材料力学-第三章

合集下载

材料力学第三章

材料力学第三章
解 ϕ = Tl0 = M el0 GI p GI p
33
G=
M el0 ϕI p
= M el0 ϕ ⋅ πd 4
=
150 × 0.1× 32 0.012π × 204 ×10−12
= 79.6 GPa
3-8 设有 1 圆截面传动轴,轴的转速 n = 300 r/min,传递功率 P = 80 kW,轴材料的 许用切应力[τ ] = 80 MPa,单位长度许用扭转角[θ ] = 1.0° / m ,切变模量 G = 80 GPa。试
τ max
= Tmax Wp
≤ [τ ]
3-6 金属材料圆轴扭转破坏有几种形式? 答 塑性金属材料和脆性金属材料扭转破坏形式不完全相同。塑性材料试件在外力偶作 用下,先出现屈服,最后沿横截面被剪断,如图 a 所示;脆性材料试件受扭时,变形很小, 最后沿与轴线约 45°方向的螺旋面断裂,如图 b 所示。
(2)用简化公式
τ max
=
8FD πd 3
=
8 ×1.5 ×103 × 50 ×10−3 π × 83 ×10−9
= 373 MPa
< [τ ],安全。
讨论:由于 c = D d = 50 8 = 6.25 < 10 ,故应用解(1)中修正公式计算((1)(2)计算
值相差较大)。
3-7 一圆截面等直杆试样,直径 d = 20 mm,两端承受外力偶矩 M e = 150 N⋅ m 作用。 设由试验测得标距 l0 = 100 mm 内轴的相对扭转角ϕ = 0.012 rad,试确定切变模量 G 。
设计轴的直径。
解 T = 9549 × P = 9549 × 80 = 2546 N ⋅ m
n
300

材料力学-第三章扭转

材料力学-第三章扭转

3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件

0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析




圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16


强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3

4
3
d 0.886 d
2
Mn
a
2

Mn 0.208 0.886 d
b
6.913

材料力学第3章扭转

材料力学第3章扭转

试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。

材料力学第三章剪切和扭转

材料力学第三章剪切和扭转

T

T
d1
(a)
l
T (b)
D2

T
l
36
3.3 等直圆杆扭转时的应力
解:
Wp1

πd13 16
Wp2
πD23 14
16
1,maxW Mpt11
T Wp1
16T πd13
2,ma xW M pt2 2W Tp2πD 2 311T 6 4
D 2 31 4 d 1 3
螺栓连接[图(a)]中,螺栓主要受剪切及挤压(局部压
缩)。
F
3
3.1 剪切
键连接[图(b)]中,键主要受剪切及挤压。
4
3.1 剪切
剪切变形的受力和变形特点: 作用在构件两侧面上的外力的合力大小相等、方向相 反,作用线相隔很近,并使各自推动的部分沿着与合 力作用线平行的受剪面发生错动。
受剪面上的内力称为剪力; 受剪面上的应力称为切应力;
3.3 等直圆杆扭转时的应力
传动轴的外力偶矩:
已知:
T2
T1
从动轮
n 主动轮
T3 从动轮
传动轴的转速 n ;某一轮上 所传递的功率
NK (kW)
作用在该轮上的外力偶矩T 。
一分钟内该轮所传递的功率等于其上外力偶矩所 作的功:
NK60 13 0(J)T2πn(Nm)
33
3.3 等直圆杆扭转时的应力
26
3.3 等直圆杆扭转时的应力
dj M t
d x GI pBiblioteka G djdx
GGMItp

Mt
Ip
等直圆杆扭转时横截面上切应力计算公式
Mt

O

材料力学课件-第三章-轴向拉压变形

材料力学课件-第三章-轴向拉压变形

Δ
F
f
o


d
A

d
•弹性体功能原理:Vε W ,
f df
• 拉压杆应变能
2 FN l V ε 2 EA
Page28
BUAA
MECHANICS OF MATERIALS
*非线性弹性材料
F
f
•外力功计算
W fd
0

F W 2
•功能原理是否成立? •应变能如何计算计算?

