九年级数学月考试卷(2)_2

合集下载

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。

北师大版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

北师大版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、选择题(1~10小题每题3分,11~16小题每题2分,共42分)1.下列属于反比例函数的是()A.xy=2B.y=C.y=D.y=2.若两个相似三角形的对应高的比是1:4,则它们的周长比是()A.1:2B.1:4C.1:8D.1:163.用一个2倍放大镜照△ABC,则△ABC放大后,不发生改变的是()A.各内角的度数B.各边长C.周长D.面积4.已知反比例函数y=(k≠0)的图象在各自象限内,y随x的增大而增大,则下列各点可能在这个函数图象上的是()A.(﹣1,1)B.(﹣1,﹣1)C.(0,﹣1)D.(﹣1,0)5.如图是一张竖格书法纸,纸中的竖格线都平行,且相邻两条竖格线间的距离都相等,同一条直线上的A,B,C三点都在竖格线上.若线段AB=3cm,则线段BC的长为()A.6cm B.6.5cm C.7.5cm D.10.5cm6.如图,在△ABC中,DE∥BC,DE=2,BC=6,则的值为()A.B.C.D.7.如图,函数y=(x>0)和y=﹣(x>0)的图象在同一平面直角坐标系中,则该坐标系的原点是()A.点M B.点N C.点P D.点Q8.如图,在平面直角坐标系中,△AOB与△COD是以点O为位似中心的位似图形,若A (3,0),B(2,﹣1),C(6,0),则点B的对应点D的坐标为()A.(4,﹣2)B.(6,﹣3)C.(4,2)D.(6,3)9.一定电压下通过导体的电流I(A)和电阻R(Ω)之间成反比例函数,小明通过组合电路做实验时,发现电流I(A)随着电阻R(Ω)的变化而变化,其数据如下表所示.若在该电路中,电流表的最大量程是3A,为确保不超过电流表的最大量程,则该电路中电阻不小于()R(Ω)…234…I(A)…24 1.6 1.2…A.2ΩB.1.8ΩC.1.6ΩD.1.5Ω10.在同一平面直角坐标系中,函数y=和y=kx﹣2的图象大致是()A.B.C.D.11.“跳眼法”是指用手指和眼睛估测距离的方法步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()A.40米B.60米C.80米D.100米12.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD•BC=AB•DB13.已知反比例函数,当﹣3≤x≤﹣1时,y的最大值是4,则当x≥6时,y 有()A.最大值B.最大值C.最小值D.最小值﹣114.将边长为4,6,6的等腰三角形、边长为4的正方形和长、宽分别为6,4的矩形按如图所示的方式向外扩张,各得到一个新图形,它们的对应边间距均为1,则新图形与原图形相似的有()A.0个B.1个C.2个D.3个15.在如图所示的平面直角坐标系的第一象限中标出了9个整点(横、纵坐标都是整数的点),若反比例函数y=(x>0)的图象的上方只有其中的5个整点,则k的取值范围是()A.16≤k<21B.16<k≤21C.21≤k<24D.9≤k<1616.如图,在△ABC纸板中,AC=4,BC=8,AB=11,P是BC上一点,沿过点P的直线剪下一个与△ABC相似的小三角形纸板.针对CP的不同取值,两人的说法如下.下列判断正确的是()甲:若CP=4,则有3种不同的剪法;乙:若CP=2,则有4种不同的剪法.A.甲错,乙对B.甲对,乙错C.甲和乙都错D.甲和乙都对二、填空题(共9分)17.若点(3,6)和点(a,﹣9)都在反比例函数y=的图象上,则a的值为.18.如图,在矩形ABCD中,连接BD,点E在AD上,连接CE,交BD于点F,且△DEF ∽△DBA.(1)BD与CE是否垂直?(填“是”或“否”);(2)若AB=1,∠CBD=30°,则的值为.19.如图,在反比例函数y=(x>0)的图象上有点P1,P2,P3,P4,P5,其横坐标依次为2,4,6,8,10,分别过这些点作x轴、y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,S4已知P1的纵坐标为10.(1)k的值为;(2)阴影部分的面积S1的值为;(3)阴影部分的面积S1,S2,S3,S4的和为.三、解答题(共69分)20.已知y是x的反比例函数,且当x=4时,y=2.(1)求y与x之间的函数解析式;(2)在图中画出该函数的图象,并根据图象直接写出当﹣1≤x≤﹣2时,y的取值范围.21.如图,小明在学习《位似》时,利用几何画板软件,在平面直角坐标系中画出了△ABC 的位似图形△A1B1C1.(1)在图中标出△ABC与△A1B1C1的位似中心点M的位置,并直接写出点M的坐标;(2)若以点O为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A2B2C2,且△A1B1C1与△A2B2C2的相似比为2(只画出一个三角形即可).22.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?23.河北秦皇岛市的山海关有“天下第一关”之称,小明和小亮想测量“天下第一关”某处城墙的高度.如图,在测量时,小明站在城墙的城台MN(MH是护栏)上,小亮的眼睛A、凉亭顶端C、小明头顶E这三点在一条直线上,已知小亮的眼睛离地面的距离AB为1.6米,凉亭顶端离地面的距离CD为3.95米,小亮到凉亭的距离BD为5米,凉亭离城楼底部的距离DF为25米,小明身高EM为1.7米,点E,H,M,F在同一直线上,图中所有点在同一平面内,求FM的高度.24.【问题背景】如图1,已知△ABC∽△ADE.(1)若AB=AC,试判断AD与AE之间的数量关系,并说明理由;(2)求证:△ABD∽△ACE;【尝试应用】(3)如图2,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠B=∠ADE,求∠BCE 的度数.25.如图,在平面直角坐标系中,反比例函数y1=(k≠0)与y2=2x﹣4的图象交于点A (3,a),B.(1)求k的值;(2)若y1≤y2,请直接写出x的取值范围;(3)我们将横、纵坐标都是整数的点叫做整点已知点P(0,n)(n>0),过点P作平行于x轴的直线,与反比例函数y1=的图象交于点C,与y2=2x﹣4的图象交于点D.记反比例函数y1=的图象在点A,C之间的部分与线段AD,CD围成的区域(不含边界)为W.①当n=4时,直接写出区域W内的整点个数,并写出这个整点的坐标;②若区域W内的整点恰好为3个,结合函数图象,直接写出n的取值范围.26.在同一平面内,将两个全等的等腰直角三角形摆放在一起,如图1所示,点A为公共顶点,点D在AB的延长线上,∠BAC=∠AED=90°,AB=AE=2.(1)图1中阴影部分的面积与△ADE的面积比为;(2)若将△ABC固定不动,把△ADE绕点A逆时针旋转a(0°<a<90°),此时线段AD,射线AE分别与射线BC交于点M,N.①当△ADE旋转到如图2所示的位置时,求证:△ABN∽△MAN;②如图2,若BM=1,求BN的长;③在旋转过程中,若BM=d,请直接写出CN的长(用含d的式子表示).参考答案一、选择题(1~10小题每题3分,11~16小题每题2分,共42分)1.解:A、由原式得到y=,符合反比例函数的定义,故本选项符合题意;B、该函数式表示y与x成正比例关系,故本选项不符合题意;C、该函数式不属于反比例函数,故本选项不符合题意;D、该函数式不属于反比例函数,故本选项不符合题意;故选:A.2.解:∵两个相似三角形的对应高的比是1:4,∴它们的周长比为1:4.故选:B.3.解:用一个2倍放大镜照一个△ABC,△ABC放大后,各内角大小不变,各边长发生改变,面积发生变化,周长发生变化,故B,C,D不符合题意.故选:A.4.解:因为反比例函数y=(k≠0)的图象在各自象限内,y随x的增大而增大,所以k<0,A.﹣1×1=﹣1<0,故本选项符合题意;B.﹣1×(﹣1)=1>0,故本选项不符合题意;C.0×(﹣1)=0,故本选项不符合题意;D.﹣1×0=0,故本选项不符合题意;故选:A.5.解:如图,过点A作AE⊥CE于点E,交BD于点D,∵纸中的竖格线都平行,且相邻两条竖格线间的距离都相等,∴=,即=,∴BC=7.5.故选:C.6.解:∵DE∥BC,∴△ADE∽△ABC,∴===,故选:C.7.解:在函数y=(x>0)和y=﹣(x>0)中,∵4>0,﹣4<0,∴函数y=(x>0)的图象在第一象限,函数y=﹣(x>0)的图象在第四象限,∴该坐标系的原点是点N,故选:B.8.解:∵△AOB与△COD是以点O为位似中心的位似图形,相似比为1:2,∴点B的坐标为(2×2,﹣1×2),即(4,﹣2),故选:A.9.解:∵一定电压下通过导体的电流I(A)和电阻R(Ω)之间成反比例函数,∴设I=,把R=2时,I=2.4代入得2.4=,∴U=4.8,∴电流I(A)和电阻R(Ω)之间的反比例函数解析式为I=,当≤3时,即R≥1.6,∴该电路中电阻不小于1.6Ω,故选:C.10.解:k>0时,一次函数y=kx﹣2的图象经过第一、三、四象限,反比例函数y=的两个分支分别位于第一、三象限,B选项符合;k<0时,一次函数y=kx﹣2的图象经过第二、三、四象限,反比例函数y=的两个分支分别位于第二、四象限,无选项符合.故选:B.11.解:由“跳眼法”的步骤可知被测物体与观测点的距离是横向距离的10倍.观察图形,横向距离大约是汽车长度的2倍,为8米,所以汽车到观测点的距离约为80米,故选C.12.解:A.∵∠ABD=∠ACB,∠A=∠A,∴△ADB与△ABC相似,故本选项不符合题意;B.∵∠ADB=∠ABC,∠A=∠A,∴△ADB与△ABC相似,故本选项不符合题意;C.根据AB2=AD•AC可得,AB:AC=AD:AB,结合∠A=∠A能判断△ADB与△ABC 相似,故本选项不符合题意;D.∵AD•BC=AB•DB,∴AD:AB=BD:BC,结合∠A=∠A,不能判定△ADB与△ABC相似,故本选项符合题意;故选:D.13.解:∵反比例函数,当﹣3≤x≤﹣1时,y的最大值是4,∴k<0,∴在每一个象限内,y随着x增大而增大,当x=﹣1时,y取得最大值4,此时k=﹣1×4=﹣4,∴当x=6时,y=,∴当x≥6时,y≥,∴y有最小值,故选:C.14.解:如图1,∵AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′;如图2,∵正方形的边长由4变为6,对应边比值不变,对应角相等,故新图形与原图形相似;如图3,∵AB=CD=4,AD=BC=6,则A′B′=C′D′=4+2=6,A′D′=B′C′=6+2=8,则可得≠,∴新矩形与原矩形不相似.故选:C.15.解:当反比例函数y=(x>0)的图象经过点(2,8)和(8,2)时,k=2×8=16,此时,反比例函数y=(x>0)的图象的上方有5个整点,当反比例函数y=(x>0)的图象经过点(3,7)和(7,3)时,k=3×7=21,此时,反比例函数y=(x>0)的图象的上方有3个整点,由图象可知,若反比例函数y=(x>0)的图象的上方只有其中的5个整点,则k的取值范围是16≤k<21,故选:A.16.解:如图所示,过P作PD∥AB交AC于D或PE∥AC交AB于E,则△PCD∽△BCA 或△BPE∽△BCA,此时0<PC<8;如图所示,过P作∠BPF=∠A交AB于F,则△BPF∽△BAC,此时0≤PC<8;如图所示,过P作∠CPG=∠A交AC于G,则△CPG∽△CAB,当点G与点A重合时,CA2=CP•CB,即42=CP×8,∴CP=2,∴此时,0<CP≤2;当0<CP≤2时,有4种不同的剪法;当2<CP<8时,有3种不同的剪法.∴甲和乙对.故选:D.二、填空题(共9分)17.解:把点(3,6)代入y=得6=,解得k=18,所以反比例函数解析式为y=,把点(a,﹣9)代入y=得﹣9=,解得a=﹣2,故答案为:﹣2.18.解:(1)∵四边形ABCD为矩形,∴∠DAB=90°,∵△DEF∽△DBA,∴∠DFE=∠DAB=90°,∴BD⊥CE;故答案为:是;(2)AB=1,∠CBD=30°,四边形ABCD为矩形,∴AB=CD=1,BD=2,∴AD=,∵△DEF∽△DBA,∴,即,∴DF=,∵∠DFC=∠BCD,∠BDC=∠BDC,∴△DFC∽△DCB,∴,即,∴,∴.故答案为:.19.解:(1)点P1,的横坐标为2,P1的纵坐标为10,点P1在反比例函数y=(x>0)的图象上,∴10=,∴k=20,故答案为:20;(2)如图,∵点P1在反比例函数y=(x>0)的图象上,点P2,的横坐标为4,∴y==5,∴P2的纵坐标为5,∴P2H=5.∵四边形P2CGH为矩形,∴CG=P2H=5,∵点P1,的横坐标为2,P1的纵坐标为10,∴P1G=10,OG=2,∴P1C=10﹣5=5,∵四边形P1AOG和四边形BOGC为矩形,∴BC=OG=2,∴S1=P1C•BC=5×2=10,故答案为:10;(3)∵点P1,P2,P3,P4,P5,其横坐标依次为2,4,6,8,10,分别过这些点作x 轴、y轴的垂线,∴S2=S矩形BDMC,S3=S矩形DENM,S4=S矩形EFKN,∴阴影部分的面积S1,S2,S3,S4的和为.∵点P5在反比例函数y=(x>0)的图象上,点P25的横坐标为10,∴y==2,∴P5的纵坐标为2,∴P5P=2,∵四边形FOPP5为矩形,∴KG=P5P=2,∴P1K=P1G﹣KG=10﹣2=8,∴=P1K•FK=8×2=16.∴阴影部分的面积S1,S2,S3,S4的和为16,故答案为:16.三、解答题(共69分.)20.解:(1)设y=(k≠0),把x=4,y=2代入得2=,∴k=8,∴该函数解析式为:y=;(2)函数y=的图象如图所示:当﹣1≤x≤﹣2时,y的取值范围是﹣8≤y≤﹣4.21.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2为所作.22.解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12,3<12<15,故能在15天以内不超过最高允许的1.0mg/L.23.解:过点A作AK⊥CD于点K,AG⊥EF于点G,∵CK∥EF,∴△ACK∽△AEG,∴=,∴=,解得:EG=14.1,∴EF=EG+FG=14.1+1.6=15.7(m),∴MF=15.7﹣EM=15.7﹣1.7=14(m),答:FM的高度为14m.24.(1)解:AD=AE,理由如下:∵△ABC∽△ADE,∴=,∵AB=AC,∴AD=AE;(2)证明:∵△ABC∽△ADE,∴=,∠BAC=∠DAE,∴=,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△ABD∽△ACE;(3)解:∵∠BAC=90°,∴∠B+∠ACB=90°,∵∠BAC=∠DAE,∠B=∠ADE,∴△BAC∽△DAE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴=,∴=,∵∠BAD=∠CAE,∴△BAD∽△CAE,∴∠ACE=∠B,∴∠ACE+∠ACB=90°,∴∠BCE=90°.25.解:(1)点A(3,a)代入y2=2x﹣4得,a=2×3﹣4=2,∴点A(3,2),又∵点A(3,2)在反比例函数y1=(k≠0)的图象上,∴k=6(2)方程组的解为,,而点A(3,2),∴点B(﹣1,﹣6),由两个函数的图象及交点坐标可知,当y1≤y2时,x的取值范围为0<x<3或x<﹣1;(3)①如图1,当n=4时,即点P(0,4),直线y=4与两个函数图象的交点为C、D,当y=4时,即4=,解得x=,∴点C(,4),当y=4时,即2x﹣4=4,解得x=4,∴点D(4,4),而直线y=2x﹣4与x轴的交点E(2,0),∴反比例函数y1=的图象在点A,C之间的部分与线段AD,CD围成的区域(不含边界)为W区域中整数点的个数为1,其坐标为(3,3),答:当n=4时,区域W内的整点有1个,这个整点的坐标为(3,3);②如图2,当n=5时,即点P(0,5),直线y=5与两个函数图象的交点C′,D′,可求出C′(,5),D′(,5),而点A(3,2),若区域W内的整点恰好为3个,即(2,4),(3,3),(3,4),因此此时4<n≤5,当n=1,即点P(0,,1),直线y=1与两个函数图象的交点C″,D″,可求出C″(6,1),D″(,1),而点A(3,2),若区域W内的整点恰好为3个,即(3,1),(4,1),(5,1),因此此时0<n<1,综上所述,若区域W内的整点恰好为3个,n的取值范围为0<n<1或4<n≤5.26.(1)解:∵△ABC、△ADE都是等腰直角三角形,∴∠ABC=∠ACB=∠D=∠DAE=45°,AD=AE=4,∴△ABF∽△ADE,∴=()2=()2=,∴阴影部分的面积与△ADE的面积比为,故答案为:;(2)①证明:∵∠ABN=∠MAN=45°,∠ANB=∠MNA,∴△ABN∽△MAN;②解:在Rt△ABC中,∠BAC=90°,AB=AC=2,则BC==4,∴CM=BC=BM=3,∵∠AMC=∠B+∠BAM=45°+∠BAM,∠BAN=∠MAN+∠BAM=45°+∠BAM,∴∠AMC=∠BAN,∵∠B=∠C,∴△ABN∽△MCA,∴=,即=,解得:BN=;③解:如图2,当点N在线段BC上时,由②可知:△ABN∽△MCA,∴=,即=,解得:BN=,∴CN=BC﹣BN=4﹣=,如图3,当点N在线段BC的延长线上时,CN=BN﹣BC=﹣4=,综上所述:CN的长为或.。

九年级上册第二次月考数学试卷

九年级上册第二次月考数学试卷

20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。

2022-2023学年度上期九年级月考(二)数学考试试卷

2022-2023学年度上期九年级月考(二)数学考试试卷

2022-2023学年度上期九年级月考(二)考试试卷数 学一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt △ABC 中,∠C=90°,BC=3,AB=5,则sinA 的值为( ) A.35 B.45 C.34 D.以上都不对 2.在Rt △ABC 中,∠C =90°,cos A =35,那么tan B =( ) A .35B .45C .43D .343.在△ABC 中,已知∠A 、∠B 都是锐角,|sinA ﹣12|+(1﹣tanB)2=0,则∠C 度数为( )A.75°B.90°C.105°D.120°4.一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为( ) A .18B .38C .58D .345.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( ) A .B .C .D .6.抛物线22(3)1y x =++的顶点坐标是( )A .()3,1B .()3,1-C .()3,1-D .()3,1--7.二次函数y=3x 2的图象向左平移2个单位,得到新的图象的二次函数表达式是( )A.B.C.D.8.已知点(-2,y1),(0,y2),(1,y3)都在函数2y x=的图象上,则( )A.y2>y3>y1B.y1>y3>y2C.y3>y2>y1D.y2>y1>y39.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.10.已知二次函数2y ax bx c=++的图象如图所示,分析下列四个结论:①abc<0;②b2-4ac>0;③20a b-=;④a+b+c<0.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每小题3分,共15分)11.如果一个三角形的三个内角之比是1:2:3,则它们所对的边的比是_________.12.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为_____米.第12题图第14题图13.小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是__________.14.已知二次函数y=−x2+2x+m的部分图象如图所示,则该图象在y轴的左侧与x轴的交点坐标为________.15.已知抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,P是抛物线对称轴l上的一个动点,则PA+PC的最小值是__________.三、解答题(本大题共8小题,共75分)16.(10分)计算:(1)2﹣2﹣2cos30°+con245°﹣|3﹣2|; (2) 6tan230∘-√3sin60∘-2sin45∘17.(9分)一个不透明的口袋中装有三个除所标数字外完全相同的小球,小球上分别标有数字﹣1,0,1.从袋中一次随机摸出两个小球,把上面标注的两个数字分别作为点M的横、纵坐标.(1)请用列表或画树状图的方法列出点M所有可能的坐标;(2)求点M在直线y=﹣x﹣1上的概率.18.(8分)在美化校园的活动中,某兴趣小组用总长为28米的围栏材料,一面靠墙,围成一个矩形花园,墙长8米,设AB的长为x米,矩形花园的面积为S平方米,当x为多少时,S取得最大值,最大值是多少?、19.(9分)已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5).(1)求该函数的表达式;(2)求该函数图象与坐标轴的交点坐标;20.(9分)如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,AD =3cm,求BC的长.21.(9分)如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若AD=10,AB=6,求tan∠EDF的值.22.(10分)如图,某建筑物BC上有一旗杆AB,小明在F处,由E点观察到旗杆顶部A的仰角为52︒,底部B的仰角为45︒,小明的观测点与地面距离EF为1.6m,(1)若F与BC相距12m,求建筑物BC的高度;(2)若旗杆AB长3.15m,求建筑物BC的高度.(结果精确到0.1m)(参考数据: 4 tan52 1.280︒≈,).23.(11分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S(3)若点P在第一象限内的抛物线上,且S△ABP,求P点坐标.△COE。

河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)

河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)

