f (x )d x =( ) A .0 B .4 C .6D .16解析:因为函数f (x )是偶函数,所以函数f (x )在y 轴两侧的图象对称,所以⎠⎛6-6f (x )d x =⎠⎛0-6f (x )d x +⎠⎛06f (x )d x =2⎠⎛06f (x )d x =16.答案:D知识点二 微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ).那么⎠⎛a bf (x )d x =F (b )-F (a ).这个结论叫作微积分基本定理,又叫作牛顿—莱布尼兹公式.为了方便,常把F (b )-F (a )记成F (x )| b a ,即⎠⎛a bf (x )d x =F (x )| b a =F (b )-F (a ).必备方法 运用微积分基本定理求定积分的方法: (1)对被积函数要先化简,再求积分.(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要先去掉绝对值号再求积分. (4)注意用“F ′(x )=f (x )”检验积分的对错.[自测练习]3.设a =⎠⎛01x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a解析:a =⎠⎛01x -13d x =32x 23| 10=32, b =1-⎠⎛01x 12d x =1-23x 32| 10=13, c =⎠⎛01x 3d x =14x 4| 10=14,因此a >b >c ,故选A. 答案:A4.由曲线y =x 2,y =x 3围成的封闭图形的面积为( ) A.112 B.14 C.13D.712解析:由⎩⎪⎨⎪⎧ y =x 2,y =x 3得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1.结合图形知(图略)所求封闭图形的面积为⎠⎛01(x 2-x 3)d x =⎝⎛⎭⎫13x 3-14x 4| 10=112,故选A. 答案:A考点一 定积分的计算|1.定积分⎠⎛039-x 2d x 的值为( ) A .9π B .3π C.94π D.92π 解析:由定积分的几何意义知,⎠⎛039-x 2d x 是由曲线y =9-x 2,直线x =0,x =3,y =0围成的封闭图形的面积,故⎠⎛039-x 2d x =π·324=9π4,故选C.答案:C2.(2016·临沂模拟)若∫π20(sin x +a cos x )d x =2,则实数a 等于( ) A .-1 B .1 C. 3D .- 3解析:∵(a sin x -cos x )′=sin x +a cos x . ∴∫π20(sin x +a cos x )d x =(a sin x -cos x )⎪⎪π20 =⎝⎛⎭⎫a sin π2-cos π2-(a sin 0-cos 0)=a +1=2. ∴a =1. 答案:B3.(2015·西安模拟)已知A =⎠⎛03|x 2-1|d x ,则A =________.解析:A =⎠⎛03|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛13(x 2-1)d x =⎝⎛⎭⎫x -13x 3| 10+⎝⎛⎭⎫13x 3-x | 31=223. 答案:223定积分计算的三种方法定义法、几何意义法和微积分基本定理法,其中利用微积分基本定理是最常用的方法,若被积函数有明显的几何意义,则考虑用几何意义法,定义法太麻烦,一般不用.考点二 利用定积分求平面图形的面积|设抛物线C :y =x 2与直线l :y =1围成的封闭图形为P ,则图形P 的面积S 等于( )A .1 B.13 C.23D.43[解析] 由⎩⎪⎨⎪⎧y =x 2,y =1,得x =±1.如图,由对称性可知,S =2()1×1-⎠⎛01x 2d x =2⎝⎛⎭⎫1×1-13x 3| 10=43,选D.[答案] D利用定积分求平面图形面积的三个步骤(1)画图象:在直角坐标系内画出大致图象.(2)确定积分上、下限:借助图象的直观性求出交点坐标,确定积分上限和下限. (3)用牛顿-莱布尼茨公式求面积:将曲边多边形的面积表示成若干定积分的和,计算定积分,写出结果.1.(2015·衡中三模)由曲线y =2-x 2,直线y =x 及x 轴所围成的封闭图形(图中的阴影部分)的面积是________.解析:把阴影部分分成两部分求面积. S =S 1+S 2=⎠⎛0-2(2-x 2)d x +⎠⎛01(2-x 2-x )d x=⎝⎛⎭⎫2x -x 33| 0-2+⎝⎛⎭⎫2x -x 33-x 22| 10 =22-(2)33+2-13-12=423+76. 答案:423+76考点三 定积分物理意义的应用|一物体做变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为________.[解析] 由图象可知,v (t )=⎩⎪⎨⎪⎧2t ,0≤t <1,2,1≤t <3,13t +1,3≤t ≤6,所以12s ~6 s 间的运动路程s =⎠⎜⎛126 v (t )= ⎠⎜⎛1262t d t +⎠⎛132d t +⎠⎛36⎝⎛⎭⎫13t +1d t=36111322149264t t t ⎛⎫+++=⎪⎝⎭. [答案]494利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.2.一物体在力F (x )=⎩⎪⎨⎪⎧10,(0≤x ≤2),3x +4,(x >2),(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:力F (x )做功为⎠⎛0210d x +⎠⎛24(3x +4)d x=10x | 20+⎝⎛⎭⎫32x 2+4x | 42 =20+26=46. 答案:B5.混淆图形面积与定积分关系致误【典例】 已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1与x 轴围成图形的面积为120⎰10x 2d x +112⎰(10x -10x 2)d x =103x 3112012231053x x ⎛⎫+ ⎪⎝⎭=54. [答案] 54[易误点评] (1)本题易写错图形面积与定积分间的关系而导致解题错误.(2)本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.[防范措施] 解决利用定积分求平面图形的面积问题时,应处理好以下两个问题: (1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形.(2)准确确定被积函数和积分变量.[跟踪练习] (2015·洛阳期末)函数f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0e x ,0≤x ≤1的图象与直线x =1及x 轴所围成的封闭图形的面积为________.解析:由题意知,所求面积为⎠⎛0-1(x +1)d x +⎠⎛01e x d x =⎝⎛⎭⎫12x 2+x | 0-1+e x | 10=-⎝⎛⎭⎫12-1+(e -1)=e -12.答案:e -12A 组 考点能力演练1.已知t >0,若⎠⎛0t(2x -2)d x =8,则t =( ) A .1 B .-2 C .