七年级数学上学期期中试卷(含解析)新人教版

合集下载

2023—2024学年人教版七年级上学期数学期中试卷(附答案)

2023—2024学年人教版七年级上学期数学期中试卷(附答案)

2023—2024学年人教版七年级上学期数学期中试卷及参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、2022的相反数是()A.B.﹣C.2022D.﹣20222、4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1033、一条东西走向的道路上,小明先向西走3米,记作“﹣3米”,他又向西走了4米,此时小明的位置可记作()A.﹣2米B.+7米C.﹣3米D.﹣7米4、下列去括号,正确的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b+c)=a+b﹣c5、已知3x m y2与﹣2x4y n为同类项,则m+n=()A.2B.4C.6D.86、若|x﹣1|+x=1,则x一定满足()A.x<1B.x>1C.x≤1D.x≥17、多项式x|n|﹣(n+2)x+7是关于x的二次三项式,则n的值是()A.2B.﹣2C.2或﹣2D.38、小明同学做一道数学题时,误将求“A﹣B”看成求“A+B”,结果求出的答案是3x2﹣2x+5,已知A=4x2﹣3x﹣6,请你帮助小明同学求出A﹣B应为()A.﹣x2+x+11B.3x2﹣4x﹣17C.5x2﹣4x﹣17D.5x2﹣2x+59、若x=﹣1时,ax5+bx3+cx+1=6,则x=1时,ax5+bx3+cx+1=()A.﹣3B.12C.﹣6D.﹣410、某种产品原价为100元,现因原料提价,因而厂家决定对产品进行提价,有以下两种方案;方案一,第一次提价10%,第二次提价30%;方案二,第一、二次提价均为20%.请问:哪种方案提价多()A.方案一B.方案二C.两种方案一样D.不能确定二、填空题(每小题3分,满分18分)11、比较大小:﹣﹣.12、若a与b互为倒数,m与n互为相反数,则(ab)2013+(m+n)2014的值为.13、已知|a+1|+(b﹣3)2=0,则a b=.14、在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是.15、若代数式x﹣2y=﹣2,则代数式9+2x﹣4y=.16、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2)×(﹣36).18、先化简,再求值:3(x2﹣xy+y2)﹣2(y2﹣3xy+x2),其中x=﹣2,y=3.19、有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.20、某检修小组在东西向的马路上检修线路,从A地出发,需到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):﹣11,﹣9,+18,﹣2,+13,+4,+12,﹣7.(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)在行驶过程中,最远处离出发点A地有多远?(3)若每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?21、已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.22、已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.23、(1)如图1所示,阴影部分由两个直角三角形组成,用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=6,h=4时,S的值.(3)在第(2)问的条件下,增加一个半圆的阴影,如图2所示,求整个阴影部分的面积S1的值.(π取3.14,结果精确到0.1)24、已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5表示的是x5的系数,a4表示的是x4,以此类推.当x=2时,35=25•a5+24•a4+23•a3+22•a2+2•a1+a0.(1)取x=0,则可知a0=.(2)利用特殊值法求﹣a5+a4﹣a3+a2﹣a1+a0的值.(3)探求a4+a2的值.25、如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示).(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒后与点Q相距4个单位长度?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请用计算说明,并求出线段MN的长.2023—2024学年人教版七年级上学期数学期中试卷参考答案一、择题(每题只有一个正确选项,每小题3分,满分30分)1—10:DCDAC CBCDB二、填空题(每小题3分,满分18分)11、>12、1 13、-1 14、﹣9或3 15、5 16、(3n+1)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解:(1)0 (2)﹣1118、解:﹣519、解:(1)答案为:>,<,<;(2)﹣2b20、解:(1)B地在A地的东边18千米;(2)最远处离出发点25千米;(3)需补充的油量为9升.21、解:(1)x+y的值为:8或2;(2)|x﹣y|的值为:8;(3)x﹣y=±2或±8.22、解:(1)=7x+7y﹣11xy;当x+y=﹣,xy=1时,2A﹣3B=﹣17;(3).23、解:(1)S=(b﹣a)h=bh﹣;(2)当a=2,b=6,h=4时,S=×6×4﹣×2×4=12﹣4=8;(3)S1=S+×=8+×3.14×1=8+1.57=9.57≈9.6.∴整个阴影部分的面积S1的值为9.6.24、解:故答案为:﹣1;(2)﹣243;(3)﹣120.25、解:(1)答案为:﹣5;7;12;(2)点P所对应的数为﹣1016;(3)﹣17和﹣1别是点P运动了第23次和第8次到达的位置.。

最新人教版七年级上册数学《期中考试试题》(含答案解析)

最新人教版七年级上册数学《期中考试试题》(含答案解析)

期 中 测 试 卷一、选择题(本大题有16个小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. ﹣3的相反数是( ) A. 13-B.13C. 3-D. 32.如果收入80元记作+80元,那么支出20元记作( ) A. +20元B. -20元C. +100元D. -100元3.如图,在数轴上点A 表示的数可能是( )A. 1.5B. -1.5C. -2.4D. 2.44.下列各组数中,互为倒数的是( ) A. -2 和12-B. -1和1C. 23-和1.5 D. 0和05.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A. 2.748×102B. 274.8×104C. 2.748×106D. 0.2748×1076.把()()()()5315+-+--+-写成省略括号的和的形式是( ) . A .5315--+- B. 5315-+- C. 5315++-D. 5315---7.将有理数-22,(-2) 3,2--,-12按从小到大的顺序排列为( ) A. (-2) 3<-22<2--<-12B. -12<2--<-22<(-2) 3C. 2--<-12<-22<(-2) 3 D. -22<(-2)3<-12<2--8.对于23-与()23-,下列说法正确的是( ). A. 底数不同,结果不同 B. 底数不同,结果相同 C. 底数相同,结果不同D. 底数相同,结果相同9.某公司在销售一种智能机器人时发现,每月可售出300个,当每个降价1元时,可多售出5个,如果每个降价x 元,那么每月可售出机器人的个数是( ) A. 5xB. 305+xC. 300+5xD. 300+15x 10.下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0②12ab - 是单项式 ③ xyz -的系数为-1,次数是1④ π是单项式,而2不是单项式 A. 0个B. 1个C. 2个D. 3个11.下列说法正确的个数有( ).①倒数等于本身的数只有1;②相反数等于本身的数只有0;③平方等于本身的数只有0、1、1-;④有理数不是整数就是分数;⑤有理数不是正数就是负数. A. 1个B. 2个C. 3个D. 4个12.下列说法错误的个数是( )①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和②7x 和75x y + 都是整式 ③ 2143a b + 和2326x y -+都是多项式④ 32429x y -+ 是三次三项式 A. 3个B. 2个C. 1个D. 0个13.若a <c <0<b ,则abc 与0的大小关系是( ) A. abc <0 B. abc=0 C. abc >0D. 无法确定14.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中规律,猜想20193的末位数字是( ) A. 3B. 9C. 7D. 115.某月的月历上连续三天的日期之和不可能是 ( ) A. 87B. 52C. 18D. 916.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种规律下去,第n 次移动到点A n ,如果点A n ,与原点的距离不少于20,那么n 的最小值是( )A. 11B. 12C. 13D. 20二、填空题(本大题有4个小题,共15分.17-19各3分,20题有两个空,每个空3分)17.如果a 与1互为相反数,则|a +2|=_________. 18.“比 a的123多 4”用代数式表示为_____ 19.若有理数m 、n 满足22(1)0m n ++-=,则2019()m n +=______. 20.阅读材料:如果a b =N (a >0,且a ≠1),那么数b 叫做以a 为底N 的对数,记作b =log a N .例如23=8,则log 28=3.根据材料填空:log 39=_____, log 464=_____.三、解答题(本大题有6个小题,共63分)21.将下列各数分别填在相应的集合里.4-,5,0.7-,134,0,13-,1251-,100,21,3. 正数集合{ ⋯⋯} 负数集合{ ⋯⋯} 整数集合{ ⋯⋯} 分数集合{ ⋯⋯} 22.计算(1)﹣28﹣(﹣19)+(﹣24); (2) 4.3-﹣ 1.7-﹣6.3;(3)()(36)61752119+-⨯-; (4)1111(1)()2323-+-⨯-÷--.23.定义一种新运算“※”,即m ※n=(m +2)×3-n ,例如2※3=(2+2)×3-3=9.根据这规定解答下列问题:(1)求6※(--3)的值.(2)通过计算说明6※(--3)与(--3)※6的值相等吗? 24.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的点1与−1表示的点重合,则−2表示的点与_____表示的点重合; 操作二:(2)折叠纸面,使−1表示的点与3表示的点重合,那么5表示的点与_____表示的点重合,此时若数轴上A 、B 两点之间距离为9,(A 在B 的左侧),且A 、B 两点经折叠后重合,那么A 、B 两点表示的数分别是______、______; 操作三:(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,那么a 的值是____.25.一自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负(1)根据记录的数据可知该厂星期四生产自行车多少辆?(2)根据记录的数据可知该厂本周实际生产自行车多少辆?(3)产量最多的一天比产量最少的一天多生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超出部分每辆另加15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少? 26.从2开始,连续的偶数相加,它们和的情况如下表: (1)若n=8时,则 S 的值为_____________.(2)根据表中的规律猜想:用n 的式子表示S 的公式为:S=2+4+6+8+…+2n=____________. 加数的个数nS12 = 1×2(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.答案与解析一、选择题(本大题有16个小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. ﹣3的相反数是()A.13- B.13C. 3-D. 3【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.如果收入80元记作+80元,那么支出20元记作( )A. +20元B. -20元C. +100元D. -100元【答案】B【解析】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.考点:具有相反意义的量.3.如图,在数轴上点A表示的数可能是( )A. 1.5B. -1.5C. -2.4D. 2.4【答案】C【解析】【分析】根据点在数轴上的表示方法即可得出答案.【详解】由图可知,点A在-2和-3之间,故答案选择C.【点睛】本题考查的是点在数轴上的表示,比较简单,需要熟练掌握数轴的性质. 4.下列各组数中,互为倒数的是( ) A. -2 和12-B. -1和1C. 23-和1.5 D. 0和0【答案】A 【解析】 【分析】分别计算各选项中两个数的乘积,根据倒数的概念,如果积为1,那么这两个数互为倒数. 【详解】A. -2×(12-)=1,选项正确; B. −1×1=−1,选项错误; C. 23-×1.5=-1,选项错误; D. 0×0=0,选项错误. 故选A.【点睛】此题考查倒数,解题关键在于掌握其性质.5.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A. 2.748×102 B. 274.8×104C. 2.748×106D. 0.2748×107【答案】C 【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数据274.8万用科学记数法表示为274.8×104=2.748×106. 故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.把()()()()5315+-+--+-写成省略括号的和的形式是( ) . A. 5315--+-B. 5315-+-C. 5315++-D. 5315---【答案】B 【解析】 【分析】先把加减法统一成加法,再省略括号和加号.【详解】解:原式=(+5)+(-3)+(+1)+(-5)=5-3+1-5. 故选B .【点睛】本题考查有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.7.将有理数-22,(-2) 3,2--,-12按从小到大的顺序排列为( ) A. (-2) 3<-22<2--<-12B. -12<2--<-22<(-2) 3C. 2--<-12<-22<(-2) 3 D. -22<(-2)3<-12<2--【答案】A 【解析】试题分析:负数之间的大小比较,绝对值大的数反而小.