2023-2024学年上学期第二次学科问卷试题九年级数学试卷(考试时间:100分钟;满分:120分))一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图所示几何体的左视图是( )A .B .C .D .2.(3分)cos60°的值等于()ABC . D3.(3分)下列平行四边形中,根据图中所标出的数据,不一定是菱形的是()A . B .C .D .4.(3分)如图所示,把两张矩形纸条交叉叠放在一起,重合部分构成一个四边形ABCD .固定一张纸条,另一张纸条在转动过程中,下列结论一定成立的是( )A .四边形ABCD 的周长不变B .四边形ABCD 的面积不变C .AD =AB D .AB =CD5.(3分)大约在两千四五百年前,如图1墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图2所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是9cm ,则蜡烛火焰的高度是()12A .6cmB .8cmC .10cmD .12cm6.(3分)一次函数y =﹣ax +a 与反比例函数在同一平面直角坐标系中的图象可能是( )A . B . C . D .b7.(3分)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65°(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为( )A .100sin65°B .100cos65°C .100tan65° D.8.(3分)如图,是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )a y x=100sin 65︒A .9.64πm 2B .2.56πm 2C .1.44πm 2D .5.76πm 29.(3分)2023年9月23日至10月8日,第19届亚洲运动会在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人,分别取名“琮琮”“宸宸”和“莲莲”,某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个.设该商户吉祥物周边产品销售量的月平均增长率为x ,则可列方程为( )A .10(1+x )2=11.5B .10(1+2x )=11.5C .10x 2=11.5D .11.5(1﹣x )2=1010.(3分)如图,在△ABC 中,AC =6,BC =8,AB =10.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4.则S 1﹣2S 2﹣3S 3+4S 4等于( )A .66B .56C .24D .12二、填空题(共5小题,满分15分,每小题3分)11.(3分)五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,A ,B ,C 为直线l 与五线谱的横线相交的三个点,则的值是_______.12.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为16的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此三维码中黑色阴影的面积为________.AB BC13.(3分)把一块含60°角的三角板ABC 按图方式摆放在平面直角坐标系中,其中60°角的顶点B 在x 轴上,斜边AB 与x 轴的夹角∠ABO =60°,若BC =2,当点A ,C 同时落在一个反比例函数图象上时,B 点的坐标为__________.14.(3分)构建几何图形解决代数问题是“数形结合”思想的重要方法,在计算tan45°时,如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB ,使BD =AB ,连接AD ,使得∠D =15°,所以,类比这种方法,计算tan22.5°=__________.15.(3分)如图,边长为1的正方形ABCD 中,点E 为AD 边上动点(不与A 、D 重合),连接BE ,将△ABE 沿BE 折叠得到△EBH ,延长EH 交CD 于点F ,连接BF ,交AC 于点N ,连接CH .则下列结论:①∠EBF =45°;②△DEF 的周长是定值2;③当点E 是AD 中点时,D 到EF 距离的最大值为.其中正确的结论有__________(填写所有正确结论的序号).三.解答题(共8小题,满分75分)16.(8分)下面是杨老师讲解一元二次方程的解法时在黑板上的板书过程,请认真阅读并完成任务.2x 2﹣3x ﹣5=0解:第一步第二步tan152AC CD ︒====-CN =1-23522x x -=22233532424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭第三步第四步第五步(1)任务一:①小颖解方程的方法是_________. 1分A .直接开平方法;B .配方法;C .公式法;D .因式分解法.②第二步变形的依据是 _________. .2分(2)任务二:请你按要求解下列方程:①x 2+2x ﹣3=0;(公式法) 5分②3(x ﹣2)2=x 2﹣4.(因式分解法)8分17.(9分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m =______%;并补全条形图; 1+1分(2)请你估计该校约有______名学生喜爱打篮球;4分(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少? 9分18.(10分)如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长AE 交时线CD 于点N ,连接MD 、AN .(1)求证:四边形AMDN 是平行四边形; .6分2349416x ⎛⎫-= ⎪⎝⎭3744x -=±125,12x x ==-(2)填空:①当AM 的值为__________时,四边形AMDN 是矩形;8分②当AM 的值为__________时,四边形AMDN 是菱形. 10分19.(9分)如图①、图②、图③,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,线段AB 的端点都在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中,按下列要求画图,只保留作图痕迹,不要求写出画法.(1)在图①中画出线段AB 的中点O .3分(2)在图②中的线段AB 上找到点C,使得. 6分(3)在图③中的线段AB 上找到点D ,使得. 9分20.(8分)如图,已知在△ABC 中,AD 是BC 上的高,且BC =6,AD =4,矩形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 、AC 上.(1)设EF =x (0<x <4),矩形EFGH 的周长为y ,求y 关于x 的函数解析式;.4分(2)当EFGH 为正方形时,求EF 的长度. 8分21.(9分)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P 点观察所测物体最高点C ,当量角器零刻度线上A ,B 两点均在视线PC 上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式表示β. .3分(2)如图3,为了测量广场上空气球A 离地面的高度,该小组利用自制简易测角仪在点B ,C 分别测得气球A 的仰角∠ABD 为37°,∠ACD 为45°,地面上点B ,C ,D 在同一水平直线上,BC =20m ,求气球A 离地面的高度AD .(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) .9分12AC BC =13BD AD =22.(10分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百毫升)与时间x (时)变化的图象如图(图象由线段OA与部分双曲线AB组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;.5分(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由..............5分23.(12分)综合与实践数学活动课上,李老师给出了一个问题:如图1,在△ABC中,点E,D分别在边AB,AC上,连接DE,∠ADE=∠ABC.【独立思考】(1)如图1,∠AED和∠C的数量关系是∠AED=∠C;.........2分【实践探究】(2)在原有问题条件不变的情况下,李老师增加下面的条件,并提出新问题.如图2,延长CA至点F,使DF=BE,连接BF,延长DE交BF于点H,若∠BHE=∠FAB.在图中找出与DH 相等的线段,并证明.数学活动小组的同学观察图2发现线段BH与线段DH相等,证明过程如下:如图3,在EH上截取EG=FH,连接BG.,∠BHE=∠F+∠FDH,∠FAB=∠AED+∠ADE,∠BHE=∠FAB,∠F=∠AED,……图3请将证明过程补充完整. ....8分【问题解决】(3)数学活动小组的同学对上述问题进行特殊化研究之后发现,当∠BAC =90°时,若给出△ABC 中任意两边长,则图4中所有已经用字母标记的线段长均可求出.该小组提出下面的问题,请你解答.如图4,在(2)的条件下,若∠BAC =90°,AB =3,AC =2,请直接写出BF 和EH 的长. .........12分参考答案1.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:该几何体的左视图如图所示:.故选:A .【点评】本题考查了简单组合体的三视图,掌握从左面看得到的图形是左视图是解题关键.2.【分析】根据60°的余弦值是解答即可.【解答】解:,121cos602=︒故选:C .【点评】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.3.【分析】根据平行四边形的性质及菱形的判定定理求解即可.【解答】解:根据等腰三角形的判定定理可得,平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故A 不符合题意;根据三角形内角和定理可得,平行四边形的对角线互相垂直,即可判定该平行四边形是菱形,故B 不符合题意;一组邻角互补,不能判定该平行四边形是菱形,故C 符合题意;根据平行四边形的邻角互补,对角线平分一个120°的角,可得平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故D 不符合题意;故选:C .【点评】此题考查了菱形的判定及平行四边形的性质,熟记菱形的判定定理及平行四边形的性质定理是解题的关键.4.【分析】设两张等宽的纸条的宽为h ,由条件可知AB ∥CD ,AD ∥BC ,可证明四边形ABCD 为平行四边形,根据平行四边形的面积公式得到BC =CD ,根据菱形的判定和性质定理即可得到结论.【解答】解:设两张等宽的纸条的宽为h ,∵纸条的对边平行,∴AD ∥BC ,AB ∥DC ,∴四边形ABCD 是平行四边形.又∵S ▱ABCD =BC •h =CD •h ,∴BC =CD ,∴四边形ABCD 是菱形,∴AD =AB .故选:C .【点评】本题考查了菱形的判定和性质,面积法等知识,掌握矩形的性质是解题的关键.5.【分析】直接利用相似三角形的对应边成比例解答.【解答】解:设蜡烛火焰的高度是x cm ,由相似三角形对应高的比等于相似比得到:.解得x =6.即蜡烛火焰的高度是6cm .故选:A .【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比.6.【分析】根据反比例函数图象所在的象限可以判定a 的符号,根据a 的符号来确定直线所经过的象限.10159x【解答】解:A 、双曲线经过第一、三象限,则a >0.则直线应该经过第一、二、四象限,故本选项不符合题意;B 、双曲线经过第一、三象限,则a >0.所以直线应该经过第一、二、四象限,故本选项不符合题意;C 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项不符合题意;D 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项符合题意.故选:D .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可.【解答】解:如图,过点A 作AC ⊥BC 于C ,在Rt △ABC 中,,则AC =AB •sin B =100sin65°(米),故选:A .【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.8.【分析】设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以求出地面影子的半径,这样可以求出阴影部分的面积.【解答】解:如图设C ,D 分别是桌面和其地面影子的圆心,CB ∥AD ,∴△OBC ∽△OAD∴,∵OD =3,CD =1,∴OC =OD ﹣CD =3﹣1=2,,∴,∴AD =1.2,∴S ⊙D =1.22•π=1.44π(m 2),即地面上阴影部分的面积为1.44πm 2.sin AC B AB=BC OC AD OD=1 1.60.82BC =⨯=0.823AD =故选:C .【点评】题主要考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例求出地面影子的半径,就可以求出阴影部分的面积.9.【分析】根据“某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个”即可得到一元二次方程.【解答】解:设该商户吉祥物周边产品销售量的月平均增长率为x ,由题意可得,10(1+x )2=11.5.故选:A .【点评】此题考查了从实际问题抽象出一元二次方程,读懂题意,找出等量关系是解题的关键.10.【分析】AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,求出,再根据勾股定理求得,由求得,再根据勾股定理列方程求得,即可求得,则,再证明△FAD ≌△ABI ,则,然后证明△E ′BN ≌△ABC ,则S 4=S △ABC =24,,所以,最后求得S 1﹣2S 2﹣3S 3+4S 4=66.【解答】解:如图,AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,∵AC =6,BC =8,AB =10,∴AC 2+BC 2=AB 2=100,∴△ABC 是直角三角形,且∠ACB =90°,∴,∴,245CH =185CG AH ==11816252ACI AI CI S ⨯=⨯=△53AI CI =92CI =272ACI S =△1452ACI ACPQ S S S =-=△正方形2168242FAD ACI ABI ACI S S S S S =-=-=⨯⨯=△△△△2772ACI ABC ABEF BCDE S S S S S =---=△△正方形四边形3432BCMN BCDE S S S S =--=正方形四边形11106822ABC CH S ⨯=⨯⨯=△24=5CH∵四边形ABEF 、四边形ACPQ 、四边形BCMN 都是正方形,∴∠CHA =∠HAG =∠AGC =∠ACP =∠BCM =90°,∴四边形AHCG 是矩形,∴,∵,∴,∴,∴,∴,∴,∵∠ACB +∠ACP =180°,∠ACB +∠BCM =180°,∴B 、C 、P 三点在同一条直线上,A 、C 、M 三点在同一条直线上,∵FA =AB ,∠F =∠BAI =90°,∴∠FAD ﹣∠ABI =90°﹣∠BAI ,∴△FAD ≌△ABI (ASA ),∴S △FAD =S △ABI ,∴,设射线BE 交MN 于点E ′,∵∠N =∠ACB =∠ABE =∠CBN =90°,BN =BC ,∴∠E ′BN =∠ABC =90°﹣∠CBE ,∴△E ′BN ≌△ABC (ASA ),∴E ′B =AB =EB ,∴点E 在MN 上,∴S 4=S △ABC =24,185CG AH ====11816252ACI AI CI S ⨯=⨯=△53AI CI =222563CI CI ⎛⎫=+ ⎪⎝⎭92CI =19276222ACI S =⨯⨯=△127456622ACI ACPQ S S S =-=⨯-=△正方形2168242FAD ACI ABI ACI ABC S S S S S S =-=-==⨯⨯=△△△△△∵,∴,∴,故选:A .【点评】此题重点考查正方形的性质、同角的余角相等、勾股定理、根据面积等式列方程求线段的长度、运用转化思想求图形面积等知识与方法,正确地作出所所需要的辅助线是解题的关键.11.2【分析】过点A 作AD ⊥a 于D ,交b 于E ,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:过点A 作AD ⊥a 于D ,交b 于E ,∵a ∥b ,∴,故答案为:2.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.12.9.6【分析】用总面积乘以落入黑色部分的频率稳定值即可.【解答】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的面积为16×0.6=9.6.故答案为:9.6.22277710242422ACI ABC ABEF BCDE S S S S S =---=---=△△正方形四边形23477382422BCMN BCDE S S S S =--=--=正方形四边形123445323422434246622S S S S --+=-⨯-⨯+⨯=2AB AE BC ED ==2AB AE BC ED==【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.(5,0)【分析】根据题意作出辅助线,然后得出这三个直角三角形都是含有30°的特殊直角三角形,然后利用其性质可求出AE 、BE 、BF 、CF 的长,设OE 的长为m ,则可用含有m 的式子表示出点A 、点C 的坐标,再根据点A ,C 同时落在一个反比例函数图象上,即可求出m 的值,即可求出OB 的长.【解答】解:如图所示:过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,在Rt △ACB 中,∠ABC =60°,∴∠BAC =90°﹣60°=30°,∴AB =2BC =4,∵AE ⊥x 轴,∴∠AEB =90°,即∠EAB +∠ABO =90°,∴∠EAB =90°﹣60°=30°,∴,设OE =m ,则点A 的坐标为,∵∠ABO =∠ABC =60°,∴∠CBF =180°﹣∠ABO ﹣∠ABC =60°,∵CF ⊥x 轴,∴∠CFB =90°,即∠CBF +∠BCF =90°,∴∠CBF =30°,∴,∴OF =OE +BE +BF =m +3,∴点C 坐标为,∵点A ,C 同时落在一个反比例函数图象上,∴,解得:m =3,∴OB =OE +EB =3+2=5,∴B 点的坐标为:(5,0).故答案为:(5,0).12,2EB AB AE ====(m 11,2BF BC CF ====(m+3)m =+【点评】本题主要考查了反比例函数的性质以及含有30°角的直角三角形的性质:解题关键:用含有m 的式子表示出点A 和点C 的坐标.14【分析】仿照题例构造含22.5°的直角三角形,利用直角三角形的边角关系得结论.【解答】解:在Rt △ABC中,∠C =90°,AC =BC ,延长CB 到D ,使BD =AB ,连接AD .在Rt △ABC 中,∵AC =BC ,∴∠ABC =45°,.∵BD =AB ,∴∠D =∠BAD .∵∠ABC =∠D +∠BAD =45°,∴∠D =22.5°.在Rt △ACD 中,..【点评】本题考查了解直角三角形,看懂题例,学会构造含22.5°角的直角三角形是解决本题的关键.15.①②④【分析】①证明Rt △BHF ≌Rt △BCF 得∠HBF =∠CBF ,HF =CF ,进而得,便可判断①的正误;②由HF =CF 、HE =AE .可得△DEF 的周长是=DE +DE +EF =AD +DC .便可判断②的正误;③设FC =HF =x ,在Rt △DEF 中,利用勾股定理EF 2=ED 2+DF 2,求出FC ,再由相似三角形得出1-AB =tan tan 22.5AC D CD =︒===1=-1-12EBF ABC ∠=∠,即可求出;便可判断③的正误;④连接BD 、过D 作DG ⊥EF ,易得DG ≤DK ,BH ≤BK ,由DG +BH ≤DK +BK =BD .故DG ≤BD ﹣BH ,由此即可得出结论.便可判断④的正误.【解答】解:∵四边形ABCD 是正方形,∴BC =AB =CD =AD =1,∠DAB =∠ABC =∠BCD =∠ADC =90°由折叠性质可知:∠EHB =∠EAB =90°,BH =AB ,AE =EH ,∠EBA =∠EBH ,∴BH =BC ,∠FHB =90°=∠BCF ,又∵BF =BF ,∴Rt △BHF ≌Rt △BCF (HL ),∴∠HBF =∠CBF ,HF =CF ,∴∠ABC =∠CBF +∠FBH +∠HBE +∠EBA =2(∠FBH +∠HBE ),∵∠EBF =∠FBH +∠HBE ,∴∠ABC =2∠EBF ,∴,故①正确;∵AE =EH ,CF =HF ,∴EF =EH +HF =AE +CF ,∴△DEF 的周长=DE +DF +EF =DE +DF +AE +CF =AD +CD .∴△DEF 的周长=2AD =2,故②正确;如图:连接DB 交EF 于K ,过D 作DG ⊥EF ,∴DG ≤DK ,BH ≤BK ,∴DG +BH ≤DK +BK =BD ,∵,BH =AB =1,∴∴,故当K 、G 、H 三点重合,即B 、D 、H 在同一直线上时,点D 到EF 距离DG ,故④CF CN AB AN =CN =1452EBF ABC ∠=∠=︒BD ===1DG +≤1DG ≤-1-正确;设CF =HF =x ,则DF =1﹣x ,∵当点E 是AD 中点时,∴,∴,在Rt △DEF 中,EF 2=DF 2+DE 2,∴,∴,即,在正方形ABCD 中,AB ∥CD ,∴△FCN ∽△BAN ,∴,∵∴解得:故答案为:①②④.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.【分析】(1)①根据配方法解一元二次方程的一般步骤解答;②根据等式的基本性质解答;(2)①利用公式法解出方程;②利用因式分解法解出方程.【解答】解:(1)①小颖解方程的方法是配方法,故选:B ;②第二步变形的依据是等式的基本性质,故答案为:等式的基本性质;1122AE DE AD ===12EF x =+22211(1)22x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭13x =13FC =CF CN AB AN=AC ==11=CN =(2)①x 2+2x ﹣3=0,a =1,b =2,c =﹣3,Δ=22﹣4×1×(﹣3)=16>0,则,所以x 1=1,x 2=﹣3;②3(x ﹣2)2=x 2﹣4,则3(x ﹣2)2﹣(x +2)(x ﹣2)=0,∴(x ﹣2)(3x ﹣6﹣x ﹣2)=0,∴x ﹣2=0或3x ﹣6﹣x ﹣2=0,∴x 1=2,x 2=4.【点评】本题考查的是一元二次方程的解法,掌握配方法、公式法、因式分解法解一元二次方程的一般步骤是解题的关键.17.【分析】(1)首先由条形图与扇形图可求得m =100%﹣14%﹣8%﹣24%﹣34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50,进而得出打乒乓球的人数;(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.【解答】解:(1)m =100%﹣14%﹣8%﹣24%﹣34%=20%;∵跳绳的人数有4人,占的百分比为8%,∴4÷8%=50;∴50×20%=10(人).补全条形图如下:故答案为:20;(2)1500×24%=360;故答案为:360;(3)列表如下:﹣男1男2男3女24122x -±==-±男1﹣男2,男1男3,男1女,男1男2男1,男2﹣男3,男2女,男2男3男1,男3男2,男3﹣女,男3女男1,女男2,女男3,女﹣∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.∴抽到一男一女的概率.答:抽到一男一女学生的概率是.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图、条形统计图的知识.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】(1)证△NDE ≌△MAE (AAS ),得NE =ME ,再由平行四边形的判定即可得出结论;(2)①证△AEM 是等边三角形,得ME =AE ,则MN =AD ,再由矩形的判定即可得出结论;②△AMD 是等边三角形,得AM =DM ,再由菱形的判定即可得出结论.【解答】(1)证明:∵四边形ABCD 是菱形,∴CD ∥AB ,∴∠NDE =∠MAE ,∠DNE =∠AME ,∵点E 是AD 边的中点,∴DE =AE ,在△NDE 与△MAE 中,,∴△NDE ≌△MAE (AAS ),∴NE =ME ,又∵DE =AE ,∴四边形AMDN 是平行四边形;(2)解:①当AM 的值为1时,四边形AMDN 是矩形.理由如下:∵四边形ABCD 是菱形,∴AB =AD =2.∵,∴AM =AE ,∵∠DAM =60°,61122P ==12DNE AME NDE MAE DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩111,122AM AD AE AD ====∴△AEM 是等边三角形,∴ME =AE ,∴MN =AD ,∴平行四边形AMDN 是矩形;故答案为:1;②当AM 的值为2时,四边形AMDN 是菱形.理由如下:∵AM =2,∴AM =AD =2,∴△AMD 是等边三角形,∴AM =DM ,∴平行四边形AMDN 是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定以及等边三角形的判定和性质等知识,熟练掌握矩形的判定和菱形的判定与性质是解题的关键.19.【分析】(1)根据网格即可在图①中画出线段AB 的中点O ;(2)根据网格,利用相似三角形的性质即可在图②中的线段AB 上找到点C,使得.(3)根据网格,利用相似三角形的性质即在图③中的线段AB 上找到点D ,使得.【解答】解:(1)如图①线段AB 的中点O 即为所求;(2)如图②线段AB 上点C 即为所求;(3)如图③线段AB 上点D 即为所求.【点评】本题考查了作图﹣运用与设计作图、相似三角形的判定与性质,解决本题的关键是掌握以上知识.20.【分析】(1)根据矩形性质得:EH ∥BC ,从而得△AEH ∽△ABC ,利用相似三角形对应边的比和对应高的比相等表示EH 的长,利用矩形面积公式得y 与x 的函数解析式;(2)令EF =EH ,求得x 进而得到EF 的长度.【解答】解:∵四边形EFGH 是矩形,∴EH ∥BC ,∴△AEH ∽△ABC ,12AC BC =13BD AD =∴,∵EF =DM =x ,AD =4,∴AM =4﹣x ,∴,∴,∴;(2)当EFGH 为正方形时,EF =EH ,由(1)得:,解得:,∴当EFGH 为正方形时,EF 的长度为.【点评】本题考查了相似三角形的性质和判定、二次函数的关系式,熟练掌握相似三角形的性质和判定是本题的关键,注意二次函数自变量的取值.21.【分析】(1)由已知直接可得答案;(2)设AD =x m ,可得CD =AD =x m ,BD =(20+x )m ,而,有,即可解得答案.【解答】解:(1)根据题意得:β=90°﹣α;(2)设AD =x m ,∵∠ACD =45°,∠ADB =90°,∴CD =AD =x m ,∵BC =20m ,∴BD =(20+x )m ,在Rt △ABD 中,,∴,即,EH AM BC AD=464EH x -=3(4)2EH x =-32()2(4)12(04)2y EH EF x x x x ⎡⎤=+=+-=-+<<⎢⎥⎣⎦3(4)2x x =-125x =125tan AD ABD BD ∠=0.7520x x =+tan AD ABD BD∠=tan 3720x x =+︒0.7520x x=+解得:x =60,经检验,x =60是分式方程的解,∴AD =60(m ),答:气球A 离地面的高度AD 是60m .【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是掌握锐角三角函数的定义.22.【分析】(1)首先求得线段OA 所在直线的解析式,然后求得点A 的坐标,代入反比例函数的解析式即可求解;(2)把y =20代入反比例函数解析式可求得时间,结合规定可进行判断.【解答】解:(1)依题意,直线OA 过,则直线OA 的解析式为y =80x ,当时,y =120,即,设双曲线的解析式为,将点代入得:k =180,∴;(2)由得当y =20时,x =9,从晚上22:00到第二天早上6:30时间间距为8.5小时,∵8.5<9,∴第二天早上6:30不能驾车去上班.【点评】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点.掌握自变量、函数值等知识是解题的关键.本题难度不大,较易得分.23.【分析】(1)由三角形内角和定理可得出结论;(2)证明△BGE ≌△DHF (SAS ),由全等三角形的性质得出BG =DH ,∠BGE =∠DHF ,证出∠BHG =∠BGH ,得出BG =BH ,则可得出结论;(3)由勾股定理求出,证出,证明△ADE ∽△ABC ,由相似三角形的性质得出,则,设AE =x ,则,DF =BE =3﹣x .得出方程,解方程可求出BE 的长,证明△BHE ∽△BAF ,由相似三角形的性质得出,即可求出答案.【解答】解:(1)在△ADE 中,∠A +∠ADE +∠AED =180°,在△ABC 中,∠A +∠ABC +∠C =180°,∵∠ADE =∠ABC ,1,204⎛⎫ ⎪⎝⎭32x =3,1202A ⎛⎫ ⎪⎝⎭k y x =3,1202A ⎛⎫ ⎪⎝⎭18032y x x ⎛⎫=≥ ⎪⎝⎭180y x=BC =BC BF ==23AE AC AD AB ==32AD AE =32AD x =3322x x -=+EH BE FA BF=∴∠AED =∠C ;故答案为:∠AED =∠C ;(2)BH =DH .证明:∵∠BEG =∠AED ,∴∠BEG =∠F .在△BGE 和△DHF 中,,∴△BGE ≌△DHF (SAS ).∴BG =DH ,∠BGE =∠DHF ,∵∠BHG +∠DHF =180°,∠BGH +∠BGE =180°,∴∠BHG =∠BGH ,∴BG =BH ,∴BH =DH ;(3)由(2)可知∠BEH =∠F .∴∠BAC =90°,∴,∠FAB =180°﹣∠BAC =90°,∴∠BHE =∠FAB =90°,∵∠HEB =∠AED ,∴∠ABF =∠ADE .∵∠ADE =∠ABC ,∴∠ABF =∠ABC .又∵AB ⊥FC ,∴AF =AC =2,,∵∠DAE =∠BAC ,∠ADE =∠ABC ,∴△ADE ∽△ABC ,∴,∴,设AE =x ,则,DF =BE =3﹣x .BE DF BEG F EG FH =⎧⎪∠=∠⎨⎪=⎩BC ===BF BC ==23AE AC AD AB ==32AD AE =32AD x =∵,∴,解得,∴,∵∠HBE =∠ABF ,∠BHE =∠BAF =90°,∴△BHE ∽△BAF ,∴,即∴.【点评】本题属于三角形综合题,考查了三角形内角和定理,全等三角形的判定和性质,相似三角形的判定与性质,勾股定理等知识,解题的关键是熟练掌握全等三角形的判定与性质及相似三角形的判定与性质.322DFAF AD x =+=+3322x x -=+25x =135BE =EH BE FA BF=2EH =EH =。