dx
dz
dy
x
•单向受力体应变能
V v dxdydz dxdydz 2E
2
z
单向受力
Page30
BUAA
MECHANICS OF MATERIALS
2 dxdydz •单向受力体应变能 V v dxdydz 2E FN ( x ) •拉压杆 (x)= , dydz A A 2 FN ( x ) V dx (变力变截面杆) y 2 EA( x ) l 2 FN l dx (常应力等直杆) V dz 2 EA •纯剪应变能密度 dy dxdz dy dxdydz dVε 2 2 2 1 2 z v G 纯剪切
BUAA
MECHANICS OF MATERIALS
第三章
§3-1 §3-2 §3-3 §3-4
§3-5 §3-6
轴向拉压变形
引言 拉压杆的变形与叠加原理 桁架的节点位移 拉压与剪切应变能
简单拉压静不定问题 热应力与预应力
Page1
BUAA
MECHANICS OF MATERIALS
本章主要研究:
Page7

材料力学课件第三章剪切

材料力学课件第三章剪切
材料抵抗剪切破坏的最大应力称为剪切强度。
剪切现象
生活中的剪切现象
如剪刀剪纸、锯子锯木头等,都 是典型的剪切现连接处, 由于受到垂直于连接面的力而发 生相对错动。
剪切应力与应变
剪切应力
在剪切过程中,作用在物体上的剪切力与物体截面面积的比值称 为剪切应力。
剪切应变
04
剪切破坏与预防措施
剪切破坏类型
01
02
03
04
脆性剪切
材料在无明显屈服的情况下突 然发生剪切断裂,多发生在脆 性材料中。
韧性剪切
材料在发生屈服后逐渐发生剪 切断裂,多发生在韧性材料中 。
疲劳剪切
材料在循环应力作用下发生的 剪切断裂,多发生在高强度材 料中。
热剪切
由于温度变化引起的剪切断裂 ,多发生在高温环境下。
车辆工程中的剪切问题
航空航天器在高速飞行时,会受到气 动力的剪切效应,影响其稳定性。
车辆在行驶过程中,车体结构会受到 风力、路面等载荷的剪切作用,影响 车辆的安全性和舒适性。
船舶结构中的剪切变形
船舶在航行过程中,会受到波浪、水 流等载荷的剪切作用,影响其结构安 全。
THANK YOU
感谢聆听
患。
05
剪切在实际工程中的应用
建筑结构中的剪切问题
80%
桥梁结构的剪切变形
桥梁在受到车辆等载荷作用时, 会发生剪切变形,影响结构的稳 定性。
100%
高层建筑的剪切力传递
高层建筑中的剪切力对建筑物的 稳定性和安全性具有重要影响。
80%
地震作用下的剪切效应
地震时,建筑结构会受到地震波 的剪切作用,可能导致结构破坏 。
03
剪切与弯曲的关系
弯曲与剪切的相互作用

材料力学第三章总结

材料力学第三章总结

一、剪切:1、受力特征:杆件受到两个大小相等,方向相反、作用线垂直于杆的轴线并且相互平行且相距很近的力的作用。

2、变形特征::两力之间的截面将发生相对错动,甚至破坏。

3、剪切面:两力作用之间的面(发生错动的面)。

4、剪切的应力:由于螺栓、销钉等工程上常用的连接件与被连接件在连接处都属于“加力点附近局部应力”,应力分布很复杂,很难作出精确的理论分析。

因此,工程设计中,大都采取实用(假定)计算方法。

一、假定应力分布。

二、实验。

由假定应力分布得到破坏时的应力值。

然后由两个假定建立设计准则。

假定:剪切面上的切应力是均匀分布的。

名义剪力:AF s =τ,—A 剪切面面积。

5、剪切的强度条件:[]—ττ≤=A F s 名义许用切应力:在假定的前提下进行实物或模型实验,并考虑安全因数,确定许用应力。

6、可解决三类问题:(1)选择截面尺寸;(2)确定最大许可载荷;(3)强度校核。

7、.剪切的破坏计算:—b s AF ττ>=剪切强度极限。

8、剪切实用计算的关键:剪切面的判定及计算。

(单剪切、双剪切)二、挤压及挤压的实用计算1、挤压:连接件和被连接件在接触面上彼此承压的现象。

2.挤压引起的可能的破坏:在接触表面产生过大的塑性变形、压溃或连接件(如销钉)被压扁。

3.挤压的强度问题:①挤压力bs F :作用在接触面上的压力。

F F bs =;②挤压面bs A 挤压力的作用面。

③挤压应力bs σ挤压面上由挤压力引起的应力。

④挤压的实用计算:bs bs bs A F =σ;⑤挤压的强度条件:[]—bs bsbs bs A F σσ≤=名义许用挤压应力,由实验测定。

注意:在应用挤压强度条件进行强度计算时,要注意连接件与被连接件的材料是否相同,如不同,应对挤压强度较低的材料进行计算,相应的采用较低的许用挤压应力。

挤压实用计算的关键:挤压面的判定及计算。

4、挤压面面积的计算:(1)平面接触(如平键):挤压面面积等于实际的承压面积。

材料力学-第三章

材料力学-第三章

21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:


u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量

《材料力学》课件——第三章 扭转

《材料力学》课件——第三章 扭转

F
Me
F
M'e
汽车的转向操纵杆
3.1 扭转的概念和实例
Me
A'
A
B
B'
Me
扭转:在一对大小相等、转向相反、作用面垂直于 直杆轴线的外力偶Me作用下,直杆的相邻横截面将 绕轴线发生相对转动,杆件表面纵向线将成斜线, 而轴线仍维持直线。
3.1 扭转的概念和实例
Me
A'
g
A
B
j
B'
Me
外力偶作用平面和杆件横截面平行
M2
M3
M1
M4
解:①计算外力偶矩
M1
9.55
P1 n
9.55 500 300
A
15.9(kN m)
B
C
M2
M3
9.55
P2 n
9.55 150 300
4.78
(kN m)
M4
9.55
P4 n
9.55 200 300
6.37
(kN m)
n D
3.2 外力偶矩的计算 扭矩和扭矩图
②求扭矩(扭矩按正方向设)
M 0 , C
T1 M 2 0
T1 M 2 4.78kN m
M2 1 M2
A1 M2
M3
M1
2
3M4
n B 2 C 3D
T2 M 2 M 3 0 ,
T2 M 2 M 3
A
(4.78 4.78)
9.56kN m
T3-M4=0
T3=M4=6.37KN·m
T1
T2
T3
3.2 外力偶矩的计算 扭矩和扭矩图
代入上式得:
G g

材料力学——第三章 扭转

材料力学——第三章 扭转

33
材 料 力 学
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
34
材 料 力 学
4、切应力分布规律假设
因为筒壁的厚度很小,可以认为沿筒壁厚度切应力均匀分布;
35
材 料 力 学
5、薄壁圆筒的扭转切应力
T


rm
2 rm t T
m1
m4
15.9(kN m)
A
P2 m2 m3 9.549 4.78 (kN m) n P4 m4 9.549 6.37 (kN m) n
17
B
C
D
材 料 力 学
2、求扭矩
m2
T1 m2 0
T1 4.78kN m
T2 m2 m3 0
材 料 力 学
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动, a
´
c
´
b


d
t
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
圆筒两端的相对扭转角为υ,圆筒 的长度为L,则切应变为
L r
r L
39
材 料 力 学
四、剪切虎克定律:
当剪应力不超过材料的剪切比例
齿轮轴
9
材 料 力 学
§3-2、外力偶矩的计算 扭矩和扭矩图
一.外力偶矩的计算 ——直接计算
M=Fd
10
材 料 力 学
按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 计算:力偶矩M
电机每秒输入功: 外力偶作功:
W P 1000(N.m)

材料力学-第三章-剪切实用计算(上交)

材料力学-第三章-剪切实用计算(上交)


FQ A
材料力学
剪切实用计算
剪切强度条件:

FQ A
[ ]
名义许用剪应力
可解决三类问题: 1、选择截面尺寸; 2、确定最大许可载荷, 3、强度校核。
材料力学
在假定的前提下进行 实物或模型实验,确 定许用应力。
[例3.1 ] 图示装置常用来确定胶接处的抗剪强度,如已知 破坏时的荷载为10kN,试求胶接处的极限剪(切)应力。 F F
F / 2n [ j ] 1 A d 2 4
2F n 3 . 98 2 d [ j ]
FQ
(2)铆钉的挤压计算

jy
Fb F /n [ A jy t1 d
]
jy
]
F n t1 d [
材料力学
3 . 72
jy
剪切实用计算
因此取 n=4. I F/n F/n F/n F F/n
R
R0
t
1 t R0 10 为薄壁圆筒
材料力学
材料力学
(1)