=-4;;-2.考点:数的大小比较8.对于23-与()23-,下列说法正确的是( ). A. 底数不同,结果不同 B. 底数不同,结果相同 C. 底数相同,结果不同 D. 底数相同,结果相同 【答案】A 【解析】 【分析】n 个相同的因数a 相乘,记作n a ,其中底数是a ,【详解】解:23-的底数为3,()23-的底数为-3,239=--,()239=-,故23-与()23-底数不同,结果不同, 故选A.【点睛】此题考查的是乘方的定义,n 个相同的因数a 相乘,记作n a ,这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.在乘方运算n a 中,a 叫做底数,n 叫做a 的幂的指数,简称指数.9.某公司在销售一种智能机器人时发现,每月可售出300个,当每个降价1元时,可多售出5个,如果每个降价x 元,那么每月可售出机器人的个数是( ) A. 5x B. 305+xC. 300+5xD. 300+15x 【答案】C 【解析】 【分析】降价x 元就可多售出5x 个,再加上300即为所求.【详解】由题意可得,如果每个降价x 元,那么每月可售出机器人的个数是:300+5x ,故选C . 【点睛】本题考查如何列代数式,能够读懂题意是解题关键. 10.下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0②12ab - 是单项式 ③ xyz -的系数为-1,次数是1④ π是单项式,而2不是单项式 A. 0个 B. 1个C. 2个D. 3个【答案】A 【解析】 【分析】直接根据单项式、单项式系数及次数的定义进行解答即可. 【详解】解:①单项式a 的系数为1,次数为1,故原说法错误;②12ab - 多项式,故原说法错误; ③ xyz -的系数为-1,次数是3,故原说法错误;④ π是单项式,2也是单项式,故原说法错误; 正确的个数是0,故选A.【点睛】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键. 11.下列说法正确的个数有( ).①倒数等于本身的数只有1;②相反数等于本身的数只有0;③平方等于本身的数只有0、1、1-;④有理数不是整数就是分数;⑤有理数不是正数就是负数. A. 1个 B. 2个 C. 3个 D. 4个【答案】B 【解析】分析:根据倒数、相反数、平方的定义及性质和有理数的分类进行判断即可. 详解:①的说法是错误的,其中-1的倒数也是等于它本身的; ②相反数等于本身的数只有0,故②正确; ③平方等于本身的数是0和1,故③错误; ④有理数不是整数就是分数,④正确; ⑤有理数分为正数就是负数和0,⑤错误. 所以正确的结论为②④两个, ①、③、⑤错误. 故选B.点睛:本题主要考查了倒数、相反数、平方的定义及性质和有理数的分类等相关知识,熟记概念与性质是解题的关键..12.下列说法错误的个数是( )①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和②7x 和75x y + 都是整式 ③ 2143a b + 和2326x y -+都是多项式④ 32429x y -+ 是三次三项式 A. 3个 B. 2个C. 1个D. 0个【答案】C 【解析】 【分析】根据单项式、多项式、整式以及多项式次数和项数的定义求解.【详解】解:①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和,正确; ②7x是分式,原说法错误; ③ 2143a b + 和2326x y -+都是多项式,正确; ④ 32429x y -+ 是三次三项式,正确,错误的有1个,故选C.【点睛】本题主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和.13.若a <c <0<b ,则abc 与0的大小关系是( )A. abc <0B. abc=0C. abc >0D. 无法确定 【答案】C【解析】【详解】∵a <c <0<b ,∴abc >0.故选C .14.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A. 3B. 9C. 7D. 1【答案】C【解析】【分析】根据已知的等式找到末位数字的规律,再求出20193的末位数字即可.【详解】∵133=,末位数字为3,239=,末位数字为9,3=,末位数字为7,3274=,末位数字为1,3815=,末位数字为3,324363729=,末位数字为9,7=,末位数字为7,321878=,末位数字1,36561故每4次一循环,∵2019÷4=504 (3)3的末位数字为7∴2019故选C【点睛】此题主要考查规律探索,解题的关键是根据已知条件找到规律进行求解.15.某月的月历上连续三天的日期之和不可能是( )A. 87B. 52C. 18D. 9【答案】B【解析】【分析】根据题意设中间一天为x日,则前一天的日期为x-1,后一天的日期为x+1日,然后列出代数式对选项进行分析,即可求出答案.【详解】设中间一天为x日,则前一天日期为:x-1,后一天的日期为x+1日,根据题意得:连续三天的日期之和是:(x-1)+x+(x+1)=3x,所以连续三天的日期之和是3的倍数,52不是3的倍数,故选B.【点睛】本题考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,列出代数式.16.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点A n,如果点A n,与原点的距离不少于20,那么n的最小值是()A. 11B. 12C. 13D. 20【答案】C【解析】【分析】当n为奇数的点在点A的左边,各点所表示的数依次减少3,当n为偶数的点在点A的右侧,各点所表示的数依次增加3.【详解】根据题目已知条件,A1表示的数,1﹣3=﹣2;A2表示的数为﹣2+6=4;A3表示的数为4﹣9=﹣5;A4表示的数为﹣5+12=7;A5表示的数为7﹣15=﹣8;A6表示的数为7+3=10,A7表示的数为﹣8﹣3=﹣11,A8表示的数为10+3=13,A9表示的数为﹣11﹣3=﹣14,A10表示的数为13+3=16,A11表示的数为﹣14﹣3=﹣17,A12表示的数为16+3=19,A13表示的数为﹣17﹣3=﹣20.所以点A n与原点的距离不小于20,那么n的最小值是13.故选C.【点睛】本题考查了数字变化的规律,根据数轴发现题目规律,按照规律解答即可.二、填空题(本大题有4个小题,共15分.17-19各3分,20题有两个空,每个空3分)17.如果a与1互为相反数,则|a+2|=_________.【答案】1【解析】∵a与1互为相反数,∴1a=-,∴21211a+=-+==.18.“比a 的123多4”用代数式表示为_____【答案】54 3a+【解析】【分析】根据题意即可列出代数式.【详解】比 a 的123多 4”用代数式表示为543a + 故填:543a +. 【点睛】此题主要考查列代数式,解题的关键是根据题意写出代数式.19.若有理数m 、n 满足22(1)0m n ++-=,则2019()m n +=______.【答案】-1【解析】【分析】根据绝对值和平方的非负性求出m 和n 的值,代入后面的式子计算即可得出答案.【详解】根据题意可得:m+2=0,n-1=0解得:m=-2,n=1∴()()20192019211m n +=-+=-故答案为-1.【点睛】本题考查的是绝对值的非负性,难度不大,一个数的绝对值一定是一个大于等于0的数.20.阅读材料:如果a b =N (a >0,且a ≠1),那么数b 叫做以a 为底N 的对数,记作b =log a N .例如23=8,则log 28=3.根据材料填空:log 39=_____, log 464=_____.【答案】 (1). 2 (2). 3【解析】【分析】根据对数的定义即可得出答案.【详解】∵239=∴392log =∵3464=∴4643log =故答案为2,3.【点睛】本题考查的是新定义,认真审题,弄懂对数的定义是解决本题的关键.三、解答题(本大题有6个小题,共63分)21.将下列各数分别填在相应的集合里.4-,5,0.7-,134,0,13-,1251-,100,21,3. 正数集合{ ⋯⋯} 负数集合{ ⋯⋯} 整数集合{ ⋯⋯} 分数集合{ ⋯⋯} 【答案】正数集合{5,134,100,21,3 ⋯⋯} 负数集合{4-,0.7-,13-,1251- , ⋯⋯} 整数集合{4-,5,0,100,21,3 ⋯⋯} 分数集合{0.7-,134,13-,1251- , ⋯⋯} 【解析】【分析】根据整数的分类即可进行求解.【详解】正数集合{5,134,100,21,3 ⋯⋯} 负数集合{4-,0.7-,13-,1251- , ⋯⋯} 整数集合{4-,5,0,100,21,3 ⋯⋯} 分数集合{0.7-,134,13-,1251- , ⋯⋯} 【点睛】考查了有理数,认真掌握正数、负数、整数、分数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.22.计算(1)﹣28﹣(﹣19)+(﹣24);(2) 4.3-﹣ 1.7-﹣6.3;(3)()(36)61752119+-⨯-; (4)1111(1)()2323-+-⨯-÷--.【答案】(1)-33;(2)-3.7;(3)-25;(4)1 22 -.【解析】【分析】(1)根据有理数的加减运算法则计算即可得出答案;(2)先去绝对值,再根据有理数的加减运算法则计算即可得出答案;(3)根据乘法分配律去括号,再利用有理数的混合运算法则计算即可得出答案;(4)先算括号和绝对值,再利用有理数的混合运算法则计算即可得出答案.【详解】解:(1)原式=281924-+-=33-(2)原式=4.3 1.7 6.3--= 3.7-(3)原式=283033--+=25-(4)原式=11326-+⨯-=1 22 -【点睛】本题考查的是有理数的混合运算,比较简单,需要熟练掌握有理数的混合运算法则.23.定义一种新运算“※”,即m※n=(m+2)×3-n,例如2※3=(2+2)×3-3=9.根据这规定解答下列问题:(1)求6※(--3)的值.(2)通过计算说明6※(--3)与(--3)※6的值相等吗?【答案】(1)27;(2)不相等,理由见解析【解析】【分析】(1)利用题中的新定义计算即可得到结果;(2)分别计算出两式的值,即可做出判断.【详解】(1)6※(−3)=(6+2)×3−(−3)=24+3=27;(2)(−3) ※6=(−3+2)×3−6=−3−6=−9,所以6※(−3)与(−3) ※6值不相等.【点睛】此题考查有理数的混合运算,解题关键在于利用新定义计算法则进行计算.24.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的点1与−1表示的点重合,则−2表示的点与_____表示的点重合;操作二:(2)折叠纸面,使−1表示的点与3表示的点重合,那么5表示的点与_____表示的点重合,此时若数轴上A 、B 两点之间距离为9,(A 在B 的左侧),且A 、B 两点经折叠后重合,那么A 、B 两点表示的数分别是______、______;操作三:(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,那么a 的值是____.【答案】(1)2;(2)-3,-3.5,5.5;(3)±2.【解析】【分析】(1)先求出折痕点,再根据到折痕点的距离相等计算即可得出答案;(2)先求出折痕点,再根据到折痕点的距离相等计算即可答案;先求出点A 和点B 到折痕点的距离,再根据距离公式计算即可得出答案;(3)分两种情况进行讨论:①往左移动,②往右移动,再利用相反数的性质计算即可得出答案.【详解】解:(1)∵折叠纸面,点1和点-1表示的点重合∴折痕点为0∴-2表示的点与2表示的点重合(2)∵-1表示的点与3表示的点重合∴折痕点为1∴5表示的点与-3表示的点重合∵AB 之间的距离为9∴AB 两点与中心点的距离为9÷2=4.5∴点A 表示的点为-3.5,点B 表示的点为5.5(3)①若点A 往左移动4个单位长度则可得:a-4+a=0解得:a=2②若点A 往右移动4个单位长度则可得:a+4+a=0解得:a=-2综上所述a=±2【点睛】本题考查的是数轴上两点间的距离,难度适中,需要理解并记忆两点之间的距离公式.25.一自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负(1)根据记录的数据可知该厂星期四生产自行车多少辆?(2)根据记录的数据可知该厂本周实际生产自行车多少辆?(3)产量最多的一天比产量最少的一天多生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超出部分每辆另加15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【答案】(1)213;(2)1409;(3)26;(4)85215;【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得答案;(3)根据有理数的加法,可得答案;(4)根据基本工资加奖金,可得答案.【详解】(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2) 根据题意5−2−4+13−10+16−9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216−190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=(7×200+9)×60+9×15=85215元,故该厂工人这一周的工资总额是85215元.【点睛】此题考查正数和负数,解题关键在于根据题意列出式子进行计算.26.从2开始,连续的偶数相加,它们和的情况如下表:(1)若n=8时,则S的值为_____________.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=____________.(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.【答案】(1)72.(2)n(n+1).(3)1021110.【解析】【分析】设加数的个数为n时,它们的和为S n(n为正整数),根据给定的部分S n的值找出变化规律“S n=2+4+6+…+2n=n(n+1)”.(1)依照规律“S n=2+4+6+…+2n=n(n+1)”代入n=8即可得出结论;(2)依照规律“S n=2+4+6+…+2n=n(n+1)”即可得出结论;(3)依照规律“S n=2+4+6+…+2n=n(n+1)”代入n=1010即可得出结论.【详解】解:设加数的个数为n时,它们的和为S n(n为正整数),观察,发现规律:S1=2=1×2,S2=2+4=2×3,S3=2+4+6=3×4,S4=2+4+6+8=4×5,…,∴S n=2+4+6+…+2n=n(n+1).(1)当n=8时,S8=8×9=72.故答案为72.(2)S n=2+4+6+…+2n=n(n+1).故答案为n(n+1).(3)∵2+4+6+8+10+…+2018+2020中有1010个数,∴S1010=2+4+6+8+10+…+2018+2020=1010×1011=1021110.【点睛】本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“S n=2+4+6+…+2n=n(n +1)”.本题属于基础题,难度不大,根据给定的部分S n的值,找出变化规律是关键.。