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、单选题(共18分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.直角三角形C.正五边形D.正六边形2.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.若点P(2,n﹣1)与点Q(m+1,3)关于原点对称,则m+n的值为()A.﹣5B.﹣1C.1D.54.电影《长津湖》一上映,第一天票房2.05亿元,若每天票房的平均增长率相同,三天后累计票房收入达10.53亿元,平均增长率记作x,方程可以列为()A.2.05(1+2x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.535.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.D.16.如图,矩形ABCD中,AB=8,BC=14,M,N分别是直线BC,AB上的两个动点,AE =2,△AEM沿EM翻折形成△FEM,连接NF,ND,则DN+NF的最小值为()A.14B.16C.18D.20二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程(x﹣2)(x+1)=0的根是.8.如图,AB是⊙O的直径,∠D=32°,则∠BOC等于.9.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.10.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是.11.如图,将正方形ABCD绕点A逆时针旋转60度得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,若MN的长度为1,则EF的长度为.12.如图所示,已知二次函数y=ax2+bx+c(a≠0)的部分图象,下列结论中:①abc>0;②4a+c>0;③若t为任意实数,则有a﹣bt≥at2+b;④若函数图象经过点(2,1),则a+b+c=;⑤当函数图象经过(2,1)时,方程ax2+bx+c﹣1=0的两根为x1,x2(x1<x2),则x1﹣2x2=﹣8.其中正确的结论有.三、解答题(共84分)13.解方程:x2+2x=0.14.如图,已知:A、B、C、D是⊙O上的四个点,且=,求证:AC=BD.15.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0,﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y>0时,自变量x的取值范围.16.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=110°,求∠BED的度数.17.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.18.在△ABC中,AB=AC,点A在以BC为直径的半圆外.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图①中作弦EF,使EF∥BC;(2)在图②中以BC为边作一个45°的圆周角.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC绕点A顺时针旋转90°后得到的图形△AB1C1;(2)请画出将△ABC关于原点O成中心对称的图形△A2B2C2;(3)当△ABC绕点A顺时针旋转90°后得到△AB1C1时,点B对应旋转到点B1,请直接写出B1点的坐标.20.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).21.恰逢新余桔子成熟的时节,为增加农民收入,助力乡村振兴.某驻村干部指导某农户进行桔子种植和销售,已知桔子的种植成本为1元千克,经市场调查发现,今年销售期间桔子的销售量y(千克)与销售单价x(元/千克)(1≤x≤12)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)请同学们求一下这位农户销售桔子获得的最大利润.22.如图所示,抛物线y=ax2+bx+c的对称轴为直线x=3,抛物线与x轴交于A(﹣2,0)、B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)连接BC,在第一象限内的抛物线上,是否存在一点P,使△PBC的面积最大?最大面积是多少?23.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△BC的三边AB,BC,AC分别相切于点D,E,F则△ABC叫做⊙O的外切三角形,以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>”,“<”或“=”);(2)利用图2证明你的猜想;(3)若圆外切四边形的周长为36.相邻的三条边的比为2:6:7.求此四边形各边的长.24.如图,已知二次函数L1:y=ax2﹣4ax+4a+4(a>0)和二次函数L2:y=﹣a(x+2)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣4ax+4a+4(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN﹣1时,直接写出a的值;(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+2)2+1=0的解.参考答案一、单选题(共18分)1.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不一定是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,但不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.2.解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.3.解:∵点P(2,n﹣1)与点Q(m+1,3)关于原点对称称,∴m+1=﹣2,n﹣1=﹣3,∴m=﹣3,n=﹣2.∴m+n=﹣3﹣2=﹣5.故选:A.4.解:∵第一天票房约2.05亿元,且以后每天票房的增长率为x,∴第二天票房约2.05(1+x)亿元,第三天票房约2.05(1+x)2亿元.依题意得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.5.解:连接OA,如图,∵AB⊥CD,∴AE=BE=AB=4,在Rt△OAE中,OE===3,∴CE=OC﹣OE=5﹣3=2.故选:B.6.解:如图作点D关于BC的对称点D′,连接ND′,ED′.在Rt△EDD′中,∵DE=12,DD′=16,∴ED′==20,∵DN=ND′,∴DN+NF=ND′+NF,∵EF=EA=2是定值,∴当E、F、N、D′共线时,NF+ND′定值最小,最小值=20﹣2=18,∴DN+NF的最小值为18,故选:C.二、填空题(共18分)7.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.8.解:∵∠D=32°,∴∠BOC=2∠D=64°,故答案为:64°.9.解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.10.解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π.11.解:如图所示,连接BE,∵点M,N分别为EF,BF的中点,∴MN是△BEF的中位线,∴BE=2MN=2,由旋转可得,AB=AE,∠BAE=60°,∴△ABE是等边三角形,∴AE=BE=2=AF,又∵∠EAF=90°,∴EF===2.故答案为:2.12.解:由抛物线开口向上,因此a>0,对称轴是直线x=﹣=﹣1,因此a、b同号,所以b>0,抛物线与y轴的交点在负半轴,因此c<0,所以abc<0,故①不正确;由对称轴x=﹣=﹣1可得b=2a,由图象可知,当x=1时,y=a+b+c>0,即a+2a+c>0,∴3a+c>0,又∵a>0,∴4a+c>0,因此②正确;当x=﹣1时,y最小值=a﹣b+c,∴当x=t(t≠﹣1)时,a﹣b+c<at2+bt+c,即a﹣bt<at2+b,∴x=t(t为任意实数)时,有a﹣bt≤at2+b,因此③不正确;函数图象经过点(2,1),即4a+2b+c=1,而b=2a,∴2a+3b+c=1,∴a+b+c=,因此④正确;当函数图象经过(2,1)时,方程ax2+bx+c=1的两根为x1,x2(x1<x2),而对称轴为x =﹣1,∴x1=﹣4,x2=2,∴x1﹣2x2=﹣4﹣4=﹣8,因此⑤正确;综上所述,正确的结论有:②④⑤,故答案为:②④⑤.三、解答题(共84分)13.解:由原方程,得x(x+2)=0,则x=0或x+2=0,解得,x1=0,x2=﹣2.14.证明:∵=,∴=,∴AC=BD.15.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y>0时,自变量x的取值范围是x<﹣1或x>3.16.(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS).(2)解:如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC,∴∠AEB=∠ADC=110°.∴∠BED=50°.17.解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.18.解:(1)如图①,EF为所作;(2)如图②,∠PBC为所作.19.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据(1)的图可得B1的坐标(2,﹣2).20.(1)证明:连接OC,∵直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.21.解:(1)当1≤x≤9时,设y=kx+b(k≠0),则,解得:,∴当1≤x≤9时,y=﹣300x+3300,当9<x≤12时,y=600,∴y=.(2)设利润为W,则:当1≤x≤9时,W=(x﹣1)y=(x﹣1)(﹣300x+3300)=﹣300x2+3600x﹣3300=﹣300(x﹣6)2+7500,∵开口向下,对称轴为直线x=6,∴当1≤x≤9时,W随x的增大而增大,∴x=5时,W最大=7500元,当9<x≤12时,W=(x﹣1)y=600(x﹣1)=600x﹣600,∵W随x的增大而增大,∴x=12时,W最大=6600元,∵7500>6600,∴最大利润为7500元.22.解:(1)∵抛物线的对称轴为直线x=3,A(﹣2,0),∴B点坐标为(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把C(0,4)代入得4=a×2×(﹣8),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)存在.设点P的坐标为(x,﹣x2+x+4),设直线BC的解析式为y=kx+m(k≠0).将B(8,0)、C(0,4)代入y=kx+m,得:,解得:,∴直线BC的解析式为y=﹣x+4.过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∵S△PBC=S△PCD+S△PBD,∴△PCD与△PBD可以看作成以PD为底,两高之和为OB的三角形,∴S△PBC=PD•OB=×8×(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.此时P点的坐标为(4,6).23.解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=;(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等;(3)∵相邻的三条边的比为2:6:7,∴设此三边为2x,6x,7x,根据圆外切四边形的性质得,第四边为2x+7x﹣6x=3x,∵圆外切四边形的周长为36,∴2x+6x+7x+3x=18x=36,∴x=2,∴此四边形的四边的长为2x=4,6x=12,7x=14,3x=6.即此四边形各边的长为:4,12,14,6.24.解:(1)∵y=ax2﹣4ax+4a+4=a(x﹣2)2+4,a>0,∴y min=4,∵时,二次函数L1,L2的y值同时随着x的增大而减小,∴﹣2<x<2,故答案为:4,﹣2<x<2;(2)∵M(2,4),N(﹣2,1),∴MN==5,∵E(0,4a+4),F(0,﹣4a+1),∴EF=8a+3,∴8a+3=5﹣1,∴a=;(3)当AM=MN时,(m﹣2)2+42=25,∴m1=5,m2=﹣1,当m=5时,﹣a(x+2)2+1=0的解为:x=5,x=﹣9,当m=﹣1时,﹣a(x+2)2+1=0的解为:x=﹣1或x=﹣3,当AN=AM时,(m﹣2)2+42=(﹣2﹣m)2+12,∴m=,∴﹣a(x+2)2+1=0的解为:x=或x=,当AN=MN时,(m+2)2+1=25,∴m=﹣2﹣2(舍去),m=﹣2+2,∴﹣a(x+2)2+1=0的解为:x=﹣2+2,x=﹣2﹣2,综上所述:方程﹣a(x+2)2+1=0的解是:x=﹣1或x=﹣3;x=或x=;x=﹣2+2,或x=﹣2﹣2.。

九年级数学月考试卷【含答案】

九年级数学月考试卷【含答案】

九年级数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若a、b为实数,且a≠0,那么下列哪个式子是正确的?()A. a² = b²B. a² + b² = (a + b)²C. (a + b)² = a² + 2ab + b²D. a² b² = (a b)²4. 下列哪个式子是等边三角形的面积公式?()A. 面积 = 1/2 底高B. 面积 = 1/2 边长高C. 面积= √3/4 边长²D. 面积 = 1/4 边长²5. 若一个圆的半径为r,则它的周长为()。

A. 2πrB. πr²C. 2rD. r²二、判断题(每题1分,共5分)1. 若a、b为实数,且a≠b,则a²≠b²。

()2. 任何一个正整数都可以表示为两个质数的和。

()3. 两个等腰三角形的面积相等,则它们的周长也相等。

()4. 任何一个偶数都可以表示为两个奇数的和。

()5. 任何一个正整数都可以表示为三个连续整数的和。

()三、填空题(每题1分,共5分)1. 若一个正方形的边长为4,则它的面积为______。

2. 若一个圆的半径为3,则它的面积为______。

3. 若一个等腰三角形的底边长为8,腰长为5,则它的高为______。

4. 若一个等差数列的首项为2,公差为3,第5项为______。

5. 若一个等比数列的首项为3,公比为2,第4项为______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述等差数列的定义。

3. 简述等比数列的定义。

人教版(五四学制)2022-2023学年九年级数学上册第二次月考测试题(附答案) (2)

人教版(五四学制)2022-2023学年九年级数学上册第二次月考测试题(附答案) (2)

2022-2023学年九年级数学上册第二次月考测试题(附答案)一、选择题:(共30分)1.﹣的相反数是()A.﹣B.C.﹣2D.22.下列运算正确的是()A.(a2)3=a5B.a+a=a2C.a2•a3=a5D.a2(a+1)=a3+13.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如图所示的几何体是由7个大小相同的小正方体组合而成的立体图形,则它的主视图是()A.B.C.D.5.如图,圆O中,弦AB、CD互相垂直且相交于点P,∠A=35°,则∠B的大小是()A.35°B.55°C.65°D.70°6.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()A.k>2B.k≥2C.k≤2D.k<27.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.B.C.D.8.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x分钟,船舱内积水量为y吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y与x的函数关系.下列说法中正确的是()A.修船共用了38分钟时间B.修船过程中进水速度是排水速度的3倍C.修船完工后的排水速度是抢修过程中排水速度的3倍D.最初的仅进水速度和最后的仅排水速度相同二、填空题:(共30分)11.在“百度”搜索引擎中输入“二十大”,能搜索到与之相关的结果个数约为100000000,这个数用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.计算2的结果是.14.把多项式a2b﹣6ab2+9b3分解因式的结果是.15.不等式组的解集是.16.某商品经过连续两次降价,销售单价由原来的640元降到360元,则平均每次降价的百分率为.17.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.18.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.19.已知△ABC是以AB为一腰的等腰三角形,AB=5,tan∠BAC=,则△ABC的底边长为.20.如图,在△ABC中,AD平分∠CAB交BC于点D,∠CDA=45°,∠B=30°,DE⊥AB于点E,若AC=5,DE=2,则CB的长为.三、解答题:(共计60分)21.先化简,再求值:(+)÷,其中a=2sin60°+tan45°.22.如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.(1)在图①中,作以AB为底的等腰△ABC,点C在小正方形的顶点上.(2)在图②中,作以AB为一边的平行四边形ABDE,点D、E在小正方形的顶点上,且满足平行四边形ABDE的面积为8,则tan∠E=.23.为了加强语文课外阅读,某年级积极组织学生参加课外阅读读书分享会活动,从年级推荐的四种读物A:《水浒传》、B:《骆驼祥子》、C:《昆虫记》、D:《朝花夕拾》中选择一本读物每周一与班级同学分享读书体会.读书分享会活动组随机抽取本年级的部分学生,调查他们这四本读物中最喜爱一本读物,并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该年级有1200名学生,估计全年级最喜爱《水浒传》的学生有多少人?24.如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC(1)求证:∠DEC=∠BAE;(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,试直接写出图中除△ABE、△ADC以外的等腰三角形.25.松立商店准备从永波机械厂购进甲、乙两种零件进行销售,若甲种零件的进价是乙种零件进价的,用1600元单独购进一种零件时,购进甲种零件的数量比乙种零件多4件.(1)求每个甲种零件,每个乙种零件的进价分别为多少元?(2)松立商店购进甲、乙两种零件共102个,准备将零件批发给零售商.甲种零件的批发价是100元,乙种零件的批发价是130元,松立商店计划从零售商处的获利超过2284元,通过计算求出松立商店最多给零售商批发多少个甲种零件?26.如图,⊙O是△ABC的外接圆,∠BAC的平分线AO交BC于点D.(1)如图1,求证:AB=AC;(2)如图2,点E、F在弧AB上,连接BF、CF、BE、BO,若∠BCF+∠F=2∠EBO,求证:∠BCF=2∠ABE;(3)如图3,CF交AB于点K,连接AE,AE=BK,若CK:AC=13:24,BF=,求⊙O的半径.27.如图,直线y=kx+(k≠0)交x轴于点A,交y轴于点B,点C在x轴正半轴,连接BC,且AB=AC=m.(1)若△ABC的面积为S,求用含m的式子表示△ABC的面积;(2)如图2,点D在线段AB上,将线段DB绕点D顺时针旋转60°至DG,连接BG,点E在x轴负半轴上,且AE=BD,连接CG,求凹四边形ACGB的周长与四边形ACGD 的周长之差与△DBG的周长的比值;(3)在(2)的条件下,延长DG交x轴于点F,∠BAC=2∠CGF,若BG﹣GF=1,△ADF的周长为15,求直线AB的解析式.参考答案一、选择题:(共30分)1.解:﹣的相反数是,故选:B.2.解:A、(a2)3=a6,故原题计算错误;B、a+a=2a,故原题计算错误;C、a2•a3=a5,故原题计算正确;D、a2(a+1)=a3+a2,故原题计算错误;故选:C.3.解:A.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;B.该图形既不是轴对称图形,也不中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形是中心对称图形,不是轴对称图形,故此选项不合题意;故选:A.4.解:该几何体的主视图是故选:A.5.解:由题意可知:∠DP A=90°,∵∠A=35°,∴由三角形的内角和定理可知:∠D=55°,由圆周角定理可知:∠B=∠D=55°,故选:B.6.解:∵y=的图象位于第一、第三象限,∴k﹣2>0,k>2.故选:A.7.解:共有6种可能,而有1种结果都是蓝色的,所以都是蓝色的概率概率为.8.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.9.解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选:C.10.解:由图可得,修船共用了26﹣10=16(分钟),故A错误;修船过程中进水速度为:40÷10=4(吨/分钟),排水速度是4﹣(88﹣40)÷(26﹣10)=1(吨/分钟),故修船过程中进水速度是排水速度的4倍,故B错误;修船完工后的排水速度是88÷(48﹣26)=4(吨/分钟),故修船完工后的排水速度是抢修过程中排水速度的4倍,故C错误;由上可得,最初的仅进水速度和最后的仅排水速度相同,故D正确,故选:D.二、填空题:(共30分)11.解:100000000=1×108.故答案为:1×108.12.解:根据题意得:2x+7≠0,故答案为:x≠﹣3.5.13.解:原式=2×﹣2=﹣2=﹣.故答案为:﹣.14.解:原式=b(a2﹣6ab+9b2)=b(a﹣3b)2.故答案为:b(a﹣3b)2.15.解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.16.解:设平均每次降价的百分率为x,根据题意得:640(1﹣x)2=360,解得:x=25%或x=1.75(舍去),故答案是:25%.17.解:根据l===11π,解得:n=110,故答案为:110.18.解:过O作OF⊥CD于F,OQ⊥AB于Q,连接OD,∵AB=CD,∴OQ=OF,∵OF过圆心O,OF⊥CD,∴CF=DF=2,∴EF=2﹣1=1,∵OF⊥CD,OQ⊥AB,AB⊥CD,∴∠OQE=∠AEF=∠OFE=90°,∵OQ=OF,∴四边形OQEF是正方形,∴OF=EF=1,在△OFD中由勾股定理得:OD==,故答案为:.19.解:①如图,当AC为腰时,过点B作BD⊥AC,∵tan∠BAC=,∴,设BD=3x,AD=4x,在Rt△ABD中,AD2+BD2=AB2,即(4x)2+(3x)2=52,解得:x=(舍去负值),∴AD=4,BD=3,∴CD=AC﹣AD=1,∴BC=;②当BC为腰时,过点B作BD⊥AC,如图,∵tan∠BAC=,∴,设BD=3x,AD=4x,在Rt△ABD中,AD2+BD2=AB2,即(4x)2+(3x)2=52,解得:x=1(舍去负值),∴AD=4,∴AC=2AD=8.综上所述,△ABC的底边长为或8.故答案为:或8.20.解:作DF⊥AC,交AC的延长线与点F,∵∠CDA=45°,∠B=30°,∴∠DAE=15°,∵AD平分∠CAB交BC于点D,∴∠CAB=2∠DAE=30°,∵DE⊥AB,DF⊥AC,DE=2,∴DF=DE=2,在Rt△DEB中,∵∠B=30°,∴DB=2DE=4,∵∠DCF=∠B+∠CAB=60°,∴∠FDC=30°,在Rt△CDF中,设CF=x,则CD=2x,∵CF2+DF2=CD2,∴x2+4=4x2,∴或x=﹣(舍去),∵CD=,∴BC=CD+BD=.故答案为:.三、解答题:(共计60分)21.解:原式=[+]•=•=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)如图①,等腰△ABC即为所求;(2)如图②,作AF⊥DE于点F,∵平行四边形ABDE的面积为8,AE=DE==∴DE•AF=8,∴AF==,∴EF===,∴tan∠E==×=.故答案为:.23.解:(1)被调查的学生人数为:12÷20%=60(人);则被调查的学生人数有60人;(2)喜欢B读物的学生数为:60﹣24﹣12﹣16=8(人),如图所示:(3)估计全年级最喜爱《水浒传》的学生有:1200×=480(人),则估计全年级最喜爱《水浒传》的学生有480人.24.证明:(1)如图1,∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ACD与△ABE中,,∴△ACD≌△ABE,∴∠ACD=∠ABC,∵∠BAC+∠ABC+∠ACB=180°,∠ECD+∠ACD+∠ACB=180°,∵AB=AC,∴∠ABC=∠ACB,∴∠BAC+2∠ACB=180°,∠ECD+2∠ACB=180°,∴∠BAC=∠ECD;(2)解:如图2,①∵∠BAE=∠CAD=30°,∴∠ABC=∠ACB=∠AED=∠ADE=75°,由(1)得:∠ACD=∠ABC=75°,∠DCE=∠BAC=30°,∵AD⊥AB,∴∠BAD=90°,∴∠CAE=30°,∴∠AFC=180°﹣30°﹣75°=75°,∴∠ACF=∠AFC,∴△ACF是等腰三角形,②∵∠BCG=∠DCE=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰直角三角形,③∠EDF=75°﹣45°=30°,∴∠DEF=∠DFE=75°,∴△DEF是等腰直角三角形;④∵∠ECD=∠EDC=30°,∴△ECD是等腰三角形.25.解:设每个乙种零件的进价分别为x元,每个甲种零件的进价为x元,由题意可得:=4,解得:x=100,经检验:x=100是原方程的根,∴x=80(元),答:每个甲种零件的进价为80元,每个乙种零件的进价为100元;(2)设松立商店给零售商批发a个甲种零件,由题意可得:(100﹣80)a+(130﹣100)×(102﹣a)>2284,解得:a<77.6,∴a的最大整数为77,∴松立商店最多给零售商批发77个甲种零件.26.(1)证明:如图1,延长AD交⊙O于点G,连接BG、CG,∵AG是⊙O的直径,∴∠ABG=∠ACG=90°,∴∠AGB+∠BAG=90°,∠AGC+∠CAG=90°,∵AG平分∠BAC,∴∠BAG=∠CAG,∴∠AGB=∠AGC,∴AB=AC;(2)证明:如图2,连接OE,∵=,∴∠AOE=2∠ABE,∵=,∴∠F=∠BAC,由(1)知:AG平分∠BAC,∴∠BAC=2∠BAO,∵OA=OB,∴∠BAO=∠ABO,∴∠BOD=∠BAO+∠ABO=2∠BAO,∴∠BOD=∠BAC,∵OB=OE,∴∠BEO=∠EBO,∵∠BEO+∠EBO+∠BOE=180°,∠AOE+∠BOD+∠BOE=180°,∴2∠EBO=∠AOE+∠BOD=2∠ABE+∠F,∵∠BCF+∠F=2∠EBO,∴∠BCF+∠F=2∠ABE+∠F,∴∠BCF=2∠ABE;(3)解:如图3,延长BE至M,使EM=BC,连接AM,连接FO并延长交⊙O于点N,连接BN,作线段AB的垂直平分线交AB于R,交BE于L,过点A作AT⊥BM于T,∵AB=AC,∴∠ACB=∠ABC,∵四边形ACBE是⊙O的内接四边形,∴∠ACB+∠AEB=180°,∵∠AEM+∠AEB=180°,∴∠AEM=∠ABC,即∠AEM=∠KBC,在△EMA和△BCK中,,∴△EMA≌△BCK(SAS),∴AM=CK,∠M=∠BCF,∵CK:AC=13:24,∴设CK=13a,AC=24a,则AM=13a,AB=AC=24a,由(2)知:∠BCF=2∠ABE,设∠ABE=β,则∠M=∠BCF=∠BNF=2β,∵LR垂直平分AB,∴AR=BR=12a,AL=BL,∴∠BAL=∠ABE=β,∴∠ALM=∠BAL+∠ABE=2β=∠M,∴AL=AM=BL=13a,∴LR===5a,∵sin∠ABE==,即sinβ==,∴AT=a,∴sin2β===,∵FN是直径,∴∠FBN=90°,∴=sin∠BNF=sin2β=,∴FN=BF=×=13,∴圆的半径为FN=.27.解:(1)令x=0,则y=,∴B(0,),∴OB=,∴S=•OB•AC=••m=m;(2)由题意可知,△DBG是等边三角形,∴BD=BG=DG,∵AB=AC,BD=AE,∴AD=EC.∴凹四边形ACGB的周长=AC+CG+GB+AB,四边形ACGD的周长=AC+CG+GB+DA,∴凹四边形ACGB的周长与四边形ACGD的周长之差=AB﹣DA=BD,∵△BBG的周长=3BD,∴凹四边形ACGB的周长与四边形ACGD的周长之差与△DBG的周长的比值为=.(3)如图,在点F的右侧取点K,使FK=GF,则∠FKG=FGK,设∠CGF=α,则∠BAC=2α,∴∠ABC=∠ACB=90°﹣α,由(2)知,△BDG是等边三角形,∴∠BDG=∠BGD=60°,∴∠CFG=60°﹣2α,∠CBG=30°﹣α,∠BGF=120°,∴∠CKG=∠FGK=30°﹣α,∠BGC=120°+α,∴∠CKG=∠CBG,在△GCF中,由三角形内角和可知,∠GCK=120°+α,∴∠BGC=∠GCK,∵GC=CG,∴△BCG≌△KGC(AAS),∴BG=KC,∵BG﹣GF=1,∴CK﹣FK=1,即CF=1,设FK=a,则CK=a+1,∴BD=DG=BG=AE=a+1,∵△ADF的周长为15,∴AD=EC=6﹣a,∴DF=2a+1,AF=8﹣a,过点F作FM⊥AB于点M,∴DM=DF=a+,FM=DM=(a+),∴AM=6﹣a,在Rt△AFM中,由勾股定理可得,AM2+FM2=AF2,∴(6﹣a)2+[(a+)]2=(8﹣a)2,解得a=2或a=﹣(舍).∴AB=6﹣a+a+1=6,∴AO=,∴A(﹣,0),将点A的坐标代入y=kx+,解得k=.∴直线AB的解析式为:y=x+.。

河北省邯郸市第二十五中学2024届九年级上学期第二次月考数学试卷(含解析)

河北省邯郸市第二十五中学2024届九年级上学期第二次月考数学试卷(含解析)