-2或4D .4解析:由⎠⎛0t(2x -2)d x =8得(x 2-2x )| t0=t 2-2t =8,解得t =4或t =-2(舍去),故选D.答案:D2.(2015·青岛模拟)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](其中e 为自然对数的底数),则⎠⎛0ef (x )d x的值为( )A.43 B.54 C.65D.76解析:⎠⎛0ef (x )d x =⎠⎛01f (x )d x +⎠⎛1ef (x )d x =⎠⎛01x 2d x +⎠⎛1e1x d x =x 33| 10+ln x | e1=13+ln e =43,故选A.答案:A3.(2016·武汉模拟)设a =⎠⎛12(3x 2-2x )d x ,则⎝⎛⎭⎫ax 2-1x 6的展开式中的第4项为( ) A .-1 280x 3 B .-1 280 C .240D .-240解析:本题考查定积分的计算与二项式定理.依题意得a =(x 3-x 2)| 21=4,二项式⎝⎛⎭⎫4x 2-1x 6的展开式的第四项是T 4=C 36·(4x 2)3·⎝⎛⎭⎫-1x 3=-1 280x 3,故选A. 答案:A4.如图所示,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x(x >0)图象下方的区域(阴影部分),从D 内随机取一点M ,则点M 取自E 内的概率为( )A.ln 22B.1-ln 22C.1+ln 22D.2-ln 22解析:本题考查定积分的计算与几何概率的意义.依题意,题中的矩形区域的面积是1×2=2,题中的阴影区域的面积等于2×12+eq \a\vs4\al(\i\in(1xd x =1+ln x eq \b\lc\|\rc\(\a\vs4\al\co1(\o\al(1,=1+ln 2,因此所求的概率等于1+ln 22,故选C. 答案:C5.已知数列{a n }是等差数列,且a 2 013+a 2 015=⎠⎛024-x 2d x ,则a 2 014(a 2 012+2a 2 014+a 2016)的值为()A .π2B .2πC .πD .4π2解析:⎠⎛024-x 2d x 表示圆x 2+y 2=4在第一象限的面积,即⎠⎛024-x 2d x =π,又数列{a n }是等差数列,所以a 2 013+a 2 015=a 2 012+a 2 016=2a 2 014,所以得a 2 014·(a 2 012+2a 2 014+a 2 016)=π2×2π=π2,故选A.答案:A6.(2015·南昌模拟)直线y =13x 与抛物线y =x -x 2所围图形的面积等于________.解析:由⎩⎪⎨⎪⎧y =13x ,y =x -x 2,解得x =0或23,所以所求面积为∫230⎝⎛⎭⎫x -x 2-13x d x =∫230⎝⎛⎭⎫23x -x 2d x=⎝⎛⎭⎫13x 2-13x 3⎪⎪230=13×⎝⎛⎭⎫232-13×⎝⎛⎭⎫233-0=481. 答案:4817.(2015·长春二模)已知a >0且曲线y =x 、x =a 与y =0所围成的封闭区域的面积为a 2,则a =________.解析:由题意a 2=⎠⎛0ax d x =23x 32| a 0,所以a =49.答案:498.已知a ∈⎣⎡⎦⎤0,π2,则⎠⎛0a (cos x -sin x )d x 取最大值时,a =________.解析:⎠⎛0a(cos x -sin x )d x =(sin x +cos x )| a 0=sin a +cos a -1=2sin ⎝⎛⎭⎫a +π4-1.∵a ∈⎣⎡⎦⎤0,π2,∴当a =π4时,[]⎠⎛0a(cos x -sin x )d x max =2-1.答案:π49.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解:如图,由⎩⎪⎨⎪⎧y =x ,y =2-x ,得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点B (3,-1).故所求面积S =⎠⎛01⎝⎛⎭⎫x +13x d x +⎠⎛13⎝⎛⎭⎫2-x +13x d x =⎝⎛⎭⎫23x 32+16x 2| 10+⎝⎛⎭⎫2x -13x 2| 31=23+16+43=136. 10.汽车以54 km /h 的速度行驶,到某处需要减速停车,设汽车以等加速度-3 m/s 2刹车,问从开始刹车到停车,汽车走了多远?解:由题意,得v 0=54 km /h =15 m/s. 所以v (t )=v 0+at =15-3t . 令v (t )=0,得15-3t =0.解得t =5.所以开始刹车5 s 后,汽车停车. 所以汽车由刹车到停车所行驶的路程为 s =⎠⎛05v (t )d t =⎠⎛05(15-3t )d t =⎝⎛⎭⎫15t -32t 2| 50=37.5(m). 故汽车走了37.5 m.B 组 高考题型专练1.(2014·高考陕西卷)定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1解析:⎠⎛01(2x +e x )d x =(x 2+e x )| 10=1+e 1-1=e.答案:C2.(2014·高考江西卷)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:令⎠⎛01f (x )d x =m ,则f (x )=x 2+2m ,所以⎠⎛01f (x )d x =⎠⎛01(x 2+2m )d x =⎝⎛⎭⎫13x 3+2mx | 10=13+2m =m ,解得m =-13,故选B. 答案:B3.(2013·高考湖北卷)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln113C .4+25ln 5D .4+50ln 2解析:由v (t )=0得t =4.故刹车距离为 s =⎠⎛04v (t )d t =⎠⎛04⎝ ⎛⎭⎪⎫7-3t +251+t d t=⎣⎡⎦⎤-32t 2+7t +25ln (1+t )| 40=4+25ln 5.答案:C4.(2014·高考山东卷)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .2 2B .4 2C .2D .4解析:由⎩⎪⎨⎪⎧y =4x ,y =x 3得x =0或x =2或x =-2(舍). ∴S =⎠⎛02(4x -x 3)d x =⎝⎛⎭⎫2x 2-14x 4| 20=4. 答案:D5.(2015·高考天津卷)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 解析:由题意,可得封闭图形的面积为⎠⎛01(x -x 2)d x =⎝⎛⎭⎫12x 2-13x 3| 10=12-13=16. 答案:166.(2015·高考陕西卷)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为________.解析:建立如图所示的直角坐标系,可设抛物线的方程为x 2=2py (p >0),由图易知(5,2)在抛物线上,可得p =254,抛物线方程为x 2=252y ,所以当前最大流量对应的截面面积为2⎠⎛05⎝⎛⎭⎫2-225x 2d x =403,原始的最大流量对应的截面面积为2×(6+10)2=16,所以原始的最大流量与当前最大流量的比值为16403=1.2. 答案:1.2。