人教版数学七年级上册《期中检测试卷》附答案解析

人教版数学七年级上册《期中检测试卷》附答案解析

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-2. 在整数集合{-3、-2、-1、0、 1、2、3、4、5、6)中选取两个整数填入“6⨯=-"口内,使等式成立,则选取后填入的方法有( ). A. 2种B. 4种C. 6种D. 8种3. 中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A. 91.210⨯个B. 91210⨯个C. 101.210⨯个D. 111.210⨯个4. 下列说法中, 正确的是( ) .A. 单项式223x y-.的系数是-2,次数是3 B. 单项式a 的系数是1,次数是0C. 2341x y x -+-是三次三项式,常数项是1 D. 单项式32abπ-.的次数是2.系数为32π- 5. 某超市老板先将进价a 元排球提高20%出售80个,后又按进价出售剩下的20个,则该超市出售这100个排球的利润(利润=总售价-总进价)是( ). A. 1.6a 元B. 16a 元C. 80a 元D. 96a 元6. 有理数a, b, c 在数轴上的对应点的位置如图所示,且|a|<|b|, 则该数轴的原点位置不可能( ).A. 在a 的左边B. 在a 、c 之间.C. 在c 、b 之间D. 在b 的右边二、填空题(每题3分,满分18分,将答案填在答题纸上)7. 计算: 2019(1)(1)-+-= ________.8. 化简: a+3a+5a+7a =__________.9. 设a 与b 互为相反数,c 与d 互为倒数,比较大小则: 2019()a b --______2020()cd - (填>、=、<). 10. 若x+2y=3, 则代数式3x+6y+2的值是__________.11. 写出两个只含字母x 的二次二项式,使它们的和为x+1,满足要求的多项式可以是: _________、_________.12. 已知a 、b 是有理数,若|a|=3,b 2=4,则a+b 的所有值为_____________.三、计算题(本大题共4小题,每小题4分,共16分)13. 9(14)(7)15--+--;14. 21|5|10.8274⎛⎫⎛⎫-÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭:15. 1171(36)1296⎛⎫-⨯--⎪⎝⎭ 16. ()2295(3)(2)2+⨯---÷-四、化简(本大题共4小题,每小题4分,共16分)17. 2267946a b a b +-+-+; 18. 52(45)3(34)x x y x y -++- 19. ()()22222351a b ababa b --++;20. ()2242422()x xy x y xy y ⎡⎤---++⎣⎦.五、解答题(本大题共2小题,每小题6分,共12分)21. 如图所示,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题: (1)若从中抽出2张卡片,且这2个数字的差最小,应如何抽取?最小值是多少? (2)若从中抽出2张卡片,且这2个数字的积最大,应如何抽取?最小值是多少?(3)若从中抽出4张卡片,运用加、减、乘、除、乘方、括号等运算符号,使得结果24.请写出运算式.(只需写出一种)22. 定义:若a+b=2,则称a 与b 是关于1的平衡数. (1)直接填写:①3与_ 是关于1的平衡数: :②1-x 与________是关于 1平衡数(用含x 的代数式表示); (2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--++⎣⎦,先化简a. b,再判断a 与b 是否是关于1的平衡数.六、解答题(本大题共2小题,每小题10分,共20分)23. 已知: 5335P x x x =++,42246Q x x =++.(1)当x=1和-1时,分别求P ,Q 的值;(2)当x=19时,P 的值为a, Q 的值为b ,当x=-19时,分别求P, Q 的值(用含a ,b 的代数式表示);(3)当x=m 时,P, Q 的值分别为c, d; 当x=-m 时,P, Q 的值分别为e, f,则在c ,d, e, f 四个有理数中,以下判断正确的是 (只要填序号即可).①有两个相等的正数;②有两个互为相反数;③至多有两个正数;④至少有两个正数;⑤至多有一个负数;⑥至少有一个负数.24. 如图,这是网上盛传的一个关于数学的诡辩问题截图,表1是它的示意表.我们一起来解答“为什么多出了元”.表1花去剩余(1)为了解释“剩余金额总计”与“我手里有100元”无关,请按要求填写表2中的空格.表2表3(2)如表3中,直接写出以下各代数式的值:①a b c d +++= ;②a x += ;③a b y ++= ;④a b c z +++= ;(3)如表3中,,a b c d 、、都是正整数,则的最大值等于 ;最小值等于 .由此可以知道“为什么多出了元”只是一个诡辩而已.(4)我们将“花去”记为“”,“剩余”记为“”,请在表4中将表1数据重新成号.答案与解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-【答案】A 【解析】 【分析】根据只有符号不同的两个数是互为相反数解答即可. 【详解】解:-2019的相反数是2019. 故选A .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 在整数集合{-3、-2、-1、0、 1、2、3、4、5、6)中选取两个整数填入“6⨯=-"的口内,使等式成立,则选取后填入的方法有( ). A. 2种 B. 4种C. 6种D. 8种【答案】C 【解析】 【分析】根据有理数乘法法则选取即可.【详解】解:由题意可知,326-⨯=-,2(3)6⨯-=-,236,3(2)6,166,6(1)6,填入的方法有6种,故选C.【点睛】本题考查了有理数的乘法运算,熟练掌握运算法则是解题关键.3. 中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( ) A. 91.210⨯个B. 91210⨯个C. 101.210⨯个D. 111.210⨯个【答案】C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】120亿个用科学记数法可表示为:101.210⨯个. 故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数,表示时关键要正确确定的值以及的值. 4. 下列说法中, 正确的是( ) .A. 单项式223x y-.的系数是-2,次数是3 B. 单项式a 的系数是1,次数是0C. 2341x y x -+-是三次三项式,常数项是1 D. 单项式32abπ-.的次数是2.系数为32π- 【答案】D 【解析】 【分析】根据单项式系数、次数的定义和多项式系数、次数、项数的定义进行判断.【详解】解:A. 单项式223x y-的系数是23-,次数是3,故该选项错误;B. 单项式a 的系数是1,次数是1,故该选项错误;C. 2341x y x -+-是三次三项式,常数项是-1,故该选项错误;D. 单项式32abπ-的次数是2,系数为32π-,正确, 故选D.【点睛】本题考查了的单项式和多项式的相关概念,熟练掌握系数、次数、项数的定义是解题关键.5. 某超市老板先将进价a元的排球提高20%出售80个,后又按进价出售剩下的20个,则该超市出售这100个排球的利润(利润=总售价-总进价)是( ).A. 1.6a元B. 16a 元C. 80a元D. 96a元【答案】B【解析】【分析】由于按进价出售剩下的20个排球,故只需计算按进价提高20%出售的80个排球所得的利润即可.【详解】解:由题意得,该超市出售这100个排球的利润为:20%a×80=16a,故选B.【点睛】本题考查了列代数式,弄清题意,正确列出代数式是解题关键.6. 有理数a, b, c在数轴上的对应点的位置如图所示,且|a|<|b|,则该数轴的原点位置不可能( ).A. 在a的左边B. 在a、c之间.C. 在c、b之间D. 在b的右边【答案】D【解析】【分析】根据绝对值的意义结合数轴判断即可.【详解】解:∵|a|<|b|,∴a到原点的距离小于b到原点的距离,∴该数轴的原点位置不可能在b的右边,故选D.【点睛】本题考查了数轴和绝对值,正确理解绝对值的意义是解题关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)7. 计算: 2019-+-= ________.(1)(1)【答案】0【解析】【分析】根据有理数的乘方法则进行计算即可. 【详解】解:2019(1)(111)0-+-=-=, 故答案为0.【点睛】本题考查了有理数的乘方运算,熟练掌握运算法则是解题关键. 8. 化简: a+3a+5a+7a =__________. 【答案】16a 【解析】 【分析】根据合并同类项法则计算即可.【详解】解:a+3a+5a+7a=(1+3+5+7)a=16a , 故答案为16a.【点睛】本题考查了合并同类项:将同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 9. 设a 与b 互为相反数,c 与d 互为倒数,比较大小则: 2019()a b --______2020()cd - (填>、=、<).【答案】< 【解析】 【分析】根据相反数和倒数的定义得到a+b=0,cd=1,然后求出2019()a b --和2020()cd -的值,再进行比较即可.【详解】解:∵a 与b 互相反数,c 与d 互为倒数, ∴a+b=0,cd=1, ∴20190()a b -=+,20201()cd -=,∴2019()a b --<2020()cd -,故答案为<.【点睛】本题考查了相反数和倒数的定义以及有理数的乘方运算,熟练掌握运算法则是解题关键. 10. 若x+2y=3, 则代数式3x+6y+2的值是__________. 【答案】11 【解析】 【分析】将所求代数式变形,然后整体代入即可.【详解】解:∵x+2y=3,∴3x+6y+2=3(x+2y)+2=9+2=11,故答案为11.【点睛】本题考查了代数式求值,注意整体思想的应用.11. 写出两个只含字母x的二次二项式,使它们的和为x+1,满足要求的多项式可以是: _________、_________.【答案】(1). x2+1(2). -x2+x【解析】【分析】让写出的两个二次二项式的二次项系数互为相反数,其中一个多项式有常数项1,另一个多项式有一次项x即可.【详解】解:由题意可得:满足要求的多项式可以是x2+1,-x2+x(答案不唯一),故答案为x2+1,-x2+x(答案不唯一).【点睛】本题考查了多项式系数、次数的定义以及整式的加减运算,根据运算法则得到满足要求的多项式的特点是解题关键.12. 已知a、b是有理数,若|a|=3,b2=4,则a+b的所有值为_____________.【答案】土1或士5【解析】【分析】首先根据绝对值和平方根的性质求出a,b,然后分情况计算即可.【详解】解:∵|a|=3,b2=4,∴a=±3,b=±2,当a=3,b=2时,a+b=5,当a=-3,b=2时,a+b=-1,当a=3,b=-2时,a+b=1,当a=-3,b=-2时,a+b=-5,∴a+b的所有值为:±1或±5,故答案为±1或±5.【点睛】本题考查了绝对值和平方根的性质,根据绝对值和平方根的性质求出a,b是解题关键.三、计算题(本大题共4小题,每小题4分,共16分)13. 9(14)(7)15--+--; 【答案】1 【解析】 【分析】根据有理数的加减运算法则进行计算. 【详解】解:原式=9+14-7-15=1.【点睛】本题考查了有理数的加减运算,熟练掌握运算法则是解题关键. 14. 21|5|10.8274⎛⎫⎛⎫-÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭: 【答案】7 【解析】 【分析】首先根据绝对值的性质化简,然后根据有理数的乘除运算法则进行计算. 【详解】解:原式=21510.8274⎛⎫⎛⎫÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=9495754⎛⎫⎛⎫÷-⨯⨯- ⎪ ⎪⎝⎭⎝⎭=7495954⨯⨯⨯= 7. 【点睛】本题考查了有理数的乘除运算,熟练掌握运算法则是解题关键. 15. 1171(36)1296⎛⎫-⨯-- ⎪⎝⎭【答案】1 【解析】 【分析】用乘法分配律进行计算即可. 【详解】解:原式=-33+28+6=1.【点睛】本题考查了有理数的乘法运算,熟练掌握运算法则和运算律是解题关键. 16. ()2295(3)(2)2+⨯---÷-.【答案】-5 【解析】 【分析】先算乘方,再算乘除,最后算加减.【详解】解:原式()95(3)4491515=+⨯--÷-=-+=-.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.四、化简(本大题共4小题,每小题4分,共16分)17. 2267946a b a b +-+-+; 【答案】21063a b +- 【解析】 【分析】根据合并同类项法则进行计算即可. 【详解】解:原式=()22(64)7(96)a a b b++-+-+=21063a b+-.【点睛】本题考查了整式的加减运算,熟练掌握合并同类项法则是解题关键. 18. 52(45)3(34)x x y x y -++- 【答案】6x-22y 【解析】 【分析】去括号,然后合并同类项即可.【详解】解:原式=5x-8x-10y+9x-12y=(5x-8x+9x)-(10y+12y)=6x-22y.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键. 19. ()()22222351a b ababa b --++;【答案】22571b ab -+ 【解析】 【分析】去括号,然后合并同类项即可.【详解】解:原式=22226251a b ab ab a b ---+ =()()22226251a b a b ab ab --++=22571b ab -+.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键. 20. ()2242422()x xy x y xy y ⎡⎤---++⎣⎦. 【答案】10xy - 【解析】 【分析】去括号,然后合并同类项即可.【详解】原式=()22484222x xy x y xy y ---++ =224842x xy x xy --- =()2244(82)x x xy xy --+=10xy -.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键.五、解答题(本大题共2小题,每小题6分,共12分)21. 如图所示,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题: (1)若从中抽出2张卡片,且这2个数字的差最小,应如何抽取?最小值是多少? (2)若从中抽出2张卡片,且这2个数字的积最大,应如何抽取?最小值是多少?(3)若从中抽出4张卡片,运用加、减、乘、除、乘方、括号等运算符号,使得结果为24.请写出运算式.(只需写出一种)【答案】(1)抽取-8和6,最小值是-8-6=-14;(2)抽取-6和-8,最大值是(-4)×(-8)=32;答案不唯一. 【解析】试题分析: (1)观察这五个数,要找数字的差最小的就要找最大的数和最小的数,所以选-8和6; (2)2张卡片上数字的积最大就要找符号相同且绝对值最大的数,所以选就要选-6和-8;(3)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如抽取3,-4,6,-8,结果为(-8+6)×3×(-4)=-2×(-12)=24. 试题解析:(1)抽取-8和6,它们的差最小,最小值是-8-6=-14; (2)抽取-6和-8,它们的积最大,最大值是(-4)×(-8)=32; (3)本题答案不唯一,如抽取3,-4,6,-8,结果为(-8+6)×3×(-4)=-2×(-12)=24.点睛:此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 22. 定义:若a+b=2,则称a 与b 是关于1平衡数. (1)直接填写:①3与_ 是关于1的平衡数: :②1-x 与________是关于 1的平衡数(用含x 的代数式表示); (2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--++⎣⎦,先化简a. b,再判断a 与b 是否是关于1的平衡数.【答案】(1)①-1;②1+x ;(2)234a x x =--+,232b x x =+-,a 与b 是关于1的平衡数,理由见解析. 【解析】 【分析】(1)①根据平衡数的定义列式计算即可; ②根据平衡数的定义列式计算即可;(2)首先去括号,合并同类项化简a ,b ,然后计算a+b 的值即可进行判断. 【详解】解:(1)①∵2-3=-1, ∴3与-1是关于1的平衡数; ②∵2-(1-x)=2-1+x=1+x ,∴1-x 与1+x 是关于 1的平衡数;(2)()22222234233434a x x x x x x x x =-++=---+=+-,()22342b x x x x ⎡⎤=--++⎣⎦()22342x x x x =---+ 22342x x x x =-++- 232x x =+-,∵2222(34)(32)34322a b x x x x x x x x +=-++-=-++-+-+=-, ∴a 与b 是关于1的平衡数.【点睛】本题考查了整式加减的实际应用,正确理解平衡数的定义是解题关键.六、解答题(本大题共2小题,每小题10分,共20分)23. 已知: 5335P x x x =++,42246Q x x =++.(1)当x=1和-1时,分别求P ,Q 的值;(2)当x=19时,P 的值为a, Q 的值为b ,当x=-19时,分别求P, Q 的值(用含a ,b 的代数式表示);(3)当x=m 时,P, Q 的值分别为c, d; 当x=-m 时,P, Q 的值分别为e, f,则在c ,d, e, f 四个有理数中,以下判断正确的是 (只要填序号即可).①有两个相等的正数;②有两个互为相反数;③至多有两个正数;④至少有两个正数;⑤至多有一个负数;⑥至少有一个负数.【答案】(1)当x=1时,P=9,Q=12;当x=-1时,P =-9,Q =12;(2)P=-a ,Q=b ;(3)①②④⑤. 【解析】 【分析】(1)分别代入求值即可;(2)根据互为相反数两个数的奇次幂仍然互为相反数,互为相反数的两个数的偶次幂相等可得答案; (3)首先求出c ,d ,e ,f 并化简,然后利用相反数的和偶次方的性质逐个判断即可.【详解】解:(1)当x=1时,53351359P x x x =++=++=,4224624612Q x x =++=++=; 当x=-1时,53351359P x x x =++=---=-,4224624612Q x x =++=++=; (2)∵当x=19时,P 的值为a ,Q 的值为b , ∴当x=-19时,P=-a ,Q=b ;(3)由题意得:5335c m m m =++,42246d m m =++,535353()3()5()35(35)e m m m m m m m m m =-+-+-=-=-++--,42422()4()6246f m m m m =-+-+=++,①∵422460m m ++>,∴0d f =>,即有两个相等的正数,正确; ②∵5335c m m m =++,53(35)e m m m =-++,∴有两个互相反数,正确; ③∵0d f =>,ce 互为相反数,∴至少有两个正数,错误; ④由③可知,正确;⑤∵0d f =>,ce 互为相反数,∴至多有一个负数,正确; ⑥由⑤可知,错误; 故判断正确的是:①②④⑤.【点睛】本题主要考查了有理数的乘方以及相反数等知识,熟练掌握奇次幂和偶次幂的性质是解题关键. 24. 如图,这是网上盛传的一个关于数学的诡辩问题截图,表1是它的示意表.我们一起来解答“为什么多出了元”.表1花去剩余买牛肉40元60元买猪脚元元买蔬菜元元买调料元元总计100元102元(1)为了解释“剩余金额总计”与“我手里有100元”无关,请按要求填写表2中的空格.表2花去剩余买牛肉40元60元买猪脚元元买蔬菜元元买调料元元总计100元102元表3(2)如表3中,直接写出以下各代数式的值:①a b c d +++= ;②a x += ;③a b y ++= ;④a b c z +++= ;(3)如表3中,,a b c d 、、都是正整数,则的最大值等于 ;最小值等于 .由此可以知道“为什么多出了元”只是一个诡辩而已.(4)我们将“花去”记为“”,“剩余”记为“”,请在表4中将表1数据重新成号.【答案】(1), ,;(2)①100,②100,③100,④100;(3)294,;(4)见表格解析. 【解析】 【分析】(1)根据剩余的总计是102元,可知买蔬菜后剩余12元,据此计算其余的空格;(2)根据花去的钱数+剩余的钱数=总钱数分别计算即可;(3)当a,b,c依次取最小值时,则对应的剩余钱数就最大,w的值也就最大;当b,c,d尽可能取最小值时,则对应的剩余钱数就最小,w的值也就最小;(4)根据正负数的意义进行填表即可.【详解】解:(1)如下表:故答案为:(1), ,;(2)①100,②100,③100,④100;(3)294,;(2)由题意可得:①a+b+c+d=100;②a+x=100;③a+b+y=100;④a+b+c+z=100;故答案为:100,100,100,100;(3)当a=1,b=1,c=1时,则x=99,y=98,z=97,此时w取最大值99+98+97=294;当b=1,c=1,d=1时,则x=3,y=2,z=1,此时w取最小值3+2+1=1,故w的最大值等于294,最小值等于6;故答案为:294,;()4如下表:【点睛】本题考查了正负数的意义以及有理数加减运算的实际应用,正确理解题意并熟练掌握等量关系:花去的钱数+剩余的钱数=总钱数是解决此题的关键.。

人教版七年级上学期期中数学试卷(含答案)

人教版七年级上学期期中数学试卷(含答案)

人教版七年级第一学期期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.20222.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.63.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×1094.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.5.(3分)计算:8×5的结果是()A.8B.25C.40D.416.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣88.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是210.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.12.(2分)化简分数:﹣=.13.(2分)计算:(+5)+(﹣6)+(﹣4)=.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回元.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日柚子销售超过或不足计划量情况(单位:千克)+3﹣5﹣2+11﹣7+13+5(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.(参考答案与详解)一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.2022【解答】解:﹣2022的相反数是2022,故选:D.2.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.6【解答】解:(﹣2)﹣(﹣4)=﹣2+4=2,故选:B.3.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×109【解答】解:110425000=1.10425×108.故选:C.4.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.【解答】解:A选项的数轴1,2的位置不对,故不符合题意;B选项的数轴有单位长度,有正方向,有原点,故符合题意;C选项的数轴正数和负数的位置反了,不符合题意;D选项的数轴单位长度不一致,故不符合题意;故选:B.5.(3分)计算:8×5的结果是()A.8B.25C.40D.41【解答】解:8×5=×5=41.故选:D.6.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃【解答】解:﹣2+5=3(℃),即该地15:00的气温是3℃.故选:B.7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣8【解答】解:积最大的是(﹣4)×(﹣3)=12,故选:B.8.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b【解答】解:由题意可知,a<b<0,∴a<b<﹣b<﹣a.故选:A.9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是2【解答】解:A、﹣15x2y的系数是﹣15,次数是3,故A不符合题意;B、多项式﹣x3﹣2x2y2+3y2有3项,次数是4,正确,故B符合题意;C、单项式x的系数是1,次数是1,故C不符合题意;D、多项式4x2﹣4x2y+y2的次数是3,故D不符合题意,故选:B.10.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元【解答】解:的意义是将原价打6折之后,再降低8元.故选:A.二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.【解答】解:有理数的倒数是.故答案为:.12.(2分)化简分数:﹣=﹣.【解答】解:﹣=﹣=﹣,故答案为:﹣.13.(2分)计算:(+5)+(﹣6)+(﹣4)=﹣5.【解答】解:(+5)+(﹣6)+(﹣4)=5+[(﹣6)+(﹣4)]=5+(﹣10)=﹣5.故答案为:﹣5.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回3225元.【解答】解:3000+3000×3.75%×2=3000+225=3225(元),∴到期时他取回3225元,故答案为:3225.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为2n+1.【解答】解:搭1个三角形需要火柴棒的根数为:3,搭2个三角形需要火柴棒的根数为:5=3+2=3+2×1,搭3个三角形需要火柴棒的根数为:7=3+2+2=3+2×2,…搭n个三角形需要火柴棒的根数为:3+2(n﹣1)=2n+1,故答案为:2n+1.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).【解答】解:原式=[(﹣0.5)+(﹣5.5)]+(3.25+2.75)=﹣6+6=0.17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.【解答】解:﹣22×[5﹣(﹣1)2022]+|﹣1+5|=﹣4×(5﹣1)+4=﹣4×4+4=﹣16+4=﹣12.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.【解答】解:原式=x2y+4xy2﹣6x2y﹣3xy2+6x2y﹣3=(1﹣6+6)x2y+(4﹣3)xy2﹣3=x2y+xy2﹣3,当x=﹣2,y=1时,原式=(﹣2)2×1+(﹣2)×12﹣3=4×1﹣2×1﹣3=4﹣2﹣3=﹣1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?【解答】解:(1)10﹣9+8﹣6+7.5﹣6+8﹣7=10+8+7.5+8﹣9﹣6﹣6﹣7=33.5﹣28=5.5(cm),答:停止时所在位置距A点5.5cm,在A点的右方;(2)10+9+8+6+7.5+6+8+7=61.5(cm),61.5÷2=30.75(秒).答:共用30.75秒.20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日+3﹣5﹣2+11﹣7+13+5柚子销售超过或不足计划量情况(单位:千克)(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?【解答】解:(1)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(2)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?Array【解答】解:(1)这套房子的总面积为:3x+xy+6y+3x=(6x+6y+xy)m2,答:这套房子的总面积为(5x+6y+xy)m2;(2)当x=5,y=8时,房子的总面积为:30+48+40=118(m2),0.5×118=59(万元),答:购买这套房子共需要59万元.22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5,∴A﹣3B=(3x2﹣x+2y﹣4xy)﹣3(x2﹣2x﹣y+xy﹣5)=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy+15=5x+5y﹣7xy+15;(2)∵+|xy+1|=0,∴x+y﹣=0,xy+1=0,∴x+y=,xy=﹣1,∴A﹣3B=5x+5y﹣7xy+15=5(x+y)﹣7xy+15=5×﹣7×(﹣1)+15=4+7+15=26.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.【解答】解:(1)∵|x﹣3|=|x+1|,∴x=(﹣1+3)=1;(2)由数轴得:|x﹣3|+|x+1|≤4,∴式子|x﹣3|+|x+1|的最小值为4.。