邯郸市第二十五中学2023—2024学年九年级第一学期阶段测试(二)数学试卷一、选择题(本大题共16小题,共38分.1—6小题各3分,7—16小题各2分.在每小题给出的选项中,只有一项是符合题目要求的)1. 下列我国著名企业商标图案中,是中心对称图形的是( )A. B. C. D.【答案】B解析:A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B2. 函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A. y=﹣2(x﹣1)2+2B. y=﹣2(x﹣1)2﹣2C. y=﹣2(x+1)2+2D. y=﹣2(x+1)2﹣2【答案】B解析:解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.3. 已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C解析:解:∵d=3<半径=4,∴直线与圆相交,∴直线m与⊙O公共点个数为2个,故选C.4. 如图,直角坐标系中一条圆弧经过格点,,,其中点坐标为,则该圆弧所在圆的圆心坐标为()A. B. C. D.【答案】A解析:解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦和的垂直平分线,交点即为圆心.如图所示,则圆心是.故选:A.5. 如图,在中,,,则的度数是()A. B. C. D.【答案】A详解】解:连接,∵在中,,∴,则,∵,∴,故选:A.6. 如图,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转,得到△ADE,点D恰好落在直线BC上,则旋转角的度数为( )A. 70°B. 80°C. 90°D. 100°【答案】D解析:∵将△ABC绕点A逆时针旋转,得到△ADE∴△ABC≌△ADE∴AB=AD∴∠ADB=∠B=40°∵∠ADB+∠B+∠BAD=180°∴∠BAD=180°-40°-40°=100°故选D7. 如图,⊙O是∆ABC的外接圆,半径为,若,则的度数为()A. 30°B. 25°C. 15°D. 10°【答案】A解析:解:连接OB和OC,∵圆O半径为2,BC=2,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=30°,故选A.8. 如图,是的直径,若,∠D=60°,则长等于( )A. 4B. 5C.D. 【答案】D解析:解:∵是的直径,∴,∵,∴,∴,∵,∴,∴,故选:D .9. 已知,,是抛物线上的点.则、、的大小关系是()A. B.C. D.【答案】B 解析:解:∵,∴对称轴是:,则关于直线对称的点为,∵,∴当时,随的增大而增大,∵,∴;即:,故选:B .10. 某同学将如图所示的三条水平直线,,的其中一条记为x 轴(向右为正方向),三条竖直直线,,的其中一条记为y 轴(向上为正方向),并在此坐标平面内画出了二次函数的图象,那么她所选择的x 轴和y 轴分别为直线( )A. B. C. D.【答案】D解析:解:∵,∴顶点坐标为,∵,∴抛物线与的交点为顶点,∴为y轴,∵二次函数与y轴的交点为,且,∴为x轴,故答案为:D.11. 根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A. B.C. D.【答案】C【解析】解析:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C.12. 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A. 3B.C.D.【答案】D解析:如图,设光盘圆心为O,连接OC,OA,OB,∵AC、AB都与圆O相切,∴AO平分∠BAC,OC⊥AC,OB⊥AB,∴∠CAO=∠BAO=60°,∴∠AOB=30°,在Rt△AOB中,AB=3cm,∠AOB=30°,∴OA=6cm,根据勾股定理得:OB=3,则光盘的直径为6,故选:D.13. 如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )A. ∠ABD=∠EB. ∠CBE=∠CC. AD∥BCD. AD=BC【答案】C解析:根据旋转的性质得,∠ABD=∠CBE=60°,∠E=∠C,AB=BD,则△ABD为等边三角形,即AD=AB=BD,∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以∠ADB=∠CBD,∴AD∥BC.故选C.14. 如图,已知的弦,以为一边作正方形,切点为E,则的半径为( )A. 4B. 3C. 6D. 5【答案】D解析:解:连接并延长,交于F,连接,设的半径为r,则,边与相切,,四边形为正方形,,,在中,,即,解得:,的半径为5,故选:D.15. 已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x﹣10234y50﹣4﹣30下列结论正确的是( )A. 抛物线的开口向下B. 抛物线的对称轴为直线x=2C. 当0≤x≤4时,y≥0D. 若A(x 1,2),B(x2,3)是抛物线上两点,则x1x2【答案】B解析:解:由表格可得,该抛物线的对称轴为直线x==2,故选项B正确;当x<2 时,y随x的增大而减小,当x>2时,y随x的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x≤4时,y≤0,故选项C错误;由二次函数图象具有对称性可知,若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2或x2<x1,故选项D 错误;故选:B.16. 有一题目:“已知;点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图.由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.”,下列判断正确的是()A. 淇淇说的对,且的另一个值是115°B. 淇淇说的不对,就得65°C. 嘉嘉求的结果不对,应得50°D. 两人都不对,应有3个不同值【答案】A解析:解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°−65°=115°.故选:A.二、填空题(本大题共3小题,共10分.17小题2分,18—19小题各4分,每空2分)17. 二次函数的最小值是_________.【答案】3解析:解:∵a=1>0,∴当x=2时,y有最小值3.故答案为:3.18. 如图,在平面直角坐标系中,已知,以点为圆心的圆与轴相切.点、在轴上,且.点为上的动点,,则长度的最大值为__________,此时长度为__________.【答案】①. 8 ②. 16解析:解:连接,,∵已知,∴,又∵以点为圆心的圆与轴相切,∴得半径为3,则,由三角形三边关系可知:,当点在射线上时取最大值,如图,即:长度的最大值为8,又∵,,则点为斜边的中点,∴,∴当长度为最大值时,,故答案为:①8,②16.19. 如图,中,,.为中点,将绕着点逆时针旋转至.(1)当时,__________;(2)当恰为等腰三角形时,的值为__________.【答案】①. ②. 或或解析:解:(1)∵为中点,∴,∵将绕着点逆时针旋转至,∴,∴,∴,∵,即:∴,∵,∴,故答案为:;(2)如图1,连接,∵为中点,,∴,∴,而,∴,∴;当时,∴,∴,∴,∴,又∵,∴,∴,∴,即;当时,如图2,连接并延长交于,∵,∴垂直平分,∴,∵,为中点,∴,∴,∴,∴,∴,即;当时,如图3,连接并延长交于,连接,∵,为斜边中点,∴,∴垂直平分,∴,∵,∴,即;综上所述:当为等腰三角形时,的值为或或,故答案为:或或.三、解答题(本大题共7个小题,共72分.解答应等出文字说明、证明过程或演算步骤)20. 解方程:(1);(2)【答案】(1),(2)【小问1详解】由题意得,,则,∴,即,;【小问2详解】∴,因式分解为,∴,∴21. 如图,在平面直角坐标系中,的三个顶点坐标都在格点上,且与关于原点成中心对称.(1)画出;并写出各点坐标.(2)是的边上一点.将平移后点的对应点,请画出平移后的;(3)若和关于某一点成中心对称,则对称中心的坐标为__________.【答案】(1)作图见解析,,,(2)见解析(3)【小问1详解】解:∵,,,∴,,;∴即为所求;【小问2详解】∵,平移后点的对应点,∴先向右平移2个单位长度,再向下平移6个单位长度,即:如图所示;【小问3详解】连接,相交于点,则为对称中心,即:为的中点,∵,∴,又∵,∴,即,故答案为:.22. 如图,AB是的直径,弦于点M,连结CO,CB.(1)若,,求CD的长度;(2)若平分,求证:.【答案】(1)8;(2)证明见详解解析:解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,Rt△OCM中,OM2+CM2=OC2,∴CM4,∴CD=8;(2)过点O作ON⊥BC,垂足N,∵CO平分∠DCB,∴OM=ON,∵CO=CO∴Rt△COM≌Rt△CON∴CM=CN∴CB=CD.23. 如图,,,直线经过点.设,于点,将射线绕点按逆时针方向旋转,与直线交于点.(1)判断:__________;(2)若,求的长;(3)若的外心在三角形内部(不包括边上),直接写出的取值范围.【答案】(1)(2)(3)【小问1详解】解:∵,,∴,在四边形中,,故答案是:;【小问2详解】由旋转可知,,又∵,∴,,∴.由(1)知,而,∴.又∵,∴,∴.又∵,则是等腰直角三角形,∴;【小问3详解】由(2)可知,当时,则为直角三角形,外心在其斜边上,当时,则为钝角三角形,外心在其外部,当时,∵,,,∴,则,∴,,则为锐角三角形,外心在其内部,故:.24. 随着城市的块速发展,人们的环保意识逐渐增强,对花木的需求量也逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图1所示;种植花卉的利润与投资量成二次函数关系,如图2所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户计划以10万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?【答案】(1),(2)他至少获得18万元利润,他能获取的最大利润是50万元【小问1详解】设,由图1所示,函数图象过,∴∴;∵该抛物线的顶点是原点∴设,由图2所示,函数的图象过∴,则,∴;【小问2详解】设这位专业户投入种植花卉万元,则投入种植树木万元,他获得的利润是万元,根据题意得:,∴当时,的最小值是18∵,∴当时,的最大值是50.∴他至少获得18万元利润,他能获取的最大利润是50万元.25. 如图,AB是的直径,点D、E在上,连接AE、ED、DA,连接BD并延长至点C,使得.(1)求证:AC是的切线;(2)若点E是的中点,AE与BC交于点F,①求证:CA=CF;②若的半径为3,BF=2,求AC的长.【答案】(1)见解析;(2)①见解析;②8解析:(1)∵AB是的直径,∴∠ADB=90°,∴∠DBA+∠DAB=90°,∵∠DEA=∠DBA,∠DAC=∠DEA,∴∠DBA=∠DAC,∴∠BAC=∠DAC+∠DAB=90°,∵AB是的直径,∠BAC=90°,∴AC是的切线;(2)①∵点E是的中点,∴∠BAE=∠DAE,∵∠CFA=∠DBA+∠BAE,∠CAF=∠DAC+∠DAE,∠DBA=∠DAC,∴∠CFA=∠CAF,∴CA=CF;②设CA=CF=x,则BC=CF+BF=x+2,∵的半径为3,∴AB=6,在Rt△ABC中,CA2+AB2=BC2,即:x2+62=(x+2)2,解得:x=8,∴AC=8.26. 如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2;(2)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为解析:解:(1)将A(﹣1,0),B(0,2)代入y=﹣x2+bx+c,得:,解得:b=1,c=2∴抛物线的解析式为y=﹣x2+x+2.(2)①∵直线y=x-1与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,-1),点D的坐标为(2,0),∴0<m<2.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+m+2),点E的坐标为(m,m+3),∴PE=﹣m2+m+2﹣(m+3)=﹣m2+m+3=﹣(m﹣)2+.∵﹣1<0,0<<2,∴当m=时,PE最长.②由①可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,点Q的坐标为;②以PC为对角线,点Q的坐标为;③以CD为对角线,点Q的坐标为.综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为.。

数学月考试卷(二)及答案

数学月考试卷(二)及答案

学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆第二十五中学九年级上学期 数学月考试卷(二)(本试卷共三道大题,测试满分:150分,测试时间:120分钟)1、下列说法正确的是( )A.垂直于半径的直线是圆的切线B.经过三点一定可以作圆C.圆的切线垂直于圆的半径D.每个三角形都有一个内切圆2、下列事件发生的概率为0的是( )A 、随意掷一枚均匀的硬币两次,至少有一次反面朝上B 、今年冬天黑龙江会下雪C 、随意掷两个均匀的骰子,朝上面的点数之和为1D 、一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动 转盘,指针停在红色区域。

3、小强、小亮、小文三位同学玩投硬币游戏。

三人同时各投出一枚均匀硬 币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面 向上一个反面向上,则小亮赢;若出现一个正面向上两个反面向上,则 小文赢。

下面说法正确的是( )A 、小强赢的概率最小B 、小文赢的概率最小 C、小亮赢的概率最小 D 、三人赢的概率都相等 4、如图,小红要制作一个高为8cm ,底面圆直径是12cm 的圆锥形小漏斗, 若不计接缝,不计损耗,则她所需纸板的面积是:()A 、60πcm 2B 、48πcm 2 C 、120πcm 2 D 、96πcm25、如图,ABC △内接于圆O ,50A = ∠,60ABC =∠,BD 是圆O 的直径, BD 交AC 于点E ,连结DC ,则AEB ∠等于( ) A 、70B 、110C 、90D 、120(第4题图) (第5题图) (第6题图)6、如图将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A 、2cmB C 、 D 、7、如图,⊙O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于( ) A 、40° B 、55° C 、65° D 、70°8、如图,以BC 为直径,在半径为2、圆心角为90°的扇形内作一个半圆,交弦AB 于点D , 连接CD ,则阴影部分的面积是( )A .π-1B .π-2C .12π-1 D .12π-2 9、如图,一个小球从A 点沿制定的轨道下落,在每个叉口都有向左或向右两种机会均等的结果,小球最终到达H 点的概率是( )。

苏科版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

苏科版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、选择题1.下列方程中,关于x的一元二次方程是()A.x2+2x=x2﹣1B.ax2+bx+c=0C.3(x+1)2=2(x+1)D.+﹣2=02.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9 3.如图,已知A,B,C为⊙O上三点,若∠AOB=80°,则∠ACB度数为()A.80°B.70°C.60°D.40°4.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110°D.120°5.若关于x的一元二次方程x2+x+m=0有实数根,则m的最大整数值是()A.﹣1B.0C.1D.26.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.35°B.40°C.45°D.50°7.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,﹣2),则以A,B,C为顶点的三角形外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(3,1)D.(1,3)8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题9.方程x2=2x的解是.10.若a是方程x2﹣2x﹣2=0的一个根,则2a2﹣4a=.11.写出一个以和﹣3为根,且二次项系数为1的一元二次方程为.12.如图,△ABC内接于⊙O,∠BAC=30°,BC=2,则⊙O的直径等于.13.在⊙O中,直径AB=4,弦CD⊥AB于P,OP=,则弦CD的长为.14.如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB=cm时,BC与⊙A相切.15.若关于x的一元二次方程x2﹣(k+2)x+2k=0的两根的和与积相等,则k的值为.16.如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在直线AB 上,且与点O的距离为6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移动,那么秒钟后⊙P与直线CD相切.三、解答题17.用适当的方法解下列方程:(1)(2x﹣1)2﹣25=0;(2)x2﹣2x﹣1=0(配方法);(3)2(x2﹣2)=7x;(4)3(x﹣2)2=x(x﹣2).18.已知:关于x的方程x2﹣6x+m﹣5=0的一个根是﹣1,求m值及另一根.19.已知一元二次方程x2﹣4x+k=0有两个不相等的实数根(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.20.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,求∠A的度数.21.如图,AB是⊙O的直径,CE是⊙O上的两点,CD⊥AB于D,交BE于F,,求证:BF=CF.22.如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.23.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.24.文通小商店经销甲、乙两种商品,现有如下信息:信息1:甲乙两种商品的进货单价之和是3元.信息2:甲商品零售单价比进货单价多2元,乙商品零售单价比进货单价的2倍少1元.信息3:按零售单价购买甲商品3件和乙商品2件,共付了15元.请根据以上信息,解答请根据以上信息,解答下列问题:(1)求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲商品500件和乙商品400件.经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件.商店决定把甲种商品的零售单价下降m (m>0)元.在不考虑其他因素的条件下,当m为多少时,商店每天销售甲、乙两种商品获取的总利润为1900元?25.实践操作:如图,△ABC是直角三角形,∠ABC=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).(1)作∠BCA的平分线,交AB于点O;(2)以O为圆心,OB为半径作圆.综合运用:在你所作的图中,(1)AC与⊙O的位置关系是(直接写出答案)(2)若BC=6,AB=8,求⊙O的半径.26.阅读理解:(1)【学习心得】小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=46°,D是△ABC外一点,且AD=AC,求∠BDC的度数,若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=28°,求∠BAC的度数.小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:△ABD的外接圆就是以BD的中点为圆心,BD长为半径的圆;△BCD的外接圆也是以BD的中点为圆心,BD长为半径的圆.这样A、B、C、D四点在同一个圆上,进而可以利用圆周角的性质求出∠BAC的度数,请运用小刚的思路解决这个问题.(3)【问题拓展】如图3,在△ABC的三条高AD、BE、CF相交于点H,求证:∠EFC=∠DFC.参考答案一、选择题1.解:A、x2+2x=x2﹣1是一元一次方程,故A错误;B、ax2+bx+c=0,a=0时是一元一次方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、+﹣2=0是分式方程,故D错误;故选:C.2.解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.3.解:∵∠AOB=80°,∴∠ACB=∠AOB=40°,故选:D.4.解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故选:C.5.解:由题意知,Δ=12﹣4m≥0,∴m≤,∴m的最大整数值是0.故选:B.6.解:连接OC,∵CE为圆O的切线,∴OC⊥CE,∴∠COE=90°,∵∠CDB与∠BAC都对,且∠CDB=25°,∴∠BAC=∠CDB=25°,∵OA=OC,∴∠OAC=∠OCA=25°,∵∠COE为△AOC的外角,∴∠COE=50°,则∠E=40°.故选:B.7.解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选:C.8.解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.故选:D.二、填空题9.解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为x1=0,x2=2.10.解:把x=a代入方程得a2﹣2a﹣2=0,则a2﹣2a=2,所以2a2﹣4a=2(a2﹣2a)=2×2=4.故答案为4.11.解:∵+(﹣3)=﹣3,×(﹣3)=﹣3,∴以和﹣3为根,且二次项系数为1的一元二次方程为x2﹣(﹣3)x﹣3=0.故答案为:x2﹣(﹣3)x﹣3=0.12.解:作直径BD,连接CD,由圆周角定理得,∠D=∠BAC=30°,∠BCD=90°,∴BD=2BC=4,故答案为:4.13.解:连接OC,∵在⊙O中,直径AB=4,∴OA=OC=AB=2,∴弦CD⊥AB于P,OP=,∴CP==1,∴CD=2CP=2.故答案为:2.14.解:如图,过点A作AD⊥BC于点D.∵AB=AC,∠B=30°,∴AD=AB,即AB=2AD.又∵BC与⊙A相切,∴AD就是圆A的半径,∴AD=3cm,则AB=2AD=6cm.故答案是:6.15.解:∵关于x的一元二次方程x2﹣(k+2)x+2k=0的两根的和与积相等,∴x1+x2=x1x2k+2=2k,解得:k=2.故答案为:2.16.解:当点P在射线OA时⊙P与CD相切,如图,过P作PE⊥CD与E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圆心在直线AB上向右移动了(6﹣2)cm后与CD相切,∴⊙P移动所用的时间==4(秒);当点P在射线OB时⊙P与CD相切,如图,过P作PE⊥CD与F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圆心在直线AB上向右移动了(6+2)cm后与CD相切,∴⊙P移动所用的时间==8(秒).故答案为4或8.三、解答题17.解:(1)(2x﹣1)2﹣25=0,(2x﹣1)2=25,2x﹣1=±5,2x﹣1=5或2x﹣1=﹣5,x1=3,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,x﹣1=±,x﹣1=或x﹣1=﹣,x1=1+,x2=1﹣;(3)2(x2﹣2)=7x,2x2﹣7x﹣4=0,(x﹣4)(2x+1)=0,x﹣4=0或2x+1=0,x1=4,x2=﹣;(4)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)[3(x﹣2)﹣x]=0,(x﹣2)(3x﹣6﹣x)=0,(x﹣2)(2x﹣6)=0,x﹣2=0或2x﹣6=0,x1=2,x2=3.18.解:设方程的另一个根为n,∵方程x2﹣6x+m﹣5=0的两个根为﹣1和n,∴,解的:.∴m的值为﹣2,方程的另一根是7.19.解:由一元二次方程x2﹣4x+k=0有两个不相等的实数根,得Δ=b2﹣4ac=(﹣4)2﹣4k>0,解得k<4;(2)由k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0,得x2﹣4x+3=0,解得x1=1,x2=3,一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,当x=1时,把x=1代入x2+mx﹣1=0,得1+m﹣1=0,解得m=0,当x=3时,把x=3代入x2+mx﹣1=0,得9+3m﹣1=0,解得m=﹣,综上所述:如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,.20.解:连接OB,如图,∵AB=OC,∴AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,而OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.21.证明:延长CD交⊙O于点G,连接BC,∵AB是⊙O的直径,CD⊥AB于D∴=,∵=,∴=,∴∠BCF=∠CBF,∴BF=CF.22.(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.23.(1)解:∵CB=CD,∴∠CDB=∠CBD=39°,由圆周角定理得,∠CAB=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=39°+39°=78°;(2)证明:∵CE=CB,∴∠CBE=∠CEB,∴∠1+∠CDB=∠2+∠CAB,∵∠BAC=∠BDC=∠CBD,∴∠1=∠2.24.解:(1)设甲商品的零售单价为x元,乙商品的零售单价为y元,则甲商品的进价为(x﹣2)元,乙商品的进价为,由题意得,,解得:.答:甲商品的零售单价为3元,乙商品的零售单价为3元;(2)把甲种商品的零售单价下降m,可多卖甲商品100×件,则利润为:(500+100×)×(3﹣m﹣1)+400(3﹣2)=1900,解得:m1=0.5,m2=1.答:当m为0.5或1时,商店每天销售甲、乙两种商品获取的总利润为1900元.25.解:实践操作:(1)如图所示:CO即为所求;(2)如图所示:⊙O即为所求;综合运用:(1)AC与⊙O的位置关系是:相切;故答案为:相切;(2)过点O连接AC与⊙O的切点E,∵BC=6,AB=8,∠ABC=90°,∴AC==10,由题意可得出:CB⊙O的切点为B,则CE=CB=6,设BO=x,则EO=x,AO=6﹣x,AE=10﹣6=4,∴在Rt△AOE中,AE2+EO2=AO2,即42+x2=(8﹣x)2,解得:x=3,∴⊙O的半径为:3.26.解:(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=23°,故答案是:23°;(2)取BD中点O,连接AO、CO,在Rt△BAO中,AO=BD,同理:CO=BD,∴AO=DO=CO=BO,∴点A、B、C、D在以O为圆心的同一个圆上,∴∠BAC=∠BDC=28°;(3)∵CF⊥AB,BE⊥AC,∴点A、F、H、E在以AH为直径的同一个圆上,∴∠EFC=∠DAC,同理:点B、D、H、E在以BH为直径的同一个圆上,∠DFC=∠CBE,又∵∠DAC=∠EBC,∴∠EFC=∠DFC.。

沪科版2022-2023学年九年级数学上册第一次月考测试题(附答案) (2)

沪科版2022-2023学年九年级数学上册第一次月考测试题(附答案) (2)

