2016年福建省初中学业考试数学考试大纲

合集下载

福建省福州市2016年中考数学试题(word版,含解析)

福建省福州市2016年中考数学试题(word版,含解析)

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题!毕业学校 姓名 考生号一、 选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项)1.下列实数中的无理数是A .0.7B .21C .π D【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,-8为正数,都属于有理数, π为无限不循环小数,∴π为无理数.故选:C .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是第2题A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a、b被直线C所截,∠1和∠2的位置关系是A.同位角B.内错角C.同旁内角D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是A.a4+a2B.a2+a2+a2C.a4·a2D.a2·a2·a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组⎩⎨⎧>->+0301x x 的解集是 A .x >-1 B .x >3 C .-1<x <3 D .x <3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解解不等式①,得x >-1,解不等式②,得x >3,由①②可得,x >3,故原不等式组的解集是x >3.故选B . 【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是A .不可能事件发生的概率为01B.随机事件发生的概率为2C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D 选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A 的概率,记为 P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率 P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是A.(-2 ,l ) B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(-m,-n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,-1),∴点D的坐标是(-2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以O 为圆心,半径为1 的弧交坐标轴于A,B 两AB上一点(不与A,B重合),连接OP,设∠POB点,P是⌒=α,则点P的坐标是A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴,,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是A.平均数,中位数B.众数,中位数C.平均数,方差D.中位数,方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(-l,m),B ( l,m),C ( 2,m+l)在同一个函数图象上,A B C D 【考点】坐标确定位置;函数的图象.【分析】由点A(-1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(-1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x 的一元二次方程ax2-4x+c=0一定有实数根的是A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(-4)2-4ac=16-4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每题4分,满分24分)13.分解因式:x2-4=.【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2-4=(x+2)(x-2).故答案为:(x+2)(x-2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式1 x在实数范围内有意义,则x的取值范围是.【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式1 x 在实数范围内有意义,则:x+1≥0,解得x≥-1.故答案为:x≥-1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 .【考点】概率公式;反比例函数图象上点的坐标特征. 【分析】先判断四个点的坐标是否在反比例函数图象上,再让在反比例函数图象上点的个数除以点的总数即为在反比例函数图象上的概率,依此即可求解.【解答】解:∵-1×1=-1,2×2=4,,,∴2个点的坐标在反比例函数图象上,∴在反比例函数图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“>“,”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上<r下.故答案为<.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1 ,则x3y+xy3=.【考点】代数式求值.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2-2xy,然后将x+y与xy的值代入即可.【解答】解:x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]=1×(102-2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2-2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,,EB=2a∴∠AEB=90°,∴.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9 小题,满分90 分) 19.(7分)计算:|-1|-38+(-2016)0 .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|-1|-38+(-2016)0=1-2+1 =0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.(7分)化简:a -b -ba b a ++2)(【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可. 【解答】解:原式=a-b-(a+b )=a-b-a-b =-2b .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750-743=7(万人);(2)由图可知2012年增加:,2013年增加:,2014年增加:,2015年增加:,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.(12分)如图,正方形ABCD内接于⊙O,M 为⌒AD中点,连接BM,CM.(1)求证:BM=CM;BM的长.(2)当⊙O的半径为2 时,求⌒【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=215 ,在AC边上截取AD =BC,连接BD.(1)通过计算,判断AD2与AC·CD 的大小关系;(2)求∠ABD 的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AD=BC=1,,∴AD=,DC=1-=.∴AD2=,AC•CD=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.(13分)如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出 NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵A D=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:,∴DF的最大值=DC-CF=.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x-1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则,b=-2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x-1)2+2,∵抛物线经过原点,∴0=a(0-1)2+2,∴a=-2,∴抛物线解析式为y=-2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵,∴b=-2ah,∴y=ax2-2ahx,∵顶点A(h,k),∴k=ah2-2ah2=-ah2,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2-2ah2,∴t=-a,(3)∵点A在抛物线y=x2-x上,∴k=h2-h,又k=ah2-2ah2,∴,∵-2≤h<1,∴-2≤<1,①当1+a>0时,即a>-1时,,解得a>0,②当1+a<0时,即a<-1时,解得,综上所述,a的取值范围a>0或.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年福建省福州市中考数学试卷(含答案)

2016年福建省福州市中考数学试卷(含答案)

