八年级数学下册 16.3 二次根式的加减(第3课时)教案 (新版)新人教版

合集下载

16.3二次根式的加减课件+2023-—2024学年人教版数学八年级下册

16.3二次根式的加减课件+2023-—2024学年人教版数学八年级下册

同类项合并就是字母不变,系数相加减。
新课学习
二次根式的加减
7.5dm
现有一块长7.5dm、宽5dm的木板,
能否采用如图的方式,在这块木板
5dm
上截出两个分别是8dm2和18dm2的
dm
dm
正方形木板?
( + )dm
问题转化为比较7.5dm与( + )dm的大小。
新课学习
( + )
复习导入
2、把下列各根式化简
(1) 12
2
3
1
(5)
2
2
2
(2) 48
4
3
(6) 32
4
2
(3) 18
3
2
(4) 50
5
2
1
(7) 45 (8) 1
3
3
5
2
3
3
导入新课
计算下列各式:
(1)2x+3x
5x
(2)2x5-5x5+5x5
2x5
(3)3x+2x+3y
5x+3y
(4)3a2-2a2+a3
a2+a3
先化为最简二次根式
把同类二次根式合并。
二次根式的加减与整式的加减根据都是分配律,它们的
运算实质也基本相同。
拓展提升
1.解下列方程和不等式.
(1)

x+


=2x+1
+
(2) (x-1)>3(x+1)
分析:(1)先将分母有理化,再解方程即可解答本题;
(2)根据解不等式的步骤进行解答即可,注意不等号的方向。

人教版数学八下16.3二次根式的加减 课时3新课件

人教版数学八下16.3二次根式的加减 课时3新课件
子、分母都化成质因数(或最简因式)的幂的乘积的
形式.
移:把能开得尽方的因数(或因式)用它的算术平方
根代替,移到根号外,当把根号内的分母中的因式移
到根号外时,要注意依旧写在分母的位置上.
化:化去被开方数中的分母.
约:约分,化为最简二次根式.
新知探究 跟踪训练
1.判断: 下列各式中,哪些是最简二次根式?
3

5
(1) 35;
(2)
(3) 3 + 1;
(4) 16.
2.化简: 将下列各式化简为最简二次根式.
1
(2)1 3;
(1) 3 ,
解:(1)∵3 ≥ 0 ,
∴ a≥0.
∴原式 = 2 ∙ = .
(2)原式 =
4
3
=
4× 3
3× 3
=
2 3
.
3
2.化简: 将下列各式化简为最简二次根式.
4
(1) 32 ;
(2) 40 ; (3) 1.5 ; (4) .
3
解:(1) 32 = 16 × 2 = 16 × 2 = 4 2;
(2)
40 = 4 × 10 = 2 10;
(3)
1.5 =
(4)
4 4
=
3 3
3
3
3× 2
6
=
=
=
;
2
2
2
2× 2
=
4× 3
3× 3
=
2 3
.
3
3.设长方形的面积为 S,相邻两边的长分别为 a,b. 已
B. 12
12=2 3
C. 2
2=||
D.
5
3

人教版数学八年级下册16.3《二次根式的加减》说课稿

人教版数学八年级下册16.3《二次根式的加减》说课稿

人教版数学八年级下册16.3《二次根式的加减》说课稿一. 教材分析人教版数学八年级下册16.3《二次根式的加减》这一节,是在学生已经掌握了二次根式的性质和运算法则的基础上进行讲解的。

本节内容主要让学生学会如何进行二次根式的加减运算,进一步培养学生的运算能力和数学思维能力。

教材通过例题和练习题的形式,让学生在实际操作中掌握二次根式加减的计算方法,并能够灵活运用。

二. 学情分析在教学这一节之前,学生已经学习了二次根式的性质,包括根号下的数可以分为完全平方数和非完全平方数,以及二次根式的乘除运算。

但是,对于二次根式的加减运算,学生可能还存在一定的困难,特别是在处理含有同类项和非同类项的二次根式加减时,容易出错。

因此,在教学过程中,需要引导学生理清思路,明确二次根式加减的规则。

三. 说教学目标1.让学生掌握二次根式的加减运算法则,能够正确进行二次根式的加减运算。

2.培养学生的运算能力和数学思维能力,使学生在解决实际问题时,能够灵活运用二次根式的加减运算法则。

3.通过二次根式的加减运算,让学生体会数学的规律性和逻辑性,提高学生的数学素养。

四. 说教学重难点1.教学重点:让学生掌握二次根式的加减运算法则,能够正确进行二次根式的加减运算。

2.教学难点:如何引导学生理解并处理含有同类项和非同类项的二次根式加减问题。

五. 说教学方法与手段1.采用启发式教学法,引导学生通过观察、分析、归纳总结,发现二次根式加减的规律。

2.使用多媒体教学手段,通过动画、图片等形式,直观地展示二次根式的加减过程,帮助学生理解。

3.学生进行小组讨论和合作交流,让学生在讨论中解决问题,提高学生的团队协作能力。

六. 说教学过程1.导入:通过一个实际问题,引出二次根式的加减运算,激发学生的学习兴趣。

2.新课讲解:讲解二次根式的加减运算法则,并通过例题演示如何进行二次根式的加减运算。

3.学生练习:让学生独立完成一些二次根式的加减运算题目,巩固所学知识。

16.3二次根式的加减二次根式的混合运算(教案)

16.3二次根式的加减二次根式的混合运算(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的加减法则和混合运算的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在实践活动方面,我发现同学们对于实验操作非常感兴趣,这也让他们对二次根式的理解更加深刻。但在操作过程中,有些同学可能因为手法不熟练而影响了实验结果。为了提高实践活动的效果,我考虑在下次课前进行一次简短的实验技巧培训,让同学们在操作时更加得心应手。
最后,从学生的反馈来看,他们对于二次根式的学习还是充满热情的。但在教学过程中,我也发现了自己需要改进的地方,如在讲解难点时更加耐心、细致,关注每一个学生的掌握情况。同时,我还要在课后及时了解学生的疑问和困惑,以便在下一节课中进行针对性的解答。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的基本概念。二次根式是形如\( \sqrt{a} \)的表达式,其中\( a \)是一个非负实数。它在数学中有着广泛的应用,特别是在几何、物理和工程领域。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算\( \sqrt{18} + \sqrt{12} \),通过这个案例,我们将学习如何将不同的二次根式转换为同类项,并进行加减运算。
-处理含有分数和变量的二次根式运算:难点在于如何正确处理分数和变量在二次根式运算中的规则。
-例如:解决\( \frac{1}{4}\sqrt{8x^2} \times \sqrt{2x} \)的问题,强调先简化根号内的表达式,然后进行乘法运算。