定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义 河南省卢氏县第一高级中学 山永峰 [备考方向要明了] 考 什 么怎 么 考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题.2.考查简单定积分的求解.3.考查曲边梯形面积的求解.4.与几何概型相结合考查.[归纳·知识整合] 1.定积分(1)定积分的相关概念:在∫ba f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. (2)定积分的几何意义①当函数f (x )在区间[a ,b ]上恒为正时,定积分∫ba f (x )d x 的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分∫ba f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a ,x =b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.(3)定积分的基本性质: ①∫b a kf (x )d x =k ∫ba f (x )d x .②∫b a [f 1(x )±f 2(x )]d x =∫b a f 1(x )d x ±∫ba f 2(x )d x .③∫b a f (x )d x =∫c a f (x )d x +∫bc f (x )d x .[探究] 1.若积分变量为t ,则∫b a f (x )d x 与∫ba f (t )d t 是否相等?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分∫ba [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么?提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积.2.微积分基本定理:如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫ba f (x )d x=F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式. 为了方便,常把F (b )-F (a )记成F (x )|b a ,即 ∫b a f (x )d x =F (x )|ba =F (b )-F (a ). 课前预测:1.∫421xd x 等于( )A .2ln 2B .-2ln 2C .-ln 2D .ln 22.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( ) A.176 B.143 C.136 D.1163.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________. 4.(教材改编题)∫101-x 2d x =________.5.由y =1x ,直线y =-x +52所围成的封闭图形的面积为________考点一 利用微积分基本定理求定积分[例1] 利用微积分基本定理求下列定积分:(1)∫21(x 2+2x +1)d x ;(2)∫π0(sin x -cos x )d x ;(3)∫2x (x +1)d x ;(4)∫21⎝⎛⎭⎪⎫e 2x +1x d x ; (5)20π⎰ sin 2x 2d x .———————————————————求定积分的一般步骤:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数;(4)利用牛顿—莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值. 强化训练:1.求下列定积分:(1)∫20|x -1|d x ;(2)20π⎰1-sin 2x d x .考点二 利用定积分的几何意义求定积分[例2] ∫10-x 2+2x d x =________.变式:在本例中,改变积分上限,求∫20-x 2+2x d x 的值. ———————————————————利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分. (2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小. 强化训练:2.(2014·福建模拟)已知函数f (x )=∫x0(cos t -sin t )d t (x >0),则f (x )的最大值为________.考点三:利用定积分求平面图形的面积[例3] (2014·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )103 B .4 C.163D .6变式训练:若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解? ———————————————————利用定积分求曲边梯形面积的步骤 (1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案. 强化训练:(2014·郑州模拟)如图,曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )A.23B.13C.12D.14考点四:定积分在物理中的应用[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2,问列车应在进站前多长时间,以及离车站多远处开始制动? ———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从时刻t =a 到t =b 所经过的路程为∫ba v (t )d t ;如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫bav (t )d t .2.变力做功问题物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫ba F (x )d x . 强化训练:4.一物体在力F (x )=⎩⎪⎨⎪⎧10x 3x +4 x(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质(1)常数可提到积分号外;(2)和差的积分等于积分的和差; (3)积分可分段进行.3个注意——定积分的计算应注意的问题 (1)若积分式子中有几个不同的参数,则必须分清谁是积分变量; (2)定积分式子中隐含的条件是积分上限不小于积分下限; (3)面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点[典例] (2013·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝ ⎛⎭⎪⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[易误辨析]1.本题易写错图形面积与定积分间的关系而导致解题错误.2.本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错.3.解决利用定积分求平面图形的面积问题时,应处理好以下两个问题:(1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形; (2)准确确定被积函数和积分变量.变式训练:1.由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112 B.14 C.13D.7122.(2014·山东高考)设a >0.若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.定积分与微积分基本定理检测题一、选择题(本大题共6小题,每小题5分,共30分)1.∫e11+ln xxd x =( )A .ln x +12ln 2x B.2e -1 C.32 D.122.(2012·湖北高考)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43C.32D.π23.