C D A B C D
A B
横截面上存在剪应力
材料力学
纯剪切的概念
(2)其他变形现象:圆周线之间的距离保持不变,仍为圆形, 绕轴线产生相对转动。 横截面上不存在正应力,且横截面上的剪应力的 方向是沿着圆周的切线方向,并设沿壁厚方向是 均匀分布的。 T
h d F d
剪切面
h

FN 4 F A d 2 F Q F AQ dh
当 , 分别达到 [] , [] 时, 材料的利用最合理
材料力学
F 4F 0 .6 2 得 d : h 2 .4 dh d

材料力学课件 第三章剪切与挤压

材料力学课件 第三章剪切与挤压
第三章 剪 切与挤压
§3-1 概述 §3-2 剪切的实用计算 §3-3 挤压的实用计算 §3-4 连接件的强度计算
案例:螺栓的剪切与挤压 如图所示为采用ABAQUS软件模拟的螺栓连接两块钢板 ,固定成一块钢板。两块钢板通过螺栓相互传递作用力 ,作用力沿搭接方向垂直于螺栓。这种螺栓可能有2种破 坏形式:①螺栓沿横截面剪断,称为剪切破坏,如图3.1 (a)所示;②螺栓与板中孔壁相互挤压而在螺栓杆表面 或孔壁柱面的局部范围内发生显著的塑性变形,称为挤 压破坏,如图3.1(b)所示。
(a)剪切云图
(b)挤压云图
§3-1 概述 在建筑工程中,由于剪切变形而破坏的结构很多,例如, 在2008年5月12日14时28分在四川汶川爆发的里氏8.0级特大 地震中,某学校的教室窗间墙发生严重剪切破坏,如图所示。
在机械加工中,钢筋或钢板在剪切机上被剪断,见图所 示
(a)剪切机
(b)剪切机剪切 钢板示意图
[ bs ]
危险截面即为铆钉孔所处的位置,危险截面面积A=t(b-d) ,且此处的轴力为P;则得拉应力
P 24 103 28.9MPa [ ]
t(b d ) 10 (100 17)
以上三方面的强度条件均满足,所以此铆接头是安全的。
方法二(有限元计算法)
经有限元建模,可得钢板及铆接头的应力分布规律及状态 ,如图所示。由图可见,该题中钢板及铆接头的强度均满 足要求。
实用计算假设:假设剪应力在整个剪切面上均匀分布,等于剪 切面上的平均应力。
(合力) P
n
Q n
1、剪切面--AQ : 错动面。 剪力--Q: 剪切面上的内力。
n
P
2、名义剪应力--:
(合力)
Q
AQ
剪切面 3、剪切强度条件(准则):

材料力学 第三章 扭转

材料力学  第三章  扭转

为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p

材料力学 第 三 章 扭转

材料力学 第 三 章 扭转
扭转平面假设:变形前的横截面,变形后仍为平面,且形状 、大小
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ

dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。

材料力学第三章

材料力学第三章

等直圆杆扭转时的应力·强度条件 §3-4 等直圆杆扭转时的应力 强度条件
3.理论分析 3.理论分析 变形几何关系: (1) 变形几何关系: G1G′ ρ ⋅ dϕ γ ρ ≈ tanγ ρ = =
dϕ γρ = ρ dx dϕ :扭转角 沿x轴的变化 轴的变化 ϕ dx 率。对给定截面上的各 它是常量。 点,它是常量。
28
等直圆杆扭转时的应力·强度条件 §3-4 等直圆杆扭转时的应力 强度条件
5
§3-2 薄壁圆筒的扭转
1 为平均半径) 薄壁圆筒: 薄壁圆筒:壁厚 δ ≤ r0 (r0:为平均半径) 10
实验: 实验:
实验前:绘纵向线,圆周线; 实验前:绘纵向线,圆周线;
然后施加一对外力偶 Me。
6
§3-2 薄壁圆筒的扭转
当其两端面上作用有外力 偶矩时,任一横截面上的 内力偶矩——扭矩(torque) T = Me
4
§3.1 概述
工程实际中,有很多构件,如车床的光杆、 工程实际中,有很多构件,如车床的光杆、搅拌机 轴、汽车传动轴等,都是受扭构件。 汽车传动轴等,都是受扭构件。 还有一些轴类零件,如电动机主轴、水轮机主轴、 还有一些轴类零件,如电动机主轴、水轮机主轴、 机床传动轴等,除扭转变形外还有弯曲变形, 机床传动轴等,除扭转变形外还有弯曲变形,属于组合 变形。 变形。 本章研究杆件发生除扭转变形外,其它变形可忽略 的情况,并且以圆截面(实心圆截面或空心圆截面)杆为 主要研究对象。此外,所研究的问题限于杆在线弹性范 围内工作的情况。
Ⅰ. 横截面上的应力 表面 变形 情况 横截面 上应力 变化规 律 内力与应力的关系 横截面上应 力的计算公 式
23
横截 推断 面的 变形 情况
横截面 上应变 应力-应变关系 的变化 规律