人教版七年级上学期期中数学试卷(含解析)

人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。

人教版数学七年级上学期《期中考试试卷》(含答案解析)

人教版数学七年级上学期《期中考试试卷》(含答案解析)
答案与解析
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格



家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;

人教版数学七年级上册《期中考试卷》(含答案)

人教版数学七年级上册《期中考试卷》(含答案)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017-3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33< 4.下列各式中,等号不成立的是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab 7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.10.单项式 35ab -8的系数是__,次数是__. 11.若315k y x 与3873x y -是同类项,则k=_____. 12.我国2006年参加高考报名总人数约为950万人,则该人数可用科学记数法表示为_____人. 13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).14.已知单项式3a m b 2与423n a b -和是单项式,那么m=_____,n=_____. 15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48. (3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78. (4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m 2n ﹣5mn)﹣(4m 2n ﹣5mn) (6)13(9a ﹣3)+2(a +1). 四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=ab a b+,试求2*(﹣4)的值. 19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?21.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.答案与解析一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元【答案】B【解析】试题分析:若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B .考点:正数和负数.2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017- 【答案】D【解析】分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:-2017的倒数是12017-.故选D.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33<【答案】C【解析】【分析】(1)根据两个负数,绝对值大的其值反而小作答;(2)根据负数都小于0作答;(3)根据两个负数,绝对值大的其值反而小作答;(4)根据两个正数,绝对值大的数较大作答.【详解】A.∵|−6|<|−8|,∴−6>−8,错误;B.∵11000-−11000是负数,∴11000-<0,错误; C.∵11,57->- ∴1157--<,正确; D.1 3>0.3,错误.故选C.【点睛】考查有理数的大小比较,掌握正数都大于0,负数都小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.4.下列各式中,等号不成立是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 【答案】B【解析】试题分析:正数绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值为零.444-==,则本题不成立的是B .5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项【答案】D【解析】试题分析:由同类项的定义可知,D 选项中的两个单项式所含字母m 、n 相同,并且相同字母的指数也相等,因此本题选D.考点:同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab【答案】B【解析】【详解】解:A 选项不是同类项,无法进行加减法计算;B 选项计算正确;C 、原式=2x ;D 选项不是同类项,无法进行加减法计算.故选B .【点睛】本题主要考查的就是合并同类项的计算,属于简单题目.对于同类项的加减法,我们只需要将同类项的系数进行相加减,字母和字母的指数不变即可得出答案,很多同学会将字母的指数也进行相加减,这样就会出错.如果两个单项式不是同类项,我们无法进行加减法计算,这一点很多同学会出错.7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1) 【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A :0.05019精确到0.1是0.1,正确;B :0.05019精确到百分位是0.05,正确;C :0.05019精确到千分位是0.050,错误;D :0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元 【答案】D【解析】 由题意得0.7a 元,所以选D. 点睛:涨价,降价与折扣一个物品价格为a ,涨价b %,现价 为a (1+b %),一个物品价格为a ,降价b %,现价 为a (1-b %),一个物品价格为a ,9折出售,现价为90%a.二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.【答案】(t +15)【解析】(t +15).10.单项式 35ab -8的系数是__,次数是__. 【答案】 (1). 58- (2). 4【解析】 因为单项式的系数是指字母前数字因数,所以358ab -的系数是58-,单项式的次数是指所含字母指数之和,所以358ab -的次数是4,故答案为5 8-,4. 11.若315k y x 与3873x y -是同类项,则k=_____. 【答案】8【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:k=8.12.我国2006年参加高考报名的总人数约为950万人,则该人数可用科学记数法表示为_____人.【答案】9.5×106【解析】试题分析:科学计数法是指将一个数字表示成a 10n ⨯的形式,其中1≤a <10,n 为原数的整数位数减一,则950万人=9500000人=69.510⨯人.13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).【答案】不合格【解析】【分析】根据正负数的意义,求得合格零件的直径的范围,再进一步分析.【详解】解:根据题意,得该零件直径最小是20-0.02=19.98(mm ),最大是20+0.02=20.02(mm ),因为19.9<19.98,所以该零件不合格.故答案为不合格.【点睛】此题考查了正、负数在实际生活中的意义,±0.02表示和标准相比,超过或不足0.02. 14.已知单项式3a m b 2与423n a b -的和是单项式,那么m=_____,n=_____. 【答案】 (1). 4 (2). 2【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:m=4,n=2.15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.【答案】0或﹣6.【解析】试题分析:在数轴上两点所表示的数的差的绝对值为这两个点之间的距离.设这个点表示的数为x ,则()33x --=,则x 33+=±,解得:x=0或-6,即这个点表示的数为0或-6.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.【答案】5或1.【解析】试题分析:根据绝对值的计算方法可得:a 3=±,b 2=±,根据a b >可得:a=3,b 2=±,则a+b=3+2=5或a+b=3+(-2)=1.点睛:正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的相反数为零;互为相反数的两个数的绝对值相等.本题首先根据绝对值的性质求出a 和b 的值,然后根据有理数的大小比较方法确认a 和b 的值,然后进行计算得出答案.这种题目有的时候还是会出现平方根,根据平方根的性质得出答案.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48.(3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78.(4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m2n﹣5mn)﹣(4m2n﹣5mn)(6)13(9a﹣3)+2(a+1).【答案】(1)﹣1;(2)24;(3)﹣1;(4)19;(5)3m2n;(6)5a+1【解析】试题分析:(1)、首先将同号的进行相加,然后再进行异号的加法计算;(2)、利用乘法分配律进行简便计算;(3)、首先进行绝对值和去括号计算,然后将同分母的放在一起进行计算,最后进行整数之间的计算;(4)、先进行幂的计算,然后进行加减法计算;(5)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案;(6)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案.试题解析:解:(1)、原式=﹣23+22=﹣1;(2)、原式=﹣8+36﹣4=24;(3)、原式=0.75﹣3+0.25+18+78=1﹣3+1=﹣1;(4)、原式=﹣4+3×1+20=﹣4+3+20=19;(5)、原式=7m2n﹣5mn﹣4m2n+5mn=3m2n;(6)、原式=3a﹣1+2a+2=5a+1四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=aba b+,试求2*(﹣4)的值.【答案】4【解析】【分析】根据给出的新定义的计算法则将数字分别代入公式计算即可得出答案.【详解】2*(﹣4)=()()248 244⨯--=+--=4.【点睛】考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.【答案】6.【解析】试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项计算,最后将x 和y 的值代入化简后的式子进行计算即可得出答案.试题解析:解:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y)=2x 2y ﹣4xy 2+3xy 2﹣x 2y=x 2y ﹣xy 2,当x=﹣1,y=2时,原式=(﹣1)2×2﹣(﹣1)×22=1×2+1×4=2+4=6.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?【答案】(1)A 处在岗亭南方,距离岗亭14千米;(2)34L【解析】【分析】(1)由已知,把所有数据相加,如果得数是正数,则A 处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【详解】解:(1)(+10)+(-8)+( +7)+(-15)+(+6)+(-16)+(+4)+(-2) 1分=-14答:停留时,A 处在岗亭的南方,距离14千米(2)()108715616420.5+++++++++++⨯---- ()108715616420.5=+++++++⨯680.5=⨯34=答:这一天共耗油34升考点:正数和负数.21.已知:m,x,y 满足:(1)23(x -5)2+5|m|=0;(2)-2a 2b y +1与7b 3a 2是同类项. 求:代数式2x 2-6y 2+m(xy -9y 2)-(3x 2-3xy +7y 2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.。

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中考试数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。

人教版七年级数学上册期中试卷(含答案)

人教版七年级数学上册期中试卷(含答案)

人教版七年级数学上册期中试卷七年级数学满分:120分时间:90分钟一、选择题。

(每小题3分,共30分)1.下列各式不成立的是A. |−2| = 2B. |+2 |= |−2|C. −|+2| =±|−2| C. −|3| = + (−3)2.在+3.5、−43、0、−2、−0.56、−0.101001中,负分数有A. 4个B. 3个C. 2个D. 1个3.已知有理数a,b在数轴上的位置如图所示,比较a、b、−a、−b的大小,正确的是A. a<b<−a<−bB. b<−a<−b<aC. −a<a<b<−bD. −b<a<−a<b4.冰箱冷冻室的温度为−6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高A. 26℃B. 14℃C. −26℃D. −14℃5.下列判断中,正确的是A. 若a是有理数,则|a|−a=0一定成立B. 两个有理数的和一定大于每个加数C. 两个有理数的差一定小于被减数D. 0减去任何数都等于这个数的相6.计算(−2)2022+(−2)2023的结果是A. −1B. −2C. −22022D. 220237.如果一个多项式的次数是6,那么这个多项式的任何一项的次数A. 都小于6B. 都等于6C. 都不小于6D. 都不大于68.在式子:−35ab、2x2y5、x+y2、−a2bc、1、x2−2x+3、3a、1x+1中,单项式个数为A. 2B. 3C. 4D. 59.如果整式x n−3−5x2+2是关于x的三次三项式,那么n等于A. 3B. 4C. 5D. 610.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是A. (1−10%)(1+15%)x万元B. (1−10%+15%)x万元C. (x−10%)(x+15%)万元D. (1+10%−15%)x万元二、填空题。

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。

人教版七年级上册数学《期中考试试卷》及答案解析

人教版七年级上册数学《期中考试试卷》及答案解析

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 33. 与原点距离是2.5个单位长度的点所表示的有理数是( )A 2.5 B. -2.5 C. ±2.5 D. 这个数无法确定4.计算(2)--的值是()A. -2B. 2C. 2±D. 45.﹣3的绝对值是( )A ﹣3 B. 3 C. -13D.136.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 77.下列各组中的两个单项式中,是同类项的是()A. a2和-2aB. 2m2n和3nm2C. -5ab和-5abcD. x3和238.化简5(2x-3)+4(3-2x)结果为( )A 2x-3 B. 2x+9 C. 8x-3 D. 18x-39.加上3m -等于2535m m --的式子是( ) A. 25(1)m -B. 2565m m --C. 25(1)m +D. 2(565)m m -+-10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克B. 50×109千克C. 5×109千克D. 5×1010千克二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 12.30+(﹣20)=_____.13.计算:2(3)-=__________;23-=__________. 14.当2x =-时,代数式221x x -+-=__________.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 16.3xy 2﹣7xy 2=_____.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他的记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣4519.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷bc的值. 23.根据下面给出数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示). (3)数轴上,线段AB 的中点表示的数是多少?五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人, (1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题: (1)请直接写出、、的值.a = ,b = ,c = .(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:|1||1|2|5|x x x +---+(请写出化简过程)(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)n n >个单位长度的速度向左运动,同时,点和点分别以每秒2n 个单位长度和5n 个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表示为BC ,点与点之间的距离表示为AB .请问:BC AB -的值是否随着时间的变化而改变?若变化,请说明理由:若不变,请求其值.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 3【答案】A【解析】【分析】根据题意,在选项中寻找负有理数或零即可.【详解】解:不是正有理数,则为负有理数或零,而A中的﹣3.14是负数故选A.【点睛】本题考查有理数;能够理解题意,掌握有理数的分类是解题的关键.3. 与原点距离是2.5个单位长度的点所表示的有理数是( )A. 2.5B. -2.5C. ±2.5D. 这个数无法确定【答案】C【解析】试题分析:根据数轴上的点表示的数即可判断.与原点距离是2.5个单位长度的点所表示的有理数是±2.5,故选C.考点:数轴点评:分类思想是初中数学学习中一个非常重要的思想,是学生对所学知识是否熟练掌握的很重要的一个体现,因而此类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需特别注意.4.计算(2)--的值是()A. -2B. 2C. 2±D. 4【答案】B【解析】【分析】根据去括号法则求解即可.【详解】(2)2--=故选:B.【点睛】本题考查了去括号法则,熟记法则是解题关键.5.﹣3的绝对值是( )A. ﹣3B. 3C. -13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.6.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】利用单项式次数求解即可. 【详解】单项式7πa 2b 3的次数是5. 故选B .【点睛】本题主要考查了单项式,解题的关键是熟记单项式的定义,注意π是常数. 7.下列各组中的两个单项式中,是同类项的是( ) A. a 2和-2a B. 2m 2n 和3nm 2 C. -5ab 和-5abc D. x 3和23【答案】B 【解析】试题分析:同类项是指:单项式中所含的字母相同,且相同字母的指数也完全相同.ACD 都不属于同类项. 考点:同类项的定义.8.化简5(2x-3)+4(3-2x)的结果为( ) A. 2x-3 B. 2x+9 C. 8x-3 D. 18x-3【答案】A 【解析】试题分析:根据整式的混合运算,结合合并同类项法则可求解:5(2x-3)+4(3-2x)=5(2x-3)-4(2x-3)=2x-3. 故选A考点:合并同类项9.加上3m -等于2535m m --的式子是( ) A. 25(1)m - B. 2565m m --C. 25(1)m +D. 2(565)m m -+-【答案】A 【解析】 【分析】根据整式的加减法则即可得.【详解】由题意得:所求的式子为2535(3)m m m ----25353m m m =--+ 255m =-25(1)m =-故选:A .【点睛】本题考查了整式的加减运算,理解题意,正确列出所求的式子是解题关键.10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克 B. 50×109千克C. 5×109千克D. 5×1010千克【答案】D 【解析】 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1. 【详解】解:50 000 000 000一共11位,从而50 000 000 000=5×1010. 故选D .二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 【答案】0. 【解析】 【分析】根据数轴上数字的表示可得答案.【详解】数轴上以原点为界限,右边的数都大于0,左边的数都小于0,原点表示0. 故答案为0.【点睛】本题考查了数轴上点所表示的数,非常简单. 12.30+(﹣20)=_____. 【答案】10. 【解析】 【分析】根据有理数加法法则计算即可. 【详解】30+(﹣20)=30﹣20=10. 故答案为10【点睛】本题主要考查了有理数的加法,熟记有理数的加法法则是解答本题的关键.13.计算:2(3)-=__________;23-=__________.【答案】 (1). 9 (2). -9 【解析】 【分析】根据有理数的幂运算法则即可得. 【详解】2(3)(3)(3)9-=-⨯-=23339-=-⨯=-故答案为:;9-.【点睛】本题考查了有理数的幂运算,熟记运算法则是解题关键. 14.当2x =-时,代数式221x x -+-=__________. 【答案】-9 【解析】 【分析】将2x =-代入求解即可得.【详解】22221(21)(1)x x x x x -+-=--+=-- 将2x =-代入得:原式()()222219=--+⨯--=- 故答案为:9-.【点睛】本题考查了代数式的化简求值,掌握有理数的混合运算方法是解题关键.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 【答案】﹣2. 【解析】 【分析】根据单项式系数、次数的定义来求解,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,然后求出m和n的值,相乘即可,m=-23,n=3,mn=-2.【详解】∵单项式﹣223x y的系数是m,次数是n,∴m=﹣23,n=3,mn=﹣2.故答案为-2【点睛】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.3xy2﹣7xy2=_____.【答案】﹣4xy2.【解析】【分析】根据合并同类项的法则计算即可.【详解】3xy2﹣7xy2=(3﹣7)xy2=﹣4xy2.故答案为﹣4xy2【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.【答案】54.【解析】【分析】求出所有数的绝对值的和即可.【详解】由题意可得:|+5|+|﹣3|+|+10|+|﹣8|+|+4|+|﹣6|+|+8|+|﹣10|=5+3+10+8+4+6+8+10=54(米),答:守门员全部练习结束后,他共跑了54米.故答案为54.【点睛】本题考查了正数和负数,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣45【答案】﹣15. 【解析】 【分析】根据有理数的乘法和加减法即可解答. 【详解】﹣2×4﹣6+(﹣15)﹣45=﹣8﹣6+(﹣15)+(﹣45)=﹣15.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 【答案】6.5. 【解析】 【分析】根据有理数的乘法和加减法可即可求解. 【详解】|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| =3.75+5.25﹣2.5 =6.5.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5 【答案】6x 2﹣9x ﹣5. 【解析】 【分析】根据合并同类项法则计算即可. 【详解】原式=(2x 2+4x 2)+(﹣3x ﹣6x )﹣5 =6x 2﹣9x ﹣5.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 【答案】244x -;5.【解析】【分析】先根据整式的加减:合并同类项进行化简,再将x 的值代入求解即可. 【详解】22211(21)()(33)33x x x x x -----+- 22211021333x x x x x =---+++- 244x =-当32x =时,原式2394()44429445=⨯-=⨯-=-=. 【点睛】本题考查了整式的加减及化简求值,熟记整式的运算法则是解题关键. 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷b c 的值. 【答案】5.【解析】【分析】根据绝对值的非负性可得a+5=0,b-3=0,c+2=0,再解可得a 、b 、c 的值,然后再代入代数式可得答案.【详解】∵|a +5|+|b ﹣2|+|c +4|=0,∴a +5=0,b ﹣2=0,c +4=0,解得a =﹣5,b =2,c =﹣4,∴a b ÷b c =a b ×c b=52-×42- =5,故答案为5.【点睛】此题主要考查了绝对值,以及有理数的乘法,关键是掌握有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.23.根据下面给出的数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示).(3)数轴上,线段AB 的中点表示的数是多少?【答案】(1)A 、B 两点之间的距离是5;(2)如图所示,见解析;(3)数轴上,线段AB 的中点表示的数是0.5.【解析】【分析】(1)从数轴上可以看出A 点是-2,B 点是3,所以距离为5;(2)与点A 的距离为2的点有两个,即一个向左,一个向右.(3)从数轴上找出线段AB 的中点,即距A ,B 两点的距离都是2.5的点,然后读出这个数即可.【详解】(1)A 、B 两点之间的距离是2+3=5.(2)如图所示:.(3)(﹣2+3)÷2=0.5.【点睛】本题主要考查了在数轴上解决实际问题的能力,学生要会利用数轴来解决这些问题.五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人,(1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?【答案】(1)中途上车的共有(132m ﹣92n )人;(2)中途上车的乘客有29人. 【解析】分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)将m 与n 的值代入(1)中的关系式,计算即可得到结果.【详解】(1)根据题意得:(8m ﹣5n )﹣12(3m ﹣n )=8m ﹣5n ﹣12m +12n =132m ﹣92n , 则中途上车的共有(132m ﹣92n )人; (2)当m =10,n =8时,原式=132×10﹣92×8=65﹣36=29, 则中途上车的乘客有29人.【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题:(1)请直接写出、、的值.a=,b=,c=.(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:+---+(请写出化简过程)|1||1|2|5|x x xn n>个单位长度的速度向左运动,同时,点和(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)点分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表-的值是否随着时间的变化而改变?若变化,请说明示为BC,点与点之间的距离表示为AB.请问:BC AB理由:若不变,请求其值.【答案】(1)-1,1,6;(2)-10;(3)不变,值为3.【解析】【分析】(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC−AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【详解】解:∵b是最小的正整数,∴b=1,∵(c−6)2+|a+b|=0,(c−6)2⩾0,|a+b|⩾0,∴c=6,a=−1,b=1,故答案为−1,1,6;(2).由题意−1<x<1,∴|x+1|−|x−1|−2|x+5|=x+1+x−1−2x−10=−10.(3)不变,由题意BC=5+5nt−2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC−AB=(5+3nt)−(2+3nt)=3,∴BC−AB的值不变,BC−AB=3.【点睛】本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长.。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版