设函数f (x )=ax 2+b (a ≠0),若∫30f (x )d x =3f (x 0),则x 0等于( )A .±1 B. 2 C .± 3 D .24.设f (x )=⎩⎪⎨⎪⎧x 2, x ∈[0,1],2-x , x ∈,2],则∫20f (x )d x =( )A.34B.45C.56D .不存在 5.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( )A.1603 mB.803 mC.403m D.203m 6.(2013·青岛模拟)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3 二、填空题(本大题共3小题,每小题5分,共15分)7.设a =∫π0sin x d x ,则曲线y =f (x )=xa x+ax -2在点(1,f (1))处的切线的斜率为________.8.在等比数列{a n }中,首项a 1=23,a 4=∫41(1+2x )d x ,则该数列的前5项之和S 5等于________. 9.(2013·孝感模拟)已知a ∈⎣⎢⎡⎦⎥⎤0,π2,则当∫a 0(cosx -sin x )d x 取最大值时,a =________. 三、解答题(本大题共3小题,每小题12分,共36分)10.计算下列定积分: (1)20π⎰sin 2x d x ; (2)∫32⎝⎛⎭⎪⎫x +1x 2d x ; (3)120⎰e 2xd x .11.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.12.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S 2,求点P 的坐标.备选习题1.一物体做变速直线运动,其v -t 曲线如图所示,则该物体在12 s ~6 s 间的运动路程为________.2.计算下列定积分: (1)31-⎰(3x 2-2x +1)d x ; (2)∫e 1⎝ ⎛⎭⎪⎫x +1x +1x 2d x .3.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.4.某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,得到了下面的资料:这家颗粒输送仪生产厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v (单位:m/s)与时间t (单位:s)满足函数关系式v (t )=⎩⎪⎨⎪⎧t 2 t ,4t +t ,t 某公司拟购买一台颗粒输送仪,要求1 min 行驶的路程超过7 673 m ,问这家颗粒输送仪生产厂生产的颗粒输送仪能否被列入拟挑选的对象之一?定积分与微积分基本定理复习讲义答案 前测:1.D 2.A 3.83 4.14π 5.158-2ln 2例1:(1)193. (2)2. (3)143. (4)12e 4-12e 2+ln 2. (5)π-24.变式1:解:(1)|x -1|=⎩⎪⎨⎪⎧1-x , x ∈[0,1x -1, x ∈[1,2]故∫20|x -1|d x =∫10(1-x )d x +∫21(x-1)d x =⎝ ⎛⎭⎪⎫x -x 22 |10+⎝ ⎛⎭⎪⎫x 22-x |21=12+12=1.(2)20π⎰1-sin 2x d x =20π⎰|sin x -cos x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x =(sin x +cos x )40π+(-cos x -sin x )24ππ=2-1+(-1+2)=22-2.例2:[自主解答] ∫10-x 2+2x d x 表示y =-x 2+2x 与x =0,x =1及y =0所围成的图形的面积由y =-x 2+2x 得(x -1)2+y 2=1(y ≥0),又∵0≤x ≤1,∴y =-x 2+2x 与x =0,x =1及y =0所围成的图形为14个圆,其面积为π4. ∴∫10-x 2+2x d x =π4. 互动:解:∫20-x 2+2x d x 表示圆(x -1)2+y 2=1在第一象限内部分的面积,即半圆的面积,所以 ∫20-x 2+2x d x =π2.变式2.2-1 例3.C 互动:76. 变式3.D例4:[自主解答] a =-0.4 m/s 2,v 0=72 km/h =20 m/s.设t s 后的速度为v ,则v =20-0.4t .令v =0,即20-0.4 t =0得t =50 (s).设列车由开始制动到停止所走过的路程为s ,则s =∫500v d t =∫500(20-0.4t )d t =(20t -0.2t 2) |50=20×50-0.2×502=500(m),即列车应在进站前50 s 和进站前500 m 处开始制动.变式4.46 典例:[解析] 由题意可得 f (x )=⎩⎪⎨⎪⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎪⎨⎪⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1,与x 轴围成图形的面积为120⎰10x 2d x +112⎰(10x -10x 2)d x =103x 3120+⎝⎛⎭⎪⎫5x 2-103x 3112=54. [答案] 54 变式5. 1.A 2. 49检测题答案 CBCCAD 7.4+2ln 2 8.2423 9.π410.解:(1) π4. (2)92+ln 32. (3) 12e -12.11.解:抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =∫10(x -x 2)d x =⎝ ⎛⎭⎪⎫x 22-13x 3 |10=16. 又⎩⎪⎨⎪⎧y =x -x 2,y =kx ,由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以,S2=∫1-k0(x-x 2-kx )d x =⎝⎛⎭⎪⎫1-k 2x 2-13x 3 |1-k 0=16(1-k )3.又知S =16,所以(1-k )3=12,于是k =1- 312=1-342.12.解:设直线OP 的方程为y =kx ,点P 的坐标为(x ,y ),则∫x 0(kx -x 2)d x =∫2x (x 2-kx )d x ,即⎝ ⎛⎭⎪⎫12kx 2-13x 3 |x 0=⎝ ⎛⎭⎪⎫13x 3-12kx 2|2x, 解得12kx 2-13x 3=83-2k -⎝ ⎛⎭⎪⎫13x 3-12kx 2,解得k =43,即直线OP 的方程为y =43x ,所以点P 的坐标为⎝ ⎛⎭⎪⎫43,169.备选题:1.解析:由题图可知,v (t )=⎩⎪⎨⎪⎧2t 0≤t ≤1,2 1≤t ≤3,13t +1 3≤t ≤6,因此该物体在12s ~6 s 间运动的路程为s =612⎰v (t )d t =112⎰2t d t +∫312d t +∫63⎝ ⎛⎭⎪⎫13t +1d t =t 2112+2t |31+⎝ ⎛⎭⎪⎫16t 2+t |63=494(m). 答案:494 m2.解:(1)31-⎰(3x 2-2x +1)d x =(x 3-x 2+x )31-=24.(2)∫e 1⎝ ⎛⎭⎪⎫x +1x +1x 2d x =∫e 1x d x +∫e 11x d x +∫e 11x 2d x =12x 2 |e 1+ln x |e 1-1x |e1=12(e 2-1)+(ln e -ln 1)-⎝ ⎛⎭⎪⎫1e -11 =12e 2-1e +32. 解:由⎩⎨⎧y =x ,y =2-x ,得交点A (1,1)由⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点B (3,-1).故所求面积S =∫10⎝ ⎛⎭⎪⎫x +13x d x +∫31⎝⎛⎭⎪⎫2-x +13x d x=⎝ ⎛⎭⎪⎫23x 32+16x 2 |10+⎝ ⎛⎭⎪⎫2x -13x 2 |31=23+16+43=136.4.解:由变速直线运动的路程公式,可得s =∫100t 2d t +∫2010(4t +60)d t +∫6020140d t =13t 3 |100+(2t 2+60t ) |2010+140t |6020=7 133 13(m)<7 676(m). ∴这家颗粒输送仪生产厂生产的颗粒输送仪不能被列入拟挑选的对象之一.。