材料力学:第三章 拉压与剪切应变能

材料力学:第三章 拉压与剪切应变能

静定问题
一度静不定
静不定度 未知力数与有效平衡方程数之差
静不定问题分析
分析方法 求解思路 建立平衡方程 建立补充方程 联立求解
求解算例 平衡方程
E1A1= E2A2
变形几何关系
-变形协调方程
胡克定律
补充方程
联立求解平衡与补充方程
静不定问题求解与内力的特点: 静不定问题求解:
设计变量:在工程设计中可由设计者调整的量,例如构件 的截面尺寸
约束条件:设计变量必须满足的限制条件
目标函数:目标的设计变量表达式
单辉祖:材料力学Ⅰ
65
结构优化设计简单算例
已知:F=100 kN,l=500 mm,[st]150 MPa, [sc] 100 MPa, A1 = A3,密度 r 7.85103 kg/m3
2.内力能(应变能)
(1)用内力计算应变能 (2)用应力计算应变能
应变能 拉压
剪切
Dl FNl EA
应变能密度
3.功能等
应变能小结:解题思路
题目:求内力、位移、应力
功能守恒定律 截断法静力分析:求内力或应力
(1)用内力计 算应变能
计算内 力能
(2)用应力计算 应变能
计算外力功
(弹力作功)
功能等
例题
成立条件:载荷缓慢增大,动能、热能变化忽略不计。
单辉祖:材料力学Ⅰ
32
回顾:
轴向拉压应变能
(1) 外力功与弹性应变能计算
弹 性
回顾:
拉压与剪切应变能密度
(2) 由应力应变计算应变能 拉压应变能
拉压应变能密度
(单位体积内应变能)
剪切应变能
剪切应变能密度
34

材料力学 第三章 应变理论

材料力学 第三章 应变理论

ij 称为柯西应变张量或小应变张量
其实体表示形式为 1 u u 2
是二阶对称张量,只有六个独立分量。
§3-1 位移和变形
在笛卡尔坐标系中,其常用形式为
11
u1 x1
u x
x ,12
21
1 2
u1 x2
u2 x1
1 u
2
y
v x
xy
yx
22
u2 x2
v y
i
ji
ui x j
j
1
i
ui x j
j
i
可由位移梯度分量 ui 和线元正应变 计算任意方向线元
变形后的方向余弦。x j
考虑两线元间的夹角变化
t cos , t t 2 t 1 1
t
1 t t 2 t
§3-2 小应变张量(几何方程)
若变形前两线元互相垂直,即 t 0
u j xi
ei ej
E 1 u u u u 2
➢ 按照欧拉描述还可以定义描述大变形的阿尔曼西(Almansi,E)
应变张量,即
dS2 dS02 2eijdxidxj
eij
1 2
ui xj
u j xi
um xi
um xj
它也是二阶对称张量
由此可见:物体无变形(线元长度不变,仅作刚体运动) 的充分必要条件是应变张量处处为零。
令 为变形后线元间直角的减小量,则由上式可得
cos
2
cos , t
2 t 2ij it j 2t
通常定义两正交线元间的直角减小量为工程剪应变 t ,即
t 2t 2 t 2ijit j
若 , t 为坐标轴方向的单位矢量,例如 i 1, t j 1(i j)