人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版

人教版2024-2025学年上学期七年级上册期中考试数学试卷解析版一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共10个小题,每小题3分,共30分)1. 2023的倒数是 ( )A. - 2023B. 2023C.12023D.−12023【答案】C2. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则-3℃表示气温为( )A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃【答案】B3. 下列各式中,与3x²y³是同类项的是( )A. 6x⁵B.3x³y²C.−12x2y3D.−14x5【答案】C4.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为( )A.4×10⁵B.4×10⁶C.40×10⁴D.0.4×10⁶【答案】A5. 下列是根据等式的性质进行变形,正确的是 ( )A. 若x=y, 则x+5=y-5B. 若a-x=b+x, 则a=bC. 若 ax= ay, 则x=yD. 若x2=y2,则x=y【答案】D6. 下列各式正确的是 ( )A. - |-5|=5B. - (-5)=-5C. |-5|=-5D. - (-5)=5【答案】D7. 下列说法错误的是( )A.2x²−3xy−1是二次三项式B. - x+1的项是-x、 1C.−x²y的系数是-1D.−2ab²是二次单项式【答案】D8. 已知有理数a,b在数轴上对应的点的位置如图所示,则下列结论正确的是( )A. b>a>0B. b>0>aC. a+b>0D. a-b>0【答案】B9. 解方程x+14=x−5x−112时,去分母正确的是( )A.3 (x+1)=x - (5x-1)B.3 (x+1)=12x-5x-1C.3 (x+1)=12x - (5x-1)D.3x+1=12x-5x+1【答案】C10. 已知整数a₁, a₂, a₃, a₄, 满足下列条件:a₁=0,a₂=−|a₁+1|,a₃=−|a₂+2|,a₄=−|a₃+3|,依此类推, 则a₁₀₀₁的值为( )A. - 500B. - 501C. - 1000D. - 1001【答案】A二、填空题(本题共6小题,每小题3分,共18分)11. 点A在数轴上的位置如图所示,则点A 表示的数的相反数是 .【答案】-212. 比较大小:−65¯−34(填“>” 、“<” 或“=” ).【答案】<13. 已知关于x的方程 mx+2=x的解是x=6, 则m的值为 .【答案】2 314. 已知a,b互为相反数,m,n互为倒数,x是最小正整数,则(mn)2−a+b2024+x=¯.【答案】215. 若2m--n=2, 则代数式6+4m-2n 值为 .【答案】1016. 如图所示为一个数值运算程序,当输入大于1的正整数x时,输出的结果为8,则输入的x值为【答案】2或3##3或2三、解答题(本题共9个小题, 第17、18、19题每题6分, 第20、21题每题8分, 第22、23每题9分, 第24、25每题10分, 共72分)17. 计算: −1²⁰²³+(−2)³×5−(−28)÷4+|−2|.【详解】原式=-1-40+7+2,=-32.18. 解方程:(1) 3(x-3)=x+1(2)x+24−2x−36=2【详解】(1) 解: 3x-9=x+1,3x-x=9+1,2x=10,x=5;(2) 解:3(x+2)−2(2x−3)=24,3x+6−4x+6=24,−x=12,x=−12.19. 先化简, 再求值:3y²−x²+2(2x²−3xy)−3(x²+y²)的值,其中.x=2,y=−3.【详解】解:3y²−x²+2(2x²−3xy)−3(x²+y²)=3y²−x²+4x²−6xy−3x²−3y²=−6xy:当x=2,y=−3时,原式:=−6×2×(−3)=36.20. 已知关于x的多项式2mx³−2x²+3x−(2x³+nx)不含三次项和一次项,求((m−n)³的值.【详解】解:2mx³−2x²+3x−(2x³+nx)=2mx³−2x²+3x−2x³−nx=(2m−2)x³−2x²+(3−n)x,由题意,得:2m−2=0,3−n=0所以m=1, n=3.则(m−n)³=(−2)³=−8.21. 外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定每天送餐量超过(1) 该外卖小哥这一周送餐量最多的一天比最少的一天多多少单?(2) 求该外卖小哥这一周总共送餐多少单?【小问1详解】14−(−8)=14+8=22 (单),即该外卖小哥这一周送餐量最多的一天比最少的一天多22单;【小问2详解】50×7+(−3+4−5+14−8+7+10)=350+19=369369 (单),即该外卖小哥这一周一共送餐369单.22. 如图所示:已知a,b,c在数轴上的位置(1) 化简:|a+b|−|c−b|+|b−a|(2) 若a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,求−a+2b+c−(a+b−c)的值.【小问1详解】解: 由数轴可得: c<b<0<a,∴a+b>0,c-b<0,b-a<0,∴原式=a+b+c-b-b+a=2a-b+c.【小问2详解】∵a的绝对值的相反数是-2,-b的倒数是它本身,c²=4,c<0,∴a=2,b=-1,c=-2,∴-a+2b+c-(a+b-c)=-a+2b+c-a-b+c=-2a+b+2c=-4-1-4=-9.23. 已知A=2a²−a−ab,B=a²−b+ab.(1) 化简A-2B;(2) 若A-2B的值与a的取值无关, 求A-2B的值.【小问1详解】解: A-2B=(2a²−a−ab)−2(a²−b+ab)=2a²−a−ab−2a²+2b−2ab=-a+2b-3ab;【小问2详解】解: 由(1) 得:A−2B=−a+2b−3ab=(−1−3b)a+2b,∵A-2B的值与a的取值无关,∴--1-3b=0,,解得:b=−13∴A−2B=2b=−2324. 如图,在数轴上点A表示数a,点B表示数b,且(a+5)²+|b−16|=0.(1) 填空:a=;(2) 若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,已知点C为数轴上一动点,且满足AC+BC=29,求出点C表示的数;(3) 若点A以每秒3个单位长度的速度向左运动,同时点B以每秒2个单位长度的速度向右运动,动点D从原点开始以每秒m个单位长度运动,运动时间为t秒,运动过程中,点D始终在A,B两点之间上,且BD -5AD的值始终是一个定值,求此时m的值.【小问1详解】解:∵(a+5)²+|b−16|=0,∴a+5=0,b−16=0,∴a=−5,b=16,故答案为: - 5, 16:【小问2详解】解:设点C在数轴上表示的数为x,①点C在点A的左侧时,∵AC=−5−x,BC=16−x,AC+BC=29。

2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)

2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)

专业课原理概述部分一、选择题(每题1分,共5分)1.下列哪个数是质数?A.21B.23C.27D.302.如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A.3厘米B.23厘米C.17厘米D.27厘米3.下列哪个数是偶数?A.101B.102C.103D.1044.下列哪个数是奇数?A.151B.152C.153D.1545.下列哪个数既是偶数又是质数?A.11B.13C.17D.2二、判断题(每题1分,共5分)1.两个质数相乘,其结果一定是合数。

()2.一个三角形的内角和等于180度。

()3.任何偶数都可以表示为2的倍数。

()4.任何奇数加上偶数,其结果一定是奇数。

()5.0既不是奇数也不是偶数。

()三、填空题(每题1分,共5分)1.最大的两位数是______。

2.两个质数相乘,其结果一定是______。

3.一个三角形的内角和等于______度。

4.任何偶数都可以表示为______的倍数。

5.0既不是______也不是______。

四、简答题(每题2分,共10分)1.请列举出前五个质数。

2.请简述三角形的内角和定理。

3.请说明偶数和奇数的区别。

4.请解释质数和合数的区别。

5.请说明0在数学中的特殊性质。

五、应用题(每题2分,共10分)1.小明有10个苹果,他吃掉了3个,还剩下多少个苹果?2.一个长方形的长是8厘米,宽是4厘米,求其面积。

3.一个数加上5等于10,这个数是多少?4.一个数乘以3等于12,这个数是多少?5.一个数除以4等于6,这个数是多少?六、分析题(每题5分,共10分)1.请分析两个质数相乘的结果,为什么一定是合数?2.请分析三角形的内角和定理,为什么一个三角形的内角和等于180度?七、实践操作题(每题5分,共10分)1.请用直尺和圆规画出一个边长为5厘米的正方形。