高考数学一轮总复习 2.13定积分与微积分基本定理

高考数学一轮总复习 2.13定积分与微积分基本定理

【答案】 D
ppt课件
【名师点评】 定积分的主要应用是求曲边形的面积,一般 地,由曲线 y=f(x),y=g(x),直线 x=a,x=b(a<b)所围成的曲边 形的面积 S=b|f(x)-g(x)|dx,被积函数中的绝对值是不可少的,
a
在具体解题中就是根据两个函数 y=f(x),y=g(x)图象位置的高低, 用分段的形式将面积表示出来.
S=1
0
x+13xdx+132-x+13xdx
=23x
3 2
+16x201
+2x-13x231
=23+16+43=163.
ppt课件
考点三 定积分在物理中的应用
【例 3】 物体 A 以 v=3t2+1(m/s)的速度在一直线 l 上运动,
物体 B 在直线 l 上,且在物体 A 的正前方 5 m 处,同时以 v=10t(m/s)
A.S=1(x2-x)dx 0
B.S=1(x-x2)dx 0
C.S=1(y2-y)dy 0
D.S=1(y- y)dy 0
答案 B
ppt课件
3.1 -x2+2xdx=________. 0 ppt课件
解析 1 -x2+2x dx表示y= -x2+2x 与x=0,x=1及y=0所围 0
成的图形的面积.
ppt课件
J 基础回扣·自主学习
理教材 夯基础 厚积薄发
ppt课件
知识点一 (1)定积分的定义
知识梳理 定积分的定义及几何意义
ppt课件
如果函数f(x)在区间[a,b]上 连续
,当n→∞时,和式
n
i=1
b-n af(ξi)无限接近
某个常数

这个常数 叫做函数f(x)在区

高考数学一轮单元复习:第15讲定积分与微积分基本定理-PPT精选文档

高考数学一轮单元复习:第15讲定积分与微积分基本定理-PPT精选文档
第15讲 │ 定积分与微积分基本定理
第15讲 │ 知识梳理
知识梳理
第15讲 │ 知识梳理
第15讲 │ 知识梳理
第15讲 │ 知识梳理
第15讲 │ 知识梳理
第15讲 │ 要点探究
要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 要点探究
第15讲 │ 规律总结 规律总结
第15讲 │ 规律总结
第15讲 │ 规律总结
第15讲 │ 规律总结
第15讲 │ 规律总结
第15讲 │ 规律总结

苏教版高中数学高考总复习(理科)知识梳理定积分和微积分基本定理

苏教版高中数学高考总复习(理科)知识梳理定积分和微积分基本定理

定积分和微积分基本定理【考纲要求】1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念及其基本定理。

2.正确计算定积分,利用定积分求面积。

【知识网络】【考点梳理】要点一、定积分的概念定积分的定义:如果函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<⋅⋅⋅<<<⋅⋅⋅<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=⋅⋅⋅,作和式11()()n nn i i i i b aI f x f nξξ==-=∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分.记作()baf x dx ⎰,即()baf x dx ⎰=1lim ()ni n i b af nξ→∞=-∑,这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式.要点诠释:(1)定积分的值是一个常数,可正、可负、可为零;(2)用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限. 要点二、定积分的性质 (1)()()bba akf x dx k f x dx =⎰⎰(k 为常数),(2)[]1212()()()()bb ba aaf x f x dx f x dx f x dx ±=±⎰⎰⎰,(3)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰(其中b c a <<),(4)利用函数的奇偶性求积分:若函数()y f x =在区间[],b b -上是奇函数,则()0bb f x dx -=⎰; 若函数()y f x =在区间[],b b -上是偶函数,则0()2()bbbf x dx f x dx -=⎰⎰.定积分的概念定积分的性质微积分基本定理定积分的几何意义及应用要点三、微积分基本定理如果'()()F x f x =,且)(x f 在[]b a ,上连续,则()()()baf x dx F b F a =-⎰,其中()F x 叫做)(x f 的一个原函数.由于[]()'(),F x c f x +=()F x c +也是)(x f 的原函数,其中c 为常数.一般地,原函数在[]b a ,上的改变量)()(a F b F -简记作()baF x .因此,微积分基本定理可以写成形式:()()()()bbaaf x dx F x F b F a ==-⎰.要点诠释:求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.由此,求导运算与求原函数运算互为逆运算.要点四、定积分的几何意义设函数)(x f 在区间[]b a ,上连续. 在[]b a ,上,当0)(≥x f 时,定积分⎰badx x f )(在几何上表示由曲线)(x f y =以及直线b x a x ==,与x 轴围成的曲边梯形的面积;如图(1)所示.在[]b a ,上,当0)(≤x f 时,由曲线)(x f y =以及直线b x a x ==,与x 轴围成的曲边梯形位于x 轴下方,定积分⎰badx x f )(在几何上表示上述曲边梯形面积的负值;在[]b a ,上,当)(x f 既取正值又取负值时,定积分⎰badx x f )(的几何意义是曲线)(x f y =,两条直线b x a x ==,与x 轴所围成的各部分面积的代数和. 在x 轴上方的面积积分时取正号,在x 轴下方的面积积分时,取负号.如图(2)所示.要点五、应用(一)应用定积分求曲边梯形的面积1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x = (()0f x ≥)围成的曲边梯形的面积:()[()()]bbaaS f x dx f x g x dx ==-⎰⎰;2. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x = (0)(≤x f )围成的曲边梯形的面积:()()[()()]bb baaaS f x dx f x dx g x f x dx ==-=-⎰⎰⎰;3. 如图,由曲线11()y f x =22()y f x =12()()0f x f x ≥≥及直线x a =,x b =()a b <围成图形的面积公式为:1212[()()]()()bb baaaS f x dx f x f x dx f x dx =-=-⎰⎰⎰.4.利用定积分求平面图形面积的步骤:(1)画出草图,在直角坐标系中画出曲线或直线的大致图像;(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限; (3)写出定积分表达式; (4)求出平面图形的面积. (二)利用定积分解决物理问题 ①变速直线运动的路程作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间[,]a b 上的定积分,即()baS v t dt =⎰.②变力作功物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W =()baF x dx ⎰.【典型例题】类型一:运用微积分定理求定积分 例1. 运用微积分定理求定积分(1)⎰-π)cos (sin dx x x ; (2)dx xx x ⎰+-212)1(; (3)⎰-+0)(cos πdx e x x .【解析】(1)∵(cos sin )sin cos '--=-x x x x ,∴00(sin cos )(cos sin )2-=--=⎰x x dx x x ππ;(2)∵2321(ln )23'-+=-+x x x x x x, ∴232221115()(ln )ln 2236x x x x dx x x -+=-+=-⎰.(3)∵(sin )cos '+=+xxx e x e ,∴01(cos )(sin )1x x x e dx x e e πππ--+=+=-⎰; 【总结升华】求定积分最常用的方法是微积分基本定理,其关键是找出使得()()F x f x '=的原函数()F x 。