2016年福建省福州市中考数学试卷一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项).下列实数中的无理数是()✌.  . .⇨ .﹣.如图是 个相同的小正方体组合而成的几何体,它的俯视图是()✌. . . ..如图,直线♋,♌被直线♍所截, 与 的位置关系是()✌.同位角 .内错角 .同旁内角 .对顶角.下列算式中,结果等于♋ 的是()✌.♋ ♋ .♋ ♋ ♋ .♋ ❿♋ .♋ ❿♋ ❿♋.不等式组的解集是()✌.⌧>﹣ .⌧> .﹣ <⌧< .⌧<.下列说法中,正确的是()✌.不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次.✌, 是数轴上两点,线段✌上的点表示的数中,有互为相反数的是()✌. . . ..平面直角坐标系中,已知 ✌的三个顶点坐标分别是✌(❍,⏹), ( ,﹣ ), (﹣❍,﹣⏹),则点 的坐标是()✌.(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , ).如图,以圆 为圆心,半径为 的弧交坐标轴于✌, 两点, 是上一点(不与✌, 重合),连接 ,设 ↑,则点 的坐标是()✌.(♦♓⏹↑,♦♓⏹↑) .(♍☐♦↑,♍☐♦↑) .(♍☐♦↑,♦♓⏹↑) .(♦♓⏹↑,♍☐♦↑).下表是某校合唱团成员的年龄分布年龄 岁    频数 ⌧ ﹣⌧对于不同的⌧,下列关于年龄的统计量不会发生改变的是()✌.平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差.已知点✌(﹣ ,❍), ( ,❍), ( ,❍)在同一个函数图象上,这个函数图象可以是()✌. . . ..下列选项中,能使关于⌧的一元二次方程♋⌧ ﹣ ⌧♍一定有实数根的是()✌.♋> .♋ .♍> .♍二、填空题(共 小题,每小题 分,满分 分).分解因式:⌧ ﹣ ..若二次根式在实数范围内有意义,则⌧的取值范围是..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数⍓图象上的概率是..如图所示的两段弧中,位于上方的弧半径为❒上,下方的弧半径为❒下,则❒上❒下.(填❽<❾❽❾❽<❾).若⌧⍓,⌧⍓,则⌧ ⍓⌧⍓ 的值是..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 ,✌, , 都在格点上,则♦♋⏹ ✌的值是.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) ..化简:♋﹣♌﹣..一个平分角的仪器如图所示,其中✌✌, .求证: ✌ ✌..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?.福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了万人;( )与上一年相比,福州市常住人口数增加最多的年份是;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由..如图,正方形✌内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长..如图,在 ✌中,✌✌, ,在✌边上截取✌,连接 .( )通过计算,判断✌ 与✌❿的大小关系;( )求 ✌的度数..如图,矩形✌中,✌,✌, 是边 上一点,将 ✌沿直线✌对折,得到 ✌☠.( )当✌☠平分 ✌时,求 的长;( )连接 ☠,当 时,求 ✌☠的面积;( )当射线 ☠交线段 于点☞时,求 ☞的最大值..已知,抛物线⍓♋⌧ ♌⌧♍(♋♊)经过原点,顶点为✌(♒, )(♒♊).( )当♒, 时,求抛物线的解析式;( )若抛物线⍓♦⌧ (♦♊)也经过✌点,求♋与♦之间的关系式;( )当点✌在抛物线⍓⌧ ﹣⌧上,且﹣ ♎♒< 时,求♋的取值范围.年福建省福州市中考数学试卷参考答案与试题解析一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项).下列实数中的无理数是()✌.  . .⇨ .﹣【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是⇨,选出答案即可.【解答】解: 无理数就是无限不循环小数,且 为有限小数,为有限小数,﹣ 为正数,都属于有理数,⇨为无限不循环小数,⇨为无理数.故选: .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题..如图是 个相同的小正方体组合而成的几何体,它的俯视图是()✌. . . .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为 , ,故选: .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图..如图,直线♋,♌被直线♍所截, 与 的位置关系是()✌.同位角 .内错角 .同旁内角 .对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线♋,♌被直线♍所截, 与 是内错角.故选 .【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线..下列算式中,结果等于♋ 的是()✌.♋ ♋ .♋ ♋ ♋ .♋ ❿♋ .♋ ❿♋ ❿♋【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】✌:♋ ♋ ♊♋ ,据此判断即可.:根据合并同类项的方法,可得♋ ♋ ♋ ♋ .:根据同底数幂的乘法法则,可得♋ ❿♋ ♋ .:根据同底数幂的乘法法则,可得♋ ❿♋ ❿♋ ♋ .【解答】解: ♋ ♋ ♊♋ ,选项✌的结果不等于♋ ;♋ ♋ ♋ ♋ ,选项 的结果不等于♋ ;♋ ❿♋ ♋ ,选项 的结果不等于♋ ;♋ ❿♋ ❿♋ ♋ ,选项 的结果等于♋ .故选: .【点评】( )此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:♊底数必须相同;♋按照运算性质,只有相乘时才是底数不变,指数相加.( )此题还考查了合并同类项的方法,要熟练掌握..不等式组的解集是()✌.⌧>﹣ .⌧> .﹣ <⌧< .⌧<【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式♊,得⌧>﹣ ,解不等式♋,得⌧> ,由♊♋可得,⌧> ,故原不等式组的解集是⌧> .故选 .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法..下列说法中,正确的是()✌.不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率 (✌) 、不可能发生事件的概率 (✌) 对✌、 、 进行判定;根据频率与概率的区别对 进行判定.【解答】解:✌、不可能事件发生的概率为 ,所以✌选项正确;、随机事件发生的概率在 与 之间,所以 选项错误;、概率很小的事件不是不可能发生,而是发生的机会较小,所以 选项错误;、投掷一枚质地均匀的硬币 次,正面朝上的次数可能为 次,所以 选项错误.故选✌.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件✌发生的频率❍⏹会稳定在某个常数☐附近,那么这个常数☐就叫做事件✌的概率,记为 (✌) ☐;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率 (✌) ;不可能发生事件的概率 (✌) ..✌, 是数轴上两点,线段✌上的点表示的数中,有互为相反数的是()✌. . . .【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段✌上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点 的左右两侧,从四个答案观察发现,只有 选项的线段✌符合,其余答案的线段都在原点 的同一侧,所以可以得出答案为 .故选:【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段✌上的点与原点的距离..平面直角坐标系中,已知 ✌的三个顶点坐标分别是✌(❍,⏹), ( ,﹣ ), (﹣❍,﹣⏹),则点 的坐标是()✌.(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点✌和点 关于原点对称,由平行四边形的性质得出 和 关于原点对称,即可得出点 的坐标.【解答】解: ✌(❍,⏹), (﹣❍,﹣⏹),点✌和点 关于原点对称,四边形✌是平行四边形,和 关于原点对称,( ,﹣ ),点 的坐标是(﹣ , ).故选:✌.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出 和 关于原点对称是解决问题的关键..如图,以圆 为圆心,半径为 的弧交坐标轴于✌, 两点, 是上一点(不与✌, 重合),连接 ,设 ↑,则点 的坐标是()✌.(♦♓⏹↑,♦♓⏹↑) .(♍☐♦↑,♍☐♦↑) .(♍☐♦↑,♦♓⏹↑) .(♦♓⏹↑,♍☐♦↑)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过 作 ✈,交 于点✈,在直角三角形 ✈中,利用锐角三角函数定义表示出 ✈与 ✈,即可确定出 的坐标.【解答】解:过 作 ✈,交 于点✈,在 ♦✈中, , ✈↑,♦♓⏹↑,♍☐♦↑,即 ✈♦♓⏹↑, ✈♍☐♦↑,则 的坐标为(♍☐♦↑,♦♓⏹↑),故选 .【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键..下表是某校合唱团成员的年龄分布年龄 岁    频数 ⌧ ﹣⌧对于不同的⌧,下列关于年龄的统计量不会发生改变的是()✌.平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为 ,即可得知总人数,结合前两组的频数知出现次数最多的数据及第 、 个数据的平均数,可得答案.【解答】解:由表可知,年龄为 岁与年龄为 岁的频数和为⌧﹣⌧,则总人数为: ,故该组数据的众数为 岁,中位数为: 岁,即对于不同的⌧,关于年龄的统计量不会发生改变的是众数和中位数,故选: .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键..已知点✌(﹣ ,❍), ( ,❍), ( ,❍)在同一个函数图象上,这个函数图象可以是()✌. . . .【考点】坐标确定位置;函数的图象.【分析】由点✌(﹣ ,❍), ( ,❍), ( ,❍)在同一个函数图象上,可得✌与 关于⍓轴对称,当⌧> 时,⍓随⌧的增大而增大,继而求得答案.【解答】解: 点✌(﹣ ,❍), ( ,❍),✌与 关于⍓轴对称,故✌, 错误;( ,❍), ( ,❍),当⌧> 时,⍓随⌧的增大而增大,故 正确, 错误.故选 .