16.3二次根式的加减 教案

16.3二次根式的加减    教案

练习2. 计算:
(1) 80- 20+ 5 ;
(2) 18 +( 98- 27);
(3)( 24 + 0.5)-( 1 - 6); 8
(4) 32 - 3 1 +10 0.08 - 1 48 .
3
2
答案:(1)3 5 ;(2)10 2-3 3 ;(3)3 6- 1 2 ;
(4)6 2-3 3.
4
课堂小结
(1)二次根式的加减运算分哪几步进行?每一个步骤 的依据是什么?
(2)在二次根式的加减中,主要的想法是怎样的? (3)在二次根式加减中,有哪些地方容易出现错误?
课后作业
同步练习册: 第 页第 题
别是8 dm2和18 dm2的正方形木板?
能截出两块正方形木
7.5 dm
板的条件是什么?能用数
学式子表示吗?
8
18
5 dm
ቤተ መጻሕፍቲ ባይዱ
8+ 18
合作探究 形成知识
算式 8+ 18与算式 3 2- 2 有什么相同点与不同 点?
请化简算式 8+ 18 ,并说出每一步化简的理由.
8+ 18=2 2+3 2 =(2+3) 2=5 2
观察
化简:
(1) 8 2 2 50 5 2
18 3 2
(2) 12 2 3 (3) 20 2 5
27 3 3 45 3 5
48 4 3 125 5 5
每组二次根式在化简后有什么特点?
创设情境 提出问题
问题1 现有一块长7.5 dm、宽5 dm的木板,能否
采用如图所示的方式,在这块木板上截出两个面积分
八年级 下册

八年级数学下册二次根式二次根式的加减二次根式的加减教案新版新人教版

八年级数学下册二次根式二次根式的加减二次根式的加减教案新版新人教版

二次根式的加减一、教学内容:二次根式的加减课时安排:1课时。

二、教学目标:知识与技能目标:理解和掌握二次根式加减的方法。

过程与方法目标:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解,再总结经验,用它来指导根式的计算和化简。

情感与价值目标:通过本节的学习,培养学生准确计算和化简的严谨科学精神,发展学生观察、分析、发现问题的能力。

三、重难点关键1.重点:二次根式的加减。

2.难点关键:会判定是否是最简二次根式。

教法:1、引导发现法:通过教师精心设计的问题,使学生产生认知冲突,感悟新知,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现教师主导和学生主体的作用。

2、讲练结合法:在例题教学中,引导学生阅读,与同类项进行类比,获得解决问题的方法,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法:通过观察、类比,使学生感悟二次根式加减的模型,形成有效的学习策略。

2、阅读的方法:让学生阅读教材及材料,提高阅读能力。

3、分组讨论法:将自己的意见在小组内交换,体验学习活动中的交流与合作。

四、教学过程:一、复习引入(1)两列火车分别运煤3x吨和4x吨,问这两列火车共运多少?(2)两列火车分别运煤x吨和y吨,问这两列火车共运多少?以下问题你能用同样的方法计算吗?()21+()23242+5二、探索新知:定义:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

回答下列问题:25;(1)说出1)3(1-++-+-+=--=-231-++=+(2)下列各式中哪些是同类二次根式?()234++=++=++=如何合并同类二次根式:与合并同类项类似,把同类二次根式的系数相加减,做为结果的系数,根号及根号内部都不变。