高三一轮 第三章3.3 定积分与微积分基本定理

高三一轮 第三章3.3 定积分与微积分基本定理

思维升华
计算定积分的解题步骤 (1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积 的和或差. (2)把定积分变形为求被积分函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数. (4)利用微积分基本定理求出各个定积分的值,然后求其代数和.
多维探究
题型二 定积分的几何意义
(3)ʃ 20|1-x|dx;
解 ʃ 20|1-x|dx=ʃ 10(1-x)dx+ʃ 21(x-1)dx =x-12x210+12x2-x21 =1-12-0+12×22-2-12×12-1=1. (4)ʃ 21e2x+1xdx; 解 ʃ 21e2x+1xdx=ʃ 12e2xdx+ʃ 121xdx = 12e2x21+ln x21=12e4-12e2+ln 2-ln 1 =12e4-12e2+ln 2.
x 轴下方.( × ) (4)曲线 y=x2 与 y=x 所围成图形的面积是 ʃ 01(x2-x)dx.( × )
1 2 3 4 5 67
题组二 教材改编 2.[P66A 组 T14]ʃ e2+1x-1 1dx=__1__. 解析 ʃ e2+1x-1 1dx=ln(x-1)|e2+1=ln e-ln 1=1.
为__2__3_-__2_3π__.
解析 令 2sin x=1,得 sin x=12,
当 x∈[0,π]时,得 x=6π或 x=56π,

所以所求面积S=
6 π
(2sin x-1)dx
6

=(-2cos x-x) |π6 2
6
3 2π . 3
师生共研
题型三 定积分在物理中的应用
例3 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t) =7-3t+ 25 (t的单位:s,v的单位:m/s)行驶至停止.在此期间汽车继续

定积分知识点总结高中

定积分知识点总结高中

定积分知识点总结高中一、定积分的概念定积分是微积分中的重要概念之一,它是对一个区间上函数的积分进行求解的一种方法。

在数学上,定积分可以用来求解曲线与坐标轴所围成的图形的面积、求解物体的质量、求解物体的质心和求解函数的平均值等。

二、定积分的符号表示定积分的符号表示为∫abf(x)dx,其中∫表示积分的意思,a和b分别表示积分的区间,f(x)表示被积函数,而dx表示自变量。

三、定积分的基本性质1. 定积分的区间可以是一个闭区间也可以是一个开区间。

2. 定积分的积分域是一段区间上的一个函数。

3. 定积分的值只与积分的上限和下限以及积分函数的具体形式有关,与被积函数在区间上函数值的具体大小无关。

四、定积分的计算方法1. 定积分的计算方法有多种,其中最常用的方法有两种:换元积分法和分部积分法。

2. 换元积分法是将定积分中的自变量进行替换,从而使积分的形式更容易计算。

3. 分部积分法是将被积函数进行分解,从而使积分的形式更容易计算。

五、定积分的应用1. 定积分可以用来求解曲线与坐标轴所围成的图形的面积。

这是定积分最基本的应用之一。

2. 定积分可以用来求解物体的质量。

例如,如果我们知道一个物体的密度分布函数,在定积分的帮助下可以求解出物体的总质量。

3. 定积分可以用来求解物体的质心。

通过定积分可以计算出物体在某一方向上的平均位置。

4. 定积分可以用来求解函数的平均值。

通过定积分可以求解被积函数在一段区间上的平均值。

六、定积分的图形表示1. 在定积分的图形表示中,定积分表示的是曲线与坐标轴所围成的图形的面积。

2. 定积分的图形表示与被积函数在指定区间上的图像有关,可以通过被积函数的图像来判断定积分的正负值,从而得到面积的正负值。

七、定积分的应用实例1. 一块形状不规则的地块的面积可以通过定积分来求解。

2. 一根线密度不均匀的杆子的质量可以通过定积分来求解。

3. 一个质点在一段区间内的平均位置可以通过定积分来求解。

高考数学一轮总复习 2.13定积分与微积分基本定理

高考数学一轮总复习 2.13定积分与微积分基本定理


-x2-2x
dx=π4,即在区间[-2,m]上该函数图象应为
1 4

圆,于是得m=-1,故选A.
A.S=1(x2-x)dx 0
B.S=1(x-x2)dx 0
C.S=1(y2-y)dy 0
D.S=1(y- y)dy 0
答案 B
ppt课件
3.1 -x2+2xdx=________. 0 ppt课件
解析 1 -x2+2x dx表示y= -x2+2x 与x=0,x=1及y=0所围 0
成的图形的面积.
0
0
1
解析 ∵2f(x)dx=1f(x)dx+2f(x)dx,
0
0
1
∴2f(x)dx=2f(x)dx-1f(x)dx=-1-1=-2.
1
0
0
答案 -2
ppt课件
5.由直线x=-
π 3
,x=
π 3
,y=0与曲线y=cosx所围成的封闭
图形的面积为( )
1 A.2
B.1
3 C. 2
D. 3
解析
S=-π3 π3cosxdx=20π3cosxdx=2sinx
第二章 函数、导数及其应用
ppt课件
第十三节 定积分与微积分基本定理(理)
基础回扣·自主学习
热点命题·深度剖析
特色专题·感悟提高
ppt课件
高考明方向 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分 的概念. 2.了解微积分基本定理的含义.
ppt课件
备考知考情 从近几年的高考试题来看,对本节内容要求较低,定积分的 简单计算与应用是高考的热点,题型均为小题,难度中低档,主 要考查微积分基本定理进行定积分的计算,利用定积分的几何意 义求平面图形的面积.