2022-2023学年九年级数学上册第一次月考测试题(附答案)一、单选题(24分)1.已知三点P1(x1,y1),P2(x2,y2),P3(x3,y3)都在反比例函数y=﹣的图象上,若x1<0<x2<x3,则下列式子正确的是()A.y1<y2<y3B.y3<y2<y1C.y2>y3>y1D.y1>y3>y2 2.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中,x与y的部分对应值如下表:x﹣3﹣2﹣10y0﹣3﹣4﹣3下列结论:①ac<0;②当x>1时,y随x的增大而增大;③﹣4是方程ax2+(b﹣4)x+c=0的一个根;④当﹣1<x<0时,ax2+(b﹣1)x+c+3>0.其中正确结论的个数为()A.4个B.3个C.2个D.1个3.已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为()A.B.C.D.4.将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为()A.y=x2+4x+7B.y=x2﹣4x+7C.y=x2+4x+1D.y=x2﹣4x+1 5.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A.x<﹣4或x>2B.﹣4≤x≤2C.x≤﹣4或x≥2D.﹣4<x<2 6.把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4B.0C.2D.6二、填空题(20分)7.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m与新图象有4个交点时,m的取值范围是.8.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形OABC的边AB交于点E,且AE:EB=1:2,则矩形OABC的面积为.9.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为.10.若关于x的一元二次方程a(x+m)2=3的两个实数根x1=﹣1,x2=3,则抛物线y=a (x+m﹣2)2﹣3与x轴的交点坐标是.三、解答题(76分)11.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.12.反比例函数y=(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).(1)求反比例函数的解析式;(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.13.如图,Rt△ABC的斜边AC的两个顶点在反比例函数的图象上,点B在反比例函数的图象上,AB与x轴平行,BC=2,点A的坐标为(1,3).(1)求C点的坐标;(2)求点B所在函数图象的解析式.14.如图,抛物线与x轴交于点A(﹣,0),点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的解析式;(2)N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣),求△ABN的面积s与t的函数解析式;(3)若0<t<2且t≠0时,△OPN∽△COB,求点N的坐标.15.某公司生产A种产品,它的成本是6元/件,售价是8元/件,年销售量为5万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x 万元,产品的年销售量将是原销售量的y倍,且y与x之间满足我们学过的二种函数(即一次函数和二次函数)关系中的一种,它们的关系如下表:x(万元)00.51 1.52…y1 1.275 1.5 1.675 1.8…(1)求y与x的函数关系式(不要求写出自变量的取值范围)(2)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润W(万元)与广告费用x(万元)的函数关系式,并计算每年投入的广告费是多少万元时所获得的利润最大?(3)如果公司希望年利润W(万元)不低于14万元,请你帮公司确定广告费的范围.16.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.17.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC,点P是第一象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求此抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N,请用含m的代数式表示线段PN的长;(3)当m为何值时PN有最大值,最大值是多少?18.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0)、C(0,﹣3).(1)求抛物线的解析式.(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.参考答案一、单选题(24分)1.解:∵反比例函数y=﹣中k=﹣3<0,∴函数图象在二四象限,∵x1<0<x2<x3,∴点P1(x1,y1)在第二象限,y1>0,点P2(x2,y2),P3(x3,y3)在第四象限,∴y1>y3>y2.故选:D.2.解:∵x=﹣3时y=0,x=0时,y=﹣3,x=﹣1时,y=﹣4,∴,解得,∴y=x2+2x﹣3,∴ac=1×(﹣3)=﹣3<0,故①正确;对称轴为直线x=﹣=﹣1,所以,当x>﹣1时,y随x的增大而增大,故②正确;方程ax2+(b﹣4)x+c=0可化为x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以﹣4是方程ax2+(b﹣4)x+c=0的一个根,错误,故③错误;﹣1<x<0时,ax2+(b﹣1)x+c+3<0,原题干中错误,故④错误;综上所述,结论正确的是①②.故选:C.3.解:设I=,∵图象经过点(4,8),∴8=,解得:k=32,∴电流I关于电阻R的函数解析式为I=.4.解:抛物线y=x2向右平移2个单位后的解析式为:y=(x﹣2)2.再向上平移3个单位后所得抛物线的解析式为:y=(x﹣2)2+3,即y=x2﹣4x+7.故选:B.5.解:∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,∴二次函数的图象与x轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是﹣4<x<2.故选:D.6.解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.二、填空题(20分)7.解:如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2.故答案为:﹣6<m<﹣2.8.解:∵四边形OABC是矩形,∴∠OAB=90°,设E点的坐标是(a,b),∵双曲线y=(x>0)与矩形OABC的AB边交于点E,且AE:EB=1:2,∴ab=2,AE=a,BE=2a,∴OA=b,AB=3a,∴矩形OABC的面积是AO×AB=b•3a=3ab=3×2=6,故答案为:6.9.解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=2,∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.10.解:∵关于x的一元二次方程3的两个实数根x1=﹣1,x2=3,∴,解得,,则抛物线y=a(x+m﹣2)2﹣3=(x﹣3)2﹣3,令y=0,则(x﹣3)2﹣3=0,解得,x=5或x=1,∴抛物线y=a(x+m﹣2)2﹣3与x轴的交点坐标是(5,0)和(1,0).故答案是:(5,0)和(1,0).三、解答题(76分)11.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.12.解:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函数的解析式为:y=;(2)由(1)得k=1,∴A(1,1),设B(a,0),∴S△AOB=•|a|×1=3,∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函数的解析式为:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,∴,∴一次函数的解析式为:y=﹣.所以符合条件的一次函数解析式为:y=﹣或y=x+.13.解:(1)把点A(1,3)代入反比例函数得k1=1×3=3,所以过A点与C点的反比例函数解析式为y=,∵AB与x轴平行,∴B点的纵坐标为3,∵BC平行y轴,BC=2,∴C点的纵坐标为1,把y=1代入y=得x=3,∴C点坐标为(3,1);(2)把B(3,3)代入反比例函数得k2=3×3=9,所以点B所在函数图象的解析式为y=.14.解:(1)设抛物线的解析式为y=ax2+bx+c,由题意可得:,解得:.∴抛物线的函数关系式为y=﹣x2+x+1;(2)当﹣<t<2时,y N>0,∴NP=|y N|=y N=﹣t2+t+1,∴S=AB•PN=×(2+)×(﹣t2+t+1)=(﹣t2+t+1)=﹣t2+t+;(3)∵△OPN∽△COB,∴=,∴=,∴PN=2PO.当0<t<2时,PN=|y N|=y N=﹣t2+t+1,PO=|t|=t,∴﹣t2+t+1=2t,整理得:3t2﹣t﹣2=0,解得:t3=﹣,t4=1.∵﹣<0,0<1<2,∴t=1,此时点N的坐标为(1,2).故点N的坐标为(1,2).15.解:(1)设y与x的函数关系式为y=ax2+bx+c,由题意,得,解得:,∴y=﹣0.1x2+0.6x+1;(2)由题意,得W=(8﹣6)×5(﹣0.1x2+0.6x+1)﹣x,W=﹣x2+5x+10,W=﹣(x﹣2.5)2+16.25.∴a=﹣1<0,∴当x=2.5时,W最大=16.25.答:年利润W(万元)与广告费用x(万元)的函数关系式为W=﹣x2+5x+10,每年投入的广告费是2.5万元时所获得的利润最大为16.25万元.(3)当W=14时,﹣x2+5x+10=14,解得:x1=1,x2=4,∴1≤x≤4时,年利润W(万元)不低于14万元.16.解:(1)∵点A(﹣1,0)在抛物线上,∴,解得,∴抛物线的解析式为.∵,∴顶点D的坐标为;(2)△ABC是直角三角形.理由如下:当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.当y=0时,,∴x1=﹣1,x2=4,则B(4,0),∴OA=1,OB=4,∴AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C'(0,2).连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD 的值最小时,△CDM的周长最小.设直线C′D的解析式为y=ax+b(a≠0),则,解得,∴.当y=0时,,则,∴.17.解:(1)∵抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,∴,解得,,∴此抛物线的表达式为y=x2+x+4.(2)如图,抛物线y=x2+x+4,当x=0时,y=4,∴C(0,4),∴OB=OC,∵∠BOC=90°,∴∠OBC=∠OCB=45°,∵PM∥OC,PN⊥BC,∴∠NQP=∠OCB=45°,∠PNQ=90°,∴∠NPQ=∠NQP=45°,∴PN=QN,∴PN2+QN2=2PN2=PQ2,∴PN=PQ;设直线BC的表达式为y=k+4,则4k+4=0,解得,k=﹣1,∴y=﹣x+4,∵点P的横坐标为m,∴P(m,m2+m+4),Q(m,﹣m+4),∵点P在点Q的上方,∴PQ=m2+m+4﹣(﹣m+4)=m2+m,∴PN=(m2+m)=m2+m(0<m<4).(3)∵PN=m2+m=(m﹣2)2+,且<0,0<2<4,∴当m=2时,PN有最大值,PN最大=.18.解:(1)将点B、C的坐标代入抛物线的解析式得:,解得:a=,c=﹣3.∴抛物线的解析式为y=x2+x﹣3(2)令y=0,则x2+x﹣3=0,解得x1=1,x2=﹣4∴A(﹣4,0)、B(1,0)令x=0,则y=﹣3∴C(0,﹣3)∴S△ABC=×AB×OC=×5×3=设D(m,m2+m﹣3)过点D作DE∥y轴交AC于E.直线AC的解析式为y=﹣x﹣3,则E(m,﹣m﹣3)DE=﹣m﹣3﹣(m2+m﹣3)=﹣(m+2)2+3当m=﹣2时,DE有最大值为3此时,S△ACD有最大值为×DE×4=2DE=6∴四边形ABCD的面积的最大值为6+=.(3)如图所示:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形,∵C(0,﹣3)∴设P1(x,﹣3)∴x2+x﹣3=﹣3解得x1=0,x2=﹣3∴P1(﹣3,﹣3);②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP 为平行四边形,∵C(0,﹣3)∴设P(x,3),∴x2+x﹣3=3,解得x=或x=,∴P2(,3)或P3(,3)综上所述存在3个点符合题意,坐标分别是P1(﹣3,﹣3)或P2(,3)或P3(,3).。

2022-2023学年新人教版九年级下数学月考试卷(含解析)

2022-2023学年新人教版九年级下数学月考试卷(含解析)