二次根式加减运算的步骤:(1)把各个二次根式化成最简二次根式。

(2)把各个同类二次根式合并。

注意:不是同类二次根式的二次根式。

新人教版数学初中八年级下册16.3《二次根式的加减》公开课优质课教学设计

新人教版数学初中八年级下册16.3《二次根式的加减》公开课优质课教学设计

1《16.3二次根式的加减》本课在学习二次根式乘除运算及化简的基础上,本课在学习二次根式乘除运算及化简的基础上,从算术平方根的运算出发,从算术平方根的运算出发,研究二次根式的加减运算.二次根式的运算方法与数的运算方法本质上是一致的.二次根式的运算方法与数的运算方法本质上是一致的.实数的运算律对二次根式的运算仍实数的运算律对二次根式的运算仍然适用.结合二次根式的化简、乘除和加减运算,利用交换律、结合律、分配律及多项式乘法公式进行二次根式的混合运算.进行二次根式的混合运算.1. 1. 探索二次根式加减运算的方法和步骤;探索二次根式加减运算的方法和步骤;2.2. 会进行二次根式的加减运算.会进行二次根式的加减运算.3.3. 通过探究二次根式的加减运算体会数学中的类比思想通过探究二次根式的加减运算体会数学中的类比思想. .4.4. 类比有理数混合运算和整式混合运算,探索二次根式的加、减、乘、除混合运算顺序的步骤和方法方法. .5.5. 能熟练地进行二次根式的加、减、乘、除混合运算能熟练地进行二次根式的加、减、乘、除混合运算. .6.6. 通过学习二次根式的加、减、乘、除混合运算的学习,培养学生的运算能力、推理能力.1.1. 在化简二次根式的基础上,应用分配律进行二次根式的加减运算.在化简二次根式的基础上,应用分配律进行二次根式的加减运算.2.2. 熟练并准确地进行二次根式的加、减、乘、除混合运算熟练并准确地进行二次根式的加、减、乘、除混合运算. .课件课件◆ 教材分析 ◆ 教学目标◆ 教学重难点 ◆◆ 课前准备◆◆ 教学过程第一课时一、复习引入:一、复习引入:问题1:什么叫最简二次根式?你能将18,8,23化为最简二次根式吗?化为最简二次根式吗? 问题2:现有一块长7.5dm,7.5dm,宽宽5dm 的木板的木板,,能否采用如图的方式能否采用如图的方式,,在这块木板上截出两个面积分别是8dm 2和18dm 2的正方形木板的正方形木板? ? 提问提问::①大、小正方形木板的边长分别为18dm 和8dm,dm,木板是木板是否够宽否够宽??②木板是否够长呢②木板是否够长呢??③怎样计算818+的结果呢的结果呢? ?问题3:计算下列各式:(1)a+2a a+2a;;(2)3x-2x 3x-2x;;解:(1)a+2a=(1+2)a=3a a+2a=(1+2)a=3a;;(2)3x-2x=(3-2)x=x 3x-2x=(3-2)x=x;;【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备【设计意图】回顾整式的加减及合并同类项法则,为后续学习二次根式的合并做准备. .二、新课讲解:1.1.探究二次根式的加法探究二次根式的加法探究二次根式的加法. .问题4:请类比整式的加减,计算下列各式::请类比整式的加减,计算下列各式:(1)323+;(2)52-53.解:(1)333)21(323=+=+;(2)55)23(52-53=-=.【点拨】最简二次根式中,被开方数相同的二次根式的加减,直接把系数相加减,根号和根号内的数不变内的数不变. .问题5:53+能合并吗?为什么?82+呢?呢?解:53+不能合并,因为它们被开方数不相同;不能合并,因为它们被开方数不相同;232)21(22282=+=+=+.【小结】(1)二次根式能够进行合并的条件:①首先将二次根式化成最简二次根式;②观察被开方数是否相同开方数是否相同. .(2)二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并式合并. .练习1:下列各组二次根式中,能够合并的一组二次根式是(:下列各组二次根式中,能够合并的一组二次根式是( )A .xy 与y x 2B .22y x +与22y x - C .mn 与n m + D.ab 2与ba 2 练习练习:2:2:2::(教材P13练习)下列计算是否正确?为什么?练习)下列计算是否正确?为什么?(1)3838-=-;(2)9494+=+;(3)22223=-.解:(1)∵228=和3的被开方数不相同,的被开方数不相同,∴不能合并∴不能合并,,故错误故错误. .(2)∵53294=+=+,1394=+,故9494+¹+,故错误;,故错误;(3)∵22)23(2223=-=-,故正确故正确. .[点拨点拨]]化为最简二次根式后,只有被开方数相同的二次根式才能合并化为最简二次根式后,只有被开方数相同的二次根式才能合并. .2.2.二次根式加法的运用二次根式加法的运用二次根式加法的运用. .问题7:(教材例题)计算:(1)4580-;(2)a a 259+;(3)483316122+-;(4))53()2012(-++.解:(1)553-544580==-; (2)a a a a a 853259=+=+;(3)3102831232-28483316122+=+=+-; (4)533535232)53()2012(+=-++=-++.练习3:(教材P13练习2)计算:(1)4580-;(2)a a 9194+; (3)52080+-;(4))2798(18-+;(5))681()5.024(--+.解:(1)553-544580==-; (2)a a a a a =+=+31329194; (3)535525452080=+-=+-;(4)33210332723)2798(18-=-+=-+;.42636422262)642()2262()681()5.024(5+=+-+=--+=--+)(问题6:前面问题2中,怎样计算818+的结果呢的结果呢??木板长7.5dm,7.5dm,宽宽5dm 5dm,是否够长?,是否够长?,是否够长?解:818+=2223+···化为最简二次根式·化为最简二次根式=2)23(+···乘法分配率·乘法分配率=25≈7.077.07<<7.5故木板够长故木板够长. .练习4:(教材P13练习3)如果两个圆的圆心相同,他们的面积分别是12.56和25.1225.12,求圆环的,求圆环的宽度d (π取3.143.14,结果保留小数点后两位),结果保留小数点后两位),结果保留小数点后两位). .解:∵解:∵S S 圆=πr 2,∴d=r 大圆-r 小圆小圆=2224814.356.1214.312.25-=-=-=-ππ小圆大圆S S ≈0.83 答:圆环的宽度d 为0.83.三、课堂小结:三、课堂小结:1.1. 知识梳理:(1)二次根式合并的前提:化成最简二次根式之后,被开方数相同)二次根式合并的前提:化成最简二次根式之后,被开方数相同. .(2)二次根式加减的实质:合并被开方数相同的最简二次根式)二次根式加减的实质:合并被开方数相同的最简二次根式. .2.2.二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:二次根式加减的实质是二次根式的合并,计算过程中容易出现以下错误:①化成最简二次根式后,如果被开方数不相同,则不能进行合并;①化成最简二次根式后,如果被开方数不相同,则不能进行合并;②合并被开方数相同的最简二次根式时,②合并被开方数相同的最简二次根式时,只合并根式外的因式,即系数相加减,被开方数和根指数只合并根式外的因式,即系数相加减,被开方数和根指数不变不变. .3.3. 二次根式加减运算的步骤:①去括号;②化简;③判断并合并.二次根式加减运算的步骤:①去括号;②化简;③判断并合并.4.4.二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别二次根式的加减法与二次根式的乘除法的区别运算运算二次根式的乘除法二次根式的乘除法 二次根式的加减法二次根式的加减法 系数系数系数相乘除系数相乘除 系数相加减系数相加减被开方数被开方数 被开方数相乘除被开方数相乘除 被开方数不变被开方数不变化简化简 结果化成最简二次根式结果化成最简二次根式先化成最简二次根式先化成最简二次根式,,再合并被开方数相同的二次根式的二次根式((同类二次根式同类二次根式) )四、随堂测试:四、随堂测试:1.1.下列各式计算正确的是下列各式计算正确的是下列各式计算正确的是 ( () A.532=+ B.13334=- C.363332=´ D.3327=¸ 解析解析:A.:A.:A.不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;不是同类二次根式,不能合并,故错误;B.B.合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;合并同类二次根式时根号及根号下的被开方数不能丢掉,故错误;C.C.应为应为18363332=´=´´,故错误;,故错误;D.39327327==¸=¸,故正确,故正确. .故选D.2.2.以下二次根式以下二次根式以下二次根式::①12,②22,③32,④27中, 化简后能合并成一项的是化简后能合并成一项的是化简后能合并成一项的是( ( ( )A.A.①和②①和②①和②B. B.②和③②和③②和③C. C.①和④①和④D.D.③和④③和④③和④解析:①3212=;②222=;③3632=;④3327=. 3.3. 计算:2-23的值是(的值是() A.2 B.3 C.2 D.22 解析:解析:..222)13(2-23=-=.4.4. 一个等腰三角形的两边长分别为2332,, 则三角形的周长为则三角形的周长为则三角形的周长为. . 解析:分两种情况讨论:(1)当32为腰长,23为底边长时,周长为3423+;(2)当23为腰长,为32底边长时,周长为3226+.5.5. 若最简二次根式若最简二次根式14232+a 与16322-a 的被开方数相同的被开方数相同,,则a= a= . 解析:由题意得4a 2+1=6a 2-1-1,解得,解得a=a=±±1.6.6. 计算:(1)233-2332++; (2)101015-40+.第二课时一、复习引入:一、复习引入:1.1.计算:(1)728+;(2)68´;(3)324¸. 解:(1)282622728=+=+;(2)34486868==´=´;(3)228324324==¸=¸.【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备【设计意图】复习二次根式的加减、乘除法则,为下面研究四则混合运算做准备. .2.2. 计算:(1)(2x-y)(2x-y)··zx zx;;(2)(2x 2y+3xy 2)÷xy xy;;(3)(2x+y)(x-3y) (3)(2x+3y)(2x-3y);(2x+3y)(2x-3y);((4)(2x+1)2+(2x-1)2.解:(1)(2x-y)(2x-y)··zx=2x 2z-xyz z-xyz;;(2)(2x 2y+3xy 2)÷xy=2x 2y ÷xy+3xy 2÷xy=2x+2y xy=2x+2y;;(3)(2x+y)(x-3y)=2x 2-6xy+xy-3y 2=2x 2-5xy-3y 2;(4)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x 2-9y 2;(5)(2x+1)2+(2x-1)2=4x 2+4x+1+4x 2-4x+1=8x 2+2.提问:上面的运算用到了哪些法则和公式?提问:上面的运算用到了哪些法则和公式?学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式学生回顾:多项式乘单项式,多项式除以单项式、多项式乘多项式法则和平方差、完全平方公式. .【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算【设计意图】复习整式的四则运算和乘法公式,类比学习二次根式的混合运算. .二、新课讲解:二、新课讲解:问题1:如果把上面的x ,y ,z 改成二次根式呢?以上的运算法则是否仍然成立?改成二次根式呢?以上的运算法则是否仍然成立?例1.1.(教材(教材P14例题3)计算:(1)6)38(´+;(2)226324¸-)(.解:(1)6)38(´+=6368´+´=1848+=2334+;(2)2263-24¸)( =22632224¸-¸=3232-.【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率【点拨】类比多项式乘单项式和多项式除以单项式法则计算,这里运用了分配率. . 练习1:(教材P14练习1)计算:(1))53(2+;(2)5)4080(¸+; 解:(1))53(2+=5232´+´=106+;(2)5)4080(¸+=540580¸+¸=816+=224+.【小结】(1)与有理数、实数运算一样,在混合运算中先乘除,后加减;)与有理数、实数运算一样,在混合运算中先乘除,后加减;(2)最终的结果一定要化为最简二次根式)最终的结果一定要化为最简二次根式. . .问题2.2.(教材(教材P14面例4)例2.2. 计算:(1))52()32(-×+;(2))35)(35(-+. 解:(1))52()32(-×+=152523)2(2--+=15222--=2213--;(2))35)(35(-+=22)3()5(-=5-3=2.提问:你能说出上面两道题中每一步的依据是什么吗?提问:你能说出上面两道题中每一步的依据是什么吗?【小结】乘法公式使计算准确、简便,因此能用运算公式的,尽可能用运算公式.因为二次根式表示数,二次根式的运算也是实数的运算.根式表示数,二次根式的运算也是实数的运算.练习2:计算:(1))17(72--=;(2))2332)(2332(+-=.答案为:7214+-;6.练习3:计算2)322215324(×+-的结果是(的结果是( ) A. A. 303-3320 B.30-3320 C.332303- D.332302- 练习3 计算:(1))2762)(6227(-+;(2)2)377(-;(3)22)632()632(-+--+解:(1))2762)(6227(-+=222762)()(-=24-98=-74=-74;;(2)2)377(-=22)37(3772)7(+´´-=2114154-;(3)22)632()632(++--+=)]632()632)][(632()632[(++--++++-+ =)62()3222(-×+=21238--.练习4:已知4x 2+y 2-4x-6y+10=0-4x-6y+10=0,求下面式子的值,求下面式子的值,求下面式子的值. . )1()(2y x y x y x y y xx +-+解:由4x 2+y 2-4x-6y+10=0得到得到(2x-1)(2x-1)2+(y-3)2=0,∴2x-1=0,y-3=0.解得,解得,x=x=21,y=3. )1()(2yx y x y x y y xx +-+ =yx x y y x 12--+ =y y x x y y y x--+=x y -当x=21,y=3时,时, 原式原式==223213-=-. 三、课堂小结:三、课堂小结:师生共同回顾本节课所学主要内容师生共同回顾本节课所学主要内容: :关于二次根式的四则混合运算关于二次根式的四则混合运算,,实质上就是实数的混合运算.(1)(1)运算顺序与有理式的运算顺序相运算顺序与有理式的运算顺序相同;(2);(2)运算律仍然适用运算律仍然适用运算律仍然适用;(3);(3);(3)与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似与多项式的乘法和因式分解类似,,可以利用乘法公式与因式分解的方法来简化二次根式的有关运算.四、随堂检测:1. 下列二次根式中可以进行合并的是下列二次根式中可以进行合并的是( ) ( )A. ab 与2abB. 22n m + 与22n m -C. mn 与nm 11+ D. 438b a 与432b a 【知识点:同类二次根式】【知识点:同类二次根式】【参考答案】D【思路点拨】先化简成最简二次根式,再看被开方数是否相同【思路点拨】先化简成最简二次根式,再看被开方数是否相同. .2.2.计算:计算:)12)(12(-+的结果是(的结果是(). A.23+ B.23- C.1D.3 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】C C【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,【思路点拨】在整式运算中使用的公式在二次根式运算中照样适用,因此,本题利用平方差公式直本题利用平方差公式直接计算即可接计算即可. .3.3.若矩形相邻两边长分别是若矩形相邻两边长分别是cm 20和cm 125,则它们的周长是,则它们的周长是. .【知识点:二次根式混合运算】【知识点:二次根式混合运算】【参考答案】cm 514【思路点拨】矩形的周长【思路点拨】矩形的周长==(长(长++宽)×宽)×2 24. 计算:)4831375(12-+´的结果是(的结果是() A.23 B.32 C. 6D. 12 【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】【参考答案】D D【思路点拨】123232)34335(12)4831375(12=´=-+´=-+´5. 计算:3)4841311527(¸+-【知识点:二次根式的混合运算】【知识点:二次根式的混合运算】【参考答案】1-【解析】原式=1333)33533(-=¸-=¸+-略。