《材料力学》第三章 轴向拉压变形

《材料力学》第三章 轴向拉压变形
-3(共 4 页)
第三章 轴向拉压变形
*四、温度应力、装配应力 一)温度应力:由温度引起杆变形而产生的应力(热应力) 。 温度引起的变形量—— L tL 1、静定问题无温度应力。 2、超静定问题存在温度应力。 二)装配应力——预应力、初应力:由于构件制造尺寸产生的制造误差,在装配时产生变形而引起的应 力。 1、静定问题无装配应力 2、超静定问题存在装配应力。 轴向拉压变形小结 一、拉压杆的变形(重点) 1、轴向变形:轴向尺寸的伸长或缩短。 2、横向变形:横向尺寸的缩小或扩大。 3、横向变形系数(泊松比) : 4、变形——构件在外力作用下或温度影响下所引起的形状尺寸的变化。 5、弹性变形——外力撤除后,能消失的变形。 6、塑性变形——外力撤除后,不能消失的变形。 3、横向变形系数 7、位移——构件内的点或截面,在变形前后位置的改变量。 8、正应变——微小线段单位长度的变形。
4、求变形: L
FN L EA
LAB
FNAB LAB 240 3.4 104 2.67(m m) EAAB 2.114.54
LCD 0.91mm LEF 1.74mm
5、求位移,变形图如图
LGH 1.63mm
D
LEF LGH DG LGH 1.70 mm EG
第三章 轴向拉压变形
第三章
一、概念 1、轴向变形:轴向尺寸的伸长或缩短。 2、横向变形:横向尺寸的缩小或扩大。 二、分析两种变形
轴向拉压变形
§3—1 轴向拉压杆的变形
b
L F F
b1
L1
1、轴向变形:Δ L=L1-L ,
L L F L (2) 、在弹性范围内: L N A
(1) 、轴向正应变线应变:

高等材料力学课件第三章-应变状态

高等材料力学课件第三章-应变状态

( yz xz xy ) 2 2 x
x x y z
yz
( yz xz xy ) 2 2 y
y x y z
xz
( yz xz xy ) 2 2 z
z x y z
xy
§3.3 应变协调7
•变形协调方程的数学意义
•使3个位移为未知函数的六个几何方程不相矛 盾。
•变形协调方程的物理意义
而且改变了物体内部各个点的相对 位置。
§3.1 变形2
M (x, y, z) M (x, y, z)
u=x'(x,y,z)- x=u(x,y,z) v=y'(x,y,z)- y=v(x,y,z) w=z'(x,y,z)- z=w(x,y,z)
位移u,v,w是单值连续函数
进一步分析假定位移函 数具有连续的三阶导数
• 目录
• §3.1 变形与应变概念
• §3.2 向
主应变与主应变方
• §3.3 应变协调方程
§3.1 变形与应变概念
• 由于外部因素 ——载荷或温度变化 • 位移—— 物体内部各点空间位置发
生变化 • 位移形式 • 刚体位移:物体内部各点位置变化,
但仍保持初始状态相对位置不变。 • 变形位移:位移不仅使得位置改变,
§3.3 应变协调15
• 如果物体表面的位移已知,称为位移边界 • 位移边界用Su表示。
• 如果物体表面的位移 u, v, w,已知
• 边界条件为
uu vv ww
• 称为位移边界条件
§3.3 应变协调16
• 设物体表面为S • 位移已知边界Su • 面力已知边界Ss
则 S=Su+Ss
• 弹性体的整个边界,是由面力边界和位移边 界构成的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
扭矩、扭矩图
内力T称为扭矩。 据静力学平衡条件:
T M
T T
6
扭矩、扭矩图
为了保证用不同 的方法求得的扭矩 都一样,对扭矩的 符号作了规定。
右手螺旋法则 拇指指向横截面 的外法线方向,扭矩 的转向与四指的方向 一致时,扭矩为正。 反之为负。 扭矩一般按正方向画。
7
扭矩、扭矩图
当轴上有多个外力偶矩时,须在外力偶矩所在截 面将轴分段,逐段求扭矩。 以图像来表示横截面扭矩随截面位置的变化,称 为扭矩图。 下面举例说明扭矩图的画法。
11
切应力垂直于半 径均匀分布 没有正应力

T 2 2 R0
12
切应力互等定理
微体互相垂直的截面上的切应力必然成对存在,大小相 等,垂直于截面的交线,它们的方向同时指向或背离这一交 线-----切应力互等定理。 微体只有切应力而无正应力的这种受力状态,称为纯剪 切应力状态。
13
第三章 扭转
3
第三章 扭转
3.2 内力(扭矩)扭矩图
4
外力偶矩的计算
在给出轴的转速和传递的功率的前提下:
M 9549
P n
其中:M----外力偶矩,Nm P----轴传递的功率,KW
n----轴的转速,r/Min
外力偶矩方向的确定: 输入力偶矩:主动力矩,方向与转向相同 输出力偶矩:阻力矩,方向与转向相反
25
圆轴合理截面
对于一些大型轴或对于减轻重量有较高要求的轴,通常 做成空心的。
26
例3-4:如图所示阶梯轴,由两段平均半径为R0的薄壁圆 管焊接而成,圆管承受均匀分布的扭力矩作用。试校核圆管 的强度。已知单位长度的扭力矩即扭力矩集度为m=3500 KNm/m,轴长l=1.0m,管的平均半径R0 =50mm,左段管 的壁厚1=5mm,右段管的壁厚2 =4mm,许用切应力[] =50MPa。
3.4 圆轴扭转时的应力
14
A B
D
C
A
B