2022-2023学年初中九年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:130 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 16 小题,每题 5 分,共计80分)1. 如图,已知∠MON,在∠MON内逐一画射线,下面三个图中分别有3个、6个、10个角(不大于平角的角).当∠MON内有n条射线时,角的个数为( )22A.nB.n(n+1)2C.n(n−1)2D.(n+1)(n+2)22. 下列计算中正确的是( )A.B.C.D.3. 若将一副三角尺按不同的位置摆放,则下列摆放方式中∠a与∠β不相等的是()A.B.C.D.4. 若多项式12x|a|−(a−4)x+6是关于x的四次三项式,则a的值是( )A.−4B.2C.4或−4D.45. 从国家航天局获悉,根据“祝融号”火星车发回遥测数据确认,5月15日7时18分,天问一号着陆巡视器成功着陆于火星南部预选着陆区,我国首次火星探测任务着陆成功.如果从火星表面发出的光需要经过20min才能到达地球(光速为300000km/s),那么用科学记数法表示此时火星与地球间的距离为()A.3.6×108kmB.3.6×107kmC.6×106kmD.6×107km6. 如图是由若干个完全相同的小正方体组合而成的几何体,将小正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图改变C.俯视图不变,主视图改变D.主视图不变,左视图不变7. 如图,在中,,以点C为圆心,长为半径画弧,交于点B和点D,再分别以点B,D为圆心,大于长为半径画弧,两弧相交于点M,作射线交于点E.若,则的长度是( )A.B.C.9D.8. 如图,在Rt△ABC中,∠ACB=90∘,AB的垂直平分线DE交BC的延长线于点F,若∠F=30∘,DE=1,则EF的长是( )A.3B.2C.√3D.19. 下列不等式变形中不正确的是( )A.由−ax>a,得x>−1B.由−a>−b,得a<bC.由a>b,得b<aD.由−12x<y,得x>−2y10. 在平面直角坐标系中,已知点E(−4,2),F(−2,−2),以原点O为位似中心,相似比为{1∶2},把{△EFO}缩小,则点{E}的对应点{E^{\prime}}的坐标是()A.{(-2,1)}B.{(-8,4)}C.{(-8,4)}或{(8,-4)}D.{(-2,1)}或{(2,-1)}11. 化简:{\dfrac{a^{2}}{a-b}-\dfrac{b^{2}}{a-b}}的结果是( )A.{a-b}B.{a+b}C.{\dfrac{1}{a+b}}D.{\dfrac{1}{a-b}}12. 在一次夏令营活动中,小霞同学从营地{A}点出发,要到距离{A}点{10}千米的{C}地去,先沿北偏东{70^{{\circ} }}方向走了{8}千米到达{B}地,然后再从{B}地走了{6}千米到达目的地{C},此时小霞在{B}地的( )A.北偏东{20^{{\circ} }}方向上B.北偏西{20^{{\circ} }}方向上C.北偏西{30^{{\circ} }}方向上D.北偏西{40^{{\circ} }}方向上13. 如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接{AC},作{AC}的垂直平分线{MN}分别交{AD},{AC},{BC}于{M},{O},{N},连接{AN},{CM},则四边形{ANCM}是菱形.乙:作{\angle A},{\angle B}的平分线{AE},{BF},分别交{BC},{AD}于{E},{F},连接{EF},则四边形{ABEF}是菱形.根据两人的作法可判断{(} {)}A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均错误D.甲、乙均正确14. 在对一组样本数据进行分析时,嘉琪列出了方差的计算公式:{S^{2}=\dfrac{1}{n}\left[ \left( 5-\overline {x}\right) ^{2}+\left( 6-\overline {x}\right) ^{2}+\left( 6-\overline {x}\right) ^{2}+\left( 8-\overline {x}\right) ^{2}\right]}由公式提供的信息,则下列说法错误的是()A.样本的容量是{4}B.样本的中位数是{6}C.样本的众数是{6}D.样本的平均数是{6.5}15. 如图,在{ \rm{Rt} \triangle ABC}中,{\angle A}={90^{{\circ} }},{D},{E}分别是{AB},{BC}的中点,点{F}在{DE}的延长线上,连接{CF},请添加一个条件使四边形{ADFC}为矩形,则这个条件不可能是( )A.{AC}={CF}B.{AD}={CF}C.{\angle B}={\angle BCF}D.{DB}={CF}16.如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为{y= -\dfrac{1}{25}x^{2}},当水面宽度{AB}为{20 \rm{m} }时,此时水面与桥拱顶的高度{DO}是()A.{2 \rm{m} }B.{4 \rm{m} }C.{10 \rm{m} }D.{16 \rm{m} }卷II(非选择题)二、填空题(本题共计 3 小题,每题 5 分,共计15分)17. {\left(- 1\right)^{2017}- \left(- \dfrac{1}{3}\right)^{- 2}+ \left(\pi- 3.14\right)^{0}- | - 2 |=}________.18. 一个正多边形的中心角是{60}度,边心距是{\sqrt3},则这个正多边形的边长是________.19. 探索函数{y= x+ \dfrac{1}{x}}的图象和性质:(1)它的自变量取值范围是________;(2)当{x\gt 0}时,我们利用列表法画出函数图象①填写下表,画出函数的图象:{x}… {\dfrac{1}{4}} {\dfrac{1}{3}}{\dfrac{1}{2}} {1} {2} {3} {4}…{y}…________________________________________________________…②观察图象,我们发现函数图象有一个最低点,它的坐标是________,这说明当{x= }________,函数{y}有最小值是________;并且,在该点的左边,{y}随{x}的增大而________,在该点的右边,{y}随{x}的增大而________.③利用上述结论,解决问题:矩形{ABCD}的面积等于{1},当它的长和宽分别为多少时,它的周长最小?三、解答题(本题共计 7 小题,每题 5 分,共计35分)20. 对数的定义:一般地,若{a^x=N},{(a\gt 0, a\neq 1)} ,那么{x}叫做以{a}为底{N}的对数,记作: {x=L_aN} .比如指数式{2^4=16}可以转化成对数式{4=L_216},对数式{2=L_525}可以转化成指数式{5^2=25}.根据对数的定义可得到对数的一个性质: {L_a\left(M \cdotN\right)=L_aM+N_aN},({a\gt0,a\neq1,M \gt 0,N \gt 0)} .理由如下:设{L_aM=m},{L_aN=n},则{M=a^m} ,{N=a^n},∴{M \cdot N}{=a^m\cdot a^n=a^{m+n}},由对数的定义得{m+n=L_a\left(M\cdot N\right)};而{m+n=L_aM+L_aN} ,∴{L_a(M \cdot N)}{=L_aM+L_aN} .认真阅读理解上述材料,解决以下问题:{(1)}填空:①将指数式{4^{3}=64}转化成对数式为________;②将对数式{4=L_{3}81}转化成指数式为________;③计算: {L_{10}10=}________;{(2)}试说明:{L_{a}\left( \dfrac{M}{N}\right) =L_{a}M-L_{a}N}({a\gt0,a\neq1,M \gt 0,N \gt 0)};{(3)}计算: {L_{3}2+L_{3}18-L_{3}4}.21. 计算:(-){^{2}\times 2^{3}-(-1)^{3}\times 6}.22. “元旦大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有{3}张相同的卡片,卡片上分别标有“{10}元”、“{20}元”和“{30}元”的字样,规定:在本商场同一日内,顾客每消费满{300}元,就可以在箱子里摸出一张卡片,记下钱数后放回,再从中摸出一张卡片.商场根据两张卡片所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费{300}元.{(1)}该顾客最多可得到________元购物券;{(2)}请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于{40}元的概率.23. 如图,在{ {\rm{Rt}} \triangle ABC}中,{\angle C}={90^{{\circ} }},以{BC}为直径的{\odot O}交{AB}于点{D},切线{DE}交{AC}于点{E}.{(1)}求证:{\angle A}={\angle ADE};{(2)}若{AD}={16},{DE}={10},求{BC}的长.24. 如图,某反比例函数图象的一支经过点{A(2,\, 3)}和点{B}(点{B}在点{A}的右侧),作{BC\perp y}轴,垂足为点{C},连结{AB},{AC}.{(1)}求该反比例函数的解析式;{(2)}若{\triangle ABC}的面积为{6},求直线{AB}的表达式.25. 如图,{{\rm Rt} \triangle AOB}的直角边{OA}在{x}轴上,{OA=2, AB=1},将{{\rm Rt} \triangle AOB}绕点{0}逆时针旋转{90^{\circ }}得到{{\rm Rt} \triangle COD},抛物线{y=-\dfrac{5}{6}x^{2}+bx+c},经过{B}、{D}两点.{(1)}求二次函数的解析式.{(2)}连接{BD},{P}是抛物线上一点,直线{OP}把{\triangle BOD}的周长分成相等的两部分,求点{P}的坐标.26. 在{\triangle ABC}中, {AC=BC},点{P}是{AB}上的一个动点,连接{CP},将{CP}绕着点{P}顺时针旋转,得到线段{PQ},连接{AQ}.{(1)}如图{1},当{\angle ACB=\angle CPQ=60^\circ}时,求证: {AQ=BP};{(2)}如图{2},当{\angle ACB=\angle CPQ=90^\circ}时,请你通过动手探索,尝试发现线段{AC},{AQ},{AP}之间的数量关系,并证明;{(3)}在{(2)}的条件下,{AC=BC=8},{\tan\angle ACP={\dfrac13}}时,直接写出线段{AQ}的长度.参考答案与试题解析2022-2023学年初中九年级下数学月考试卷一、选择题(本题共计 16 小题,每题 5 分,共计80分)1.【答案】D【考点】角的概念【解析】画{1}条、{2}条、{3}条射线时可以数出角的个数分别有{3}个、{6}个、{10}个角,当画{n}条时,由规律得到角的个数的表达式.【解答】解:画{n}条射线所得的角的个数为:{1+ 2+ 3+ ...+ (n+ 1)= \dfrac{(n+ 1)(n+ 2)}{2}}.故选{D}.2.【答案】B【考点】单项式除以单项式单项式乘单项式同底数幂的乘法【解析】{A}.原式{= a^{3}}________,错误;{B}.原式{= 2a^{2}},正确;{C}.原式{= 4a^{+ }},错误;{D}.原式{= 2a^{5}},错误,故选{B}.【解答】此题暂无解答3.【答案】C【考点】角的计算余角和补角【解析】本题考查角的计算、补角和余角.【解答】解:{\rm A}.{∵∠α+∠β=90^\circ,∠β=45^\circ},{∴∠α=∠β=45^\circ},故{\rm A}不符合题意;{\rm B}.{∵∠α+∠1=90^\circ,∠β+∠1=90^\circ},{∴∠α=∠β},故{\rm B}不符合题意;{\rm C}.{∵∠β=45^\circ,∠α+∠β≠90^\circ},{∴∠α≠∠β},故{\rm C}符合题意;{\rm D}.{∵∠α+45^\circ=180^\circ,∠β+45^\circ=180^\circ},{∴∠α=∠β},故{\rm D}不符合题意;故选{\rm C}.4.【答案】A【考点】多项式的概念的应用多项式的项与次数【解析】根据四次三项式的定义可知,该多项式的最高次数为{4},项数是{3},所以可确定{m}的值.【解答】解:∵多项式{\dfrac{1}{2}x^{\mathrel{|} a\mathrel{|} }- ( a -4)x+ 6}是关于{x}的四次三项式,∴{\mathrel{|} a\mathrel{|} = 4},{-( a -4)\neq 0},∴{a= -4}.故选{\rm A}.5.【答案】A【考点】科学记数法--表示较大的数有理数的乘法【解析】此题暂无解析【解答】解:科学记数法的表示形式为{a\times 10^{n}}的形式,其中{1\le | a | \lt 10},{n}为整数.确定{n}的值时,要看把原数变成{a}时,小数点移动了多少位,{n}的绝对值与小数点移动的位数相同.{20\times 60\times 300000=360000000\rm km=3.6\times 10^8\rm km}.故选{\rm A}.6.【答案】C【考点】简单组合体的三视图【解析】无【解答】解:观察图形可知,将小立方块①从{6}个大小相同的小立方块所搭的几何体中移走后,所得几何体左视图和俯视图不变,主视图改变.故选{\rm C}.7.【答案】A【考点】经过一点作已知直线的垂线【解析】利用基本作图得到{CE\perp AB},根据线段的和差关系可得{AC= AB= 6},然后利用勾股定理计算{CE}的长.【解答】{\because AE= 5, BE= 1}{AB= 6}由作图可知{Cl1}为{AB}的垂线,即{CE\perp AB}∴在{\triangle ACE}中,{AC^{2}= AE^{2}+ CE^{2}}{AB= AC}{6^{2}= 5^{2}+ CE^{2}}解得:{CE= \sqrt{11} },(负值舍去),故选:{A}.8.【答案】B【考点】线段垂直平分线的性质【解析】此题暂无解析【解答】解:如图,连接{AF},{∵AB}的垂直平分线{DE}交于{BD}的延长线于{F},{\begin{array}{l}{\therefore A F=B F} , \\ {\because F D \perp A B},\end{array}}{\therefore \angle A F D=\angle B F D=30^{\circ},}{\angle B=\angle F A B=90°-30°=60°},{\begin{array}{l}{\because \angle A C B=90^{\circ},} \\ {\therefore \angle B A C=30^{\circ},} \\ {\because D E=1} \\ {\therefore A E=2 D E=2} \\ {\therefore \angle F A E=\angle A F D=30^{\circ}} \\ {\therefore E F=A E=2.}\end{array}}故选{\rm B.}9.【答案】不等式的性质【解析】根据不等式的性质分析即可解答.【解答】解:{\mathrm A},由{-ax \gt a},得{x \lt -1},故{\mathrm A}错误;{\mathrm B},由{-a \gt -b},得{a \lt b},故{\mathrm B}正确;{\mathrm C},由{a \gt b},得{b \lt a},故{\mathrm C}正确;{\mathrm D},由{-\dfrac12x \lt y},得{x \gt -2y},故{\mathrm D}正确.故选{\mathrm A}.10.【答案】A【考点】位似的有关计算【解析】此题暂无解析【解答】此题暂无解答11.【答案】B【考点】分式的化简求值【解析】此题暂无解析【解答】解:原式{=\dfrac{a^{2}-b^{2}}{a-b}}{=a+b}.故选{\rm B}.B【考点】解直角三角形的应用-方向角问题【解析】由{AC= 10}千米,{AB= 8}千米,{BC= 6}千米得{AC^{2}= AB^{2}+ BC^{2}},根据勾股定理的逆定理得到{\angle ABC= 90^{{\circ} }},再利用平行线的性质和互余的性质得到{\angle 1},求得{\angle 2}.【解答】解:如图,∵{AC= 10}千米,{AB= 8}千米,{BC= 6}千米,∴{AC^{2}= AB^{2}+ BC^{2}},∴{\triangle ABC}为直角三角形,即{\angle ABC= 90^{{\circ} }},又∵{B}点在{A}的北偏东{70^{{\circ} }}方向,∴{\angle 1= 90^{{\circ} }-70^{{\circ} }= 20^{{\circ} }},∴{\angle 2= \angle 1= 20^{{\circ} }},即{C}点在{B}的北偏西{20^{{\circ} }}的方向上.故选{B}.13.【答案】D【考点】菱形的判定【解析】首先证明{\triangle AOM\cong \triangle CON(ASA)},可得{MO= NO},再根据对角线互相平分的四边形是平行四边形可判定判定四边形{ANCM}是平行四边形,再由{AC\perp MN},可根据对角线互相垂直的四边形是菱形判定出{ANCM}是菱形;四边形{ABCD}是平行四边形,可根据角平分线的定义和平行线的定义,求得{AB= AF},所以四边形{ABEF}是菱形.【解答】甲的作法正确;∵四边形{ABCD}是平行四边形,∴{AD\,//\,BC},∴{\angle DAC= \angle ACN},∵{MN}是{AC}的垂直平分线,∴{AO= CO},在{\triangle AOM}和{\triangle CON}中{\left\{ \begin{matrix}\angle MAO = \angle NCO \\AO =CO \\\angle AOM = \angle CON \\\end{matrix} \right.\ },∴{\triangle AOM\cong \triangle CON(ASA)},∴{MO= NO},∴四边形{ANCM}是平行四边形,∵{AC\perp MN},∴四边形{ANCM}是菱形;乙的作法正确;∵{AD\,//\,BC},∴{\angle 1= \angle 2},{\angle 6= \angle 7},∵{BF}平分{\angle ABC},{AE}平分{\angle BAD},∴{\angle 2= \angle 3},{\angle 5= \angle 6},∴{\angle 1= \angle 3},{\angle 5= \angle 7},∴{AB= AF},{AB= BE},∴{AF= BE}∵{AF\,//\,BE},且{AF= BE},∴四边形{ABEF}是平行四边形,∵{AB= AF},∴平行四边形{ABEF}是菱形;14.【答案】D【考点】算术平均数中位数方差众数【解析】无【解答】解:由方差计算可知:该样本共有{4}个数据:{5},{6},{6},{8}.故样本的容量是{4};样本的中位数是{6};样本的众数是{6};样本的平均数是{\dfrac{5+6+6+8} {4}=6.25},故选{\rm D}.15.【答案】A【考点】直角三角形斜边上的中线三角形中位线定理矩形的判定【解析】此题暂无解析【解答】此题暂无解答16.【答案】B【考点】二次函数的应用【解析】根据题意,把{x= 10}直接代入解析式即可解答.【解答】解:由已知{AB= 20 \rm{m} }知:点{B}的横坐标为{10}.把{x= 10}代入{y= -\dfrac{1}{25}x^{2}},得{y= -4}.即水面离桥顶的高度为{4 \rm{m} }.故选{\rm B}.二、填空题(本题共计 3 小题,每题 5 分,共计15分)17.【答案】{-11}【考点】实数的运算零指数幂、负整数指数幂绝对值【解析】本题考查的是实数的运算{,}零指数幂{,}负整数指数幂{.}解{:}原式{=}{-1-9+1-2}{=-11.}故答案为:{-11}.18.【答案】{2}【考点】正多边形和圆特殊角的三角函数值【解析】确定多边形的边数,即可求解.【解答】解:正多边形的边数是: {360^\circ\div60^\circ=6},即是正{\mathrm 六}边形,则正多边形边长{=\dfrac{\sqrt3}{\sin60^\circ}=\dfrac{\sqrt3}{\frac{\sqrt3}2}=2}.故答案为:{2}.19.【答案】{x\neq 0}{\dfrac{17}{4}},{\dfrac{10}{3}},{\dfrac{5}{2}},{2},{\dfrac{5}{2}},{\dfrac{10}{3}},{\dfrac{17} {4}},{(2,\, 1)},{1},{2},减少,增大【考点】反比例函数综合题【解析】(1)根据函数关系式中有分式分母不为{0}即可得出结论;(2)①关键画函数图象的方法,列表,描点,连线即可;②根据函数图象即可得出结论;③先建立长方形得周长和宽得函数关系式即可得出结论.【解答】解:(1)函数{y= x+ \dfrac{1}{x}}自变量取值范围是{x\neq 0};(2)①列表:{x}… {\dfrac{1}{4}} {\dfrac{1}{3}}{\dfrac{1}{2}} {1} {2} {3} {4}…{y}…{\dfrac{17}{4}}{\dfrac{10}{3}}{\dfrac{5}{2}}{2}{\dfrac{5}{2}}{\dfrac{10}{3}}{\dfrac{17}{4}}…描点,②由图象知,函数图象有一个最低点,它的坐标是 {(2,\, 1)},这说明当{x= 1},函数{y}有最小值是 {2};并且,在该点的左边,{y}随{x}的增大而减少,在该点的右边,{y}随{x}的增大而增大.三、解答题(本题共计 7 小题,每题 5 分,共计35分)20.【答案】{L_4 64=3},{3^{4}=81},{1}{(2)}设{L_aM=m},{L_aN=n},则{M=a^m} ,{N=a^n},∴{ \dfrac{M}{N}}{=a^m\div a^n=a^{m-n}},由对数的定义得{m-n=L_a\left( \dfrac{M}{N}\right)};而{m-n=L_aM-L_aN} ,∴ {L_{a}\left( \dfrac{M}{N}\right) =L_{a}M-L_{a}N_{a}}.{(3)}{L_32+L_318-L_34}{=L_3\left(2\times 18\right)-L_34}{=L_336-L_34}{=L_3\left(36\div4\right)}{=L_39}{=L_33^{2}}{=2}.【考点】定义新符号【解析】 {(1)}由材料,根据对数的定义求解即可;{(2)}利用题目信息结合同底数幂的除法求解即可;{(3)}利用对数的性质求解即可.【解答】解:{(1)}根据题意知{①}{4^{3}=64}转化为{L_4 64=3},{②}对数式{4=L_{3}81}转化成{3^{4}=81};{③}{L_{10} 10=1},故答案为:{L_4 64=3};{3^{4}=81};{1}.{(2)}设{L_aM=m},{L_aN=n},则{M=a^m} ,{N=a^n},∴{ \dfrac{M}{N}}{=a^m\div a^n=a^{m-n}},由对数的定义得{m-n=L_a\left( \dfrac{M}{N}\right)};而{m-n=L_aM-L_aN} ,∴ {L_{a}\left( \dfrac{M}{N}\right) =L_{a}M-L_{a}N_{a}}.{(3)}{L_32+L_318-L_34}{=L_3\left(2\times 18\right)-L_34}{=L_336-L_34}{=L_3\left(36\div4\right)}{=L_39}{=L_33^{2}}{=2}.21.【答案】原式={\times 8+ 6}={2+ 6}={8}【考点】有理数的混合运算【解析】先算乘方,再算乘除,最后算加减即可.【解答】原式={\times 8+ 6}={2+ 6}={8}22.【答案】{60}{(2)}根题题意画图如下:共有{9}种等可能出现的结果,其中顾客所获得购物券的金额不低于{40}元共有{6}种结果,所以{P(不低于40元 ) = \dfrac{6}{9} = \dfrac{2}{3}}.【考点】等可能事件的概率列表法与树状图法【解析】(1)先根据顾客刚好消费{300}元,求出该顾客可以在箱子里先后摸出两张卡片,再求出这两张卡片的最大和即可;(2)根据题意画出树状图,求出该顾客所获得购物券的金额不低于{40}元的情况数和总的情况数,再根据概率公式进行计算即可.【解答】解:{(1)}∵该顾客刚好消费{300}元,∴该顾客可以在箱子里先后摸出两张卡片,∴该顾客至多可得到{30+ 30=}{60}(元)购物券;故答案为:{60}.{(2)}根题题意画图如下:共有{9}种等可能出现的结果,其中顾客所获得购物券的金额不低于{40}元共有{6}种结果,所以{P(不低于40元 ) = \dfrac{6}{9} = \dfrac{2}{3}}.23.【答案】{(1)}证明:连接{OD},∵{DE}是切线,∴{\angle ODE}{=}{90^{{\circ} }},∴{\angle ADE+ \angle BDO }{=}{90^{{\circ} }},∵{\angle ACB}{=}{90^{{\circ} }},∴{\angle A+ \angle B}{=}{90^{{\circ} }},∵{OD}{=}{OB},∴{\angle B}{=}{\angle B \rm{DO} },∴{\angle ADE}{=}{\angle A}.{(2)}解:连接{CD}.∵{\angle ADE}{=}{\angle A},∴{AE}{=}{DE},∵{BC}是{\odot O}的直径,{\angle ACB}{=}{90^{{\circ} }},∴{EC}是{\odot O}的切线,∴{ED}{=}{EC},∵{DE}{=}{10},∴{AC}{=}{2DE}={20},在{ {\rm{Rt}} \triangle ADC}中,{DC = \sqrt{2{0}^{2} - 1{6}^{2}} = 12},设{BD}{=}{x},在{ {\rm{Rt}} \triangle BDC}中,{BC^{2}}{=}{x^{2}+ 12^{2}},在{ {\rm{Rt}} \triangle ABC}中,{BC^{2}}{=}{(x+ 16)^{2}-20^{2}},∴{x^{2}+ 12^{2}}{=}{(x+ 16)^{2}-20^{2}},解得{x}={9},∴{BC = \sqrt{1{2}^{2} + {9}^{2}} = 15}.【考点】圆周角定理切线的性质勾股定理【解析】(1)只要证明{\angle A+ \angle B}={90^{{\circ} }},{\angle ADE+ \angle B}={90^{{\circ} }}即可解决问题;(2)首先证明{AC}={2DE}={20},在{ \rm{Rt} \triangle ADC}中,{DC =\sqrt{2{0}^{2} - 1{6}^{2}} = 12},设{BD}={x},在{ \rm{Rt} \triangleBDC}中,{BC^{2}}={x^{2}+ 12^{2}},在{ \rm{Rt} \triangle ABC}中,{BC^{2}}={(x+ 16)^{2}-20^{2}},可得{x^{2}+ 12^{2}}={(x+ 16)^{2}-20^{2}},解方程即可解决问题;【解答】{(1)}证明:连接{OD},∵{DE}是切线,∴{\angle ODE}{=}{90^{{\circ} }},∴{\angle ADE+ \angle BDO }{=}{90^{{\circ} }},∵{\angle ACB}{=}{90^{{\circ} }},∴{\angle A+ \angle B}{=}{90^{{\circ} }},∵{OD}{=}{OB},∴{\angle B}{=}{\angle B \rm{DO} },∴{\angle ADE}{=}{\angle A}.{(2)}解:连接{CD}.∵{\angle ADE}{=}{\angle A},∴{AE}{=}{DE},∵{BC}是{\odot O}的直径,{\angle ACB}{=}{90^{{\circ} }},∴{EC}是{\odot O}的切线,∴{ED}{=}{EC},∴{AE}{=}{EC},∴{AC}{=}{2DE}={20},在{ {\rm{Rt}} \triangle ADC}中,{DC = \sqrt{2{0}^{2} - 1{6}^{2}} = 12},设{BD}{=}{x},在{ {\rm{Rt}} \triangle BDC}中,{BC^{2}}{=}{x^{2}+ 12^{2}},在{ {\rm{Rt}} \triangle ABC}中,{BC^{2}}{=}{(x+ 16)^{2}-20^{2}},∴{x^{2}+ 12^{2}}{=}{(x+ 16)^{2}-20^{2}},解得{x}={9},∴{BC = \sqrt{1{2}^{2} + {9}^{2}} = 15}.24.【答案】解:{(1)}由题意得,{k=xy=2\times 3=6},∴反比例函数的解析式为{y = \dfrac{6}{x}}.{(2)}设{B}点坐标为{(a,\, b)},如图,作{AD\perp BC}于{D},则{D(2,\, b)}.∵反比例函数{y = \dfrac{6}{x}}的图象经过点{B(a,\, b)},∴{b = \dfrac{6}{a}},∴{AD=3 - \dfrac{6}{a}},∴{S_{\triangle ABC} = \dfrac{1}{2}BC\cdot AD}{ = \dfrac{1}{2}a(3 - \dfrac{6}{a})=6},解得{a=6},∴{b = \dfrac{6}{a} = 1},∴{B(6,\, 1)}.设{AB}的解析式为{y=kx+ b},将{A(2,\, 3)},{B(6,\, 1)}代入函数解析式,得{\left\{ \begin{matrix} 2k + b = 3 ,\\ 6k + b = 1 ,\\ \end{matrix} \right.\ }解得{\left\{ \begin{matrix} k = - \dfrac{1}{2} ,\\ b = 4, \\ \end{matrix} \right.\ }∴直线{AB}的解析式为{y = - \dfrac{1}{2}x+ 4}.【考点】待定系数法求反比例函数解析式反比例函数系数k的几何意义待定系数法求一次函数解析式反比例函数与一次函数的综合【解析】{(1)}把{A}的坐标代入反比例函数的解析式即可求得;{(2)}作{AD\perp BC}于{D},则{D(2,\, b)},即可利用{a}表示出{AD}的长,然后利用三角形的面积公式即可得到一个关于{b}的方程求得{b}的值,进而求得{a}的值,根据待定系数法,可得答案.【解答】解:{(1)}由题意得,{k=xy=2\times 3=6},∴反比例函数的解析式为{y = \dfrac{6}{x}}.{(2)}设{B}点坐标为{(a,\, b)},如图,作{AD\perp BC}于{D},则{D(2,\, b)}.∵反比例函数{y = \dfrac{6}{x}}的图象经过点{B(a,\, b)},∴{b = \dfrac{6}{a}},∴{AD=3 - \dfrac{6}{a}},∴{S_{\triangle ABC} = \dfrac{1}{2}BC\cdot AD}{ = \dfrac{1}{2}a(3 - \dfrac{6}{a})=6},解得{a=6},∴{b = \dfrac{6}{a} = 1},∴{B(6,\, 1)}.设{AB}的解析式为{y=kx+ b},将{A(2,\, 3)},{B(6,\, 1)}代入函数解析式,得{\left\{ \begin{matrix} 2k + b = 3 ,\\ 6k + b = 1 ,\\ \end{matrix} \right.\ }解得{\left\{ \begin{matrix} k = - \dfrac{1}{2} ,\\ b = 4, \\ \end{matrix} \right.\ }∴直线{AB}的解析式为{y = - \dfrac{1}{2}x+ 4}.25.【答案】解:{(1)}由题意,得{\triangle AOB\cong \triangle COD}∴{OC=OA=2, CD=AB=1},∴{B\left(2, 1\right), D\left(-1, 2\right)},∵抛物线{y=-\dfrac{5}{6}x^{2}+bx+c}经过{B},{D}两点,∴{\left\{ \begin{array} {l}{-\dfrac{5}{6}\times 2^{2}+2b+c=1} \\ {-\dfrac{5}{6}\times \left(-1\right)^{2}-b+c=2}\end{array} \right.},∴{\left\{ \begin{array} {l}{c=\dfrac{10}{3}}, \\ {b=\dfrac{1} {2}}.\end{array} \right.}二次函数解析式是{y=-\dfrac{5}{6}x^{2}+\dfrac{1}{2}x+\dfrac{10}{3}.}{(2)}直线{OP}把{\triangle BOD}分成周长相等的两部分,∴直线{OP}必过线段{BD}的中点{\left(\dfrac{1}{2}, \dfrac{3}{2}\right)}.∴直线{OP}的解析式{y_{OP}=3x.}∵点{P}是抛物线{y=-\dfrac{5}{6}x^{2}+\dfrac{1}{2}x+\dfrac{10}{3}}和直线{y_{OP}=3x}交点,∴{\left\{ \begin{array} {l}{y=3x} \\ {y=-\dfrac{5}{6}x^{2}+\dfrac{1}{2}x+\dfrac{10}{3}}\end{array} \right.}解得{\left\{ \begin{array} {l}{x=1} \\ {y=3}\end{array} \right.}或{\left\{\begin{array} {l}{y=-4} \\ {y=-12}\end{array} \right.}∴{P\left(1, 3\right)}或{\left(-4, -12\right)}.【考点】二次函数综合题【解析】此题暂无解析【解答】解:{(1)}由题意,得{\triangle AOB\cong \triangle COD}∴{OC=OA=2, CD=AB=1},∴{B\left(2, 1\right), D\left(-1, 2\right)},∵抛物线{y=-\dfrac{5}{6}x^{2}+bx+c}经过{B},{D}两点,∴{\left\{ \begin{array} {l}{-\dfrac{5}{6}\times 2^{2}+2b+c=1} \\ {-\dfrac{5}{6}\times \left(-1\right)^{2}-b+c=2}\end{array} \right.},∴{\left\{ \begin{array} {l}{c=\dfrac{10}{3}}, \\ {b=\dfrac{1} {2}}.\end{array} \right.}二次函数解析式是{y=-\dfrac{5}{6}x^{2}+\dfrac{1}{2}x+\dfrac{10}{3}.}{(2)}直线{OP}把{\triangle BOD}分成周长相等的两部分,∴直线{OP}必过线段{BD}的中点{\left(\dfrac{1}{2}, \dfrac{3}{2}\right)}.∴直线{OP}的解析式{y_{OP}=3x.}∵点{P}是抛物线{y=-\dfrac{5}{6}x^{2}+\dfrac{1}{2}x+\dfrac{10}{3}}和直线{y_{OP}=3x}交点,∴{\left\{ \begin{array} {l}{y=3x} \\ {y=-\dfrac{5}{6}x^{2}+\dfrac{1}{2}x+\dfrac{10}{3}}\end{array} \right.}解得{\left\{ \begin{array} {l}{x=1} \\ {y=3}\end{array} \right.}或{\left\{\begin{array} {l}{y=-4} \\ {y=-12}\end{array} \right.}∴{P\left(1, 3\right)}或{\left(-4, -12\right)}.26.【答案】{\left(1\right)}证明:连结{CQ},{\because AC=BC},{\angle ACB=60 ^{\circ}},{\therefore \triangle ABC}是等边三角形,由旋转的性质知,{CP=PQ},∵{\angle CPQ=60^{\circ }},{\therefore \triangle CPQ}是等边三角形,{\therefore \angle PCQ=60^{\circ }},{CP=CQ},{\because \angle BCP=60^{\circ }-\angle PCA},{\angle ACQ=60^{\circ }-\angle PCA},{\therefore \angle BCP=\angle ACQ},在{\triangle BCP}和{\triangle ACQ}中,{\begin{cases} BC=AC,\\\angle BCP=\angle ACQ ,\\ CP=CQ ,\end{cases}}{\therefore \triangle BCP\cong \triangle ACQ},{\therefore AQ=BP}.{(2)}解:{AC+AQ=\sqrt{2}AP},证明:将{AP}绕点{P}逆时针旋转{90^{\circ }},与{AC}的延长线相交于点{M},{\because AC=BC},{\angle ACB=90^{\circ }},{\therefore \angle BAC=45^{\circ }},又{\angle APM=90^{\circ }},{\therefore \angle BAC=\angle M=45^{\circ }},{\therefore \triangle APM}为等腰直角三角形,{\therefore PM=AP},又{\angle CPQ=90^{\circ }},{\therefore \angle APQ=90^{\circ }-\angle CPA},{\angle MPC=90^{\circ }-\angle CPA},{\therefore \angle APQ=\angle MPC},在{\triangle APQ}和{\triangle MPC}中,{\begin{cases} AP=MP,\\\angle APQ=\angle MPC, \\CP=PQ, \end{cases}} {\therefore \triangle APQ\cong \triangle MPC(\rm SAS)},{\therefore MC=AQ},在等腰{{\rm{Rt}}\triangle APM}中,{AM=AC+CM=\sqrt{2}AP},{\therefore AC+AQ=\sqrt{2}AP}.{(3)}解:将{AP}绕点{P}逆时针旋转{90^{\circ }},与{AC}相交于点{N},过{P}作{PG\perp AC}于{G},同理可证明{\triangle APQ\cong \triangle NPC(\rm SAS)},{\therefore NC=AQ},{AP=NP},{\therefore \triangle APN}为等腰直角三角形,{\because \angle BAC=45^{\circ }},{\therefore \triangle APG}为等腰直角三角形,{\therefore PG=AG=AC-CG=8-CG},{\because \tan\angle ACP=\dfrac{1}{3}},{\therefore \dfrac{PG}{CG}=\dfrac{1}{3}},即{\dfrac{PG}{CG}=\dfrac{8-CG}{CG}=\dfrac{1}{3}},{\therefore CG=6},经经验,{CG=6}是方程的解,且符合题意,{\therefore NG=AG=8-6=2},{\therefore NC=6-NG=6-2=4},{\therefore AQ=NC=4}.【考点】等边三角形的性质与判定旋转的性质全等三角形的性质与判定等腰直角三角形锐角三角函数的定义【解析】左侧图片未给出解析左侧图片未给出解析左侧图片未给出解析【解答】{\left(1\right)}证明:连结{CQ},{\because AC=BC},{\angle ACB=60 ^{\circ}},{\therefore \triangle ABC}是等边三角形,由旋转的性质知,{CP=PQ},∵{\angle CPQ=60^{\circ }},{\therefore \triangle CPQ}是等边三角形,{\therefore \angle PCQ=60^{\circ }},{CP=CQ},{\because \angle BCP=60^{\circ }-\angle PCA},{\angle ACQ=60^{\circ }-\angle PCA},{\therefore \angle BCP=\angle ACQ},在{\triangle BCP}和{\triangle ACQ}中,{\begin{cases} BC=AC,\\\angle BCP=\angle ACQ ,\\ CP=CQ ,\end{cases}} {\therefore \triangle BCP\cong \triangle ACQ},{\therefore AQ=BP}.{(2)}解:{AC+AQ=\sqrt{2}AP},证明:将{AP}绕点{P}逆时针旋转{90^{\circ }},与{AC}的延长线相交于点{M},{\because AC=BC},{\angle ACB=90^{\circ }},{\therefore \angle BAC=45^{\circ }},又{\angle APM=90^{\circ }},{\therefore \angle BAC=\angle M=45^{\circ }},{\therefore \triangle APM}为等腰直角三角形,{\therefore PM=AP},又{\angle CPQ=90^{\circ }},{\therefore \angle APQ=90^{\circ }-\angle CPA},{\angle MPC=90^{\circ }-\angle CPA},{\therefore \angle APQ=\angle MPC},在{\triangle APQ}和{\triangle MPC}中,{\begin{cases} AP=MP,\\\angle APQ=\angle MPC, \\CP=PQ, \end{cases}} {\therefore \triangle APQ\cong \triangle MPC(\rm SAS)},{\therefore MC=AQ},在等腰{{\rm{Rt}}\triangle APM}中,{AM=AC+CM=\sqrt{2}AP},{\therefore AC+AQ=\sqrt{2}AP}.{(3)}解:将{AP}绕点{P}逆时针旋转{90^{\circ }},与{AC}相交于点{N},过{P}作{PG\perp AC}于{G},同理可证明{\triangle APQ\cong \triangle NPC(\rm SAS)},{\therefore NC=AQ},{AP=NP},{\therefore \triangle APN}为等腰直角三角形,{\because \angle BAC=45^{\circ }},{\therefore \triangle APG}为等腰直角三角形,{\therefore PG=AG=AC-CG=8-CG},{\because \tan\angle ACP=\dfrac{1}{3}},{\therefore \dfrac{PG}{CG}=\dfrac{1}{3}},即{\dfrac{PG}{CG}=\dfrac{8-CG}{CG}=\dfrac{1}{3}},{\therefore CG=6},经经验,{CG=6}是方程的解,且符合题意,{\therefore NG=AG=8-6=2},{\therefore NC=6-NG=6-2=4},{\therefore AQ=NC=4}.。

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案) (2)

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案) (2)