人教版数学八年级下册16.3二次根式的加减(教案)

人教版数学八年级下册16.3二次根式的加减(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
5.激发学生的自主学习与合作探究:鼓励学生在课堂中积极参与讨论,学会与他人合作探究,培养自主学习和团队协作能力。
本节课将紧扣核心素养目标,关注学生能力的全面发展,提高学生数学学科素养。
三、教学难点与重点
1.教学重点
-二次根式的定义及其性质:理解二次根式的概念,掌握其性质,如√a(a≥0)。
-二次根式的加减法则:熟练运用加减法则进行同类项合并和不同类项化简,如√a±√a=±2√a。
五、教学反思
在今天的教学过程中,我尝试了多种方法来帮助学生理解二次根式的加减。首先,通过日常生活中的实例导入新课,让学生感受到数学与生活的紧密联系。在实际操作中,我发现同学们对这个问题产生了浓厚的兴趣,这为后续的学习打下了良好的基础。
在理论介绍环节,我尽量用简洁明了的语言解释二次根式的定义和性质,让学生易于理解。然而,我也注意到,部分学生在理解不同类项的化简和符号处理上还存在一定的困难。在今后的教学中,我需要更加关注这部分学生,通过设计更多有针对性的练习和实例,帮助他们突破这个难点。
在新课讲授的案例分析环节,我选取了一个与学生生活密切相关的例子,希望能够让他们更好地体会到二次根式在实际中的应用。从学生的反馈来看,这个案例确实帮助他们加深了对二次根式加减的理解。但在实践活动和小组讨论中,我也发现部分学生在将理论知识应用到实际问题解决时,仍然显得有些吃力。这可能是因为他们对二次根式的掌握还不够熟练,需要在今后的教学中加强练习。