15
正应力为零,切应力垂直于半径。
16
d dx

T GI P
圆轴扭转变 形基本公式

其中
T IP

max

IP R
T WP
17
Wp

其中
T IP

2
max

T WP
IP R
I p dA
A
Wp
IP和WP分别称为极惯性矩和抗扭截面系数
21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:


u
n
n为安全系数。
强度条件为:
max
27
第三章 扭转
3.6 圆轴扭转变形和刚度条件
28
圆轴扭转变形公式
有变形基本公式:
d dx

T GI P
T l GI P
因此,相距 l 的两横截面间的扭转角为:
l d
dx
对于长为l 、扭矩T为常数的等截面圆轴,则两截面 之间的扭转角为:

Tl GI P
面的扭转刚度
GIP称为圆轴截

T W p max
对于等截面轴,源自max Tmax Wp
24
例3-3:某传动轴,轴内的最大扭矩T=1.5KNm ,若 许用切应力[]=50MPa,试按下列两种方案确定轴的横 截面尺寸,并比较其重量。 1. 实心圆截面轴; 2. 空心圆截面轴,其内、外径的比值 di /do=0.9。
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
8
例3-1:如图所示传动轴,其转速n=500r/min,轮B为主动 轮,输入功率PB=10KW ,轮A和轮C均为从动轮,输出功率 分别为PA=4KW,PC=6KW,试计算轴的扭矩,并画扭矩图。
9
第三章 扭转
3.3 薄壁圆筒的扭转
10
薄壁圆筒的扭转
a b
c d
a c b
d
变形特点: • 纵向和径向没有应变 • 相邻截面ab和cd相对平行错动
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量
IP WP
D4
32
(1 )
4
D3
16
(1 )
4
d/D
20
例3-2:如图所示轴,左段AB为实心圆截面,直径d=20mm, 右段BC为空心截面轴,内、外径分别为di=15mm和do=25mm。 轴承受扭力矩MA、MB与MC作用,且MA = MB =100Nm, MC =200 Nm。试计算轴内的最大扭转切应力。
35
例3-9:如图所示,圆轴AB与套管CD用刚性突缘E焊接成一 体,并在截面A承受扭力矩M作用。圆轴的直径d=56mm,许 用切应力[1 ]=80MPa,套管的外径D=80mm,壁厚=6mm, 许用切应力[2 ]=40MPa。试求扭力矩M的许用值。
36

见!
37
31
例3-6:如图所示圆锥形轴,两端承受扭力矩M的作用。 设轴长为l,左、右段的直径分别为d1和d2,材料的切变模 量为G,试计算轴的总扭转角 。
32
例3-7:某传动轴,转速n=300r/min,轮1为主动轴,输 入功率P1=50KW,轮2、轮3、轮4为从动轴,输出功率分别 为P2=10KW, P3= P4 =20KW。 (1) 试求轴内的最大扭矩;
例3-5:如图所示圆截面轴AC,承受扭力矩MA,MB,与 MC作用。试计算轴的总扭转角AC(即截面C对截面A的相 对转角),并校核轴的刚度。已知MA =180 Nm , MB = 320 Nm , MC =140 Nm ,IP=3.0105mm4,l=2m,G= 80GPa, [ ] = 0.5()/m 。
29
圆轴扭转刚度条件
工程中常限制扭转角沿轴线的变化率d /dx或单位 长度内的扭转角,使其不超过某一规定的许用值[]。 所以圆轴扭转的刚度条件为:
d dx
(
T GI P max
)

对于等截面轴,即:
Tmax GI P

30
扭转角的符号与扭矩相同,注意其正负号;一般 许用扭转角的单位为()/m,而扭转角变化率d /dx的单位为rad/m,因此,要注意单位的换算。
相关文档
最新文档