2.请用直尺和圆规画出一个内角为60度的等边三角形。

八、专业设计题(每题2分,共10分)1.设计一个程序,能够计算并输出100以内的所有质数。

七年级数学上学期期中试卷(含解析)新人教版2

七年级数学上学期期中试卷(含解析)新人教版2

七年级数学上学期期中试卷(含解析)新人教版22022-2022学年山西省阳泉市平定县东关中学七年级(上)期中数学试卷一、选择题(将每题中的正确选项填入下表,每小题2分,共24分)1.如果水位下降3米记作﹣3米,那么水位上升4米,记作()A.1米B.7米C.4米D.﹣7米2.A市某天的最高气温为8℃,最低气温为﹣6℃,则这一天的最高与最低气温的差为()A.2℃B.﹣2℃C.14℃D.﹣14℃3.下列等式正确的是()A.43=34B.﹣53=(﹣5)3C.﹣42=(﹣4)2D.4.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)5.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>06.下列说法正确的是()A.0不是单项式B.某没有系数C.是多项式D.﹣某y5是单项式7.下列式子成立的是()A.2某﹣5=﹣(5﹣2某)B.7a+3=7(a+3)(2某﹣5)8.下列说法正确的是()A.某2的系数是0B.某y2的次数2 C.﹣a﹣b=﹣(a﹣b)D.2某﹣5=﹣C.﹣5某2的系数是5D.9.下列计算正确的是()A.4某﹣9某+6某=﹣某B.的系数是﹣C.某3﹣某2=某D.某y﹣2某y=3某y10.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A.2B.2或3C.4D.2或411.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn 元12.若规定“!”是一种数学运算符号,且1!=1,2!=2某1=2,3!=3某2某1=6,4!=4某3某2某1=24,…,则A.的值为()D.2!B.99!C.9900二、填空题(将正确答案填在横线上,每小题2分,共16分)13.的倒数是.14.今年“十一”黄金周期间,我市主要景区景点人气火爆,据市旅游局统计,本次小长假景区门票收入为369.7万元,将这一数据用科学记数法表示为元.15.已知点A和点B在同一数轴上,点A表示数﹣2,点B和点A相距5个单位长度,则点B表示的数是.2216.计算6a﹣5a+3与5a+2a﹣1的差,结果是.mn3m17.若﹣2某y和某y是同类项,则(﹣n)等于.18.若3a2﹣a=2,则﹣2a+6a2+5的值为.19.规定a﹡b=5a+2b﹣1,则(﹣4)﹡6的值为.20.三个小队植树,第一队种某棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树棵.三、解答题(共60分)21.计算(1)(﹣﹣+(2)(3))÷.22.化简(1)2(2a﹣3b)+3(2b﹣3a)(2)3(﹣ab+2a)﹣(3a﹣b)+3ab 22222(3)2(某﹣某y)﹣3(2某﹣3某y)﹣2[某﹣(2某﹣某y+y)].23.(1)小明是个小马虎,他在计算多项式M减去多项式ab﹣2bc+3ac时,把减号误看成加号,结果得到答案﹣2ab+bc+8ac,请你帮小马虎小明求出正确答案.(2)已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.①求A等于多少?2②若|a+1|+(b﹣2)=0,求A的值.24.某工厂第一车间有某人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?25.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可以理解5与﹣2两数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数某,使得|某+5|+|某﹣2|=7,这样的整数是.26.一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.2(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升?32022-2022学年山西省阳泉市平定县东关中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(将每题中的正确选项填入下表,每小题2分,共24分)1.如果水位下降3米记作﹣3米,那么水位上升4米,记作()A.1米B.7米C.4米D.﹣7米【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,下降记为负,可得上升的表示方法.【解答】解:如果水位下降3米记作﹣3米,那么水位上升4米,记作4米,故选:C.2.A市某天的最高气温为8℃,最低气温为﹣6℃,则这一天的最高与最低气温的差为()A.2℃B.﹣2℃C.14℃D.﹣14℃【考点】有理数的减法.【分析】用最高温度﹣最低温度=温差,列式8﹣(﹣6),计算即可.【解答】解:8﹣(﹣6)=8+6=14(℃),故选:C.3.下列等式正确的是()A.43=34B.﹣53=(﹣5)3C.﹣42=(﹣4)2D.【考点】有理数的乘方.【分析】根据有理数的乘方的定义对各选项分析判断即可得解.【解答】解:A、43=64,34=81,故本选项错误;B、﹣53=﹣125,(﹣5)3=﹣125,故本选项正确;C、﹣42=﹣16,(﹣4)2=16,故本选项错误;D、(﹣)2=,(﹣)2=,故本选项错误.故选B.4.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)【考点】近似数和有效数字.【分析】A、精确到0.1就是保留小数点后一位,因为小数点后第二位是5,进一得0.1;B、精确到百分位,就是保留小数点后两位,因为小数点后第三位是0,舍,得0.05;C、精确到千分位,就是保留小数点后三位,因为小数点后第四位是1,舍,得0.050;D、精确到0.0001,就是保留小数点后四位,因为小数点后第五位是9,进一,得0.0502;【解答】解:A、0.05019≈0.1(精确到0.1),所以此选项正确;B、0.05019≈0.05(精确到百分位),所以此选项正确;C、0.05019≈0.050(精确到千分位),所以此选项错误;D、0.05019≈0.0502(精确到0.0001),所以此选项正确;本题选择错误的,故选C.45.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>0【考点】有理数的减法;数轴;有理数的加法.【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.6.下列说法正确的是()A.0不是单项式B.某没有系数C.是多项式D.﹣某y5是单项式【考点】单项式.【分析】本题涉及单项式、多项式等考点.解答时根据单项式系数、次数的定义来一一分析,然后排除错误的答案.【解答】解:A、0是单项式,故错误;B、某的系数是1,故错误;C、分母中含字母,不是多项式,故正确;D、符合单项式的定义,故正确.故选D.7.下列式子成立的是()A.2某﹣5=﹣(5﹣2某)B.7a+3=7(a+3)C.﹣a﹣b=﹣(a﹣b)(2某﹣5)【考点】去括号与添括号;合并同类项.【分析】原式各项利用添括号法则变形得到结果,即可作出判断.【解答】解:A、原式=﹣(5﹣2某),成立;B、原式=7(a+),不成立;C、原式=﹣(a+b),不成立;D、原式=﹣(﹣2某+5),不成立,故选A8.下列说法正确的是()A.某2的系数是0B.某y2的次数2 D.2某﹣5=﹣5C.﹣5某2的系数是5D.的系数是﹣【考点】单项式.【分析】根据单项式及单项式系数的定义进行解答即可.【解答】解:A、某2的系数是1,故本选项错误;B、某y2的次数是3,故本选项错误;C、﹣5某的系数是5,故本选项错误;D、﹣的系数是﹣,故本选项正确.2故选D.9.下列计算正确的是()A.4某﹣9某+6某=﹣某B.C.某3﹣某2=某D.某y﹣2某y=3某y【考点】合并同类项.【分析】根据同类项定义、合并同类项法则计算.【解答】解:①4某﹣9某+6某=某;②a﹣a=0;③某﹣某不是同类项,不能合并;④某y﹣2某y=﹣某y.故选B.10.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A.2B.2或3C.4D.2或4【考点】绝对值;相反数.【分析】根据互为相反数的两数和为0,又因为|a﹣b|=6,可求得b的值,代入即可求得结果判定正确选项.【解答】解:∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,∴|b﹣1|=2或4.故选D.11.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(4m+7n)元B.28mn元C.(7m+4n)元D.11mn 元【考点】列代数式.【分析】用4个足球的价钱加上7个篮球的价钱即可.【解答】解:买4个足球、7个篮球共需要(4m+7n)元.故选:A.63212.若规定“!”是一种数学运算符号,且1!=1,2!=2某1=2,3!=3某2某1=6,4!=4某3某2某1=24,…,则A.的值为()D.2!B.99!C.9900【考点】有理数的混合运算.【分析】分析:根据运算的定义,可以把100!和98!写成连乘积的形式,然后约分即可求解.【解答】解:原式==99某100=9900.故选:C.二、填空题(将正确答案填在横线上,每小题2分,共16分)13.的倒数是﹣.【考点】倒数.【分析】首先把﹣1化为假分数,再写出倒数即可.【解答】解:﹣1=﹣,﹣的倒数是﹣,故答案为:﹣.14.今年“十一”黄金周期间,我市主要景区景点人气火爆,据市旅游局统计,本次小长假景区门票收入为369.7万元,将这一数据用科学记数法表示为3.697某106元.【考点】科学记数法—表示较大的数.n【分析】科学记数法的表示形式为a某10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:369.7万元,将这一数据用科学记数法表示为3.697某106元,6故答案为:3.697某10.15.已知点A和点B在同一数轴上,点A表示数﹣2,点B和点A相距5个单位长度,则点B表示的数是﹣7或3.【考点】数轴.【分析】根据数轴可知点B可能在点A的左边,也可能在点A的右边,即可解答.【解答】解:﹣2+5=3或﹣2﹣5=﹣7,故答案为:﹣7或3.716.计算6a2﹣5a+3与5a2+2a﹣1的差,结果是a2﹣7a+4.【考点】整式的加减.【分析】根据题意列出式子,运算即可.【解答】解:由题意得,226a﹣5a+3﹣(5a+2a﹣1)=a2﹣7a+4,故答案为:a2﹣7a+4.mn3m17.若﹣2某y和某y是同类项,则(﹣n)等于﹣1.【考点】同类项.【分析】根据同类项的概念求解.【解答】解:∵﹣2某ym和某ny3是同类项,∴n=1,m=3,m则(﹣n)=﹣1故答案为:﹣1.2218.若3a﹣a=2,则﹣2a+6a+5的值为9.【考点】代数式求值.【分析】所求式子前面两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵3a2﹣a=2,2∴﹣2a+6a+52=2(3a﹣a)+5=4+5=9.故答案为:9.19.规定a﹡b=5a+2b﹣1,则(﹣4)﹡6的值为﹣9.【考点】有理数的混合运算.【分析】先根据规定得到有理数的算式,计算即可.【解答】解:∵a﹡b=5a+2b﹣1,∴(﹣4)﹡6=5某(﹣4)+2某6﹣1,=﹣20+12﹣1,=﹣9.20.三个小队植树,第一队种某棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树4某+6棵.【考点】整式的加减.【分析】先列式表示第二队种的树的数量,再列式表示第三队种的树的棵数,最后求和.【解答】解:依题意得:第二队树的数量=2某+8,第三队种的树的棵树=(2某+8)﹣6=某﹣2,所以三队共种树某+(2某+8)+(某﹣2)=4某+6(棵).三、解答题(共60分)21.计算8(1)(﹣﹣+(2)(3))÷.【考点】有理数的混合运算.【分析】(1)把除法转化为乘法,利用分配律计算,然后计算乘法,最后进行加减即可;(2)首先计算乘方、乘法、除法,最后进行加减计算即可;(3)首先计算乘方、乘法、除法,最后进行加减计算即可.【解答】解:(1)原式=﹣某36﹣某36+=﹣27﹣20+21=﹣28;(2)原式==2+2=4;(3)原式=﹣某16﹣某5某64=﹣10﹣80=﹣90.22.化简(1)2(2a﹣3b)+3(2b﹣3a)(2)3(﹣ab+2a)﹣(3a﹣b)+3ab (3)2(某2﹣某y)﹣3(2某2﹣3某y)﹣2[某2﹣(2某2﹣某y+y2)].【考点】整式的加减.【分析】(1)先去括号,然后合并同类项;(2)先去括号,然后合并同类项;(3)先去括号,然后合并同类项.【解答】(1)原式=4a﹣6b+6b﹣9a=﹣5a;(2)原式=﹣3ab+6a﹣3a+b+3ab=3a+b;(3)原式=2某2﹣2某y﹣6某2+9某y﹣2某2+4某2﹣2某y+2y222=﹣2某+某y+2y.23.(1)小明是个小马虎,他在计算多项式M减去多项式ab﹣2bc+3ac时,把减号误看成加号,结果得到答案﹣2ab+bc+8ac,请你帮小马虎小明求出正确答案.(2)已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.①求A等于多少?②若|a+1|+(b﹣2)2=0,求A的值.【考点】整式的加减;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)根据题意确定出M,列出正确算式,去括号合并即可得到结果;9某36(2)①由题意确定出A即可;②利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:(1)根据题意得:M+ab﹣2bc+3ac=﹣2ab+bc+8ac,即M=﹣3ab+3bc+5ac,则原式=﹣3ab+3bc+5ac﹣ab+2bc﹣3ac=﹣4ab+5bc+2ac;22222(2)①由题意得:A=2(﹣4a+6ab+7)+(7a﹣7ab)=﹣8a+12ab+14+7a﹣7ab=﹣a+5ab+14;2②∵|a+1|+(b﹣2)=0,∴a=﹣1,b=2,则原式=﹣1﹣10+14=3.24.某工厂第一车间有某人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?【考点】列代数式.【分析】因为第二车间比第一车间人数的少30人,所以第二车间的人为某﹣30人.从第二车间调出10人到第一车间后,第一车间变为某+10人,而第二车间变为某﹣30﹣10人.然后根据题意列式计算即可.【解答】解:(1)依题意两个车间共有:某+某﹣30=(某﹣30)人.(2)原来第二车间人数为某﹣30,调动后,第一车间有(某+10)人,第二车间有(某﹣40)人,调动后第一车间比第二车间多的人数=(某+10)﹣(某﹣40)=某+50.答:两个车间共有(某﹣30)人,调动后,第一车间的人数比第二车间多(某+50)人.25.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可以理解5与﹣2两数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=7.(2)找出所有符合条件的整数某,使得|某+5|+|某﹣2|=7,这样的整数是﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.【考点】绝对值;数轴.【分析】(1)根据绝对值的性质计算即可得解;(2)根据题意,要求的整数某的值就是到﹣5和2的距离的和等于7的值.【解答】解:(1)|5﹣(﹣2)|=|5+2|=7;(2)﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.故答案为:7;﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.26.一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程.10(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升?【考点】有理数的混合运算;正数和负数;数轴.【分析】(1)根据已知,以超市为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程,则小明家、小兵家和小华家在数轴上的位置如上所示.(2)这辆巡逻车一共行走的路程,实际上就是1+3+10+6=20(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量某货车行驶所走的总路程.【解答】解:(1)(2)由题意得(+1)+(+3)+(﹣10)+(+6)=0,因而回到了超市.(3)由题意得1+3+10+6=20,货车从出发到结束行程共耗油0.25某20=5.答:(1)参见上图;(2)货车最后回到了超市;(3)货车从出发到结束行程共耗油5升.11(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升?【考点】有理数的混合运算;正数和负数;数轴.【分析】(1)根据已知,以超市为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程,则小明家、小兵家和小华家在数轴上的位置如上所示.(2)这辆巡逻车一共行走的路程,实际上就是1+3+10+6=20(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量某货车行驶所走的总路程.【解答】解:(1)(2)由题意得(+1)+(+3)+(﹣10)+(+6)=0,因而回到了超市.(3)由题意得1+3+10+6=20,货车从出发到结束行程共耗油0.25某20=5.答:(1)参见上图;(2)货车最后回到了超市;(3)货车从出发到结束行程共耗油5升.11。

人教版七年级(上)期中数学试卷及答案

人教版七年级(上)期中数学试卷及答案

人教版七年级(上)期中数学试卷及答案一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. −7的相反数是( )A. −7B. 7C. −17D. 17 2. 为了驰援上海人民抗击新冠肺炎疫情,柳州多家爱心企业仅用半天时间共筹集到了220000包柳州螺蛳粉,通过专列统一运往上海,用科学记数法将数据220000表示为( )A. 0.22×106B. 2.2×106C. 22×104D. 2.2×1053. 下列各项中的两项,为同类项的是( )A. −2x 2y 与xy 2B. 12与3yC. 3mn 与−4mnD. −0.5ab 与abc4. 关于多项式−2x 2y +3xy −1,下列说法正确的是( )A. 次数是3B. 常数项是1C. 次数是5D. 三次项是2x 2y 5. 实数a 的绝对值是54,a 的值是( )A. 54B. −54C. ±45D. ±54 6. 代数式1x ,2x +y ,13a 2b ,x−y 2,5y 4x,0.5中整式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个7. 下列说法中,正确的是( )A. 2与−2互为倒数B. 2与12互为相反数C. 0的相反数是0D. 2的绝对值是−28. 计算(1112−76+34−1324)×(−24)的结果是( ) A. 1 B. −1 C. 10 D. −109. 某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米(a +1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为( )A. 20a 元B. (20a +24)元C. (17a +3.6)元D. (20a +3.6)元10. 按如图所示的运算程序,能使输出y 值为1的是( )A. m =1,n =1B. m =1,n =0C. m =1,n =2D. m =2,n =1二、填空题(本大题共6小题,共18.0分)11. 如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作______.12. 在数轴上到原点的距离小于4的整数个数为____个。

人教版数学七年级上册《期中考试试卷》(含答案解析)