《二次根式的加减》说课稿

《二次根式的加减》说课稿

《二次根式的加减》说课稿潢川县张集乡中学尊敬的各位评委:大家好!今天我说课的题目是《二次根式的加减》。

下面我将从教材分析、教学方法、学法指导、教学程序等四个方面进行分析。

一、教材分析(一)教材的地位和作用《二次根式的加减》是人教版数学八年级下册第十六章中的一节重要内容。

它是在学习了二次根式的性质和乘除运算的基础上进行的.二次根式的加减是把二次根式化为最简二次根式后,合并同类二次根式就可以了,所以本课内容与整式的加减法类似,在教学中可以让学生体会类比的数学思想。

(二)教学目标根据课标的要求和本节课内容的特点,我从三个方面确定本节课的教学目标.1、知识与能力:了解同类二次根式的概念,掌握判断同类二次根式的方法;使学生能正确合并同类二次根式,进行二次根式的加减运算.2、过程与方法:正确掌握合并同类二次根式的方法.3、情感、态度与价值观:在探究合并同类二次根式的方法过程中,发展合作意识和合情推理能力.(三)教学重、难点教学重点: 二次根式加减法则及其应用。

教学难点: 法则的探索与理解。

二、教学方法由于八年级学生的数学思维特征由具体逻辑思维逐步过渡到抽象逻辑思维,但仍有很大程度的经验性,而二次根式需要有一定的抽象思维能力。

因此本节课运用引导探究法,在教师引导下学生进行自主探究的教学方法。

三、学法指导本节课是在二次根式的化简的基础上的进一步学习,重点是探索二次根式的加减运算法则。

在设计本课时教案时,先复习二次根式的化简,并由此引出同类二次根式的定义,注意引导学生对同类二次根式和同类项、二次根式的加减和合并同类项进行比较学习。

在理解、掌握和运用二次根式的加减法运算法则的学习过程中,逐步渗透类比、概括等数学思想,提高学生用数学方法解决实际问题的能力。

在学习过程中,采用小组学习方式,组间竞争,按各组表现评出最优小组,激发学生学习积极性和兴趣。

四、教学过程(一)引入新课学生活动:计算下列各式.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3解:(1)2x+3x=5x (2)2x2-3x2+5x2=4x2(3)x+2x+y=3x+y (4)3a2-2a2+a3=a2+a3 教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,把系数相加减.(二)探索新知学生活动:计算下列各式.(1)22(2)888(37797(4)332(68+18老师点评:(1x ,不就转化为上面的问题吗?(2+3(2y ;(2-3+5(3z ;=(1+2+9(4x看为y .(3-2(5=(2+3=师:用自己的语言描述二次根式加减法的法则:二次根式加减时,先把二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