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键..下列选项中,能使关于⌧的一元二次方程♋⌧ ﹣ ⌧♍一定有实数根的是()✌.♋> .♋ .♍> .♍【考点】根的判别式.【分析】根据方程有实数根可得♋♍♎,且♋♊,对每个选项逐一判断即可.【解答】解: 一元二次方程有实数根,(﹣ ) ﹣ ♋♍﹣ ♋♍♏,且♋♊,♋♍♎,且♋♊;✌、若♋> ,当♋、♍时,♋♍> ,此选项错误;、♋不符合一元二次方程的定义,此选项错误;、若♍> ,当♋、♍时,♋♍> ,此选项错误;、若♍,则♋♍♎,此选项正确;故选: .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式 的关系:( ) > 方程有两个不相等的实数根;( ) 方程有两个相等的实数根;( ) < 方程没有实数根.二、填空题(共 小题,每小题 分,满分 分).分解因式:⌧ ﹣ (⌧)(⌧﹣ ).【考点】因式分解 运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:⌧ ﹣ (⌧)(⌧﹣ ).故答案为:(⌧)(⌧﹣ ).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反..若二次根式在实数范围内有意义,则⌧的取值范围是⌧♏﹣ .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出⌧的取值范围.【解答】解:若二次根式在实数范围内有意义,则:⌧♏,解得⌧♏﹣ .故答案为:⌧♏﹣ .【点评】主要考查了二次根式的意义和性质:概念:式子(♋♏)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数⍓图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数⍓图象上,再让在反比例函数⍓图象上点的个数除以点的总数即为在反比例函数⍓图象上的概率,依此即可求解.【解答】解: ﹣ ﹣ ,,,(﹣ ) (﹣) ,个点的坐标在反比例函数⍓图象上,在反比例函数⍓图象上的概率是 .故答案为:.【点评】考查了概率公式,用到的知识点为:概率 所求情况数与总情况数之比..如图所示的两段弧中,位于上方的弧半径为❒上,下方的弧半径为❒下,则❒上❒下.(填❽<❾❽❾❽<❾)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,❒上 ❒下.故答案为 .【点评】本题考查了弧长公式:圆周长公式: ⇨ ( )弧长公式:●(弧长为●,圆心角度数为⏹,圆的半径为 );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一..若⌧⍓,⌧⍓,则⌧ ⍓⌧⍓ 的值是 .【考点】代数式求值.【分析】可将该多项式分解为⌧⍓(⌧ ⍓ ),又因为⌧ ⍓ (⌧⍓) ﹣ ⌧⍓,然后将⌧⍓与⌧⍓的值代入即可.【解答】解:⌧ ⍓⌧⍓⌧⍓(⌧ ⍓ )⌧⍓☯(⌧⍓) ﹣ ⌧⍓(  ﹣ ).故答案为: .【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知⌧⍓与⌧⍓的值,则⌧ ⍓ (⌧⍓) ﹣ ⌧⍓,再将⌧⍓与⌧⍓的值代入即可..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 ,✌, , 都在格点上,则♦♋⏹ ✌的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接☜✌、☜,先证明 ✌☜,根据♦♋⏹ ✌,求出✌☜、☜即可解决问题.【解答】解:如图,连接☜✌,☜,设菱形的边长为♋,由题意得 ✌☜☞, ☜☞,✌☜♋,☜♋✌☜,♦♋⏹ ✌ .故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解: ﹣ ﹣ (﹣ )﹣ .【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键..化简:♋﹣♌﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式 ♋﹣♌﹣(♋♌)♋﹣♌﹣♋﹣♌﹣ ♌.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键..一个平分角的仪器如图所示,其中✌✌, .求证: ✌ ✌.【考点】全等三角形的性质.【分析】在 ✌和 ✌中,由三组对边分别相等可通过全等三角形的判定定理( )证得 ✌☹✌,再由全等三角形的性质即可得出结论.【解答】证明:在 ✌和 ✌中,有,✌☹✌( ),✌ ✌.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出 ✌☹✌.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了⌧张,乙种票买了⍓张.然后根据购票总张数为 张,总费用为 元列方程求解即可.【解答】解:设甲种票买了⌧张,乙种票买了⍓张.根据题意得:.解得:.答:甲种票买了 张,乙种票买了 张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键..福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了 万人;( )与上一年相比,福州市常住人口数增加最多的年份是 ;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】( )将 年人数减去 年人数即可;( )计算出每年与上一年相比,增加的百分率即可得知;( )可从每年人口增加的数量加以预测.【解答】解:( )福州市常住人口数, 年比 年增加了 ﹣ (万人);( )由图可知 年增加: ☟,年增加: ☟,年增加: ☟,年增加: ☟,故与上一年相比,福州市常住人口数增加最多的年份是 年;( )预测 年福州市常住人口数大约为 万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是 万人,由此可以预测 年福州市常住人口数大约为 万人.故答案为:( ) ;( ) .【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键..如图,正方形✌内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】( )根据圆心距、弦、弧之间的关系定理解答即可;( )根据弧长公式计算.【解答】( )证明: 四边形✌是正方形,✌,,为中点,,,即 ,;( )解: 的半径为 ,的周长为 ⇨,的长 ⇨⇨.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键..如图,在 ✌中,✌✌, ,在✌边上截取✌,连接 .( )通过计算,判断✌ 与✌❿的大小关系;( )求 ✌的度数.【考点】相似三角形的判定.【分析】( )先求得✌、 的长,然后再计算出✌ 与✌❿的值,从而可得到✌ 与✌❿的关系;( )由( )可得到  ✌❿,然后依据对应边成比例且夹角相等的两三角形相似证明 ✌,依据相似三角形的性质可知  ✌, ,然后结合等腰三角形的性质和三角形的内角和定理可求得 ✌的度数.【解答】解:( ) ✌, ,✌, ﹣ .✌ ,✌❿ .✌ ✌❿.( ) ✌,✌ ✌❿, ✌❿,即.又  ,✌.,  ✌.✌.✌ ✌,  .设 ✌⌧,则 ✌⌧, ⌧, ⌧.✌ ✌ ,⌧⌧⌧.解得:⌧.✌.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得 ✌是解题的关键..如图,矩形✌中,✌,✌, 是边 上一点,将 ✌沿直线✌对折,得到 ✌☠.( )当✌☠平分 ✌时,求 的长;( )连接 ☠,当 时,求 ✌☠的面积;( )当射线 ☠交线段 于点☞时,求 ☞的最大值.【考点】矩形的性质;角平分线的性质.【分析】( )由折叠性质得 ✌☠ ✌,证出 ✌ ✌☠ ☠✌,由三角函数得出 ✌❿♦♋⏹ ✌即可;( )延长 ☠交✌延长线于点✈,由矩形的性质得出 ✌ ✌✈,由折叠性质得出✌ ✌✈,✌☠✌, ☠,得出 ✌✈ ✌✈,证出 ✈✌✈,设☠✈⌧,则✌✈✈⌧,证出 ✌☠✈,在 ♦✌☠✈中,由勾股定理得出方程,解方程求出☠✈,✌✈,即可求出 ✌☠的面积;( )过点✌作✌☟☞于点☟,证明 ✌☟☞,得出对应边成比例 ,得出当点☠、☟重合(即✌☟✌☠)时,✌☟最大, ☟最小, ☞最小, ☞最大,此时点 、☞重合, 、☠、 三点共线,由折叠性质得:✌✌☟,由✌✌证明 ✌☟☹☞,得出 ☞☟,由勾股定理求出 ☟,得出 ☞,即可得出结果.【解答】解:( )由折叠性质得: ✌☠☹✌,✌☠ ✌,✌☠平分 ✌, ✌☠ ☠✌,✌ ✌☠ ☠✌,四边形✌是矩形,✌,✌,✌❿♦♋⏹ ✌♦♋⏹ ;( )延长 ☠交✌延长线于点✈,如图 所示:四边形✌是矩形,✌,✌ ✌✈,由折叠性质得: ✌☠☹✌,✌ ✌✈,✌☠✌, ☠,✌✈ ✌✈,✈✌✈,设☠✈⌧,则✌✈✈⌧,✌☠,✌☠✈,在 ♦✌☠✈中,由勾股定理得:✌✈ ✌☠ ☠✈ ,(⌧)  ⌧ ,解得:⌧,☠✈,✌✈,✌,✌✈, ☠✌ ☠✌✈ ✌☠❿☠✈ ;( )过点✌作✌☟☞于点☟,如图 所示:四边形✌是矩形,✌,☟✌ ☞,✌☟ ☞,✌☟☞,,✌☟♎✌☠,✌,当点☠、☟重合(即✌☟✌☠)时,✌☟最大, ☟最小, ☞最小, ☞最大,此时点 、☞重合, 、☠、 三点共线,如图 所示:由折叠性质得:✌✌☟,✌,✌☟,在 ✌☟和 ☞中,,✌☟☹☞(✌✌),☞☟,由勾股定理得: ☟ ,☞,☞的最大值 ﹣ ☞﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键..已知,抛物线⍓♋⌧ ♌⌧♍(♋♊)经过原点,顶点为✌(♒, )(♒♊).( )当♒, 时,求抛物线的解析式;( )若抛物线⍓♦⌧ (♦♊)也经过✌点,求♋与♦之间的关系式;( )当点✌在抛物线⍓⌧ ﹣⌧上,且﹣ ♎♒< 时,求♋的取值范围.【考点】二次函数综合题.【分析】( )用顶点式解决这个问题,设抛物线为⍓♋(⌧﹣ ) ,原点代入即可.( )设抛物线为⍓♋⌧ ♌⌧,则♒﹣,♌﹣ ♋♒代入抛物线解析式,求出 (用♋、♒表示),又抛物线⍓♦⌧ 也经过✌(♒, ),求出 ,列出方程即可解决.( )根据条件列出关于♋的不等式即可解决问题.【解答】解:( ) 顶点为✌( , ),设抛物线为⍓♋(⌧﹣ ) ,抛物线经过原点,♋( ﹣ ) ,♋﹣ ,抛物线解析式为⍓﹣ ⌧ ⌧.( ) 抛物线经过原点,设抛物线为⍓♋⌧ ♌⌧,♒﹣,♌﹣ ♋♒,⍓♋⌧ ﹣ ♋♒⌧,顶点✌(♒, ),♋♒ ﹣ ♋♒,抛物线⍓♦⌧ 也经过✌(♒, ),♦♒ ,♦♒ ♋♒ ﹣ ♋♒ ,♦﹣♋,( ) 点✌在抛物线⍓⌧ ﹣⌧上,♒ ﹣♒,又 ♋♒ ﹣ ♋♒ ,♒,﹣ ♎♒< ,﹣ ♎< ,♊当 ♋> 时,即♋>﹣ 时,,解得♋> ,♋当 ♋< 时,即♋<﹣ 时,解得♋♎﹣,综上所述,♋的取值范围♋> 或♋♎﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