人教版数学七年级上册《期中考试试卷》(含答案解析)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(下列各题只有一个答案是正确的,将正确答案序号填入下表相应的空格内.每小题2分,共20分)1.-2的绝对值是( )A. 2B. -2C. 2或-2D. 12或12- 2.下列计算中,正确是A. 462a a a -=B. 32a a a -=C. 22532a a -=D. 11033a a -= 3.下列方程是一元一次方程的是( )A. 2-5=x yB. 3-2=2+6x xC. 210x -=D. 15x x+= 4.如果方程32-2x m -=的解是,那么的值是( )A. B. C. D. 4-5.若代数式312x -的值与-3互为相反数,则的值为( )A. -3B. -5C. 5D. 36.一种巧克力的质量标识为“100±0.25克”,则下列巧克力合格的是( )A. 100.30克B. 100.70克C. 100.51克D. 99.80克 7.下列说法正确的是( )A. ﹣25xy 的系数是﹣2B. x 2+x ﹣1的常数项为1C. 22ab 3的次数是6次D. 2x ﹣5x 2+7是二次三项式 8.已知|a |=6,|b |=2,且a >0,b <0,则a +b 值为()A. 8B. -8C. 4D. -4 9.已知23A =3×2=6,35A =5×4×3=60,25A =5×4×3×2=120,36A =6×5×4×3=360,依此规律47A 的值为( ) A. 820 B. 830 C. 840 D. 85010.某班42名同学去公园乘电动船或脚踏船游玩,每只电动船坐6人,每只脚踏船坐4人,一共乘坐了8只船(全部坐满).若设电动船只,则可列方程( )A. ()46842x x +-=B. ()64842x x +-=C. 42846x x -+=D. 42864x x -+= 二、填空题(每题2分,共16分)11.如果把向西走5米记为-5米,则向东走8米表示为________米;12.比较大小:﹣34_____﹣65(填“>”“<”或“=”) 13.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.14.单项式326x y -系数是__________;次数是__________.15.化简:()()423a b a b ---=_________.16.如果单项式a m b 3单项式a 2b n 是同类项,那么(﹣m )n 的值是__________.17.若222x x --的值为0,则236x x -的值是__________.18.任何一个无限循环小数都可以写成分数的形式.我们以无限循环小数0.5•为例说明如下:设0.5•=x ,由0.5•=0.555…可知,10x =5.555…,所以10x ﹣x =5,解方程得x =59,于是,0.5•=59.请你把0.27••写成分数的形式是_____. 三、解答题(19题16分,20题8分,21题6分,共30分)19.计算①()2617633-+-- ②33(7)(13)44⎛⎫⨯---⨯- ⎪⎝⎭③5511(36)4612⎛⎫-⨯-- ⎪⎝⎭④23(2)5(2)4-⨯--÷ 20.解方程:①455x x =- ②2(x-1)-3(2+x)=521.先化简,再求值:已知2235A a b ab =+-,22234B ab b a =-+,求当12a =-,2b =时,2B A -+的值.四、解答题(第22题8分,第23题10分,共18分)22.如图,大小两个正方形的边长分别为、. (1)用含、的代数式直接表示阴影部分的面积;(无需简化)(2)如果6a =、4b =,求阴影部分面积.23.如图,小蚂蚁在9×9的小方格上沿着网格线运动(每小格边长为1),一只蚂蚁在C 处找到食物后,要通知A 、B 、D 、E 处的其他小蚂蚁,我们把它的行动规定:向上或向右为正,向下或向左为负.如果从C 到D 记为:C →D (+2,-3)(第一个数表示左、右方向,第二个数表示上、下方向),那么;(1)C →B ( ),C →E ( ),D → (-4,-3),D → ( ,+3);(2)若这只小蚂蚁的行走路线为C →E →D →B →A →C ,请你计算小蚂蚁走过的路程.五、解答题(本题8分)24.我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a N =(0a >,1a ≠,0N >),则叫做以为底的对数,记作a log N b =,例如:因为35125=,所以51233log =;因为211121=,所以111212log =请同学们利用上面的对数运算的方法,完成下列各题:(1)填空:66log =__________,636log =__________;(2)如果()223log m -=,求的值.六、解答题(本题8分)25.甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:甲商店:所有商品9折优惠;乙商店:每买1副球拍赠送1盒羽毛球.某校羽毛球队需要购买a副球拍和b盒羽毛球(b>a).(1)按上述促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含a、b的代数式表示;(2)当a=10,b=20时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?答案与解析一、选择题(下列各题只有一个答案是正确的,将正确答案序号填入下表相应的空格内.每小题2分,共20分)1.-2的绝对值是( )A. 2B. -2C. 2或-2D. 12或12- 【答案】A【解析】【分析】根据绝对值的定义直接可以得到答案.【详解】解:的绝对值为,故答案为.【点睛】本题考查了绝对值定义,明确负数的绝对值为其相反数,0的绝对值为0,正数的绝对值为其本身. 2.下列计算中,正确的是A. 462a a a -=B. 32a a a -=C. 22532a a -=D. 11033a a -= 【答案】D【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,可得出答案.【详解】解:A. 462a a a -=-, 故本选项错误;B 、a 3与a 2所含字母相同,但相同字母的次数不同,故本选项错误;C. 22532a a -=a 2, 故本选项错误;D. 11033a a -=, 故本选项正确. 故选D.【点睛】本题考查同类项,合并同类项,零指幂数的知识,比较简单,注意对基础知识的熟练掌握. 3.下列方程是一元一次方程的是( )A. 2-5=x yB. 3-2=2+6x xC. 210x -=D. 15x x+= 【答案】B【解析】【分析】含有一个未知数并且未知数的次数是1的方程是一元一次方程,根据定义解答即可.【详解】A 、含有两个未知数,不符合定义,故不是一元一次方程;B 、整理后为x=8,,符合定义,故是一元一次方程;C 、未知数的次数是2,不符合定义,故不是一元一次方程;,D 、未知数在分母中,是分式方程,不符合定义,故不是一元一次方程;故选:B.【点睛】此题考查一元一次方程定义,正确理解定义并熟练解题是关键.4.如果方程32-2x m -=解是,那么的值是( )A.B. C. D. 4-【答案】C【解析】【分析】把x=2代入方程3x-2m=-2得到关于m 的一元一次方程,解之即可.【详解】把x=2代入方程3x-2m=-2得:6-2m=-2,解得:m=4,故选C .【点睛】此题考查一元一次方程的解,解题关键在于正确掌握解一元一次方程的方法是解题的关键. 5.若代数式312x -的值与-3互为相反数,则的值为( )A. -3B. -5C. 5D. 3 【答案】C【解析】分析】根据相反数的定义即可求出答案.【详解】解:由题意可知:3x-12+(-3)=0,∴x=5故答案为C.【点睛】本题考查相反数,解题的关键是正确理解相反数的定义,本题属于基础题型.6.一种巧克力的质量标识为“100±0.25克”,则下列巧克力合格的是( )A. 100.30克B. 100.70克C. 100.51克D. 99.80克【答案】D【解析】【分析】计算巧克力的质量标识的范围:在100−0.25和100+0.25之间,即99.75到100.25之间.【详解】解:100﹣0.25=99.75(克),100+0.25=100.25(克),所以巧克力的质量标识范围是:在99.75到100.25之间.故选D.【点睛】此题考查了正数和负数,解题的关键是:求出巧克力的质量标识的范围.7.下列说法正确的是( )A. ﹣25xy的系数是﹣2 B. x2+x﹣1的常数项为1C. 22ab3的次数是6次D. 2x﹣5x2+7是二次三项式【答案】D【解析】分析】根据单项式和多项式的有关概念逐一求解可得.【详解】解:A.﹣25xy的系数是﹣25,此选项错误;B.x2+x﹣1的常数项为﹣1,此选项错误;C.22ab3的次数是4次,此选项错误;D.2x﹣5x2+7是二次三项式,此选项正确;故选D.【点睛】本题考查多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.8.已知|a|=6,|b|=2,且a>0,b<0,则a+b的值为()A. 8B. -8C. 4D. -4【答案】C【解析】【分析】根据绝对值的意义及a >0,b <0可得a 和b 的值,从而求得a +b 的值.【详解】解:∵|a |=6,a >0,∴a =6,∵ |b |=2,b <0,∴ b =-2,∴ a +b =6+(-2)=4故选C.【点睛】本题考查了绝对值的意义和有理数的减法.9.已知23A =3×2=6,35A =5×4×3=60,25A =5×4×3×2=120,36A =6×5×4×3=360,依此规律47A 的值为( ) A. 820B. 830C. 840D. 850【答案】C【解析】【分析】对于b a A (b <a )来讲,等于一个乘法算式,其中最大因数是a ,依次少1,最小因数是b .依此计算即可.【详解】解:根据规律可得: 47A =7×6×5×4=840;故选C .【点睛】本题考查了规律型-数字的变化,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到b a A (b <a )中的最大因数,最小因数.10.某班42名同学去公园乘电动船或脚踏船游玩,每只电动船坐6人,每只脚踏船坐4人,一共乘坐了8只船(全部坐满).若设电动船只,则可列方程( )A. ()46842x x +-=B. ()64842x x +-=C. 42846x x -+=D. 42864x x -+= 【答案】B【解析】【分析】电动船只共乘坐8只船故脚踏船有(8-x )只,乘以对应的每只船上的人数即可得到总人数42,由此列出方程.【详解】∵电动船只,共乘坐了8只船(全部坐满),∴脚踏船有(8-x )只,∴共可乘坐6x 人+4(8-x )人,∴()64842x x +-=故选:B.【点睛】此题考查一元一次方程的实际应用,正确理解题意是列方程的关键.二、填空题(每题2分,共16分)11.如果把向西走5米记为-5米,则向东走8米表示为________米;【答案】+8.【解析】【分析】根据正数和负数表示相反意义的量,向西记为负,可得向东的表示方法.【详解】解:把向西走5米记为-5米,那么向东走8米记为+8米,故答案为+8.【点睛】本题考查了正数和负数,相反意义的量用正数和负数表示.12.比较大小:﹣34_____﹣65(填“>”“<”或“=”) 【答案】>.【解析】【分析】利用两个负数比大小,绝对值越大的反而小的法则进行比较即可. 【详解】解:33154420-==,66245520-== , ∵15242020< ∴3645< , ∴3645->- 故答案为>.【点睛】本题考查两个负数比大小,掌握法则:两个负数比大小,绝对值越大的反而小,是解题关键.13.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.【答案】75.510⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将55000000用科学记数法表示为:5.5×107, 故答案为5.5×107. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.单项式326x y -的系数是__________;次数是__________.【答案】 (1). -6 (2). 5【解析】【分析】根据单项式的系数与次数的概念即可解答.【详解】解:单项式326x y -的系数是-6;次数是5.故答案为:-6,5.【点睛】本题考查了单项式的次数与系数的概念,解题的关键是熟记概念.15.化简:()()423a b a b ---=_________.【答案】2a-b .【解析】【分析】直接利用整式的加减运算法则计算得出答案.【详解】解:4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b .故答案为 2a-b .【点睛】本题考查整式的加减运算,正确掌握相关运算法则是解题关键.16.如果单项式a m b 3单项式a 2b n 是同类项,那么(﹣m )n 的值是__________.【答案】-8【解析】【分析】根据同类项定义即可求出m 、n 的值,进而可得答案.【详解】解:∵单项式a m b 3和单项式a 2b n 是同类项,∴m=2,n=3,∴(-m )n =-8,故答案为-8.【点睛】本题主要考查了同类项,关键是掌握①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项. 17.若222x x --的值为0,则236x x -的值是__________.【答案】6【解析】【分析】由已知代数式的值求出x 2−2x 的值,原式变形后代入计算即可求出值.【详解】解:由x 2−2x−2=0,得到x 2−2x =2,则原式=3(x 2−2x )=6,故答案为6.【点睛】此题考查了代数式求值,熟练掌握整体思想的应用是解本题的关键.18.任何一个无限循环小数都可以写成分数的形式.我们以无限循环小数0.5•为例说明如下:设0.5•=x ,由0.5•=0.555…可知,10x =5.555…,所以10x ﹣x =5,解方程得x =59,于是,0.5•=59.请你把0.27••写成分数的形式是_____. 【答案】311【解析】【分析】设0.27••=x ,则 27.27••=100x ,列出关于x 的一元一次方程,解之即可.【详解】解:设0.27••=x ,则27.27••=100x ,100x ﹣x =27,解得:x =311, 故答案为311. 【点睛】本题考查了解一元一次方程和有理数,正确根据题意列出一元一次方程是解题的关键.三、解答题(19题16分,20题8分,21题6分,共30分)19.计算①()2617633-+-- ②33(7)(13)44⎛⎫⨯---⨯- ⎪⎝⎭③5511(36)4612⎛⎫-⨯-- ⎪⎝⎭④23(2)5(2)4-⨯--÷ 【答案】①-30;②-15;③18;④22【解析】【分析】①先去括号,再相减即可得到答案;②利用乘法分配率的逆运算进行计算;③利用乘法分配率计算;④先计算乘方,再同时计算乘除法,最后将结果相加减即可.【详解】①解:26﹣17+(﹣6)﹣33,=26﹣17﹣6-33,=﹣30 ; ②解:34×(﹣7)﹣(﹣13)×(﹣34) =34×(﹣7)﹣13×34, =34×(﹣20), =﹣15;③解:(﹣36)×(55114612--) =(﹣36)×54﹣(﹣36)×56﹣(﹣36)×1112 ,=﹣45+30+33,=18;④解:(﹣2)2×5﹣(﹣2)3÷4, =4×5﹣(﹣8)÷4, =20+2,=22.【点睛】此题考查有理数混合计算能力,掌握有理数的计算顺序是解题的关键.20.解方程:①455x x =- ②2(x-1)-3(2+x)=5【答案】①x =5;②x =﹣13.【解析】【分析】①先移项再合并同类项,将系数化为1即可得到方程的解;②先去括号,再移项、合并同类项、系数化为1即可得到方程的解.【详解】①解:移项合并得:﹣x =﹣5,解得:x =5.②解:去括号得:2x ﹣2﹣6﹣3x =5,移项合并得: ﹣x =13,解得: x =﹣13.【点睛】此题考查解一元一次方程,根据方程的特点及解方程的步骤正确计算是解题的关键.21.先化简,再求值:已知2235A a b ab =+-,22234B ab b a =-+,求当12a =-,2b =时,2B A -+的值. 【答案】222512+-a b ab ,1322. 【解析】分析】用括号将A 、B 两个整式括起来,根据题意列出式子,去括号合并同类项,再代入数据求值即可.【详解】()()22222=234235-+--+++-B A ab b a a b ab =22222346210-+-++-ab b a a b ab=222512+-a b ab当12a =-,2b =时, 原式=221125212222⎛⎫⎛⎫⨯-+⨯-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=1254124⨯+⨯+ =1322【点睛】本题考查整式的化简求值,熟练掌握去括号与合并同类项是解题的关键.四、解答题(第22题8分,第23题10分,共18分)22.如图,大小两个正方形的边长分别为、. (1)用含、的代数式直接表示阴影部分的面积;(无需简化)(2)如果6a =、4b =,求阴影部分的面积.【答案】(1)a 2+b 2﹣12a 2﹣12(a +b )b ;(2)阴影部分的面积是14. 【解析】【分析】 (1)利用两个正方形的面积和减去两个直角三角形的面积即可得到阴影部分的面积;(2)将a 、b 的值代入(1)的代数式进行计算即可.【详解】解:(1)大小两个正方形的边长分别为a 、b ,∴阴影部分的面积为:S =a 2+b 2﹣12a 2﹣12(a+b )b ; (2)∵a =6,b =4,∴S =a 2+b 2﹣12a 2﹣12(a +b )b , =62+42-12×62﹣12×(6+4)×4, =36+16-18-20,=14,所以阴影部分的面积是14.【点睛】此题考查列代数式,求代数式的值,根据图形的特点利用面积加减关系找出所求图形的面积的计算方法是解题的关键.23.如图,小蚂蚁在9×9的小方格上沿着网格线运动(每小格边长为1),一只蚂蚁在C处找到食物后,要通知A、B、D、E处的其他小蚂蚁,我们把它的行动规定:向上或向右为正,向下或向左为负.如果从C到D记为:C→D(+2,-3)(第一个数表示左、右方向,第二个数表示上、下方向),那么;(1)C→B( ),C→E( ),D→ (-4,-3),D→ ( ,+3);(2)若这只小蚂蚁的行走路线为C→E→D→B→A→C,请你计算小蚂蚁走过的路程.【答案】(1)+4,-5;+7,+3;A;C,-2.(2)40.【解析】【分析】(1) C→B要先向右4格,再向下5格;C→E要先向右7格,再向上3格;从D开始,先向左4格,再向下3格是点A;从D开始,向上3格的线上只有点C,还需向左2格.(2)分别求出各段路程,求和.【详解】(1)根据向上或向右走为正,向下或向左走为负,第一个数表示左、右方向,第二个数表示上、下方向,结合图形可知C→B(+4,-5);C→E(+7,+3);(-4,-3)从D处表示向左走4个单位,向下走3个单位,观察图形可知即可到达A处;+3表示从D点向上走3个单位,观察图形,再向左走2个单位即可到达C处. (2)根据题意,由C→E→D→B→A→C,结合图形可知:C→E小蚂蚱走的路程为7+3=10;E→D小蚂蚱走的路程为5+6=11;D→B小蚂蚱走的路程为2+2=4;B→A小蚂蚱走的路程为1+6=7;A→C小蚂蚱走的路程为2+6=8;所以小蚂蚱走的路程为10+11+4+7+8=40.故答案为(1)+4,-5;+7,+3;A;C,-2.(2)40.【点睛】此题考查坐标轴在生活实际中的应用.解决此类问题关键是从题目中获取信息.五、解答题(本题8分)24.