新人教版八年级数学下《16.3 二次根式的加减 二次根式的混合运算》优质课教学设计_29

新人教版八年级数学下《16.3 二次根式的加减 二次根式的混合运算》优质课教学设计_29

二次根式的混合运算教学设计知识与技能:在有理数的混合运算及整式的混合运算基础上,使学生了解二次根式的混合运算与以前所学知识的联系,在比较中得到方法,并能熟练地实行二次根式的混合运算.过程与方法:1.对二次根式的混合运算与整式的混合运算及数的混合运算作比较,注意运算顺序及运算律在计算过程中的作用.2.通过引导,在多解中实行比较,寻求有效快捷的计算方法.情感态度与价值观:1.学会知识间的类比,进一步体会数学学习方法的重要性.2.通过独立思考与小组讨论,培养良好的学习态度.【重点】能熟练实行二次根式的混合运算.【难点】灵活使用因式分解、约分等技巧,使用运算律使计算简便.【教师准备】教学中出示的教学插图和例题.【学生准备】复习总结二次根式的加减运算的方法.导入一:教师节快要到了,为了表示对老师的敬意,小波做了两张大小不同的正方形壁画准备送给老师.其中一张面积为800 cm2,另一张面积为4500 cm2,他想如果再用金彩带镶上边会更漂亮.他现在有一条长1.2 m的金彩带,请你帮忙算一算,他的金彩带够用吗?若不够用,还需要购买多长的金彩带?引导学生计算所需金彩带的总长,列式为4(+),思考计算方法.如何计算呢?通过本节课的学习,我们就会很容易解决这个问题.[设计意图]创设问题情境,激起学生的探索兴趣和求知欲望.导入二:让我们一起来回顾一下二次根式的基本运算,你会计算下面几个式子吗?计算:(1)+;(2)×;(3)÷.学生计算交流后,提出问题:(+)应怎样计算?乘法分配律依然能够应用吗?本节课我们重点探究整式的乘法法则和公式在二次根式的混合运算中仍然适用和二次根式的混合运算的问题.[设计意图]通过复习二次根式的运算,自然过渡到二次根式的混合运算,明确本节课的目标.1.探究整式的乘法法则和公式在二次根式的混合运算中仍然适用思路一(1)怎样计算4(+)?引导学生回忆学习过的整式乘法中的乘法分配律,仿照a(b+c)=ab+ac尝试计算,并全班交流.4(+)=4+4=4×20+4×30=80+120.(2)怎样计算(+2)(-2)?引导学生回忆整式乘法公式,仿照(a+b)(a-b)=a2-b2尝试计算,并全班交流.(+2)(-2)=()2-(2)2=3-8=-5.(3)(+2)2和(-2)2又该如何计算呢?学生讨论,用完全平方公式计算.(+2)2=()2+2××2+(2)2=3+4+8=11+4.(-2)2=()2-2××2+(2)2=3-4+8=11-4.进一步引导学生总结:整式的乘法法则和公式在二次根式的混合运算中仍然适用.[设计意图]用类比的方法探索二次根式混合运算的特点,使学生弄清楚新旧知识的区别和联系.让学生亲自动手,实行实验、探究,得出结论,激发学生的求知欲望.思路二(1)请同学们完成下列各题:计算:①(2x+y)·zx;②(2x2y+3xy2)÷xy;③(2x+3y)(2x-3y);④(2x+1)2+(2x-1)2.学生计算后,老师点评.这些内容是对八年级上册整式运算的再现.主要有:单项式×单项式;单项式×多项式;多项式×多项式;多项式÷单项式;完全平方公式的使用;平方差公式的使用.如果把上面的x,y,z改成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x,y,z是一种字母,它的意义十分广泛,能够代表所有的式子,当然也能够代表二次根式,所以整式中的运算规律也适用于二次根式.下面,我们来验证一下用乘法分配律计算(+)×.(+)×=(2+3)×=5×=10,(+)×=×+×=4+6=10.引导学生观察,发现:这两种方法的结果是相同的.在二次根式运算中,乘法分配律依然能够应用.(2)自己举例验证平方差公式和完全平方公式是否能够应用于二次根式的运算.小组讨论后,全班交流.[知识拓展](1)适用于二次根式的乘法公式:①平方差公式:(a+b)(a-b)=a2-b2;②完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.(2)乘法公式的变式:①位置变化:(x+y)(-y+x)=x2-y2;②符号变化:(-x+y)(-x-y)=(-x)2-y2=x2-y2;③指数变化:(x2+y2)(x2-y2)=x4-y4;④系数变化:(2a+b)(2a-b)=4a2-b2;⑤换式变化:[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z2+2zm+m2)=x2y2-z2-2zm-m2;⑥增项变化:(x-y+z)(x-y-z)=(x-y)2-z2=x2-2xy+y2-z2;⑦连用公式变化:(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4;⑧逆用公式变化:(x-y+z)2-(x+y-z)2=[(x-y+z)+(x+y-z)][(x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz.怎样计算(-2)(2-)?同桌讨论,类比(a-2b)(2a-b)的计算方法计算上式.(-2)(2-)=×2-×-2×2+2×=6--4+4=-5+10.教师明确:二次根式的混合运算顺序与有理数中的运算顺序一样:先乘方,再乘除,最后加减;有括号时先算括号内的.我们直接使用这些运算律和公式来解决一些问题.(教材例3)计算:(1)(+)×;(2)(4-3)÷2.引导学生先观察式子的特点,确定:(1)属于“多项式×单项式”,直接用乘法分配律计算;(2)属于“多项式除以单项式”,“用多项式的每一项除以单项式,再将结果加在一起”即可.解:(1)(+)×=×+×=+=4+3.(2)(4-3)÷2=4÷2-3÷2=2-.(教材例4)计算:(1)(+3)(-5);(2)(+)(-).学生观察发现,两个都是“多项式×多项式”的类型,能够根据整式乘法中多项式乘多项式的法则计算即可,而(2)根据平方差公式计算更简便.解:(1)(+3)(-5)=()2+3-5-15=2-2-15=-13-2.(2)(+)(-)=()2-()2=5-3=2.[知识拓展](1)像(+)与(-)乘积能够使用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式,就属于互为有理化因式.一般常见的互为有理化的两个代数式有如下几种情形:①和;②+和-;③a+和a-;④m+n和m-n.(2)分母有理化是指把分母中的根号化去,通常在分子、分母上同乘一个二次根式,达到化去分母中的根号的目的.把分母有理化得==. [设计意图]通过例题训练,使学生逐步形成类比意识,理解新旧知识的联系.师生共同回顾本节课所学主要内容:关于二次根式的四则混合运算,实质上就是实数的混合运算.(1)运算顺序与有理式的运算顺序相同;(2)运算律仍然适用;(3)与多项式的乘法和因式分解类似,能够利用乘法公式与因式分解的方法来简化二次根式的相关运算.1.下列各式计算准确的是 ()A.-2=-B.=4a(a>0)C.=×D.÷=解析:-2=(1-2)=-,故选项A准确;=2a(a>0),故选项B错误;与无意义,故选项C错误;÷=,故选项D错误.故选A.2.下列计算准确的是 ()A.(3-2)(3+2)=9-2×3=3B.(2+)(-)=2x-yC.(3-)2=32-()2=6D.(+)(-)=1解析:(3-2)(3+2)=9-8=1,所以A选项错误;(2+)(-)=2x-2+-y=2x--y,所以B选项错误;(3-)2=9-6+3=12-6,所以C选项错误;(+)(-)=(+)(-)=x+1-x=1,所以D选项准确.故选D.3.(2019·孝感中考)已知x=2-,则代数式(7+4)x2+(2+)x+的值是 ()A.0B.C.2+D.2-解析:把x=2-代入代数式(7+4)x2+(2+)x+得:(7+4)(2-)2+(2+)(2-)+=(7+4)(7-4)+4-3+=49-48+1+=2+.故选C.4.计算:(1)×;(2)-;(3)÷-×+.解:(1)原式=×+×-3×=+10-15=-4. (2)原式=-=3+2--1=2+. (3)原式=-+2=4+.第2课时1.探究整式的乘法法则和公式在二次根式的混合运算中仍然适用2.二次根式的混合运算3.例题讲解例1例2一、教材作业【必做题】教材第14页练习第1,2题;教材第15页习题16.3第4题.【选做题】教材第15页习题16.3第6,7,8,9题.二、课后作业【基础巩固】1.化简-(1-)的结果是 ()A.3B.-3C.D.-2.如图所示,数轴上与1,对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-|+等于 ()A. B.2 C.3 D.23.计算(-)+的值是 .4.计算-(5-)的值为 .【水平提升】5.计算:--+|2-|.6.计算:(1)-2;(2)+-;(3)(5+2)(5-2);(4).7.先化简,再求值:+÷,其中a=1+.8.已知x=-1,y=+1,求+的值.【拓展探究】9.已知4x2+y2-4x-6y+10=0,求x+y2-的值.10.(2019·山西中考)阅读与计算:阅读以下材料,并完成相对应的任务.斐波那契(约1175~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列的一列数称为数列).后来人们在研究它的过程中,发现了很多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数能够用表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【答案与解析】1.A(解析:原式=-+3=3.故选A.)2.C(解析:根据对称的性质:对称点到对称中心的距离相等,得到x的值后代入代数式化简求值.由题意得x=1-(-1)=2-,原式=-x+=-2++=2-2+=2-2+(+1)=3.故选C.)3.2(解析:原式=2-+=2.)4.-2+2(解析:二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式实行合并.-(5-)=3+-5+=-2+2.)5.解:原式=2--2+2-=.6.解:(1)-2=+1-2=-1=1. (2)+-=+-=+2-10=+2-10=-. (3)(5+2)(5-2)=52-(2)2=25-12=13.(4)=12-2××+=12-8+=.7.解:原式=+×=+=,当a=1+时,原式===.8.解:因为x+y=-1++1=2,xy=(-1)(+1)=2,所以+====4.9.解:∵4x2+y2-4x-6y+10=0,∴4x2-4x+1+y2-6y+9=0.∴(2x-1)2+(y-3)2=0.∴x=,y=3.原式=x+y2-x2+5x =2x+-x+5=x+6.当x=,y=3时,原式=×+6=+3.10.解:第1个数:当n=1时,n-==×=1.第2个数:当n=2时,n-===××1=1.教学中强调了前面学过的运算法则和运算律对二次根式同样适用,反映了数学理论的一贯性,使学生在学习中感到所学并不难.整节课,始终以练习为主,通过例题练习,将新旧知识紧密联系在一起,并持续巩固运算法则和运算律在二次根式的运算中的使用.过度注重了探究整式的乘法法则和公式在二次根式的混合运算中仍然适用的问题,让学生使用法则和公式计算二次根式的混合运算的练习时间较少,一些学生还容易出现运算顺序出现错误和错用公式的现象.适当增加变式练习,增加二次根式混合运算的例题,提升分析问题和解决问题的水平,真正达到灵活使用因式分解、约分等技巧,使用运算律使计算简便的目的.练习(教材第14页)1.解:(1)(+)=+. (2)(+)÷=+=4+2. (3)(+3)(+2)=5+2+3+6=11+5. (4)(+)(-)=()2-()2=6-2=4.2.解:(1)(4+)(4-)=42-()2=16-7=9. (2)(+)(-)=()2-()2=a-b. (3)(+2)2=()2+4+22=7+4. (4)(2-)2=(2)2-2×2+()2=22-4.习题16.3(教材第15页)1.解:计算均不准确.理由如下:(1)(2)题不能合并,因为它们不是同类二次根式;(3)题在合并同类二次根式时,误把的系数看作0,并去掉,导致运算错误;(4)题是二次根式化简错误,==.2.解:(1)2+=4+3=7. (2)-=3-=. (3)+6=2+3=5. (4)a2+3a=2a2+15a2=17a2.3.解:(1)-+=3-4+=0. (2)-+-=5-3+4-6=-. (3)(+)-(-)=(3+3)-(2-5)=3+3-2+5=8+.(4)(+)-(+)=+--=--.4.解:(1)(+5)=×+5×=+5=6+10. (2)(2+3)×(2-3)=(2)2-(3)2=12-18=-6.(3)(5+2)2=(5)2+(2)2+2×5×2=75+20+20=95+20. (4)+÷=÷+÷=+=+.5.解:5-+=-+3=,∵≈2.236,∴原式=≈×2.236≈7.83.6.解:∵x=+1,y=-1,∴x+y=(+1)+(-1)=2,x-y=(+1)-(-1)=2.(1)x2+2xy+y2=(x+y)2=(2)2=12.(2)x2-y2=(x+y)·(x-y)=2×2=4.7.解:如图所示,作AB边上的高CD,∵∠ACB=90°,CB=CA=a,∴△ABC,△ACD,△BCD都是等腰直角三角形,∴CD=BD=AD=AB,若设CD=BD=AD=x,则AB=2x,S△ABC=S△ACD+S△BCD,∴a 2=x2+x2,∴x2=a2,∴x=a(x=-a不符合题意,舍去),∴AB=2x=2×a=a.8.解:∵a+=,∴=()2,∴a2++2=10,∴a2+=8,∴a2+-2=6,即=6,∴a-=±.9.提示:(1)x1=,x2=-. (2)x1=-5+2,x2=-5-2.复习题16(教材第19页)1.解:(1)由二次根式的意义,可知3+x≥0,∴x≥-3,∴当x≥-3时,在实数范围内有意义. (2)由二次根式的意义及分母不能为0,可知2x-1>0,∴x>,∴当x>时,在实数范围内有意义. (3)由二次根式的意义及分母不能为0,可知2-3x>0,∴x<,∴当x<时,在实数范围内有意义. (4)由二次根式的意义及分母不能为0,可知(x-1)2>0,∴x≠1,∴当x≠1时,在实数范围内有意义.2.解:(1)==10. (2)==2. (3)===. (4)==. (5)=··=xy. (6)==.3.解:(1)-=-=2---=-. (2)2×÷5=(×÷)=×==. (3)(2+)(2-)=(2)2-()2=12-6=6.(4)(2-3)÷=2÷-3÷=2-3=4-=-. (5)(2+3)2=(2)2+2×2×3+(3)2=8+12+27=35+12.(6)===-2××+=-+=5-.4.解:由题意可知a2=96×12,∴a===24(负值已舍去).5.解:∵x=-1,∴x2+5x-6=(-1)2+5(-1)-6=5-2+1+5-5-6=3-5.6.解:∵x=2-,∴(7+4)x2+(2+)x+=(7+4)(2-)2+(2+)(2-)+=(7+4)(7-4)+22-()2+=72-(4)2+4-3+=49-4 8+1+=2+.7.解:由Q=I2Rt,得I=,当R=5,t=1,Q=30时,I==≈2.45(A).8.解:∵==3,且是整数,n是正整数,∴n的最小值为21.9.解:(1)略. (2)由题意可知由①得OD=OA,把OD=OA代入②中,得OC=OA,把OC=OA代入③中,得OB=OA,∴OB=OA,OC=OA,OD=OA.10.解:三个式子都成立,举例:=5,=6,=7 .规律:=n .证明如下:左边===n =右边,所以结论=n 成立.。