福建省福州市2016年中考数学试题(word版,含解析)

福建省福州市2016年中考数学试题(word版,含解析)

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,27小题;满分150分;考试时间120分钟) 友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题! 毕业学校 姓名 考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项) 1.下列实数中的无理数是A .0.7B .21C .πD .-8 【考点】无理数. 【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可. 【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,-8为正数,都属于有理数, π为无限不循环小数, ∴π为无理数. 故选:C .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1, 故选:C .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.第2题3.如图,直线a、b被直线C所截,∠1和∠2的位置关系是A.同位角B.内错角C.同旁内角D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是A.a4+a2B.a2+a2+a2C.a4·a2D.a2·a2·a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D 的结果等于a 6. 故选:D .【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组⎩⎨⎧>->+0301x x 的解集是A .x >-1B .x >3C .-1<x <3D .x <3【考点】解一元一次不等式组. 【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集. 【解答】解解不等式①,得 x >-1, 解不等式②,得 x >3,由①②可得,x >3,故原不等式组的解集是x >3. 故选B .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P (A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为 P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率 P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是A.(-2 ,l )B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(-m,-n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,-1),∴点D的坐标是(-2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.AB上一点(不9.如图,以O 为圆心,半径为1 的弧交坐标轴于A,B 两点,P是⌒与A,B重合),连接OP,设∠POB=α,则点P的坐标是A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴,,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是A.平均数,中位数B.众数,中位数C.平均数,方差D.中位数,方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10, 则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:,即对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数, 故选:B .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D【考点】坐标确定位置;函数的图象.【分析】由点A (-1,m ),B (1,m ),C (2,m+1)在同一个函数图象上,可得A 与B 关于y 轴对称,当x >0时,y 随x 的增大而增大,继而求得答案.【解答】解:∵点A (-1,m ),B (1,m ), ∴A 与B 关于y 轴对称,故A ,B 错误; ∵B(1,m ),C (2,m+1),∴当x >0时,y 随x 的增大而增大,故C 正确,D 错误. 故选C .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(-4)2-4ac=16-4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每题4分,满分24分)13.分解因式:x2-4=.【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2-4=(x+2)(x-2).故答案为:(x+2)(x-2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式1x在实数范围内有意义,则x的取值范围是.【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式1 x 在实数范围内有意义,则:x+1≥0,解得x≥-1. 故答案为:x≥-1.【点评】主要考查了二次根式的意义和性质: 概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 【考点】概率公式;反比例函数图象上点的坐标特征. 【分析】先判断四个点的坐标是否在反比例函数图象上,再让在反比例函数图象上点的个数除以点的总数即为在反比例函数图象上的概率,依此即可求解.【解答】解:∵-1×1=-1, 2×2=4,,,∴2个点的坐标在反比例函数图象上,∴在反比例函数图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上<r下.故答案为<.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1 ,则x3y+xy3=.【考点】代数式求值.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2-2xy,然后将x+y与xy的值代入即可.【解答】解:x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]=1×(102-2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2-2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形. 【专题】网格型.【分析】如图,连接EA 、EB ,先证明∠AEB=90°,根据,求出AE 、EB 即可解决问题.【解答】解:如图,连接EA ,EC ,设菱形的边长为a ,由题意得∠AEF=30°,∠BEF=60°,,EB=2a∴∠AEB=90°, ∴.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9 小题,满分90 分) 19.(7分)计算:|-1|-38+(-2016)0 .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案. 【解答】解:|-1|-38+(-2016)0 =1-2+1 =0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.(7分)化简:a -b -ba b a ++2)(【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可. 【解答】解:原式=a-b-(a+b ) =a-b-a-b =-2b .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.(8分)一个平分角的仪器如图所示,其中AB=AD,BC=DC,求证:∠BAC=∠DAC .【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(10分)福州市2017~2017年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2017年比2017年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2017年人数减去2017年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2017年比2017年增加了750-743=7(万人);(2)由图可知2017年增加:,2017年增加:,2017年增加:,2017年增加:,故与上一年相比,福州市常住人口数增加最多的年份是2017年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2017.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD 是正方形,∴AB=CD, ∴, ∵M 为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O 的半径为2,∴⊙O 的周长为4π, ∴的长=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=215,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC·CD 的大小关系;(2)求∠ABD 的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AD=BC=1,,∴AD=,DC=1-=.∴AD2=,AC•CD=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.(13分)如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM 对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠A MQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出 NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F 重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:,∴DF的最大值=DC-CF=.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x-1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则,b=-2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x-1)2+2,∵抛物线经过原点,∴0=a(0-1)2+2,∴a=-2,∴抛物线解析式为y=-2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵,∴b=-2ah,∴y=ax2-2ahx,∵顶点A(h,k),∴k=ah2-2ah2=-ah2,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2-2ah2,∴t=-a,(3)∵点A在抛物线y=x2-x上,∴k=h2-h,又k=ah2-2ah2,∴,∵-2≤h<1,∴-2≤<1,①当1+a>0时,即a>-1时,,解得a>0,②当1+a<0时,即a<-1时,解得,综上所述,a的取值范围a>0或.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年福建省福州市中学考试数学试卷含问题详解