河南省信阳市浉河区吴家店中学2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一.选择题(满分30分)1.下列是部分星座的符号,其中是中心对称图形的是()A.B.C.D.2.一元二次方程2x2﹣6x﹣5=0的一次项系数是()A.2B.6C.﹣6D.﹣53.如图,AB是⊙O的直径,C为圆内一点,则下列说法正确的是()A.∠BOC是圆心角B.AC是⊙O的弦C.∠C是圆周角D.4.某种商品每天的销售利润y(元)与单价x(元)之间的函数关系式为y=﹣0.1(x﹣3)2+25.则这种商品每天的最大利润为()A.0.1元B.3元C.25元D.75元5.某厂1月份生产口罩60万箱,第一季度生产口罩共200万箱,一位同学根据题意列出了方程60+60(1+x)+60(1+x)2=200,则x表示的意义是()A.该厂二月份的增长率B.该厂三月份的增长率C.该厂一、二月份平均每月的增长率D.该厂二、三月份平均每月的增长率6.将抛物线y=2x2+3向右平移3个单位长度.再向上平移2个单位长度,得到的抛物线的解析式为()A.y=2(x﹣3)2+5B.y=2(x﹣3)2﹣1C.y=2(x+3)2+5D.y=2(x+3)2﹣17.在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC 绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是()A.45°B.60°C.75°D.90°8.如图,O为线段BC的中点,点A,C,D到点O的距离相等.则∠A与∠C的数量关系为()A.∠A=∠C B.∠A=2∠C C.∠A﹣∠C=90°D.∠A+∠C=180°9.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°,得到△CBD,若点B的坐标为(4,0),则点C的坐标为()A.(﹣2,2)B.(﹣4,2)C.(﹣2,2)D.(﹣2,4)10.小明周末前往游乐园游玩,他乘坐了摩天轮,摩天轮转一圈,他离地面高度y(m)与旋转时x(s)之间的关系可以近似地用y=﹣x2+bx+c来刻画.如图记录了该摩天轮旋转时x(s)和离地面高度y(m)的三组数据,根据上述函数模型和数据,可以推断出:当小明乘坐此摩天轮离地面最高时,需要的时间为()A.172s B.175s C.180s D.186s二.填空题(满分15分)11.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.12.在平面直角坐标系内,若点P(﹣1,p)和点Q(q,3)关于原点O对称,则pq的值为.13.已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为.14.如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD 于点E.则图中阴影部分的面积为.(结果保留π)15.如图,在△ABC中,∠ACB=90°,AC=3,CB=5,点D是CB边上的一个动点,将线段AD绕着点D顺时针旋转90°,得到线段DE,连接BE,则线段BE的最小值等于.三.解答题(满分75分)16.用恰当的方法解下列方程:(1)x2+2x﹣3=0;(2)3(x﹣1)2=2(x﹣1).17.某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.18.在学完圆的相关知识后,某数学兴趣小组利用课余时间探究过圆外一点作已知圆的切线,下面记录了部分探究过,组员小杜用尺规作图过一点作已知圆的切线.如图,已知⊙O 及⊙O外一点P,求作:过点P的⊙O的切线.①连接OP,作OP的垂直平分线MN交OP于点A;②以A为圆心,OA为半径作⊙A,交⊙O于点B、C;③作射线PB、PC;则射线PB、PC即为所求.请完成以下问题:(1)根据上述步骤,利用尺规作图(保留作图痕迹、不写作法),将图形补充完整;(2)细心的小马同学通过认真观察,发现线段PB和PC满足一定的数量关系,请你将他的“已知”和“求证”补充完整,并证明.已知:如图,PB、PC与⊙O相切于点B、C,求证:19.掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投实心球,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时起点处高度为m,当水平距离为3m时,实心球行进至最高点3m处.(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.图1来源:《2022年兰州市高中阶段学校招生体育考试规则与测试要求》20.已知:二次函数y=x2﹣4x+3a+2(a为常数).(1)请写出该二次函数图象的对称轴;(2)若这个二次函数的最小值是7,求a的值;(3)直角坐标系中,若该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,求a的取值范围.21.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?22.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y=的图象与性质,其探究过程如下:(1)绘制函数图象,如图1.列表:下表是x与y的几组对应值;x…﹣3﹣2﹣1﹣123…y…124421…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;(2)通过观察图1,写出该函数的两条性质;①;②;(3)①观察发现:如图2.若直线y=2交函数y=的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC=;②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC=;③类比猜想:若直线y=a(a>0)交函数y=(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC=.23.如图①,现有三张形状大小完全相同的三角形纸片叠合到一起,其中AB=AC,∠B=∠C=α.老师让同学们以“三角形的旋转”为主题,通过小组合作探究,提出问题一展示一集体谈论,解决问题.(1)“希望”小组提出问题:将图1中的△ABC以点C为旋转中心,顺时针旋转角度α,得到△DEC,再将△ABC以点A为旋转中心,逆时针旋转角度α,得到△AFG,连接DG,得到图②,请判断四边形AEDG的形状,并说明理由;(2)“善学”小组提出问题:将图①中的△ABC以点C为旋转中心,顺时针旋转90°,得到△DEC,再将△ABC以点A为旋转中心,逆时针旋转90°,得到△AFG,连接AE,DF,DG,得到图③请判断四边形ACDG的形状,并说明理由;老师根据上面小组的探究提出:(3)若α=75°,则图③中,∠EDF=.参考答案一.选择题(满分30分)1.解:A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.2.解:一元二次方程2x2﹣6x﹣5=0的一次项系数是﹣6.故选:C.3.解:A、顶点在圆心的角叫圆心角,故∠BOC是圆心角,故A选项符合题意;B、弦是连接圆上任意两点的线段,故AC不是⊙O的弦,故B选项不符合题意;C、顶点在圆上,两边与圆相交的角叫圆周角,故∠C不是圆周角,故C不符合题意;D、根据三角形的三边关系可得AC+OC>AO=AB,故D不符合题意.故选:A.4.解:∵﹣0.1<0,∴当x=3时,y有最大值,最大值为25,故选:C.5.解:依题意可知:该厂2月份生产口罩60(1+x)万箱,3月份生产口罩60(1+x)2万箱,∴x表示该厂二、三月份平均每月的增长率.故选:D.6.解:将抛物线y=2x2+3向右平移3个单位长度.再向上平移2个单位长度,得到的抛物线的解析式为:y=2(x﹣3)2+3+2.即y=2(x﹣3)2+5.故选:A.7.解:根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故选:D.8.解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠A+∠C=180°,故选:D.9.解:作CH⊥x轴于H点,如图,当x=4时,y=x=4,则A(4,4),∴AB=4,∵△ABO绕点B逆时针旋转60°,得到△CBD,∴BC=BA=4,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=2,BH=CH=6,∴OH=BH﹣OB=6﹣4=2,∴C点坐标为(﹣2,2).故选:A.10.解:把(160,60),(190,67.5)分别代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为y=﹣x2+9x﹣740,∴该铅球飞行到最高点时,需要的时间为﹣=180(s),故选:C.二.填空题(满分15分)11.解:∵一个不透明的袋子里装有3个红球和5个黑球,∴共有8个球,∴从袋中任意摸出一个球是红球的概率为.故答案为:.12.解:∵点P(﹣1,p)和点Q(q,3)关于原点O对称,∴q=1,p=﹣3,则pq的值为:﹣3.故答案为:﹣3.13.解:∵点A'与点A关于y轴对称,点A(﹣2,m),∴点A'(2,m),∵点A'在正比例函数y=x的图象上,∴m==1,∴A(﹣2,1),∵点A(﹣2,1)在一个反比例函数的图象上,∴反比例函数的表达式为y=﹣,故答案为:y=﹣.14.解:∵以B为圆心,BC的长为半径画弧,交AD于点E,∴BE=BC=2,在矩形ABCD中,∠A=∠ABC=90°,AB=1,BC=2,∴sin∠AEB==,∴∠AEB=30°,∴∠EBA=60°,∴∠EBC=30°,∴阴影部分的面积:S==π,故答案为:π.15.解:过E作EF⊥BC于F,∵∠C=∠ADE=90°,∴∠EFD=∠C=90°,∠FED+∠EDF=90°,∠EDF+∠ADC=90°,∴∠DEF=∠ADC,在△EDF和△DAC中,,∴△EDF≌△DAC(AAS),∴DF=AC=3,EF=CD,设CD=x,则BE2=x2+(2﹣x)2=2(x﹣1)2+2,∴BE2的最小值是2,∴BE的最小值是,故答案为:.三.解答题(满分75分)16.解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,则x+3=0或x﹣1=0,解得x1=﹣3,x2=1;(2)∵3(x﹣1)2=2(x﹣1),∴3(x﹣1)2﹣2(x﹣1)=0,则(x﹣1)(3x﹣5)=0,∴x﹣1=0或3x﹣5=0,解得x1=1,x2=.17.解:(1)画树形图为:共有8种等可能的结果数,其中甲、乙、丙三名学生在同一个餐厅用餐的结果数为2,所以甲、乙、丙三名学生在同一个餐厅用餐的概率==;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的结果数为7,所以甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率=.18.解:(1)作图如下:(2)已知:如图,PB、PC与⊙O相切于点B、C,OC、OB是⊙O的半径,求证:PB=PC.证明:∵PB、PC与⊙O相切于点B、C,OC、OB是⊙O的半径,∴OC=OB,∠OCP=∠OBP=90°,∵OP=OP,∴Rt△OCP≌Rt△OBP(HL),∴PC=PB.故答案为:OC、OB是⊙O的半径,PC=PB.19.解:(1)根据题意设y关于x的函数表达式为y=a(x﹣3)2+3,把(0,)代入解析式得:=a(0﹣3)2+3,解得:a=﹣,∴y关于x的函数表达式为y=﹣(x﹣3)2+3;(2)该女生在此项考试中是得满分,理由:令y=0,则﹣(x﹣3)2+3=0,解得:x1=7.5,x2=﹣1.5(舍去),∵7.5>6.70,∴该女生在此项考试中是得满分.20.解:(1)对称轴为直线x=﹣==2.(2)当x=2时,y最小值=22﹣4×2+3a+2=4﹣8+3a+2=3a﹣2,∵最小值是7,∴3a﹣2=7,解得:a=3.(3)∵该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,∴x2﹣4x+3a+2=2x﹣1在x≤4的范围内有两个不同的实数根,化简得:x2﹣6x+3a+3=0,Δ=36﹣4(3a+3)>0,解得:a<2,∵x2﹣6x+3a+3=0在x≤4的范围内有两个不同的实数根,∴x=4时,y=16﹣24+3a+3≥0,∴a≥,∴≤a<2.21.解:(1)设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y个老旧小区,依题意得:80×(1+15%)y≤1440×(1+20%),解得:y≤,又∵y为整数,∴y的最大值为18.答:该市在2022年最多可以改造18个老旧小区.22.解:(1)补全图象如图所示:(2)①函数的图象关于y轴对称;②当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小(答案不唯一);(3)①如图2,∵A、B的纵坐标相同,故AB∥OC,而BC∥OA,则四边形OABC为平行四边形,当y=2时,即2=,解得x=±1,故点A、B的坐标分别为(﹣1,2)、(1,2),则AB=1+1=2=OC,则S四边形OABC=CO•y A=2×2=4,②当y=a时,同理可得:点A、B的坐标分别为(﹣,a)、(,2),则AB==OC,则S四边形OABC=CO•y A=•a=4,③当函数表达式为y=时,同理可得:点A、B的坐标分别为(﹣,a)、(,2),则AB==OC,则S四边形OABC=CO•y A=•a=2k;故答案为:①4;②4;③2k.23.解:(1)四边形AEDG是平行四边形,理由如下:∵旋转,∴AC=CD=AG,AB=DE,∠GAC=α,∠DEC=∠B=α,∴∠DEC=∠GAC,∴AG∥DE,∵AB=AC,∴AG=DE,∴四边形AEDG是平行四边形;(2)四边形ACDG是正方形,理由如下:∵旋转,∴AC=CD=AG,AB=DE,∠GAC=90°=∠ACD,∴AG∥CD,∴四边形ACDG是平行四边形,∵∠GAC=90°,∴四边形ACDG是矩形,∵AC=CD=AG,∴四边形ACDG是正方形;(3)连接GE,∵∠B=∠ACB=α=75°,∴∠BAC=30°,∵旋转,∴∠CDE=∠GAF=30°,AB=DE=AC=CD,∵四边形ACDG是正方形,∴GD=CD=AC=AG,∠GDC=∠AGD=90°,∴∠GDE=60°,DG=DE,∴△GDE是等边三角形,∴GE=GD=AG,∠GDE=60°,∴∠AGE=30°,∴∠GAE=∠GEA=75°,∴∠F AE=45°,∵四边形AEDF是平行四边形,∴∠EAF=∠EDF=45°,故答案为:45°.。

2020-2021学年安徽省九年级(上)月考数学试卷(二)(附答案详解)

2020-2021学年安徽省九年级(上)月考数学试卷(二)(附答案详解)

2020-2021学年安徽省九年级(上)月考数学试卷(二)一、选择题(本大题共10小题,共40.0分)1.已知2a=3b,则a−bb的值为()A. 12B. −12C. 13D. −132.若反比例函数y=2−kx的图象分布在第二、四象限,则k的取值范围是()A. k<−2B. k<2C. k>−2D. k>23.如图,点D在△ABC的边AB上,DE//BC,DE交AC于点E,EF//AB交BC于点F,下列比例式不成立的是()A. ADDB =BFFCB. ADAB =BFBCC. DEBC =EFABD. DBAB =CFBC4.把二次函数y=−2x2+4x−1配方成顶点形式y=−2(x+ℎ)2+k,则h,k的值分别为()A. ℎ=−1,k=1B. ℎ=−1,k=−2C. ℎ=1,k=1D. ℎ=1,k=−35.如图,CD是Rt△ABC斜边AB上的中线,过点C作CE⊥CD交AB的延长线于点E,添加下列条件仍不能判断△CEB与△CAD相似的是()A. ∠CBA=2∠AB. 点B是DE的中点C. CE⋅CD=CA⋅CBD. CECA =BEAD6.肚脐眼是人上下身的分界点,已知某人的肚脐眼恰好是他的身高的黄金分割点,且他的上身比下身长,若该人的身高约为1.8米,则他的上身长度约为()(精确到0.1米)A. 0.9米B. 1.0米C. 1.1米D. 1.2米7.如图,在矩形ABCD中,AB=24,AD=10,将矩形ABCD沿某直线折叠,使点A与点C重合,折痕与AB交于点M,与CD交于点N,则线段MN的长是()A. 5B. 12C. 6512D. 6568.已知抛物线y=−x2−4x+5,下列说法正确的是()A. 抛物线与y轴的交点位于y轴的负半轴上B. 当x>−2时,函数值y随x的增大而减小C. 若2≤x≤5,则函数一定有最大值是9D. 抛物线与x轴的交点坐标是(−1,0)和(5,0)9.如图,△ABC中,CA=CB=5cm,AB=8cm,直线l经过点A且垂直于AB,现将直线l以1cm/s的速度向右匀速移动,直至经过点B时停止移动,直线l与边AB交于点M,与边AC(或CB)交于点N.若直线l移动的时间是x(s)、△AMN的面积为y(cm2),则y与x之间函数关系的图象是()A. B.C. D.10.如图,△ABC中,∠ACB=90°,CA=CB=3√2,点D、E分别在边AB,BC上,且∠CDE=45°,下列结论中:①△CAD∽△DBE;②若点D是AB的中点,则点E也是BC的中点;③若点D是AB的三等分点,则BE的长是4√2,其中正确的结3论有()A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共4小题,共20.0分)11.已知a=3,b=6,则a,b的比例中项是______.12.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则a+b+c______0(填“>”或“=”或“<”).13.如图,点A(2,4)在第一象限,点B(b,3)在第二象限,且OA⊥OB,反比例函数y=(k≠0)的图象经过点B,则k的值为______.−kx14.如图,在矩形ABCD中,点E是边CD上一点,连接BE,过点C作CG⊥BE于G,CG的延长线交AD于F,连接DG并延长交BC于H,且点H恰好是BC的中点.(1)若∠CBE=35°,则∠CDH=______°.(2)若CE=6,DE=2,则DF的长是______.三、解答题(本大题共9小题,共90.0分)15.已知a:b:c=2:3:4,求a−3b−c的值.b16.如图,抛物线y=2x2+bx−2过点A(−1,m)和B(5,m).(1)求b和m的值;(2)若抛物线与y轴交于点C,求△ABC的面积.17.如图,小明为了测量大树AB的高度,在离B点21米的N处放了一个平面镜,小明沿BN方向后退1.4米到D点,此时从镜子中恰好看到树顶的A点,已知小明的眼睛(点C)到地面的高度CD是1.6米,求大树AB的高度.18.如图,在10×10网格中,点O是格点,△ABC是格点三角形(顶点在网格线交点上),且点A1是点A以点O为位似中心的对应点.(1)画出△ABC以点O为位似中心的位似图形△A1B1C1;(2)△A1B1C1与△ABC的位似比是______.19.已知△ABC的面积为S,点D,E分别在边AB,AC上,且DE//BC.【填空】(1)如图1,若AD:DB=1:1,则四边形DECB的面积a1=______(用含S的式子表示,下同);(2)如图2,若AD:DB=1:2,则四边形DECB的面积a2=______;(3)如图3,若AD:DB=1:3,则四边形DECB的面积a3=______;以此类推,…【猜想】根据上述规律猜想,若AD :DB =1:n ,则四边形DECB 的面积a n =______;【应用】计算a 1⋅a 2⋅a 3…a 10.20. 喷洒酒精能有效杀灭“新型冠状肺炎”病毒.根据实验知道喷洒酒精在教室内空气中的浓度y(单位:mg/m 3)与时间x(单位:ℎ)的函数表达式为y ={2x(0<x <m)−x 2+6x −4(x ≥m).其大致图象如图所示.请根据以上信息解答下列问题: (1)试确定点A 的坐标;(2)根据经验,当教室空气中的药物浓度不低于1mg/m 3时,杀灭“新型冠状肺炎”病毒的效果最佳,请通过计算说明单次喷洒酒精杀灭“新型冠状肺炎”病毒的效果处于最佳状态的时间为多少小时?(mk≠0)的图象相交于点A(1,6)和点21.已知一次函数y=kx+b与反比例函数y=mxB(n,−2).(1)试确定一次函数与反比例函数的表达式;(2)若点P在x轴上,且△PAB的面积为12,求点P的坐标;(3)结合图象直接写出不等式kx+b>m的解集.x22.如图,在平面直角坐标系xOy中,直线l:y=x−2与x轴、y轴分别交于点A和点B,抛物线y=x2+bx+c经过点B,且与直线l的另一个交点为C(6,n)(1)求n的值和抛物线的解析式;(2)已知点P是抛物线上位于点B、C之间的一动点(不与点B,C重合),设点P的横坐标为a.当a为何值时,△APC的面积最大,并求出其最大值;(3)在y轴上是否存在点M,使△BMC与△BAO相似?若存在,直接写出点M的坐标(不用说理);若不存在,请说明理由.23.如图,四边形ABCD和四边形AEFG都是正方形,C,E,F三点在一条直线上,连接FA并延长交边CB的延长线于点H.(1)求证:△HCA∽△HFC;(2)求CF的值;BE(3)若HC=6,HB=2,求正方形AEFG的边长.答案和解析1.【答案】A【解析】解:∵2a=3b,∴ab =32,∴a−bb =ab−1=32−1=12;故选:A.根据已知条件得出ab =32,再把要求的式子化成ab−1,再代值计算即可得出答案.此题考查了比例的性质,熟练掌握比例的性质是解题的关键.2.【答案】D【解析】解:∵反比例函数y=2−kx的图象分布在第二、四象限,∴2−k<0,解得k>2,故选:D.根据反比例函数的图象和性质,由2−k<0即可解得答案.本题考查了反比例函数的图象和性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.3.【答案】C【解析】解:∵DE//BC,∴ADBD =AECE,∵EF//AB,∴AECE =BFCF,∴ADBD =BFCF,故A正确,不符合题意;∵DE//BC,∴ADAB =AEAC,∵EF//AB,∴AEAC =BFBC,∴ADAB =BFBC,故B正确,不符合题意;∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,∵EF//AB,∴△CEF∽△CAB,∴EFAB =CEAC,∴C错误,符合题意;∵DE//BC,∴DBAB =CEAC,∵EF//AB,∴CEAC =CFBC,∴DBAB =CFBC,故D正确,不符合题意;故选:C.利用平行线分线段成比例和相似三角形的判定与性质,逐一进行判断即可.本题主要考查了平行线分线段成比例,以及相似三角形的判定与性质,熟记平行线分线段成比例是解题的关键.4.【答案】A【解析】解:∵二次函数y=−2x2+4x−1=−2(x−1)2+1,∴ℎ=−1,k=1,故选:A.将题目中的函数解析式化为顶点式,即可得到h、k的值,本题得以解决.本题考查二次函数的性质、二次函数的三种形式,解答本题的关键是明确题意,利用二次函数的性质解答.5.【答案】D【解析】解:∵CE⊥CD,∴∠EDC=90°,∵∠BCA=90°,∴∠BCE=∠DCA=90°−∠BCD,∵CD是Rt△ABC斜边AB上的中线,∴DC=DB=DA,∴∠DAC=∠A,∴∠BCE=∠DCA=∠A,∵∠CBA=2∠A,∠CBA+∠A=90°,∴∠A=∠BCE=∠DCA=30°,∠CBA=60°,∴∠E=∠CBA−∠BCE=30°,∴∠BCE=∠DCA=∠E=∠A,∴△CEB∽△CAD,∴A不符合题意,∵点B是DE的中点,∴BE=BC,∴∠BCE=∠E,∴∠BCE=∠E=∠DCA=∠A,∴△CEB∽△CAD,∴B不符合题意,∵CE⋅CD=CA⋅CB,∴CECA =CBCD,∵∠BCE=∠DCA,∴△CEB∽△CAD,∴C不符合题意.由CECA =BEAD,由于∠E和∠A不能判断相等,故不能判断△CEB与△CAD相似,∴D符合题意,故选:D.根据相似三角形的判定方法一一判断即可.本题考查相似三角形的判定,直角三角形斜边中线的性质,直角三角形30度角的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.6.【答案】C【解析】解:∵某人的肚脐眼恰好是他的身高的黄金分割点,且他的上身比下身长,该人的身高约为1.8米,∴他的上身长度约为√5−12×1.8≈0.618×1.8≈1.1(米),故选:C.直接根据黄金分割的定义求解即可.本题主要考查了黄金分割以及近似数.关键是明确黄金分割所涉及的线段的比值.7.【答案】D【解析】解:∵矩形ABCD中,AB=24,AD=BC=10,∠B=90°,∴AC=√AB2+BC2=√242+102=26,由折叠可得,MN垂直平分AC,∴AO=CO=13,又∵CD//AB,∴∠NCO=∠MAO,∠CNO=∠AMO,∴△CON≌△AOM(AAS),∴MO=NO,∵∠AOM=∠B=90°,∠MAO=∠BAC,∴△ABC∽△AOM,∴OMBC =AOAB,即OM10=1324,解得OM=6512,∴MN=2OM=656.故选:D.先判定△CON≌△AOM,即可得到MO=NO,再根据△ABC∽△AOM,即可得到OM=6512,进而得出MN=2OM=656.本题主要考查了折叠问题、相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.8.【答案】B【解析】解:A、由于c=5>0,所以抛物线与y轴的交点位于y轴的正半轴上,故本选项不符合题意.B、由于y=−x2−4x+5=−(x+2)2+9的开口方向向下,对称轴是直线x=−2,所以当x>−2时,函数值y随x的增大而减小,故本选项符合题意.C、由于y=−x2−4x+5=−(x+2)2+9的顶点坐标是(−2,9),且开口方向向下,所以当x=−2时,函数一定有最大值是9,故本选项不符合题意.D、由于y=−x2−4x+5=−(x+5)(x−1),所以抛物线与x轴的交点坐标是(1,0)和(−5,0),故本选项不符合题意.故选:B.根据二次函数解析式化为顶点式,判断抛物线的开口方向,计算出对称轴顶点坐标以及增减性判断得出答案即可.此题考查二次函数的性质,抛物线与x轴的交点,正确判定开口方向,求得对称轴与顶点坐标是解决问题的关键.9.【答案】C【解析】解:过点C作CD⊥AB于D,在等腰△ABC中,AC=5,AD=12AB=4,则CD=3,在Rt△ACD中,tanA=CDAD =34=tanB,(1)当0≤x≤4,如图1,∵tan∠A=MNAM =34=MNx,即MN=34x,y=12×AM⋅MN=12x×34x=38x2,该函数为开口向上的抛物线,且对称轴为y轴,位于y轴的右侧抛物线的一部分;(2)当4<x≤8时,同理:y=12x×34(8−x)=−38x2+3x,该函数为开口向下的抛物线的一部分,对称轴为x=4,故选:C.用面积公式,分段求出△AMN的面积即可求解.本题考查的是动点图象问题,涉及到解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.10.【答案】D【解析】解:∵∠ACB=90°,CA=CB=3√2,∴∠A=∠B=45°.∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∠CDE=45°,∴∠ACD=∠BDE,∴△CAD∽△DBE,故①正确;∵CA=CB=3√2,∴AB=√CA2+CB2=6,当点D是AB的中点时,BD=AD=12AB=3,由①结论可得:CADB =ADBE,即3√23=3BE,解得:BE=3√22=12BC,故点E为BC的中点,故②正确;若点D是AB的三等分点,则AD=2或4,由①中结论可得:CADB =ADBE,∴3√24=2BE或3√22=4BE,解得:BE=4√23.故③正确.综上,正确的共有3个.故选:D.根据外角定理结合已知条件可得∠CDB=∠A+∠ACD=∠CDE+∠BDE,从而可得∠ACD=∠BDE,又∠A=∠B=45°,故可判定△CAD∽△DBE,则①正确;根据勾股定理可得AB=6,当D为AB中点时,由由①结论可得:CADB =ADBE,可得BE=3√22=12BC,则可判断②正确;若点D是AB的三等分点,则AD=2或4,由①结论可得:CADB =ADBE,进而可得到BE=4√23.故③正确.本题考查了相似三角形的判定与性质、等腰三角形的性质,推出△CAD∽△DBE是解本题的关键.11.【答案】±3√2【解析】解:设c是a,b的比例中项,则c2=ab,∵a=3,b=6,∴c2=18,解得c=±3√2.故答案为:±3√2.首先设c是a,b的比例中项,根据比例中项的定义,即可得c2=ab,又由a=3,b=6,即可求得a,b的比例中项的值.此题考查了比例中项的定义.此题比较简单,解题的关键是熟记比例中项的定义.12.【答案】<【解析】解:∵抛物线对称轴为直线x=−1,抛物线与x轴的一个交点在−2、−3之间,∴另一个交点在0、1之间,∴当x=1时,y<0,则a+b+c<0,故答案为<.根据二次函数的对称性求得抛物线与x轴的另一个交点在0、1之间,即可判断当x=1时,y<0,即a+b+c<0.本题主要考查二次函数图象与系数之间的关系,熟练掌握二次函数的性质是解题的关键.13.【答案】18【解析】解:如图,作BD⊥x轴,AC⊥x轴.∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴ODAC =BDOC,∵A(2,4),B(b,3),∴OC=2,AC=4,OD=−b,BD=3,∴−b4=32,∴b=−6,∴B(−6,3),∵设反比例函数y=−kx(k≠0)的图象经过点B,∴−k=−6×3=−18,∴k=18,故答案为18.作AC⊥x轴,BD⊥x轴.易得△ACO∽△ODB,根据比例式求出OD,可得出点B的坐标,代入y=−kx(k≠0)即可求出k的值.本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.14.【答案】20 4【解析】解:(1)∵CG⊥BE,H是BC的中点,∴HB=HC=HG=12BC,∴∠CBE=∠HGB,∵∠CBE=35°,∴∠HGB=35°,∴∠CHD=∠CBE+∠HGB=70°,在矩形ABCD中,∠BCD=90°,∴∠CDH=90°−∠CHD=20°,故答案为:20;(2)由(1)得∠HBG=∠HGB,∵∠HGB=∠DGE,∴∠HBG=∠DGE,∵∠BCE=90°,∴∠DCG+∠BCG=90°,∵CG⊥BE于G,∴∠HBG+∠BCG=90°,∴∠DCG=∠HBG,∴∠DGE=∠DCG,∵∠D=∠D,∴△DGE∽△DCG,∴DGDC =DEDG,∴DG2=DE⋅DC,∵HC=HG,∴∠HCG=∠HGC,∵AD//BC,∴∠HCG=∠GFD,∵∠HGC=∠DGF,∴∠GFD=∠DGF,∴DG=DF,∴DF2=DE⋅DC=2×(2+6)=2×8=16,∴DF=4,故答案为:4.(1)根据直角三角形斜边上的中线性质得出∠CBE=∠HGB=35°,再根据三角形外角性质得出∠CHD=70°,最后根据直角三角形两锐角互余即可得解;(2)由(1)得∠HBG=∠HGB,再根据直角三角形的两锐角互余可求得∠DGE=∠DCG,即可判定△DGE∽△DCG,可得出DG2=DE⋅DC,再根据矩形的性质及对顶角相等可求得DG=DF,即可得解.此题考查了矩形的性质,根据矩形的性质得出∠CBE=∠HGB及DG=DF是解题的关键.15.【答案】解:由a:b:c=2:3:4可设a=2k,b=3k,c=4k,则原式=2k−9k−4k3k =−113.【解析】根据比例设a=2k,b=3k,c=4k,然后代入比例式进行计算即可得解.本题考查了比例的性质,利用“设k法”表示出a、b、c求解更简便.16.【答案】解:(1)∵点A(−1,m)和B(5,m)是抛物线y=2x2+bx−2上的两点,∴−b2×2=−1+52,解得,b=−8,∴抛物线解析式为y=2x2−8x−2,把A(−1,m)代入得,m=2+8−2=8;(2)由y=2x2−8x−2可知,抛物线与y轴交点C的坐标为(0,−2),∴OC=2,∵A(−1,8)和B(5,8),∴AB=6,∴S△ABC=12×6×(2+8)=30.【解析】(1)根据点A(−1,m)和B(5,m)是抛物线y=2x2+bx−2上的两点,可以得到b 的值,即可得到函数解析式,把A(−1,m)代入解析式即可求得m的值;(2)求得C的坐标,然后根据三角形面积公式即可求得.本题考查了二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】解:∵AB⊥DB,DC⊥DB,∴∠CDN=∠ABN=90°,∵∠CND=∠ANB,∴△CDN∽△ABN.∴CDDN =ABBN,即1.61.4=AB21,∴AB=1.6×21÷1.4=24(m),答:大树AB的高度为24m.【解析】由图不难得出,△CDN∽△ABN,再利用相似三角形对应边成比例,进而可求解线段的长.此题主要考查了相似三角形的应用,根据已知得出△CDN∽△ABN是解题关键.18.【答案】3【解析】解:(1)如图所示,△A1B1C1即为所求.(2)△A1B1C1与△ABC的位似比=OA1OA=3,故答案为:3.(1)连接OB、OC,分别延长OB、OC到点B1、C1,使OB1OB =OC1OC=OA1OA,再首尾连接即可;(2)由位似比=OA1OA可得答案.本题主要考查作图−位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.19.【答案】34S89S1516S n(n+2)(n+1)2【解析】解:(1)∵AD:DB=1:1,∴ADAB =12,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =14,∴S△ADES =14,∴S△ADE=14S,∴a1=S−S△ADE=34S,故答案为:34S;(2)∵AD:DB=1:2,∴ADAB =13,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =19,∴S△ADES =19,∴S△ADE=19S,∴a2=S−S△ADE=89S,故答案为:89S;(3)∵AD:DB=1:3,∴ADAB =14,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =116,∴S△ADES =116,∴S△ADE=116S,∴a3=S−S△ADE=1516S,故答案为:1516S;【猜想】∵AD:DB=1:n,∴ADAB =1n+1,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =1(n+1)2,∴S△ADES =1(n+1)2,∴S△ADE=1(n+1)2S,∴a n=S−S△ADE=[1−1(n+1)2]S=(n+1)2−1(n+1)2S=n(n+2)(n+1)2S,故答案为:n(n+2)(n+1)2S;【应用】由【猜想】知,a n=n(n+2)(n+1)2S,∴a1⋅a2⋅a3…a10=1×322⋅2×432⋅3×542⋅4×652⋅5×762…⋅10×12112=12×12112=6121.(1)先算出ADAB =12,再判断出△ADE∽△ABC,得出S△ADES△ABC=14,进而得出S△ADE=14S,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论;【猜想】同(1)的方法,即可得出结论;【应用】先得出a1⋅a2⋅a3…a10=1×322⋅2×432⋅3×542⋅4×652⋅5×762…⋅10×12112,即可得出结论.此题是四边形综合题,主要考查了相似三角形的判定和性质,得出a n=n(n+2)(n+1)2S是解本题的关键.20.【答案】解:(1)由题意可得A为函数y=2x与y=−x2+6x−4的交点,所以2x=−x2+6x−4,解得x1=x2=2,代入y=2x得y=4,可得A(2,4).(2)当教室空气中的药物浓度不低于1mg/m3时,杀灭“新型冠状肺炎”病毒的效果最佳,由(1)得m=2,当0<x<2时,令y=1,2x=1,x=12;当x≥2时,令y=1,−x2+6x−4=1整理得x2−6x+5=0解得x1=1(不合题意,舍去),x2=5,所以x=5,所以单次喷洒酒精杀灭“新型冠状肺炎”病毒的效果处于最佳状态的时间为(5−12)= 4.5小时.【解析】(1)点A是一次函数与二次函数的交点,令函数值相等即可求解;(2)教室空气中的药物浓度不低于1mg/m3,分别令一次函数与二次函数等于1,求得相应的X值,再根据取值范围确定解,进而算出处于最佳状态的时间.本题考查了二次函数的应用:能把实际的问题转化为数学问题,建立函数模型.注意在自变量和函数值的取值上的实际意义.也考查了一次函数.21.【答案】解:(1)把A(1,6)代入y =mx 得m =1×6=6;∴反比例函数解析式为y =6x ,把B(n,−2)代入y =6x 得−2=6n ,解得n =−3, ∴B(−3,−2),把A(1,6),B(−3,−2)分别代入y =kx +b 得{k +b =6−3k +b =−2, 解得{k =2b =4,∴一次函数解析式为y =2x +4;(2)y =2x +4中,令y =0,则2x +4=0, 解得x =−2,∴一次函数y =2x +4的图象与x 轴的交点C 的坐标为(−2,0). ∵S △PAB =12,∴12PC ×6+12PC ×2=12. ∴PC =3,∴点P 的坐标为(−5,0)、(1,0).(3)由图象可知不等式kx +b >mx 的解集为:−3<x <0或x >1.【解析】(1)把A 点坐标代入y =mx 得m =6,则反比例函数解析式为y =6x ,再利用反比例函数解析式确定B 点坐标;进而利用待定系数法求出一次函数解析式;(2)首先求得AB 与x 轴的交点,设交点是C ,然后根据S △ABP =S △ACP +S △BCP 即可列方程求得P 的坐标;(3)结合函数图象,写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22.【答案】解:(1)对于y =x −2,令x =0,则y =−2,令y =x −2=0,解得x =2,当x =6时,y =x −2=4=n ,故点A 、B 、C 的坐标分别为(2,0)、(0,−2)、(6,4);将点B 、C 的坐标代入抛物线的表达式得{c =−24=36+6b +c ,解得{b =−5c =−2,故抛物线的表达式为y =x 2−5x −2;(2)如图,过点P 作y 轴的平行线交AB 于点H ,设点P 的坐标为(a,a 2−5a −2),则点H(a,a −2),则△APC 的面积=S △PHA +S △PHC =12×PH ×(x C −x A )=12×(a −2−a 2+5a +2)×(6−2)=−2a 2+12a ,∵−2<0,故△APC 的面积存在最大值,当a =3时,△APC 的面积的最大值为18;(3)存在,理由:由点A 、B 的坐标知,△ABO 为等腰直角三角形,当△BMC 与△BAO 相似时,则△BMC 为等腰直角三角形, ①当∠BM′C 为直角时,则点M′的纵坐标与点C 的纵坐标相同,故点M′(0,4);②当∠BCM为直角时,则点M′是BM的中点,故点M(0,10);故点M的坐标为(0,4)或(0,10).【解析】(1)用待定系数法即可求解;(2)由△APC的面积=S△PHA+S△PHC,即可求解;(3)分∠BM′C为直角、∠BCM为直角两种情况,利用数形几何即可求解.本题是二次函数综合题,主要考查了一次函数的性质、等腰直角三角形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.23.【答案】(1)证明:∵四边形ABCD和四边形AEFG都是正方形,∴∠BCA=∠AFE=45°,即∠HCA=∠HFC=45°,又∠CHA=∠FHC,∴△HCA∽△HFC;(2)解:∵四边形ABCD和四边形AEFG都是正方形,∴∠ABC=90°,由勾股定理可得AC=√2AB,同理可得:AF=√2AE,又∠FAE=∠BAC,∴∠FAE+∠EAC=∠BAC+∠EAC,即∠FAC=∠BAE,∴AFAE =ACAB=√2,∴△FAC∽△EAB,∴CFBE =ACAB=√2.(3)解:∵HC=6,HB=2,∴BC=6−2=4.由勾股定理得:AH=√AB2+HB2=2√5,由(1)得△HCA∽△HFC,∴HCHF =HAHC,即6HF =2√56,解得:HF=18√55,∴AF=HF−AH=18√55−2√5=8√55.设正方形AEFG的边长为x,在直角三角形AEF中,由勾股定理有:2x2=(8√55)2,解得:x=4√105.即正方形AEFG的边长为4√105.【解析】(1)由四边形ABCD和四边形AEFG都是正方形,所以∠BCA=∠AFE=45°,即∠HCA=∠HFC=45°,又∠CHA=∠FHC,所以△HCA∽△HFC;(2)由四边形ABCD和四边形AEFG都是正方形,所以AC=√2AB,AF=√2AE,可证明∠FAC=∠BAE,结合AFAE =ACAB=√2,可判定△FAC∽△EAB,所以CFBE=ACAB=√2;(3)因为BC=6−2=4,由勾股定理可得AH=2√5,由(1)得△HCA∽△HFC,所以HCHF=HA HC ,可得HF=18√55,所以AF=HF−AH=8√55.设正方形AEFG的边长为x,在直角三角形AEF中,由勾股定理得方程2x2=(8√55)2,解出x即可得答案.本题考查了正方形的性质,相似三角形的判定与性质,勾股定理,关键是要学会综合运用这些知识.。