二次根式的加减 教案

二次根式的加减 教案

掌握同类二次根式的概念;掌握二次根式的加减法法则,并能够利用法则进行有关计算.
经历探索二次根式加减法法则的过程,理解掌握二次根式的加减法法则.
经历探索二次根式加减法法则的过程,类比的数学思想方法.
例2. 计算 (1) (2) 解:(1) (2)
比较二次根式的加减与整式的加减,你能得出什么结论?
二次根式的加减实质是合并同类二次根式,整式的加减的实质是合并同类项.
四、课堂小结
1. 什么是同类二次根式?
几个二次根式化为最简二次根式以后,被开方数相同.
2. 怎样进行二次根式的加减法运算?
一化简、二判断、三合并.
五、布置作业:课本习题2、3
121263483-+()()122035++-31431232-34483316-122=+=+()()5335-352325-32012+=++=++。

新人教版八年级数学下册《二次根式的加减(第3课时)》教案-最新学习文档

新人教版八年级数学下册《二次根式的加减(第3课时)》教案-最新学习文档

新人教版八年级数学下册《二次根式的加减(第
3课时)》教案
活动1提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。

你能告诉运动场的负责人要准备多少面积的草皮吗?
问题:10+20是什么运算?
活动2探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并.
活动3
练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考.
学生回答:这个运动场要准备(10+20)平方米的草皮.
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算.
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果.
教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并.
教师巡视、指导,学生完成、交流,师生评价.
提醒学生注意先化简成最简二次根式后再判断.。

八年级数学下册 16.3 二次根式的加减教案 (新版)新人教版

八年级数学下册 16.3 二次根式的加减教案 (新版)新人教版

16.3 二次根式的加减(1)教学内容二次根式的加减教学目标知识与技能目标:理解和掌握二次根式加减的方法.过程与方法目标:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教法:1、引导发现法: 通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,与同类项进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法通过观察、类比,使学生感悟二次根式加减的模型,形成有效的学习策略。

2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT课件,展台。

课时安排:1课时。

教学过程:一、复习引入学生活动:计算下列各式.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.二、探索新知学生活动:计算下列各式.(1)(2)(3(4)老师点评:(1当成x,不就转化为上面的问题吗?=(2+3(2y;=(2-3+5(3当成z;(1+2+3(4x看为y.=(3-2+因此,二次根式的被开方数相同是可以合并的,如表面上看是不相同的,但它们可以合并吗?可以的.所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例1.计算:(1(2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1=(2+3(2(4+8.例2.计算:(1)(2))+.解:(1)=(12-3+6.(2))+-三、应用拓展:例3.已知4x 2+y 2-4x-6y+10=0,求(23+y )-(x 分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:∵4x 2+y 2-4x-6y+10=0∵4x 2-4x+1+y 2-6y+9=0∴(2x-1)2+(y-3)2=0 ∴x=12,y=3.原式=23+y +5x当x=12,y=3时,原式=124.四、归纳小结:本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并. 五、布置作业: 一、选择题1中,与是同类二次根式的是( ).A .①和②B .②和③C .①和④D .③和④2.下列各式:①+3=6②17=1;;,其中错误的有( ).A .3个B .2个C .1个D .0个 二、填空题:1、是同类二次根式的有________.2.计算二次根式的最后结果是________. 三、综合提高题:1 2.236)-(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27.答案:一、1.C 2.A二、1.三、1.原式354512515≈15×2.236≈0.45.2.原式(=(6+3-4-6当x=32,y=27时,原式92.板书设计:16.3 二次根式的加减(2)教学内容:利用二次根式化简的数学思想解应用题. 教学目标知识与技能目标:运用二次根式的化简解应用题.过程与方法目标:通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.教法:1、引导发现法: 通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用; 2、讲练结合法: 在例题教学中,引导学生阅读,与整式的加减进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