2016年福建省福州市中学考试数学试卷含问题详解

实用文档文案大全2016年福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B. C.π D.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A. B. C. D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角 B.内错角 C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2 B.a2+a2+a2 C.a2?a3 D.a2?a2?a25.不等式组的解集是()A.x>﹣1B.x>3 C.﹣1<x<3D.x<36.下列说法中,正确的是()A.不可能事件发生的概率为0 B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B. C. D.8.平面直角坐标系中,已知?ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C (﹣m,﹣n),则点D的坐标是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)实用文档文案大全9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cos α)对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数 B.众数、中位数C.平均数、方差 D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A. B. C. D.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=14.若二次根式在实数范围内有意义,则x的取值范围是15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r 下.(填“<”“=”“<”)实用文档文案大全17.若x+y=10,xy=1,则x3y+xy3的值是18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.实用文档文案大全24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC?CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.实用文档文案大全2016年福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B. C.π D.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()实用文档文案大全A.同位角 B.内错角 C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2 B.a2+a2+a2 C.a2?a3 D.a2?a2?a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2?a3=a5.D:根据同底数幂的乘法法则,可得a2?a2?a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2?a3=a5,∴选项C的结果不等于a6;实用文档文案大全∵a2?a2?a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.x>﹣1B.x>3 C.﹣1<x<3D.x<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得x>﹣1,解不等式②,得x>3,由①②可得,x>3,故原不等式组的解集是x>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0 B.随机事件发生的概率为实用文档文案大全C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B. C. D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.实用文档文案大全8.平面直角坐标系中,已知?ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cos α)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,实用文档文案大全则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数 B.众数、中位数C.平均数、方差 D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为: =14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()实用文档文案大全A. B. C. D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0 【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)实用文档文案大全13.分解因式:x2﹣4=(x+2)(x﹣2)【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则x的取值范围是x≥﹣1【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,实用文档文案大全∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=..故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上=r下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1,则x3y+xy3的值是98【考点】代数式求值.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2﹣2xy,然后将x+y与xy的值代入即可.【解答】解:x3y+xy3=xy(x2+y2)实用文档文案大全=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2﹣2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a ∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.实用文档文案大全【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣2016)0=1﹣2+1 =0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b =﹣2b..【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.实用文档文案大全【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了7万人;(2)与上一年相比,福州市常住人口数增加最多的年份是2014;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.实用文档文案大全【解答】解:(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.98%,2013年增加:×100%≈0.97%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;实用文档文案大全(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC?CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC?CD的值,从而可得到AD2与AC?CD的关系;(2)由(1)可得到BD2=AC?CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC?CD=1×=.∴AD2=AC?CD.(2)∵AD=BD,AD2=AC?CD,∴BD2=AC?CD,即.又∵∠C=∠C,∴△BCD∽△ABC.实用文档文案大全∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x..∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°解得:x=36°∴∠ABD=36°【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD?tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三实用文档文案大全点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD?tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN?NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,实用文档文案大全∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=实用文档文案大全【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣,b=﹣2ah代入抛物线解析式,求出k(用a、h 表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x..(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,实用文档文案大全(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,27小题;满分150分;考试时间120分钟) 友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题! 毕业学校 姓名 考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项) 1.下列实数中的无理数是A .0.7B .21C .πD .-8 【考点】无理数. 【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可. 【解答】解:∵无理数就是无限不循环小数, 且0.7为有限小数,为有限小数,-8为正数,都属于有理数,π为无限不循环小数, ∴π为无理数. 故选:C .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1, 故选:C .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.第2题3.如图,直线a、b被直线C所截,∠1和∠2的位置关系是A.同位角B.内错角C.同旁内角D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是A.a4+a2B.a2+a2+a2C.a4·a2D.a2·a2·a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D 的结果等于a 6. 故选:D .【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组⎩⎨⎧>->+0301x x 的解集是A .x >-1B .x >3C .-1<x <3D .x <3【考点】解一元一次不等式组. 【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集. 【解答】解解不等式①,得 x >-1, 解不等式②,得 x >3,由①②可得,x >3,故原不等式组的解集是x >3. 故选B .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P (A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为 P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率 P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是A.(-2 ,l )B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(-m,-n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,-1),∴点D的坐标是(-2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.AB上一点(不9.如图,以O 为圆心,半径为1 的弧交坐标轴于A,B 两点,P是⌒与A,B重合),连接OP,设∠POB=α,则点P的坐标是A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴,,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是A.平均数,中位数B.众数,中位数C.平均数,方差D.中位数,方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10, 则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:,即对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数, 故选:B .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D【考点】坐标确定位置;函数的图象.【分析】由点A (-1,m ),B (1,m ),C (2,m+1)在同一个函数图象上,可得A 与B 关于y 轴对称,当x >0时,y 随x 的增大而增大,继而求得答案.【解答】解:∵点A (-1,m ),B (1,m ), ∴A 与B 关于y 轴对称,故A ,B 错误; ∵B(1,m ),C (2,m+1),∴当x >0时,y 随x 的增大而增大,故C 正确,D 错误. 故选C .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(-4)2-4ac=16-4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每题4分,满分24分)13.分解因式:x2-4=.【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2-4=(x+2)(x-2).故答案为:(x+2)(x-2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式1x在实数范围内有意义,则x的取值范围是.【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式1 x 在实数范围内有意义,则:x+1≥0,解得x≥-1. 故答案为:x≥-1.【点评】主要考查了二次根式的意义和性质: 概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 【考点】概率公式;反比例函数图象上点的坐标特征. 【分析】先判断四个点的坐标是否在反比例函数图象上,再让在反比例函数图象上点的个数除以点的总数即为在反比例函数图象上的概率,依此即可求解.【解答】解:∵-1×1=-1, 2×2=4,,,∴2个点的坐标在反比例函数图象上,∴在反比例函数图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上<r下.故答案为<.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1 ,则x3y+xy3=.【考点】代数式求值.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2-2xy,然后将x+y与xy的值代入即可.【解答】解:x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]=1×(102-2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2-2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三 角形. 【专题】网格型.【分析】如图,连接EA 、EB ,先证明∠AEB=90°,根据,求出AE 、EB 即可解决问题.【解答】解:如图,连接EA ,EC ,设菱形的边长为a ,由题意得∠AEF=30°,∠BEF=60°,,EB=2a∴∠AEB=90°, ∴. 故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9 小题,满分90 分) 19.(7分)计算:|-1|-38+(-2016)0 .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案. 【解答】解:|-1|-38+(-2016)0 =1-2+1 =0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.(7分)化简:a -b -ba b a ++2)(【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可. 【解答】解:原式=a-b-(a+b ) =a-b-a-b =-2b .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.(8分)一个平分角的仪器如图所示,其中AB=AD,BC=DC,求证:∠BAC=∠DAC .【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750-743=7(万人);(2)由图可知2012年增加:,2013年增加:,2014年增加:,2015年增加:,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD 是正方形,∴AB=CD,∴, ∵M 为中点, ∴=, ∴+=+,即=,∴BM=CM;(2)解:∵⊙O 的半径为2,∴⊙O 的周长为4π,∴的长=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=215,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC·CD 的大小关系;(2)求∠ABD 的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AD=BC=1,,∴AD=,DC=1-=.∴AD2=,AC•CD=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.(13分)如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM 对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出 NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F 重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:,∴DF的最大值=DC-CF=.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x-1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则,b=-2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x-1)2+2,∵抛物线经过原点,∴0=a(0-1)2+2,∴a=-2,∴抛物线解析式为y=-2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵,∴b=-2ah,∴y=ax2-2ahx,∵顶点A(h,k),∴k=ah2-2ah2=-ah2,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2-2ah2,∴t=-a,(3)∵点A在抛物线y=x2-x上,∴k=h2-h,又k=ah2-2ah2,∴,∵-2≤h<1,∴-2≤<1,①当1+a>0时,即a>-1时,,解得a>0,②当1+a<0时,即a<-1时,解得,综上所述,a的取值范围a>0或.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年福建省福州市中考数学试卷-答案

2016年福建省福州市中考数学试卷-答案

福建省福州市2016年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷2.【答案】C【解析】人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【提示】根据从上边看得到的图形是俯视图,可得答案.【考点】三视图3.【答案】B【解析】直线a,b被直线c所截,∠1与∠2是内错角.故选B.【提示】根据内错角的定义求解.【考点】同位角、内错角、同旁内角;对顶角、邻补角.4.【答案】D【考点】同底数幂的乘法;合并同类项.【解析】A.426a a a+≠,据此判断即可.B.根据合并同类项的方法,可得2222++=.a a a a3C.根据同底数幂的乘法法则,可得235=.a a aD.根据同底数幂的乘法法则,可得2226=.a a a a∵426+≠,a a a∴选项A的结果不等于a6;∵2222a a a a++=,3∴选项B的结果不等于a6;∵235a a a=,∴选项C的结果不等于a6;∵2226a a a a=,∴选项D的结果等于a6.故选:D.5.【答案】B【解析】1030 xx+>⎧⎨->⎩解不等式①,得1x>-,解不等式②,得3x>,由①②可得,3x>,故原不等式组的解集是3x>.故选B.【提示】根据解不等式组的方法可以求得原不等式组的解集.【考点】解一元一次不等式组.6.【答案】A【解析】A.不可能事件发生的概率为0,所以A选项正确;B.随机事件发生的概率在0与1之间,所以B选项错误;C.概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D.投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【提示】一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p 就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.【考点】概率的意义.7.【答案】B【解析】表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【提示】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【考点】相反数,数轴8.【答案】A【解析】∵A (m ,n ),C (-m ,-n ),∴点A 和点C 关于原点对称,∵四边形ABCD 是平行四边形,∴D 和B 关于原点对称,∵B (2,-1),∴点D 的坐标是(-2,1).故选:A .【提示】由点的坐标特征得出点A 和点C 关于原点对称,由平行四边形的性质得出D 和B 关于原点对称,即可得出点D 的坐标.【考点】平行四边形的性质,坐标与图形性质9.【答案】C【解析】过P 作PQ ⊥OB ,交OB 于点Q ,在直角三角形OPQ 中,利用锐角三角函数定义表示出OQ 与PQ ,即可确定出P 的坐标.过P 作PQ ⊥OB ,交OB 于点Q ,在Rt OPQ ∆中,1,POQ OP α=∠=, ∴sin ,cos PQ OQ OP OPαα==,即 则P 的坐标为(cos sin αα,),故选C .【考点】解直角三角形,坐标与图形性质10.【答案】B【解析】由表可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:14岁,即对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选:B .【提示】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【考点】统计量的选择,频数(率)分布表11.【答案】C【解析】∵点A (-1,m ),B (1,m ),∴A 与B 关于y 轴对称,故A ,B 错误;∵B (1,m ),C (2,m+1),∴当x >0时,y 随x 的增大而增大,故C 正确,D 错误.故选C .【提示】由点A (-1,m ),B (1,m ),C (2,m+1)在同一个函数图象上,可得A 与B 关于y 轴对称,当x >0时,y 随x 的增大而增大,继而求得答案.【考点】坐标确定位置,函数的图象12.【答案】D【解析】∵一元二次方程有实数根,∴2(4)41640ac ac ∆=--=-≥,且0a ≠,∴4ac ≤,且0a ≠;A 、若0a >,当1a =、5c =时,54ac =>,此选项错误;B 、0a ≠不符合一元二次方程的定义,此选项错误;C 、若0c >,当1a =、5c =时,54ac =>,此选项错误;D 、若0c =,则04ac =≤,此选项正确;故选:D .【提示】根据方程有实数根可得4ac ≤,且0a ≠,对每个选项逐一判断即可。