高考数学一轮复习课件2.13定积分与微积分基本定理

高考数学一轮复习课件2.13定积分与微积分基本定理

0
xdx=23x32a0=23a32=a2,∴a=49.
【答案】
4 9
2.(2013·温州模拟)已知2≤2(kx+1)dx≤4,则实数k的 1
取值范围是________.
【解析】 ∵12(kx+1)dx=(12kx2+x)|21=32k+1, ∴2≤32k+1≤4,∴23≤k≤2.
【答案】 [23,2]
10(x2-x3)dx=(13x3-14x4)|10=112.
【答案】
(1)D
1 (2)12

物体A以v=3t2+1(m/s)的速度在一直
线l上运动,物体B在直线l上,且在物体A的
正前方5 m处,同时以v=10t(m/s)的速度与A
同向运动,出发后,物体A追上物体B所用的
时间t(s)为( )
•A.3
a
c
2.微积分基本定理
一般地,如果f(x)是在区间[a,b]上的连续函数,且F′(x)
=f(x).那么
b
f(x)dx=_F_(_b_)_-__F_(_a_)_.这个结论叫做微积分
a
基本定理,又叫做牛顿—莱布尼兹公式.
1.bf(x)dx 与bf(t)dt 是否相等?
a
a
•【提示】 相等.定积分大小仅与被积函数 及积分区间有关,而与积分变量无关.
kbf(x)dx
①bkf(x)dx=______a ________.(k 为常数) a
②b[f1(x)±f2(x)]dx=______ab_f1_(_x_)d_x_±___ab_f2_(_x_)_d_x___.
a
cf(x)dx
③bf(x)dx=____a________+bf(x)dx(其中 a<c<b).