人教版八年级数学下册《二次根式的加减(第3课时)》示范教学设计

人教版八年级数学下册《二次根式的加减(第3课时)》示范教学设计

二次根式的加减(第3课时)教学目标1.让学生经历整式运算与二次根式运算的比较,体会类比思想,进一步探究二次根式混合运算的方法,培养学生的观察、探索、归纳的能力.2.通过讲解,使学生能熟练地正用、逆用乘法公式及积的乘方法则进行二次根式的混合运算.教学重点根据式子的结构特点,利用乘法公式或积的乘方进行二次根式的混合运算.教学难点将某些二次根式混合运算变成可利用乘法公式的形式.教学过程知识回顾1.平方差公式:___________________________.2.完全平方公式:_________________________.3.计算:.【师生活动】教师提出问题,学生独立作答.【答案】1.(a+b)(a-b)=a2-b2.2.(a±b)2=a2±2ab+b2.3.解:原式===-【设计意图】复习学过的二次根式的运算及乘法公式的知识,为本课新知作铺垫.新知探究一、探究学习【问题】计算:(1)+;(2)2.【师生活动】教师提示:上节课我们已经知道在二次根式的混合运算中,实数的运算律、多项式的乘法法则和乘法公式仍然适用.学生根据提示思考并独立作答,教师巡查纠错并讲解.【答案】解:(1)22=-=5-3=2;(2)222=+2=+53=+8【归纳】在进行二次根式的混合运算时,能用乘法公式的要尽量用乘法公式,有时还需逆用公式,这样可使运算简便.【设计意图】设计可以运用乘法公式简化运算的题目,让学生通过计算体会乘法公式在简化二次根式混合运算中的作用.二、典例精讲【例1】计算:(1);(2)22.【师生活动】教师提出问题,学生分小组交流.教师提示:(1)中,这样式子就可以利用平方差公式进行化简运算;(2)中可以类比积的乘方运算进行化简.学生根据提示思考并独立作答,教师巡查纠错并讲解.【答案】解:(1)+-22⎡⎤-⎣⎦2=(2)222⎡⎤=+⎣⎦222⎡⎤=-⎣⎦ 2(53)=-=4.【例2】计算:(1)22-;(2)(1-;(3) 2 021 2 022( (22+.【师生活动】教师提出问题,学生独立作答,教师巡查,纠错并总结.【答案】解:(1)22-,=,==(2)(1-,(1(1⎡⎡=⎣⎣22(1=-(13)5=+-45=+1=;(3) 2 021 2 022( (22+2 021(2 2 ⎡⎤=++⎣⎦2 02122(22 ⎡⎤=-+⎣⎦=.【归纳】二次根式混合运算中的三大妙招:(1)根据算式特点灵活选用乘法公式,并且根据解题需要逆用公式;(2)应用乘法公式时,经常会把算式的一部分作为一个整体套用公式,但一定要注意变形时的符号问题;(3)在乘方和乘法运算中,运用结合律调整运算顺序,也可简化运算.【设计意图】通过例1、例2的练习与讲解,加深学生对二次根式混合运算中正用、逆用乘法公式及积的乘方法则的理解. 课堂小结板书设计一、乘法公式在二次根式混合运算中的作用二、积的乘方在二次根式混合运算中的作用 课后任务完成教材第14页练习第2题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的加减
教学内容
含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.
教学目标
知识与技能目标:含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.
过程与方法目标:复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.
情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.
重难点关键
重点:二次根式的乘除、乘方等运算规律;
难点关键:由整式运算知识迁移到含二次根式的运算.
教法:1、引导发现法: 通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法: 在例题教学中,引导学生阅读,与整式的乘除进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法通过观察、类比,使学生感悟含有二次根式的整式乘除模型,形成有效的学习策略。

2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT课件,展台。

课时安排:1课时。

教学过程:一、复习引入
学生活动:请同学们完成下列各题:
1.计算
(1)(2x+y)·zx (2)(2x2y+3xy2)÷xy
2.计算
(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2
老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.二、探索新知
如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.
例1.计算:
(1)(+)×(2)(4-3)÷2
分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.
解:(1)(+)×=×+×
=+=3+2
解:(4-3)÷2=4÷2-3÷2
=2-
例2.计算
(1)(+6)(3-)(2)(+)(-)
三、应用拓展
例3.已知=2-,其中a、b是实数,且a+b≠0,
化简+,并求值.
分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.
解:原式=+
=+
=(x+1)+x-2+x+2
=4x+2
∵=2-
∴b(x-b)=2ab-a(x-a)
∴bx-b2=2ab-ax+a2
∴(a+b)x=a2+2ab+b2
∴(a+b)x=(a+b)2
∵a+b≠0
∴x=a+b
∴原式=4x+2=4(a+b)+2
四、归纳小结:本节课应掌握二次根式的乘、除、乘方等运算.
五、一、选择题
1.( -3+2)×的值是().
A. -3; B.3-; C.2- ; D. -
2.计算(+)(-)的值是().
A.2 B.3 C.4 D.1
二、填空题
1.(-+)2的计算结果(用最简根式表示)是________.
2.(1-2)(1+2)-(2-1)2的计算结果(用最简二次根式表示)是_______.
3.若x=-1,则x2+2x+1=________.
4.已知a=3+2,b=3-2,则a2b-ab2=_________.
三、综合提高题
1.化简
2.当x=时,求+的值.(结果用最简二次根式表示)
课外知识
1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.练习:下列各组二次根式中,是同类二次根式的是().
A.与 B.与
C.与 D.与
2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1-与x+1+就是互为有理化因式;与也是互为有理化因式.
练习: +的有理化因式是________;
x-的有理化因式是_________.
--的有理化因式是_______.
3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.
练习:把下列各式的分母有理化
(1);(2);(3);(4).
4.其它材料:如果n是任意正整数,那么=n
理由: ==n
练习:填空=_______; =________; =_______.
=== 2(2x+1)
当x==+1时,原式=2(2+3)=4+6.
板书设计:
§17.3.二次根式的加减(3)
情境引入例2 学生板演
二次根式的加减法则例3
例1 练习小结
教学反思:。

相关文档
最新文档