2016年福建省初中学业质量测查数学试题(附答案)

2016年福建省初中学业质量测查数学试题(附答案)

福建省初中学业质量测查数学试题(试卷满分:150分;考试时间:120分钟)温馨提示:所有答案必须填写到答题卡相应的位置上,答在本试卷上一律无效.毕业学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.-2015的相反数是( )A .-2015B .2015C .12015 D .12015- 2.下列运算正确的是( )A .a 3+a 3=a 6B . a 6÷a 2=a 4C .a 3•a 5=a 15D .(a 3)4=a 73.如图所示几何体的俯视图是( )A .B .C .D . 4.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( ) A .10° B .15° C .20° D .25° 5.关于x 的方程01322=--x x 的解的情况,正确的是( ).A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.如图所示,把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形7.已知二次函数y=﹣x 2+2bx +c ,当x >1时,y 的值随x 值的增大而减小,则实数b 的取值范围是( )A .b ≥﹣1B . b ≤﹣1C .b ≥1D .b ≤1二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为 .(第3题图) (第4题图)(第6题图)219.若正n 边形的中心角等于24°,则这个正多边形的边数为 . 10.分解因式:x x 42+ = .11.若a <13<b ,且a ,b 为连续正整数,则b 2﹣a 2= .12. 计算:_______x yx y x y +=++.13.在《中国梦•我的梦》演讲比赛中,由6个评委对某选手打分,得分情况如下:8,9,7,8,9,10 (单位:分),则该选手得分的中位数是 分. 14. 不等式组⎩⎨⎧≤-≥+0201x x 的解集是 . 15.菱形ABCD 的边长AB =5cm ,则菱形ABCD 的周长为 cm .16.如图,P A 、PB 是⊙O 的切线,切点是A 、B ,已知60P ∠=︒,P A =63,那么AB 的长为 .17.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线kx y =上,则(1)k = ,(2)A 2015的坐标是 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:10)31(28)2(|3|-+⨯--+-π.19.(9分)先化简,再求值:)22(2)2(2-++a a a ,其中3=a .20.(9分)如图,已知:点B 、F 、C 、E 在一条直线上,∠B =∠E ,BF =CE ,AB =DE .求证:△ABC ≌△DEF .21.(9分)为了解我县八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图所示).A OP B(第16题图)ECABDFA 1A 2 A OB 1 B 2B3 AO BP (第17题图)请根据图中提供的信息,解答下列问题:(1)直接填写:a =____%,该扇形所对圆心角的度数为____度,并补全条形图;(2)如果全县共有八年级学生7000人,请你估计“活动时间不少于...7天”的学生人数大约有多少人?22.(9分)第14届亚洲艺术节计划于2015年11月底在泉州举行.现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人. (1)若从这20人中随机选取一人作为联络员,直接写出选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.23.(9分)已知反比例函数xm y 1-=(m 为常数)的图象在第一、三象限内. (1)求m 的取值范围;(2)如图,若该反比例函数的图象经过平行四边形ABOD 的顶点D ,点A 、B 的坐标分别为a(0,3),(﹣2,0).①求出该反比例函数解析式;②设点P 是该反比例函数图象上的一点,且在ΔDOP 中,OD=OP ,求点P 的坐标. 24.(9分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2小时后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为y 甲(km ),y 乙(km ),甲车行驶的时间为x (h ),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题: (1)乙车休息了 h ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围;(3)当两车相距40km 时,求出x 的值.25.(13分)如图,已知抛物线c bx x y ++-=221图象经过A (﹣1,0),B (4,0)两点. (1)求抛物线的解析式;y/km y(2)若C (m ,m ﹣1)是抛物线上位于第一象限内的点,D 是线段AB 上的一个动点(不与端点A 、B 重合),过点D 分别作DE ∥BC 交AC 于E ,DF ∥AC 交BC 于F .①求证:四边形DECF 是矩形; ②试探究:在点D 运动过程中,DE 、DF 、CF 的长度之和是否发生变化?若不变,求出它的值;若变化,试说明变化情况.A O D BF EC x26.(13分)在平面直角坐标系中,O 为坐标原点,直线33+-=k kx y 交y 轴正半轴于点A ,交x 轴于点B (如图1)(1)不论k 取何值,直线AB 总经过一个定点C ,请直接写出点C 坐标; (2)当OC ⊥AB 时,求出此时直线AB 的解析式;(3)如图2,在(2)条件下,若D 为线段AB 上一动点(不与端点A 、B 重合),经过O 、D 、B 三点的圆与过点B 垂直于AB 的直线交于点E ,求ΔDOE 面积的最小值.(图1)(图2)参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分) 1.B 2.B 3.C 4.D 5.A 6.A 7.D 二、填空题(每小题4分,共40分)8. 5101.1⨯ 9. 15 10. )4(+x x 11.7 12. 1 13. 8.5 14. 21≤≤-x 15. 20 16. π4 17.(1)33(2))2017,32015( 三、解答题(共89分) 18.(本题9分)解:原式=3+1-4+3…………………………………………………………8分 =3…………………………………………………………………… 9分 19.(本题9分)解:原式=a a a a 444422-+++…………………………………………………4分=452+a ………………………………………………………………6分当3=a 时,原式=4)3(52+⨯………………………………………7分=19…………………………………………………9分 20.(本题9分)证明:∵CE BF =, ∴CF CE CF BF +=+即EF BC =……………4分又∵E B DE AB ∠=∠=,……………7分 ∴△ABC ≌△DEF . ………………………9分21.(本题9分)解:(1)10,36°,补图如右;(填空各2分,补图2分, 共6分)(2)7000×(25%+10%+5%)=7000×40%=2800人. 答:“活动时间不少于7天”的学生人数大约有2800人……………………9分 22. (本题9分)ECA BDF解 :(1)P (女生)=53;……………………………………………………3分 (2)解法一: 画树状图…………………………………………………………………………6分由树状图可知,共有12种机会均等的情况,其中和为偶数的有4种情况,P ∴(甲参加)=31124=,P (乙参加)=32128=. P (甲参加)<P (乙参加), ∴这个游戏不公平. ……………………………………………………9分 解法二:列表(略)23. (本题9分)解:(1)根据题意得01>-m解得1>m …………………3分(2)①∵四边形ABOC 为平行四边形, ∴AD ∥OB ,AD =OB =2 又A 点坐标为(0,3)∴D 点坐标为(2,3)………………5分∴1-m =2×3=6∴反比例函数解析式为xy 6=………………6分 ②(法一)如图所示,以O 为圆心,OD 长为半径作圆O ,与双曲线xy 6=分别交于321,,,P P P D 四点. 根据图形的对称性,得点D (2,3)关于直线y =x 对称点1P 的坐标为(3,2);………………7分 点D (2,3)关于原点中心对称点2P 的坐标为(﹣2,﹣3);点1P (3,2)关于原点中心对称点3P 的坐标为(﹣3,﹣2). ………….8分 由于O 、D 、2P 三点共线.,所以符合题意的P 点只有两点, 其坐标分别为(3,2),(﹣3,﹣2). …………..9分(法二)2 第1张第2张 3 4 53 4 52 4 52 3 52 3 4和 5 6 7 5 7 8 6 7 9 7 8 9∵直线y =x 是反比例函数x y 6=图象的对称轴, D (2,3)在反比例函数xy 6=图象上, ∴点D (2,3)关于直线y =x 对称点的坐标为(3,2),则此时满足条件OP =OD 的P 点坐标为(3,2)………………..7分 ∵反比例函数xy 6=的图象是以原点为对称中心的中心对称图形 ∴当点P 与点D 关于原点中心对称,则OD =OP ,但此时O 、D 、P 三点共线. 而点(3,2)关于原点中心对称的点的坐标为(﹣3,﹣2)即此时满足条件OP =OD 的P 点坐标为(﹣3,﹣2)…………………8分综上,符合题意的P 点有两点,其坐标分别为(3,2),(﹣3,﹣2).………………9分 24. (本题9分)解:(1)0.5;………………………3分(2)设乙车与甲车相遇后y 乙与x 的函数解析式y 乙=kx +b ,y 乙=kx +b 图象过点(2.5,200),(5,400),得⎩⎨⎧=+=+4005,2005.2b k b k 解得⎩⎨⎧==0,80b k ∴乙车与甲车相遇后y 乙与x 的函数解析式y 乙=80x (2.5≤x ≤5);………………6分(其中自变量取值范围1分)(3)设乙车与甲车相遇前y 乙与x 的函数解析式y 乙=kx ,图象过点(2,200),所以200=2k 解得k =100 ∴乙车与甲车相遇前y 乙与x 的函数解析式y 乙=100x可求y 甲与x 的函数解析式y 甲=-80x +400…………………7分 ①当0≤x <2.5时,y 甲减y 乙等于40千米即﹣80x +400﹣100x =40,解得 x =2………………………8分 ②当2.5≤x ≤5时,y 乙减y 甲等于40千米即80x ﹣(﹣80x +400)=40,解得x =…………………9分综上,x =2或x =.25. (本题13分) 解:∵抛物线y=﹣221x +bx +c 图象经过A (﹣1,0),B (4,0)两点, 根据题意,得⎪⎩⎪⎨⎧++-=+--=c b c b 480,210 解得⎪⎩⎪⎨⎧==.2,23c b ∴抛物线的解析式为:223212++-=x x y ;…………3分(2)①证明:把C (m ,m ﹣1)代入223212++-=x x y 得 2232112++-=-m m m ,解得:m =3或m =﹣2,∵C (m ,m ﹣1)位于第一象限,∴⎩⎨⎧-01,0 m m ∴m >1,∴m =﹣2不合舍去,只取m =3, ∴点C 坐标为(3,2),…………4分(法一)如图,过C 点作CH ⊥AB ,垂足为H ,则∠AHC =∠BHC =90°, 由A (﹣1,0)、B (3,0)、C (3,2)得 AH =4,CH =2,BH =1,AB =5 ∵,2==BH CH CH AH ∠AHC =∠BHC =90°∴△AHC ∽△CHB ,∴∠ACH =∠CBH , ∵∠CBH +∠BCH =90°∴∠ACH +∠BCH =90°∴∠ACB =90°,…………6分 ∵DE ∥BC ,DF ∥AC ,即四边形DECF 是平行四边形,…………7分 ∴四边形DECF 是矩形;…………8分 (法二)∵202=AC ,52=BC ,AB =5, ∴222AB BC AC =+=25, ∴∠ACB =90°.以下解法同上.(法三)由1-=∙BC AC k k ,证得∠ACB =90°. 以下解法同上.(3)(法一) ∵DE ∥BC ∴ΔAED ∽ΔACB ∴AB AD BC ED = (1)…………9分同理:ABBDAC DF =(2) 设n AD =, 则n BD -=5由(1)得55n ED =………10分∴55nED FC ==由(2)得5)5(52n DF -=………11分 ∴52=++FC DF ED ………12分∴DE 、DF 、CF 的长度之和不变. …………13分(法二)∵DE ∥BC ∴ΔAED ∽ΔACB∴AB AD BC ED = (1)…………9分 同理:ABBDAC DF =(2) 由(1)+(2)得:1=+ACDF BC ED …………10分又∵5,52==BC AC ,CF =ED ∴522=+DF ED …………11分 ∴52=++FC DF ED ………12分∴DE 、DF 、CF 的长度之和不变. …………13分26. (本题13分)解:(1))3,3(C …………3分(2)(法一)如图,作CF ⊥OB 于F ,则3=OF ,CF =3 在Rt ΔOCF 中,tan ∠COF =333==OF CF∴∠COF = 60………4分又∵AB OC ⊥∴∠ABO = 30………5分在Rt ΔBCF 中,tan ∠ABO =33=BF CF ∴33=BF ∴34=OB ∴)0,34(B …………6分 把)0,34(B 代入33+-=k kx y ,得33-=k …………7分 ∴433+-=x y …………8分(法二)由BF OF CF ∙=2,得33=BF(法三)设B )0,(a ,由222OB CB OC =+,得22222)3(33)3(a a =-+++ 解得34=a(法四)可求直线OC 解析式为x y 3=,由AB OC ⊥,得13-=k ,∴33-=k(3)∵O 、D 、B 、E 四点共圆∴ 180=∠+∠DBE DOE ……………………9分又∵AB ⊥BE ∴ 90=∠ABE ∴ 90=∠DOE∵ 30=∠=∠ABO DEO ……………………10分在Rt ΔDOE 中,tan ∠DEO =33=OE OD ∴OD OE 3= ∴22321OD OE OD S DOE =∙=∆……………………11分 ∴当OD ⊥AB 时,ΔDOE 的面积最小,即点D 与点C 重合, 此时32==OC OD ……………………12分∴ΔDOE 面积的最小值为36.……………………13分。