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、选择题:(共30分)1.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形2.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1B.y=ax2+bx+cC.s=2t2﹣2t+1D.y=(x﹣1)(2+x)﹣x23.在平面直角坐标系中,点P(﹣2,a)与点Q(b,3)关于原点对称,则a+b的值为()A.5B.﹣5C.1D.﹣14.下列命题中假命题的个数是()①三点确定一个圆;②三角形的内心到三边的距离相等;③相等的圆周角所对的弧相等;④平分弦的直径垂直于弦;⑤垂直于半径的直线是圆的切线.A.4B.3C.2D.15.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°6.抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.x轴的正半轴上D.x轴的负半轴上7.设⊙O的直径为m,直线l与⊙O相离,点O到直线l的距离为d,则d与m的关系是()A.m=d B.m<d C.2d>m D.2d<m8.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:2510.如图,点E和点F是正方形ABCD的边BC和边CD上的两动点,且∠EAF=45°,有下列结论:①EF=BE+DF;②∠AEB=∠AEF;③BG2+DG2=2AG2;④如果BE=CE,那么DF:CF=1:3;⑤△AFE∽△AGM且相似比是;其中正确的结论有()个.A.1B.2C.3D.4二、填空题:(共18分)11.一元二次方程2x2=x的解是.12.在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为.13.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.14.如图,P A,PB切⊙O于A,B两点,CD切⊙O于点E,分别交P A,PB于点C,D.若⊙O的半径为2,∠P=60°,则△PCD的周长等于.15.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B (如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b 的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.16.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2021的坐标为.三、解答题:(共72分)17.解下列方程:(1)3x2﹣5x+1=0(公式法);(2)3(2x﹣5)2﹣27=0.18.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.19.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足5x1+x2=8,求实数m的值.20.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.21.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?22.如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.23.如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,EF分别与AB,BC交于M,N两点.(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.24.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F(不与点C重合),使|FC﹣FE|的值最大,若存在,请求出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,△OPQ是等腰三角形.参考答案一、选择题:(共30分)1.解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项正确;B、等边三角形是轴对称图形,不是中心对称图形.故本选项错误;C、圆是轴对称图形,也是中心对称图形.故本选项错误;D、正方形是轴对称图形,也是中心对称图形.故本选项错误.故选:A.2.解:A、y=3x﹣1,是一次函数,故A不符合题意;B、当a=0时,函数y=ax2+bx+c不是二次函数,故B不符合题意;C、s=2t2﹣2t+1,是二次函数,故C符合题意;D、y=(x﹣1)(2+x)﹣x2=2x+x2﹣2﹣x﹣x2=x﹣2,是一次函数,故D不符合题意;故选:C.3.解:∵点P(﹣2,a)与Q(b,3)关于原点对称,∴b=2,a=﹣3,则a+b的值为:2﹣3=﹣1.故选:D.4.解:①错误,不在同一条直线上的三点确定一个圆;②正确,三角形的内心到三边的距离相等;③错误,在同圆或等圆中,相等的圆周角所对的弧相等;④错误,如果平分的弦是直径,那么平分弦的直径不垂直于弦;⑤错误,过半径的外端且垂直于半径的直线是圆的切线.故选:A.5.解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.6.解:∵y=x2﹣2x+m2+2=(x﹣1)2+(m2+1),∴顶点坐标为:(1,m2+1),∵1>0,m2+1>0,∴顶点在第一象限.故选:A.7.解:∵⊙O的直径为m,点O到直线L的距离为d,直线L与⊙O相离,∴d>,即2d>m,故选:C.8.解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠CAD=45°,∠ACD=90°﹣20°=70°,∴∠ADC=180°﹣45°﹣70°=65°,故选:C.9.解:∵DE∥AC,∴△DEO∽△CAO,∴=()2=,∴DE:AC=BE:BC=1:5,∴BE:EC=1:4,∴S△BED:S△DEC=1:4,故选:B.10.解:如图,延长CB至Q,使BQ=DF,连接AQ,∵BQ=DF,∠ADF=∠ABQ,AB=AD,∴△ADF≌△ABQ(SAS),∴AF=AQ,∠DAF=∠BAQ,∵∠EAF=45°,∴∠EAQ=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAQ=∠EAF=45°,在△AEF和△AEQ中,,∴△AEF≌△AEQ(SAS),∴EQ=EF,∠AEB=∠AEF,∴BE+BQ=BE+DF=EF,故①②正确;设AB=BC=CD=2a,当BE=EC=a时,∵EF2=CF2+EC2,∴(a+DF)2=(2a﹣DF)2+a2,∴DF=a,∴CF=a,∴DF:CF=1:2,故④错误;如图,将△ABG绕点A逆时针旋转90°,连接PG,∴AP=AG,∠P AG=90°,∠ADP=∠ABG=45°,∴PG2=AG2+AP2=2AG2,∠BDP=90°,∴DG2+PD2=PG2,∴BG2+DG2=2AG2,故③正确;如图,连接ME,∵∠CBD=∠EAF=45°,∴点A,点B,点E,点M四点共圆,∴∠AEM=∠ABD=45°,∴∠AEM=∠EAM=45°,∴AM=EM,∴AE=AM,∵∠DAG=90°﹣∠BAG,∠AMB=180°﹣∠ABD﹣∠EAF﹣∠BAG=90°﹣∠BAG,∴∠DAG=∠AMB,∵AD∥BC,∴∠DAG=∠AEB,∵∠AEB=∠AEF,∴∠AMB=∠AEF,又∵∠EAF=∠GAM,∴△EAF∽△MAG,∴相似比为=,故⑤正确;故选:D.二、填空题:(共18分)11.解:2x2=x,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2=.12.解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故答案是:10.13.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.14.解:如图,连接OA,OB,OP,∵P A,PB切⊙O于A,B两点,OA,OB是半径,∴OA⊥P A,OB⊥PB,且OA=OB,∴OP是∠APB的平分线,∵∠APB=60°,∴∠APO=30°,∴OP=2OA=4,在Rt△APO中,由勾股定理得AP==2,∵P A,PB切⊙O于A,B两点,∴P A=PB=2,∵CD切⊙O于点E,∴AC=CE,BD=DE,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=P A+PB=4,故答案为:4.15.解:由题意得:AB=b﹣a=2,设AM=x,则BM=2﹣x,x2=2(2﹣x),x=﹣1±,x1=﹣1+,x2=﹣1﹣(舍),则AM=BN=﹣1,∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4,故答案为:2﹣4.16.解:∵A(0,0),B(2,0),∴AB的中点为(1,0),∴P1(1,1),∵△AP1B绕点B顺时针旋转180°,∴P2(3,﹣1),同理分别得到P3(5,1),P4(7,﹣1),P5(9,1),…,∴P n(2n﹣1,(﹣1)n+1),∴P2021的坐标为(4041,1),故答案为:(4041,1).三、解答题:(共72分)17.解:(1)∵a=3,b=﹣5,c=1,∴Δ=(﹣5)2﹣4×3×1=13>0,则x==,∴;(2)∵3(2x﹣5)2﹣27=0,∴3(2x﹣5)2=27,∴(2x﹣5)2=9,则2x﹣5=3或2x﹣5=﹣3,解得x1=1,x2=4.18.解:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.19.解:(1)∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=(﹣4)2﹣4×1×m>0,m<4,∴实数m的取值范围是m<4.(2)∵x1+x2=4,5x1+x2=8,∴x1=1,∵x1是方程的根,把x1=1代入原方程得1﹣4+m=0,∴m=3,∴实数m的值是3.20.解:(1)∵AB=AC∴∠ABC=∠ACB∵∠APC=∠ABC+∠BAP∴∠APD+∠DPC=∠ABC+∠BAP且∠APD=∠B∴∠DPC=∠BAP且∠ABC=∠ACB∴△BAP∽△CPD(2)∵△ABP∽△PCD∴即∵PD∥AB∴即∴∴∴BP=21.解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.22.(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∵CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD=S△ACD+S扇形COD=××2×2+=+π.23.解:(1)EM=EN.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图②所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(2)EM=EN仍然成立.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图③所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(3)线段EM与EN满足关系:EM:EN=n:m.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图④所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵∠HEM=∠GEN,∠EHM=∠EGN,∴△HEM∽△GEN.∴EM:EN=EH:EG.∵点E为AC的中点,∴S△AEB=S△CEB.∴AB•EH=BC•EG.∴EH:EG=BC:AB.∴EM:EN=BC:AB.∵AB:BC=m:n,∴EM:EN=n:m.24.解:(1)∵抛物线y=ax2+bx﹣8经过点A(﹣2,0),D(6,﹣8),∴,解得,∴抛物线解析式为y=x2﹣3x﹣8,∵y=x2﹣3x﹣8=(x﹣3)2﹣,∴抛物线对称轴为直线x=3,又∵抛物线与x轴交于点A、B两点,点A坐标(﹣2,0),∴点B坐标(8,0).设直线l的解析式为y=kx,∵经过点D(6,﹣8),∴6k=﹣8,∴k=﹣,∴直线l的解析式为y=﹣x,∵点E为直线l与抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为﹣×3=﹣4,∴点E坐标(3,﹣4);(2)抛物线上存在点F,连接FC,FE.则有|FC﹣FE|≤CE.当点F为直线CE与抛物线交点时(不与点C重合),FC﹣FE=CE,此时|FC﹣FE|值最大.设直线CE解析式为y=kx﹣8,点E的坐标为(3,﹣4),∴3k﹣8=﹣4,∴k=,∴直线CE解析式为y=x﹣8,∵抛物线的表达式为y=x2﹣3x﹣8,联立解得,(舍去),,∴点F为直线CE与抛物线交点时(不与点C重合),|FC﹣FE|值最大.此时F;(3)①如图1,当OP=OQ时,△OPQ是等腰三角形.∵点E坐标(3,﹣4),∴OE==5,过点E作直线ME∥PB,交y轴于点M,交x轴于点H.∴,∴OM=OE=5,∴点M坐标(0,﹣5).设直线ME的解析式为y=k1x﹣5,∴3k1﹣5=﹣4,∴k1=,∴直线ME解析式为y=x﹣5,令y=0,得x﹣5=0,解得x=15,∴点H坐标(15,0),∵MH∥PB,∴,即,∴m=﹣,②如图2,当QO=QP时,△POQ是等腰三角形.∵当x=0时,y=x2﹣3x﹣8=﹣8,∴点C坐标(0,﹣8),∴CE==5,∴OE=CE,∴∠1=∠2,∵QO=QP,∴∠1=∠3,∴∠2=∠3,∴CE∥PB,设直线CE交x轴于N,解析式为y=k2x﹣8,∴3k2﹣8=﹣4,∴k2=,∴直线CE解析式为y=x﹣8,令y=0,得x﹣8=0,∴x=6,∴点N坐标(6,0),∵CN∥PB,∴,∴,∴m=﹣.③OP=PQ时,显然不可能,理由,∵D(6,﹣8),∴∠1<∠BOD,∵∠OQP=∠BOQ+∠ABP,∴∠PQO>∠1,∴OP≠PQ,综上所述,当m=﹣或﹣时,△OPQ是等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学月考试卷
一、选择题(每小题3分,共30分)
1.sin 2θ+sin 2(90°-θ) (0°<θ<90°)等于( )
(A )0 (B )1 (C )2 (D )2sin 2θ 2.若2cosa - 3 =0,则锐角a =( )
(A ) 30°(B )15° (C )45°(D )60°
3.在直角三角形中,各边的长度都扩大3倍,则锐角A 的四个三角形函数的值( )
(A )也扩大3倍 (B )缩小为原来的3
1
(C )都不变 (D )有的扩大,有的缩小
4、如图1在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且5
3
c o s =α, AB = 4, 则AD 的长为
( ). (A )3 (B )316 (C )320 (D )5
16
5.二次函数y =ax 2+bx +c 的图象如图2,则下列各式中成立的个数是( )
(1)abc <0; (2)a +b +c <0; (3)a +c >b ; (4)a <-2
b

图2
图1
(A )1 (B )2 (C )3 (D )4
6、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )
A 、6,4
B 、-8,14
C 、-6,6
D 、-8,-14
7、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )
A 、x =-3
B 、x =-2
C 、x =-1
D 、x =1
82c ax y += ( )
A B C D 9、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )
A 、22
B 、23
C 、32
D 、33
10、已知二次函数y=3(x-1)2+k 的图象上有三点A(2,y 1),B(2,y 2),C(-5,y 3),则y 1、 y 2、y 3的大小关系为( )
A .y 1.> y 2> y 3 B..y 2> y 1> y 3 C .y 3> y 1> y 2 D .y 3> y 2> y 1
A
B
C
D
E
二填空题(每题3分,共10分)
11、如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水
平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

(精确到0.1m) 12、离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α, 如果测角仪高为1.5米.那么旗杆的高为 米(用含α的三角函数表示). 13、抛物线y=-3x 2+5的开口向________,对称轴是_______,顶点坐标是________,顶点是最_____点,所以函数有最________值是_____. 14. 如图,河对岸有古塔AB.小敏在C 处测得塔顶A 的仰
角为α,向塔前进s 米到达D ,在D 处测得A 的仰角为β则塔高是
米.
15.已知函数y=(k+2)24
k k x
+-是关于x 的二次函数,则
k=_______
_.
16.二次函数6332-+=x x y 与x 轴有 交点.交点坐标是 .
17
的解析式是 (任写一个)
18、根据图中的抛物线,当x
时,y 随x 的 增大而增大,当x 时,y 随x 的增大而减小, 当x 时,y 有最大值。

19.已知抛物线y=ax 2+bx+c 经过点(1,2)与(-l ,4),则a+c
20.把一根长100cm 的铁丝分为两部分,每一部分均弯曲成一个正方形, 它们的面积和最小是______.
三 计算题(每小题4分,)
21.(1)tan30°sin 60°+cos 230°-sin 2
45°tan45°
(2)12 sin60°+2
2
cos45°+sin30°·cos30°
四 解答题
22. (6分) 甲、乙两楼相距45米,从甲楼顶部A 点观测乙楼顶 部D 点的俯角为30°,观测乙楼的底部C 点的俯角为45°,
试求两楼的高.
300 450
A E D
B C
23. (8分)如图,二次函数y=x 2+bx+c 的图像与x 轴相交于A,B ,点A 在原点左边,点B 在原点右边,点P (1,m )(m>0)在抛物线上,AB=2,
tan ∠PAB=2
5 ,(1)求m 的值;(2)求二次函数解析式
24、(8分)某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。

不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?
25.(8分)如图,用长为18 m 的篱笆(虚线部分),两面靠墙围成矩形的苗圃.
(1)设矩形的一边为x (m ),面积为y (m 2),求y 关于x 的函数关系式,并写出自变量x 的取值范围;
(2)当x 为何值时,所围苗圃的面积最大,最大面 积是多少?
26.(10分)如图,抛物线y =ax 2+bx +c 与x 轴、y 轴分别相交于A (-1,0)、B (3,0)、C (0,
3)三点,其顶点为D ..
(1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积;
27.(12分)已知二次函数y =ax 2+bx +c 的图象抛物线经过(-5,0),(0,2
5
),(1,6)三点,
直线l 的解析式为y =2 x -3.(1)求抛物线的函数解析式;(2)求证抛物线与直线l 无公共点;(3)若与l 平行的直线y =2 x +m 与抛物线只有一个公共点P ,求P 点的坐标.。

相关文档
最新文档