高三数学一轮复习(名师微博+考点详解+易错矫正)定积分与微积分基本定理课件 理

高三数学一轮复习(名师微博+考点详解+易错矫正)定积分与微积分基本定理课件 理
积分值 ,在 x 轴下 方的面 积等 于该区 间 上积分 值的 □7
__________.
第七页,共49页。
(3)定积分的基本性质:
□ ①bkf(x)dx= 8 ____________________________. a
□ ②b[f1(x)±f2(x)]dx= 9 ___________________. a
a
几何意义是由直线 x=a,x=b(a≠b),y=0 和曲线 y=f(x)所 围成的曲边梯形的面积(图①中阴影部分).
第六页,共49页。
②一般情况下,定积分bf(x)dx 的几何意义是介于 x 轴、 a
曲线 y:f(x)以及直线 x=a、x=b 之间的曲边梯形面积的代数 和(图②中阴影所示),其中在 x 轴上方的面积等于该区间上的
由s=v0t+
1 2
at2通过求导可推出v=v0+at,反
之根据积分的几何意义,由v=v(t)(v(t)≥0)可求出t∈[a,b]
时间段内所经过的路程.
第四十三页,共49页。
变式训练3 已知甲、乙两车由同一起点同时出发,并 沿同一路线(假定为直线)行驶,甲车、乙车的速度曲线分别 为v甲和v乙(如图所示).那么对于图中给定的t0和t1,下列判断 中一定正确的是( )
义.
边梯形面积的求法,难度较小.
第二页,共49页。
1.定积分的概念
知识梳理
(1)定积分的定义和相关概念:
①函数 f(x)定义在区间[a,b]上,用分点 a=x0<x1<…<
xi-1<xi<…<xn=b 将区间[a,b]等分成 n 个小区间,其长
度依次为 Δxi=xi+1-xi(i=0,1,2……n-1),记 λ 为这些小区间
第四十一页,共49页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四节 定积分与微积分基本定理[备考方向要明了][归纳·知识整合]1.定积分(1)定积分的相关概念在∫ba f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的几何意义①当函数f (x )在区间[a ,b ]上恒为正时,定积分∫ba f (x )d x 的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分∫ba f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a ,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.(3)定积分的基本性质①∫b a kf (x )d x =k ∫ba f (x )d x .②∫b a [f 1(x )±f 2(x )]d x =∫b a f 1(x )d x ±∫ba f 2(x )d x .③∫b a f (x )d x =∫c a f (x )d x +∫bc f (x )d x .[探究] 1.若积分变量为t ,则∫b a f (x )d x 与∫ba f (t )d t 是否相等?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分∫ba [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么?提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积. 2.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫ba f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F (b )-F (a )F (x )|ba ,即∫b a f (x )d x =F (x )|b a =F (b )-F (a ).[自测·牛刀小试]1.∫421xd x 等于( )A .2ln 2B .-2ln 2C .-ln 2D .ln 2解析:选D ∫421xd x =ln x |42=ln 4-ln 2=ln 2.2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( )A.176B.143C.136D.116解析:选A S =∫21(t 2-t +2)d t =⎝⎛⎪⎪⎪⎭⎪⎫13t 3-12t 2+2t 21=176. 3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________.解析:∫20x 2d x =13x 3 |20=83.答案:834.(教材改编题)∫101-x 2d x =________.解析:由定积分的几何意义可知,∫101-x 2d x 表示单位圆x 2+y 2=1在第一象限内部分的面积,所以∫101-x 2d x =14π.答案:14π5.由曲线y =1x ,直线y =-x +52所围成的封闭图形的面积为________.解析:作出图象如图所示.解方程组可得交点为A ⎝ ⎛⎭⎪⎫12,2,B ⎝ ⎛⎭⎪⎫2,12,所以阴影部分的面积,212⎰⎝⎛ -x +52- ⎭⎪⎫1xd x = ⎝ ⎛⎭⎪⎫-12x 2+52x -ln x 212=158-2ln 2. 答案:158-2ln 2[例1] 利用微积分基本定理求下列定积分:(1)∫21(x 2+2x +1)d x ;(2)∫π0(sin x -cos x )d x ;(3)∫20x (x +1)d x ;(4)∫21⎝ ⎛⎭⎪⎫e 2x+1x d x ;(5)20π⎰sin 2x2d x .[自主解答] (1)∫21(x 2+2x +1)d x =∫21x 2d x +∫212x d x +∫211d x =x 33|21+x 2 |21+x |21=193. (2)∫π0(sin x -cos x )d x=∫π0sin x d x -∫π0cos x d x =(-cos x ) |π0-sin x |π0=2.(3)∫20x (x +1)d x =∫20(x 2+x )d x=∫20x 2d x +∫20x d x =13x 3 |20+12x 2 |20=⎝ ⎛⎭⎪⎫13×23-0+⎝ ⎛⎭⎪⎫12×22-0=143.(4)∫21⎝ ⎛⎭⎪⎫e 2x +1x d x =∫21e 2x d x +∫211xd x=12e 2x |21+ln x |21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (5)20π⎰sin 2x2d x =20π⎰⎝ ⎛⎭⎪⎫12-12cos x d x =20π⎰12d x -1220π⎰cos x d x=12x 20π-12sin x 20π=π4-12=π-24. ———————————————————求定积分的一般步骤计算一些简单的定积分,解题的步骤是:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值.1.求下列定积分:(1)∫20|x -1|d x ;(2)20π⎰1-sin 2x d x .解:(1)|x -1|=⎩⎪⎨⎪⎧1-x , x ∈[0,x -1, x ∈[1,2]故∫20|x -1|d x =∫10(1-x )d x +∫21(x -1)d x=⎝ ⎛⎭⎪⎫x -x 22 |10+⎝ ⎛⎭⎪⎫x 22-x |21=12+12=1. (2) 20π⎰1-sin 2x d x=20π⎰|sin x -cos x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x=(sin x +cos x )40π+(-cos x -sin x ) 24ππ=2-1+(-1+2)=22-2.[例2] ∫10-x 2+2x d x =________.[自主解答] ∫10-x 2+2x d x 表示y =-x 2+2x 与x =0,x =1及y =0所围成的图形的面积.由y =-x 2+2x 得(x -1)2+y 2=1(y ≥0), 又∵0≤x ≤1,∴y =-x 2+2x 与x =0,x =1及y =0所围成的图形为14个圆,其面积为π4.∴∫10-x 2+2x d x =π4.在本例中,改变积分上限,求∫20-x 2+2x d x 的值.解:∫20-x 2+2x d x 表示圆(x -1)2+y 2=1在第一象限内部分的面积,即半圆的面积,所以∫20-x 2+2x d x =π2.——————————————————— 利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分.(2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.2.(2013·福建模拟)已知函数f (x )=∫x0(cos t -sin t )d t (x >0),则f (x )的最大值为________.解析:因为f (x )=∫x 02sin ⎝ ⎛⎭⎪⎫π4-t d t=2cos ⎝⎛⎭⎪⎫π4-t |x 0=2cos ⎝ ⎛⎭⎪⎫π4-x -2cos π4=sin x +cos x -1=2sin ⎝ ⎛⎭⎪⎫x +π4-1≤2-1,当且仅当sin ⎝⎛⎭⎪⎫x +π4=1时,等号成立.答案:2-1[例3] (2012·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B .4 C.163D .6[自主解答] 由y =x 及y =x -2可得,x =4,即两曲线交于点(4,2).由定积分的几何意义可知,由y =x 及y =x -2及y 轴所围成的封闭图形面积为∫40(x -x +2)d x =⎝ ⎛⎭⎪⎫23x 32-12x 2+2x |40=163.[答案] C若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解?解:如图所示,由y =x 及y =-x +2可得x =1.由定积分的几何意义可知,由y =x ,y =-x +2及x 轴所围成的封闭图形的面积为∫2f (x )d x =∫10x d x +∫21(-x +2)d x =23x 32 |10+⎝⎛⎭⎪⎫2x -x 22 |21 =76.——————————————————— 利用定积分求曲边梯形面积的步骤(1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案.3.(2013·郑州模拟)如图,曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )A.23 B.13 C.12D.14解析:选D 由⎩⎪⎨⎪⎧y =14,y =x2⇒x =12或x =-12(舍),所以阴影部分面积 S =120⎰⎝ ⎛⎭⎪⎫14-x 2d x +112⎰⎝ ⎛⎭⎪⎫x 2-14d x =⎝ ⎛⎭⎪⎫14x -13x 3120+⎝ ⎛⎭⎪⎫13x 3-14x 112=14.[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2,问列车应在进站前多长时间,以及离车站多远处开始制动?[自主解答] a =-0.4 m/s 2,v 0=72 km/h =20 m/s. 设t s 后的速度为v ,则v =20-0.4t . 令v =0,即20-0.4 t =0得t =50 (s). 设列车由开始制动到停止所走过的路程为s , 则s =∫500v d t =∫500(20-0.4t )d t =(20t -0.2t 2) |50=20×50-0.2×502=500(m),即列车应在进站前50 s 和进站前500 m 处开始制动. ———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从时刻t =a 到t =b 所经过的路程为∫ba v (t )d t ;如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫bav (t )d t .2.变力做功问题物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫ba F (x )d x .4.一物体在力F (x )=⎩⎪⎨⎪⎧10 ≤x ≤3x +4x (单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:选B 力F (x )做功为∫2010d x +∫42(3x +4)d x =10x |20+⎝⎛⎪⎪⎪⎭⎪⎫32x 2+4x 42 =20+26=46.1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.3条性质——定积分的性质 (1)常数可提到积分号外; (2)和差的积分等于积分的和差; (3)积分可分段进行.3个注意——定积分的计算应注意的问题(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量; (2)定积分式子中隐含的条件是积分上限不小于积分下限; (3)面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点[典例] (2012·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎪⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________. [解析] 由题意可得f (x )=⎩⎪⎨⎪⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎪⎨⎪⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1,与x 轴围成图形的面积为120⎰10x 2d x +112⎰错误!未找到引用源。

相关文档
最新文档