2016年福建省福州市中考数学试卷(解析版)

2016年福建省福州市中考数学试卷(解析版)

2016年福建省福州市中考数学试卷总分:150一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()1 C.π D.-8A.0.7 B.2【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,1为有限小数,-8为正数,都属于有理数,且0.7为有限小数,2π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角 B.内错角 C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2 B.a2+a2+a2 C.a2•a3 D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组 x+1>0 的解集是()x−3>0A.x>-1 B.x>3 C.-1<x<3 D.x<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:x+1>0 ①x−3>0 ②解不等式①,得x>-1,解不等式②,得x>3,由①②可得,x>3,故原不等式组的解集是x>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为01B.随机事件发生的概率为2C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.m会稳定在某个常数p附近,那么这个常数p 【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率n就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B. C. D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是()A.(-2,1) B.(-2,-1) C.(-1,-2) D.(-1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(-m,-n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,-1),∴点D的坐标是(-2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P 作PQ ⊥OB ,交OB 于点Q ,在直角三角形OPQ 中,利用锐角三角函数定义表示出OQ 与PQ ,即可确定出P 的坐标. 【解答】解:过P 作PQ ⊥OB ,交OB 于点Q , 在Rt △OPQ 中,OP=1,∠POQ=α,∴sin α=OP PQ ,cos α=OP OQ ,即PQ=sin α,OQ=cos α,则P 的坐标为(cos α,sin α), 故选C .【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布年龄/岁 13 14 15 16 频数515x10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是( )A .平均数、中位数B .众数、中位数C .平均数、方差D .中位数、方差 【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10, 则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:214+14=14岁,即对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数, 故选:B .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A (-1,m ),B (1,m ),C (2,m+1)在同一个函数图象上,这个函数图象可以是( )A .B .C .D .【考点】坐标确定位置;函数的图象.【分析】由点A (-1,m ),B (1,m ),C (2,m+1)在同一个函数图象上,可得A 与B 关于y 轴对称,当x >0时,y 随x 的增大而增大,继而求得答案.【解答】解:∵点A (-1,m ),B (1,m ), ∴A 与B 关于y 轴对称,故A ,B 错误; ∵B (1,m ),C (2,m+1),∴当x >0时,y 随x 的增大而增大,故C 正确,D 错误. 故选C .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x 的一元二次方程ax 2-4x+c=0一定有实数根的是( ) A .a >0 B .a=0 C .c >0 D .c=0 【考点】根的判别式.【分析】根据方程有实数根可得ac ≤4,且a ≠0,对每个选项逐一判断即可. 【解答】解:∵一元二次方程有实数根, ∴△=(-4)2-4ac=16-4ac ≥0,且a ≠0, ∴ac ≤4,且a ≠0;A 、若a >0,当a=1、c=5时,ac=5>4,此选项错误;B 、a=0不符合一元二次方程的定义,此选项错误;C 、若c >0,当a=1、c=5时,ac=5>4,此选项错误;D 、若c=0,则ac=0≤4,此选项正确; 故选:D .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分) 13.分解因式:x 2-4= ______. 【考点】因式分解-运用公式法. 【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可. 【解答】解:x 2-4=(x+2)(x-2). 故答案为:(x+2)(x-2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式1+x 在实数范围内有意义,则x 的取值范围是 ______. 【考点】二次根式有意义的条件. 【专题】常规题型.【分析】根据二次根式的性质可求出x 的取值范围.【解答】解:若二次根式1+x 在实数范围内有意义,则:x+1≥0,解得x ≥-1. 故答案为:x ≥-1.【点评】主要考查了二次根式的意义和性质: 概念:式子a (a ≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选取一个点,在反比例函数x 1y =图象上的概率是 ______.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数x 1y =图象上,再让在反比例函数x 1y =图象上点的个数除以点的总数即为在反比例函数x 1y =图象上的概率,依此即可求解.【解答】解:∵-1×1=-1, 2×2=4,12332=⨯, (-5)×(51-)=1∴2个点的坐标在反比例函数x 1y =图象上,∴在反比例函数x 1y =图象上的概率是2÷4=21.故答案为:21.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 ______r 下.(填“<”“=”“>”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可. 【解答】解:如图,r 上<r 下.故答案为<.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=180R ••n π(弧长为l ,圆心角度数为n ,圆的半径为R );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1,则x 3y+xy 3的值是 ______. 【考点】代数式求值.【分析】可将该多项式分解为xy (x 2+y 2),又因为x 2+y 2=(x+y )2-2xy ,然后将x+y 与xy 的值代入即可. 【解答】解:x 3y+xy 3=xy (x 2+y 2)=xy[(x+y )2-2xy]=1×(102-2×1)=98. 故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y 与xy 的值,则x 2+y 2=(x+y )2-2xy ,再将x+y 与xy 的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 ______.【考点】菱形的性质;解直角三角形. 【专题】网格型.【分析】如图,连接EA 、EB ,先证明∠AEB=90°,根据tan ∠ABC=EB AE ,求出AE 、EB 即可解决问题.【解答】解:如图,连接EA ,EC ,设菱形的边长为a ,由题意得∠AEF=30°,∠BEF=60°,AE=a ,EB=2a ∴∠AEB=90°, ∴tan ∠ABC=232a a 3EBAE ==. 故答案为23.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分) 19.计算:|-1|-38+(-2016)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案. 【解答】解:|-1|-38+(-2016)0 =1-2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:b +a b)+(a -b -a 2.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可. 【解答】解:原式=a-b-(a+b )=a-b-a-b=-2b .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD ,BC=DC .求证:∠BAC=∠DAC .【考点】全等三角形的性质.【分析】在△ABC 和△ADC 中,由三组对边分别相等可通过全等三角形的判定定理(SSS )证得△ABC ≌△ADC ,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC 和△ADC 中,有 AB =AD BC =DC , AC =AC∴△ABC ≌△ADC (SSS ), ∴∠BAC=∠DAC .【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC ≌△ADC .本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张? 【考点】二元一次方程组的应用.【分析】设甲种票买了x 张,乙种票买了y 张.然后根据购票总张数为35张,总费用为750元列方程求解即可. 【解答】解:设甲种票买了x 张,乙种票买了y 张. 根据题意得: x+y =35 24x+18y =750 解得: x =20 . y =15答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市2011-2015年常住人口数统计如图所示. 根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 ______万人; (2)与上一年相比,福州市常住人口数增加最多的年份是 ______;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可; (2)计算出每年与上一年相比,增加的百分率即可得知; (3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750-743=7(万人); (2)由图可知2012年增加:720720727-×100%≈0.98%,2013年增加:727727734-×100%≈0.97%,2014年增加:734734743-×100%≈1.2%,2015年增加:743743750-×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年; (3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人. 故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD 内接于⊙O ,M 为中点,连接BM ,CM .(1)求证:BM=CM ; (2)当⊙O 的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可; (2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD 是正方形, ∴AB=CD ,∴=, ∵M 为中点,∴=,∴+=+,即=,∴BM=CM ;(2)解:∵⊙O 的半径为2, ∴⊙O 的周长为4π, ∴的长=83×4π=23π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC 中,AB=AC=1,BC=215-,在AC 边上截取AD=BC ,连接BD .(1)通过计算,判断AD 2与AC •CD 的大小关系; (2)求∠ABD 的度数.【考点】相似三角形的判定.【分析】(1)先求得AD 、CD 的长,然后再计算出AD 2与AC •CD 的值,从而可得到AD 2与AC •CD 的关系;(2)由(1)可得到BD 2=AC •CD ,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD ∽△ABC ,依据相似三角形的性质可知∠DBC=∠A ,DB=CB ,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD 的度数. 【解答】解:(1)∵AD=BC ,BC=215-,∴AD=215-,DC=2532151-=--.∴AD 2=25345215-=-+,AC •CD=2532531-=-⨯.∴AD 2=AC •CD .(2)∵AD=BC ,AD 2=AC •CD , ∴BC 2=AC •CD ,即BCCD =ACBC .又∵∠C=∠C , ∴△BCD ∽△ACB .∴CBBD =ACAB =1,∠DBC=∠A .∴DB=CB=AD .∴∠A=∠ABD ,∠C=∠BDC .设∠A=x ,则∠ABD=x ,∠DBC=x ,∠C=2x . ∵∠A+∠ABC+∠C=180°, ∴x+2x+2x=180°. 解得:x=36°. ∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD ∽△ABC 是解题的关键.26.如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM . (1)当AN 平分∠MAB 时,求DM 的长; (2)连接BN ,当DM=1时,求△ABN 的面积;(3)当射线BN 交线段CD 于点F 时,求DF 的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM ,证出∠DAM=∠MAN=∠NAB ,由三角函数得出DM=AD •tan ∠DAM=3即可;(2)延长MN 交AB 延长线于点Q ,由矩形的性质得出∠DMA=∠MAQ ,由折叠性质得出∠DMA=∠AMQ ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ ,证出MQ=AQ ,设NQ=x ,则AQ=MQ=1+x ,证出∠ANQ=90°,在Rt △ANQ 中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN 的面积;(3)过点A 作AH ⊥BF 于点H ,证明△ABH ∽△BFC ,得出对应边成比例BCCF AHBH =,得出当点N 、H 重合(即AH=AN )时,AH 最大,BH最小,CF 最小,DF 最大,此时点M 、F 重合,B 、N 、M 三点共线,由折叠性质得:AD=AH ,由AAS 证明△ABH ≌△BFC ,得出CF=BH ,由勾股定理求出BH ,得出CF ,即可得出结果. 【解答】解:(1)由折叠性质得:△ANM ≌△ADM , ∴∠MAN=∠DAM ,∵AN 平分∠MAB ,∠MAN=∠NAB , ∴∠DAM=∠MAN=∠NAB , ∵四边形ABCD 是矩形, ∴∠DAB=90°, ∴∠DAM=30°,∴DM=AD •tan ∠DAM=3×tan30°=3×333=;(2)延长MN 交AB 延长线于点Q ,如图1所示:∵四边形ABCD 是矩形, ∴AB ∥DC ,∴∠DMA=∠MAQ ,由折叠性质得:△ANM ≌△ADM ,∴∠DMA=∠AMQ ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ ,∴MQ=AQ ,设NQ=x ,则AQ=MQ=1+x ,∵∠ANM=90°,∴∠ANQ=90°,在Rt △ANQ 中,由勾股定理得:AQ 2=AN 2+NQ 2,∴(x+1)2=32+x 2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S △NAB =54S △NAQ =2154⨯AN •NQ=524432154=⨯⨯⨯;(3)过点A 作AH ⊥BF 于点H ,如图2所示:∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠HBA=∠BFC ,∵∠AHB=∠BCF=90°,∴△ABH ∽△BFC , ∴BCCF AH BH =,∵AH ≤AN=3,AB=4,∴当点N 、H 重合(即AH=AN )时,AH 最大,BH 最小,CF 最小,DF 最大,此时点M 、F 重合,B 、N 、M 三点共线,如图3所示:由折叠性质得:AD=AH ,∵AD=BC ,∴AH=BC ,在△ABH 和△BFC 中, ∠HBA =∠BFC∠AHB =∠BCF ,AH =BC∴△ABH ≌△BFC (AAS ),∴CF=BH ,由勾股定理得:BH=734AH AB 2222=-=-,∴CF=7,∴DF 的最大值=DC-CF=4-7.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=ax 2+bx+c (a ≠0)经过原点,顶点为A (h ,k )(h ≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx 2(t ≠0)也经过A 点,求a 与t 之间的关系式;(3)当点A 在抛物线y=x 2-x 上,且-2≤h <1时,求a 的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a (x-1)2+2,原点代入即可.(2)设抛物线为y=ax 2+bx ,则h=2ab -,b=-2ah 代入抛物线解析式,求出k (用a 、h 表示),又抛物线y=tx 2也经过A (h ,k ),求出k ,列出方程即可解决.(3)根据条件列出关于a 的不等式即可解决问题.【解答】解:(1)∵顶点为A (1,2),设抛物线为y=a (x-1)2+2,∵抛物线经过原点,∴0=a (0-1)2+2,∴a=-2,∴抛物线解析式为y=-2x 2+4x .(2)∵抛物线经过原点,∴设抛物线为y=ax 2+bx ,∵h=2ab -, ∴b=-2ah ,∴y=ax 2-2ahx ,∵顶点A (h ,k ),∴k=ah 2-2ah 2=-ah 2,抛物线y=tx 2也经过A (h ,k ),∴k=th 2,∴th 2=ah 2-2ah 2,∴t=-a ,(3)∵点A 在抛物线y=x 2-x 上,∴k=h 2-h ,又k=ah 2-2ah 2,∴h=a+11, ∵-2≤h <1,∴-2≤a+11<1,1+a <1,①当1+a >0时,即a >-1时, a+11<1 ,解得a >0, a+11≥−2②当1+a <0时,即a <-1时, a+11<1, 解得a ≤23,a+11≥−2 综上所述,a 的取值范围a >0或a ≤23.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年福建省福州市中考数学试题(含解析)