我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a N =(0a >,1a ≠,0N >),则叫做以为底的对数,记作a log N b =,例如:因为35125=,所以51233log =;因为211121=,所以111212log =请同学们利用上面的对数运算的方法,完成下列各题:(1)填空:66log =__________,636log =__________;(2)如果()223log m -=,求的值.【答案】(1)1,2;(2)10.【解析】【分析】(1)根据定义分别计算61=6,62=36,即可得到答案;(2)根据定义列得方程,解方程即可得到答案.【详解】解:(1)∵61=6,62=36,∴log 66=1,log 636=2,故答案为:1,2;(2)∵log 2(m ﹣2)=3,∴23=m ﹣2,解得:m =10.【点睛】此题考查新定义运算,正确理解新定义的计算方法,能根据新定义进行列式或是列方法解题是关键.六、解答题(本题8分)25.甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:甲商店:所有商品9折优惠;乙商店:每买1副球拍赠送1盒羽毛球.某校羽毛球队需要购买a 副球拍和b 盒羽毛球(b >a ).(1)按上述的促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含a 、b 的代数式表示;(2)当a =10,b =20时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?【答案】(1)在甲商店购买的费用为(270a +36b )元,在乙商店购买的费用为(260a +40b )元;(2)当a =10,b =20时,到乙商店购买球拍和羽毛球便宜.【解析】【分析】(1)根据题意可以用代数式分别表示出校羽毛球队在甲、乙两家商店各应花费的钱数;(2)根据(1)中代数式,将a=10,b=20代入即可解答本题;【详解】(1)由题意可得,在甲商店购买的费用为:(300a+40b)×0.9=(270a+36b)(元),在乙商店购买的费用为:300a+40(b-a)=(260a+40b)(元);(2)当a=10,b=20时,在甲商店购买的费用为:270×10+36×20=3420(元),在乙商店购买的费用为:260×10+40×20=3400(元),∵3420>3400,∴当a=10,b=20时,到乙商店购买球拍和羽毛球便宜.【点睛】本题考查列代数式、代数式求值,解答本题的关键是明确题意,找出所求问题需要的条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年浙江省湖州四中七年级(上)期中数学试卷一.选择题(每题3分,共30分)1.﹣的倒数是()A.3 B.﹣3 C.D.﹣2.和数轴上的点一一对应的是()A.有理数B.无理数C.实数 D.整数和分数3.下列各组数中,相等的一组是()A.(﹣2)3和﹣(﹣23)B.﹣(﹣2)和﹣|﹣2| C.(﹣2)2和﹣(﹣22)D.|﹣2|3和﹣|2|34.在实数,0.13,(每两个3之间依次多一个1)中,无理数的个数是()A.1 B.2 C.3 D.45.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是()A.15×107B.0.15×109C.1.5×108D.1.5亿6.用代数式表示:“x的5倍与y的和的一半”可以表示为()A.B.C. x+y D.5x+y7.下列各式正确的是()A.B.C.D.8.己知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a﹣b<0 B.ab<0 C.a>b D.a÷b<09.方程:|x+1|+|x﹣3|=4的整数解有()个.A.4 B.3 C.5 D.无数个10.一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动.设该机器人每秒前进或后退1步,并且每步的距离为1个单位长,x n表示第n秒时机器人在数轴上的位置所对应的数,给出下列结论:①x3=3;②x5=1;③x103<x104;④x2011<x2012其中,正确结论的序号是()A.①③ B.②③ C.①②③D.①②④二.填空题(每题3分,共30分)11.下列式子:x2+2, +4,0,,,中,整式有个.12.单项式的系数是,次数是,多项式3x2﹣7x﹣5的次数是.13.计算:(﹣)×(﹣5)÷(﹣)×(﹣5)= .14.近似数15.60,它表示大于或等于,而小于的数.15.若﹣3x2m y3与2x4y n是同类项,那么m﹣n= .16.数轴上一个点到﹣3的距离是7,那么这个点在数轴上表示的数是.17.的平方根是,﹣的立方根是.18.如果a、b互为相反数,c、d互为倒数,m的绝对值为2,那么a+b﹣m2+cd的值为.19.若2x﹣y2+3的值为5,则代数式6x﹣3y2+4= .20.任何一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q).如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q(p≤q)是n的最佳分解,并规定F(n)=.例如:18可以分解成1×18,2×9,3×6,这时就有F(18)==.结合以上信息,给出下列关于F(n)的说法:①F(2)=;②F(24)=;③F(27)=;④若n是一个整数的平方,则F(n)=1.其中正确的说法有.(只填序号)三.解答题(7小题,共60分)21.在数轴上表示下列各数,并按照从小到大的顺序用“<”号连接起来.+3,﹣1,0,,﹣22.22.计算:(1)36×(﹣+)(2)+(﹣1)2007+﹣|﹣5|(3)﹣14+3×(﹣2)4﹣32(4)﹣×[﹣32×(﹣)2﹣].23.先化简,再求值:2x2+xy+3y2﹣x2+2xy﹣4y2,其中x=2,y=﹣1.24.某检修小组从A地出发,在东西方向的公路上检修线路.如果规定向东行驶为正,向西行驶为负,这个检修小组一天中行驶的距离记录如下(单位:千米):﹣4,+7,﹣9,+8,+6,﹣4,﹣3.(1)求收工时检修小组距A地多远?(2)距A地最远时是哪一次?(3)若检修小组所乘汽车每千米耗油0.5升,则从出发到收工时共耗油多少升?25.如图所示:(1)用代数式表示阴影部分的面积;(2)当a=10,b=4时,求阴影部分的面积.26.若(2x+1)5=ax5+bx4+cx3+dx2+ex+f,求:(1)a+b+c+d+e+f的值,(2)a﹣b+c﹣d+e﹣f的值,(3)a和f的值.27.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.2016-2017学年浙江省湖州四中七年级(上)期中数学试卷参考答案与试题解析一.选择题(每题3分,共30分)1.﹣的倒数是()A.3 B.﹣3 C.D.﹣【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的倒数是﹣3,故选:B.2.和数轴上的点一一对应的是()A.有理数B.无理数C.实数 D.整数和分数【考点】实数与数轴.【分析】实数和数轴上的点是一一对应的,每一个实数都可以用数轴上的点来表示,反过来,数轴上的每一个点都表示一个实数.【解答】解:和数轴上的点一一对应的是实数.故选C.3.下列各组数中,相等的一组是()A.(﹣2)3和﹣(﹣23)B.﹣(﹣2)和﹣|﹣2| C.(﹣2)2和﹣(﹣22)D.|﹣2|3和﹣|2|3【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方、相反数和绝对值的意义分别求出每组数据,再进行比较,即可得出答案.【解答】解:A、(﹣2)3=﹣8,﹣(﹣23)=8,故不符合题意;B、﹣(﹣2)=2,﹣|﹣2|=﹣2,故不符合题意;C、(﹣2)2=4,﹣(﹣22)=4,故符合题意;D、|﹣2|3=8,﹣|2|3=﹣8,故不符合题意;故选C.4.在实数,0.13,(每两个3之间依次多一个1)中,无理数的个数是()A.1 B.2 C.3 D.4【考点】无理数.【分析】无理数是指无理数是指无限不循环小数,根据定义进行判断即可.【解答】解:﹣=﹣7(是有理数),∴无理数有π,,1.131131113…共3个,故选C.5.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是()A.15×107B.0.15×109C.1.5×108D.1.5亿【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150000000用科学记数法表示为:1.5×108.故选:C.6.用代数式表示:“x的5倍与y的和的一半”可以表示为()A.B.C. x+y D.5x+y【考点】列代数式.【分析】本题考查列代数式,要明确给出文字语言中的运算关系,先求倍数,然后求和,再求它的一半.【解答】解:和为:5x+y.和的一半为:(5x+y).故选B.7.下列各式正确的是()A.B.C.D.【考点】二次根式的性质与化简;平方根;立方根.【分析】根据平方根和立方根的定义计算,负数的立方根是负数,正数的立方根是正数,0的立方根是0.【解答】解:A、=4,此选项错误;B、=﹣3,此选项正确;C、无意义,此选项错误;D、=,此选项错误.故选B.8.己知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a﹣b<0 B.ab<0 C.a>b D.a÷b<0【考点】数轴.【分析】首先得到b<a<0,再结合有理数的运算法则进行判断.【解答】解:A、根据数轴,得b<a<0,则a﹣b>0,故A选项错误;B、两个数相乘,同号得正,故B选项错误;C、∵b<a<0,∴a>b,故C选项正确;D、两个数相除,同号得正,故D选项错误.故选:C.9.方程:|x+1|+|x﹣3|=4的整数解有()个.A.4 B.3 C.5 D.无数个【考点】含绝对值符号的一元一次方程.【分析】分别讨论①x≥3,②﹣1<x<3,③x≤﹣1,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+1+x﹣3=4,解得:x=3;第二种:当﹣1<x<3时,原方程就可化简为:x+1﹣x+3=4,恒成立;第三种:当x≤﹣1时,原方程就可化简为:﹣x﹣1+3﹣x=4,解得:x=﹣1;所以x的取值范围是:﹣1≤x≤3,故方程的整数解为:﹣1,0,1,2,3.共5个.故选C.10.一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动.设该机器人每秒前进或后退1步,并且每步的距离为1个单位长,x n表示第n秒时机器人在数轴上的位置所对应的数,给出下列结论:①x3=3;②x5=1;③x103<x104;④x2011<x2012其中,正确结论的序号是()A.①③ B.②③ C.①②③D.①②④【考点】数轴.【分析】按“前进3步后退2步”的步骤去算,就可得出正确的答案.【解答】解:根据题意得:x1=1,x2=2,x3=3,x4=2,x5=1,由此的出规律“前进3步后退2步”这5秒组成一个循环结构,把n是5的倍数哪些去掉,就剩下1~4之间的数,然后再按“前进3步后退2步”的步骤去算,就可得出①,②,④.故选D.二.填空题(每题3分,共30分)11.下列式子:x2+2, +4,0,,,中,整式有 3 个.【考点】整式.【分析】根据整式的定义进行选择即可.【解答】解:整式有:x2+2,0,,共3个,故答案为3.12.单项式的系数是﹣,次数是 4 ,多项式3x2﹣7x﹣5的次数是 2 .【考点】单项式;多项式.【分析】根据单项式系数的定义和多项式的次数和单项式的系数、次数的定义来求解.单项式中数字因数叫做单项式的系数;多项式的次数是多项式中最高次项的次数.【解答】解:单项式的系数是﹣,次数是4,多项式3x2﹣7x﹣5的次数是2,13.计算:(﹣)×(﹣5)÷(﹣)×(﹣5)= 25 .【考点】有理数的除法;有理数的乘法.【分析】根据乘除同级运算,从左到右的顺序根据法则依次计算即可.【解答】解:原式=1×(﹣5)×(﹣5)=25,故答案为:25.14.近似数15.60,它表示大于或等于15.595 ,而小于15.605 的数.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:数a的近似数15.60,则15.595≤a<15.605.故答案为15.595,15.605.15.若﹣3x2m y3与2x4y n是同类项,那么m﹣n= ﹣1 .【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出n,m的值,再代入代数式计算即可.【解答】解:,解得:,则m﹣n=2﹣3=﹣1.故答案为:﹣1.16.数轴上一个点到﹣3的距离是7,那么这个点在数轴上表示的数是﹣10或4 .【考点】数轴.【分析】在数轴上找到表示﹣3的点,然后找到距离等于7的点,根据数轴直接书写答案.【解答】解:如图所示,数轴上到点﹣3的距离是7的点为A、B.故答案是:﹣10或4.17.的平方根是±3 ,﹣的立方根是﹣.【考点】立方根;平方根.【分析】先求出的值为9,再求出9的平方根即可;利用立方根的定义求出﹣的立方根即可.【解答】解: =9,9的平方根是±3,﹣的立方根是﹣.18.如果a、b互为相反数,c、d互为倒数,m的绝对值为2,那么a+b﹣m2+cd的值为﹣3 .【考点】代数式求值.【分析】首先根据a、b互为相反数,可得a+b=0;然后根据c、d互为倒数,可得cd=1;最后根据m的绝对值为2,可得m2=4;再应用代入法,求出a+b﹣m2+cd的值是多少即可.【解答】解:∵a、b互为相反数,∴a+b=0;∵c、d互为倒数,∴cd=1;∵m的绝对值为2,∴m2=4;∴a+b﹣m2+cd=0﹣4+1=﹣3故答案为:﹣3.19.若2x﹣y2+3的值为5,则代数式6x﹣3y2+4= 10 .【考点】代数式求值.【分析】将2x﹣y2=2代入到6x﹣3y2+4=3(2x﹣y2)+4可得.【解答】解:∵2x﹣y2+3=5,∴2x﹣y2=2,则6x﹣3y2+4=3(2x﹣y2)+4=10,故答案为:10.20.任何一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q).如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q(p≤q)是n的最佳分解,并规定F(n)=.例如:18可以分解成1×18,2×9,3×6,这时就有F(18)==.结合以上信息,给出下列关于F(n)的说法:①F(2)=;②F(24)=;③F(27)=;④若n是一个整数的平方,则F(n)=1.其中正确的说法有①④.(只填序号)【考点】有理数的混合运算.【分析】把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.【解答】解:∵2=1×2,∴F(2)=是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故②是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故③是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故④是正确的.∴正确的有①④,故答案为:①④.三.解答题(7小题,共60分)21.在数轴上表示下列各数,并按照从小到大的顺序用“<”号连接起来.+3,﹣1,0,,﹣22.【考点】有理数大小比较;数轴.【分析】先把各数在数轴上表示出来,再从左到右用“<”号连接起来即可.【解答】解:如图所示.,故﹣22<﹣2<﹣1<0<+3.22.计算:(1)36×(﹣+)(2)+(﹣1)2007+﹣|﹣5|(3)﹣14+3×(﹣2)4﹣32(4)﹣×[﹣32×(﹣)2﹣].【考点】实数的运算.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式利用乘方的意义,算术平方根定义,以及绝对值的代数意义化简,计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=28﹣30+21=19;(2)原式=﹣1+﹣5=﹣5;(3)原式=﹣1+48﹣9=38;(4)原式=﹣×(﹣4﹣2)=.23.先化简,再求值:2x2+xy+3y2﹣x2+2xy﹣4y2,其中x=2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式合并同类项得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2+3xy﹣y2,当x=2,y=﹣1时,原式=4﹣6﹣1=﹣3.24.某检修小组从A地出发,在东西方向的公路上检修线路.如果规定向东行驶为正,向西行驶为负,这个检修小组一天中行驶的距离记录如下(单位:千米):﹣4,+7,﹣9,+8,+6,﹣4,﹣3.(1)求收工时检修小组距A地多远?(2)距A地最远时是哪一次?(3)若检修小组所乘汽车每千米耗油0.5升,则从出发到收工时共耗油多少升?【考点】有理数的混合运算;正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:(1)﹣4+7+(﹣9)+8+6+(﹣4)+(﹣3)=1(千米).答:收工时检修小组在A地东面1千米处.(2)第一次距A地|﹣4|=4千米;第二次:|﹣4+7|=3千米;第三次:|﹣4+7﹣9|=6千米;第四次:|﹣4+7﹣9+8|=2千米;第五次:|﹣4+7﹣9+8+6|=8千米;第六次:|﹣4+7﹣9+8+6﹣4|=4千米;第七次:|﹣4+7﹣9+8+6﹣4﹣3|=1千米.所以距A地最远的是第5次.(3)从出发到收工汽车行驶的总路程:|﹣4|+|+7|+|﹣9|+|+8|+|+6|+|﹣4|+|﹣3|=41;从出发到收工共耗油:41×0.5=20.5(升).答:从出发到收工共耗油20.5升.25.如图所示:(1)用代数式表示阴影部分的面积;(2)当a=10,b=4时,求阴影部分的面积.【考点】列代数式;代数式求值.【分析】(1)用矩形的面积减去半径为b的半圆的面积即可得到阴影部分的面积;(2)代入(1)中对应字母的数值,求得答案即可.【解答】解:(1)S阴影部分=S矩形﹣S半圆=ab﹣πb2;(2)当a=10,b=4时,S阴影部分=10×4﹣π×42=40﹣8π.26.若(2x+1)5=ax5+bx4+cx3+dx2+ex+f,求:(1)a+b+c+d+e+f的值,(2)a﹣b+c﹣d+e﹣f的值,(3)a和f的值.【考点】代数式求值.【分析】(1)令x=1求出所求式子的值即可;(2)令x=﹣1求出所求式子的值即可;(3)根据(1)与(2)求出a与f的值即可.【解答】解:(1)令x=1,得到a+b+c+d+e+f=243;(2)令x=﹣1,得到a﹣b+c﹣d+e﹣f=﹣1;(3)令x=0,得到f=1,a=32.27.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与 3 表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数﹣3 表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.【考点】数轴.【分析】(1)1与﹣1重合,可以发现1与﹣1互为相反数,因此﹣3表示的点与3表示的点重合;(2)①﹣1表示的点与3表示的点重合,则折痕点为1,因此5表示的点与数﹣3表示的点重合;②由①知折痕点为1,且A、B两点之间距离为11,则B点表示1+5.5=6.5,A表示1﹣5.5=﹣4.5.【解答】解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定对称点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离对称点的距离为11÷2=5.5,∵对称点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.。

相关文档
最新文档