2016年福建省福州市中考数学试题(含解析)

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题! 毕业学校 姓名 考生号一、 选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项) 1.下列实数中的无理数是A .0.7B .21C .πD .-8【考点】无理数. 【专题】计算题. 【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可. 【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,-8为正数,都属于有理数, π为无限不循环小数, ∴π为无理数. 故选:C .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1, 故选:C .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角. 【分析】根据内错角的定义求解.【解答】解:直线a ,b 被直线c 所截,∠1与∠2是内错角.故选B .【点评】本 题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类 角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a 6的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a2【考点】同底数幂的乘法;合并同类项. 【专题】计算题;推理填空题.第2题【分析】A :a 4+a 2≠a 6,据此判断即可.B :根据合并同类项的方法,可得a 2+a 2+a 2=3a 2.C :根据同底数幂的乘法法则,可得a 2•a 3=a 5.D :根据同底数幂的乘法法则,可得a 2•a 2•a 2=a 6. 【解答】解:∵a 4+a 2≠a 6, ∴选项A 的结果不等于a 6;∵a 2+a 2+a 2=3a 2,∴选项B 的结果不等于a 6;∵a 2•a 3=a 5,∴选项C 的结果不等于a 6;∵a 2•a 2•a 2=a 6,∴选项D 的结果等于a 6. 故选:D . 【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组⎩⎨⎧>->+0301x x 的解集是A .x >-1B .x >3C .-1<x <3D .x <3【考点】解一元一次不等式组. 【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集. 【解答】解解不等式①,得 x >-1,解不等式②,得 x >3,由①②可得,x >3,故原不等式组的解集是x >3. 故选B .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P (A )=1、不可能发生事件的概率P (A )=0对A 、B 、C 进行判定;根据频率与概率的区别对D 进行判定. 【解答】解:A 、不可能事件发生的概率为0,所以A 选项正确; B 、随机事件发生的概率在0与1之间,所以B 选项错误;C 、概率很小的事件不是不可能发生,而是发生的机会较小,所以C 选项错误;D 、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D 选项错误. 故选A .【点评】本 题考查了概率的意义:一般地,在大量重复实验中,如果事件A 发生的频率mn 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,记为 P (A )=p ;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P (A )=1;不可能发生事件的概率 P (A )=0.7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A 和点C 关于原点对称,由平行四边形的性质得出D 和B 关于原点对称,即可得出点D 的坐标.【解答】解:∵A(m ,n ),C (-m ,-n ), ∴点A 和点C 关于原点对称, ∵四边形ABCD 是平行四边形, ∴D 和B 关于原点对称, ∵B(2,-1),∴点D 的坐标是(-2,1). 故选:A .【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D 和B 关于原点对称是解决问题的关键.9.如图,以O 为圆心,半径为1 的弧交坐标轴于A ,B 两点,P 是⌒AB 上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是A .(sin α,sin α)B .( cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)【考点】解直角三角形;坐标与图形性质. 【专题】计算题;三角形.【分析】过P 作PQ⊥OB,交OB 于点Q ,在直角三角形OPQ 中,利用锐角三角函数定义表示出OQ 与PQ ,即可确定出P 的坐标.【解答】解:过P 作PQ⊥OB,交OB 于点Q ,在Rt△OPQ中,OP=1,∠POQ=α,∴,,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10对于不同的xA.平均数,中位数 B.众数,中位数C.平均数,方差 D.中位数,方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(-l,m),B ( l,m),C ( 2,m+l)在同一个函数图象上,这个函数图象可以是C D【分析】由点A(-1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(-1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x 的一元二次方程ax2-4x+c=0一定有实数根的是A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可. 【解答】解:∵一元二次方程有实数根,∴△=(-4)2-4ac=16-4ac≥0,且a≠0, ∴ac≤4,且a≠0;A 、若a >0,当a=1、c=5时,ac=5>4,此选项错误;B 、a=0不符合一元二次方程的定义,此选项错误;C 、若c >0,当a=1、c=5时,ac=5>4,此选项错误;D 、若c=0,则ac=0≤4,此选项正确; 故选:D .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每题4分,满分24分)13.分解因式:x 2-4= .【考点】因式分解-运用公式法. 【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可. 【解答】解:x 2-4=(x+2)(x-2).故答案为:(x+2)(x-2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 .【考点】二次根式有意义的条件. 【专题】常规题型.【分析】根据二次根式的性质可求出x 的取值范围.【解答】解:若二次根式1-x 在实数范围内有意义,则:x+1≥0,解得x≥-1. 故答案为:x≥-1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x 1图象上的概率是 .【考点】概率公式;反比例函数图象上点的坐标特征. 【分析】先判断四个点的坐标是否在反比例函数图象上,再让在反比例函数图象上点的个数除以点的总数即为在反比例函数图象上的概率,依此即可求解.【解答】解:∵-1×1=-1, 2×2=4,,,∴2个点的坐标在反比例函数图象上,∴在反比例函数图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上 r下.(填“>“,”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上<r下.故答案为<.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1 ,则x3y+xy3=.【考点】代数式求值.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2-2xy,然后将x+y与xy 的值代入即可.【解答】解:x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]=1×(102-2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy 的值,则x2+y2=(x+y)2-2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .【考点】菱形的性质;解直角三角形. 【专题】网格型.【分析】如图,连接EA 、EB ,先证明∠AEB=90°,根据,求出AE 、EB 即可解决问题.【解答】解:如图,连接EA ,EC ,设菱形的边长为a ,由题意得∠AEF=30°,∠BEF=60°,,EB=2a∴∠AEB=90°, ∴.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-38+(-2016)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案. 【解答】解:|-1|-38+(-2016)0 =1-2+1 =0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.(7分)化简:a -b -b a b a ++2)(【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可. 【解答】解:原式=a-b-(a+b )=a-b-a-b =-2b .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .【考点】全等三角形的性质.【分析】在△ABC 和△ADC 中,由三组对边分别相等可通过全等三角形的判定定理(SSS )证得△ABC≌△ADC,再由全等三角形的性质即可得出结论. 【解答】证明:在△ABC 和△ADC 中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750-743=7(万人);(2)由图可知2012年增加:,2013年增加:,2014年增加:,2015年增加:,故与上一年相比,福州市常住人口数增加最多的年份是2014年; (3)预测2016年福州市常住人口数大约为757万人, 理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人. 故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM . (1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可; (2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD 是正方形, ∴AB=CD, ∴, ∵M 为中点,∴=,∴+=+,即=, ∴BM=CM;(2)解:∵⊙O 的半径为2, ∴⊙O 的周长为4π, ∴的长=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC 中,AB =AC =1,BC =215 ,在AC 边上截取AD =BC ,连接BD .(1)通过计算,判断AD 2与AC ·CD 的大小关系; (2)求∠ABD 的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD 的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AD=BC=1,,∴AD=,DC=1-=.∴AD2=,AC•CD=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.(13分)如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出 NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵A D=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:,∴DF的最大值=DC-CF=.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x-1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则,b=-2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x-1)2+2,∵抛物线经过原点,∴0=a(0-1)2+2,∴a=-2,∴抛物线解析式为y=-2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵,∴b=-2ah,∴y=ax2-2ahx,∵顶点A(h,k),∴k=ah2-2ah2=-ah2,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2-2ah2,∴t=-a,(3)∵点A在抛物线y=x2-x上,∴k=h2-h,又k=ah2-2ah2,∴,∵-2≤h<1,∴-2≤<1,①当1+a>0时,即a>-1时,,解得a>0,②当1+a<0时,即a<-1时,解得,综上所述,a的取值范围a>0或.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016厦门中考数学考试说明

2016厦门中考数学考试说明

2016年厦门市初中毕业升学考试数学学科考试说明一、考试性质初中数学学业考试是义务教育初中阶段的终结性考试,目的是全面、准确地反映初中毕业生是否达到《义务教育数学课程标准(实验)》所规定的学业水平.考试结果既是衡量学生是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据,还是检测区域和群体的数学教学质量的一项依据.二、命题依据1.教育部制定的《全日制义务教育数学课程标准》(2011年版,以下简称《数学课程标准》).2.2016年福建省初中数学学业考试大纲.3.本年度市教育局颁布的考试要求的有关规定.4.厦门市初中新课程数学学科教学指导意见(2014版).三、命题原则1.以立德树人为核心,渗透优秀传统文化,体现创新意识.2.体现数学课程标准的评价理念,有利于促进数学教学,全面落实《数学课程标准》所设立的课程目标;有利于改变学生的数学学习方式,提高学习效率;有利于高中阶段学校综合有效地评价学生的数学学习状况.3.体现义务教育阶段数学课程基本理念,命题要面向全体学生,关注每个学生的发展.4.试题的考查内容、素材选取、试卷形式对每个学生而言要体现公平性.5.试题背景来自学生所能理解的生活现实,符合学生所具有的数学现实和其他学科现实.6.关注数学概念的理解和解释,关注数学规则的选择和运用,关注数学问题的发现与解决;重视对学生学习数学基础知识和基本技能的考查,重视对学生思维水平和思维特征的考查,重视对学生数学思考能力和解决问题能力的发展性评价.四、考试目标本考试考查考生的数学基础知识和基本技能;考查考生的数学思想方法;考查考生的运算能力、推理能力、空间观念、数据分析观念、应用意识、创新意识.1.基础知识和基本技能1.1 了解、理解、掌握“数与代数”、“图形与几何”、“统计与概率”中的相关知识.1.2 直接使用“数与代数”、“图形与几何”、“统计与概率”中的相关知识,有程序、有步骤地完成判定、识别、计算、简单证明等任务.1.3 能对文字语言、图形语言、符号语言进行转译.1.4能正确使用工具进行简单的尺规作图、画图.2.数学思想方法2.1运用函数与方程思想,数形结合思想,化归与转化思想,特殊与一般思想,或然与必然思想,分类的思想.2.2掌握待定系数法、消元法、配方法等基本数学方法.3.运算能力3.1 理解有关的算理.3.2 能根据试题条件寻找并设计合理简捷的运算途径.3.3 能通过运算进行推理和探求.4.推理能力4.1掌握演绎推理的基本规则和方法,能有条理地表述演绎推理过程.4.2 能用举反例的方式说明一个命题是假命题.4.3 能运用归纳、类比等方式进行合情推理,探索思路,发现结论.5.空间观念5.1 能根据条件画简单平面图形.5.2 理解几何图形的运动和变化.5.3 能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素之间的关系.5.4运用简单图形的性质揭示复杂图形的性质.6.数据分析观念6.1 会收集数据.6.2 会依据统计的方法对数据进行整理、分析,并得出合理的判断.7.应用意识7.1 理解基本数学模型.7.2 能选择并运用基本数学模型对简单的实际问题进行定量、定性分析.8.创新意识8.1 能使用观察、尝试、实验、归纳、概括、验证等方式得到猜想和规律.8.2 会用已有的知识经验解决新情境中的数学问题.五、考试内容1.数与代数、图形与几何、统计与概率三个领域中考试内容及各层次的认知水平与《数学课程标准》中相应内容的教学目标相同(详见2016年福建省初中数学学业考试大纲、厦门市初中新课程数学学科教学指导意见(2014版).)2.综合与实践的考试内容:以数与代数、图形与几何、统计与概率的知识为载体考查数学知识的应用、研究问题的方法.六、试卷结构1.总题量27题,其中选择题10题,共40分;填空题6题,共24分;解答题9题,共86分.2.数与代数、图形与几何、统计与概率三部分知识内容的分值比约为4.6∶4.2∶1.2.七、考试细则1. 试题按其难度分为容易题、中等题和难题.难度值P≥0.70的为容易题;难度值0.3≤P<0.7的为中等题;难度值P<0.3的为难题. 容易题、中等题、难题的分值比预估在7∶2∶1.2. 全卷预估难度值控制在0.60—0.65.3. 试卷总分:150分.4. 考试时间:120分钟.5. 考试形式:闭卷书面考试,分为试卷与答题卡两部分,考生必须将答案全部做在答题卡上.6.考试不使用计算器.7.基本题型:选择题、填空题、解答题. 7.1 选择题为四选一型的单项选择题.7.2 填空题只要求直接填写结果,不必写出计算过程或推证过程.7.3 解答题包括计算题、作图题、证明题和应用题等,除非特别的约定通常解答题应写出文字说明、演算步骤或推证过程或按题目要求正确作图.八、题型示例 (一)选择题例1.2—3可以表示为A .22÷25B .22³25C .2³2³2D .2+2+2【正确选项】 A【测量目标】 基础知识和基本技能 【考试内容】 数与式 【预估难度】 0.86例2.两个全等的三角形可以拼成平行四边形,按照不同拼法,最多可拼成A . 1个B .2个C . 3个D .4个 【正确选项】 C【测量目标】 基础知识和基本技能;空间观念;推理能力 【考试内容】 图形的认识 【预估难度】 0.65 例3.药品研究所开发一种抗菌新药.经过多年的动物实验之后,首次用于临床人体试验. 测得 成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示.则当 1 ≤x ≤6时,y 的取值范围是A . 83≤y ≤6411B . 6411≤y ≤8C . 83≤y ≤8 D . 8≤y ≤16【正确选项】 C【测量目标】 基础知识和基本技能;数学思想方法;推理能力;应用意识 【考试内容】 函数【预估难度】 0.42 (二)填空题例1.已知关于x 的方程ax 2-x +c =0的一个根是0,则c = . 【答 案】 0【测量目标】 基础知识和基本技能 【考试内容】 方程与不等式 【预估难度】 0.85例2.如图所示,在平面直角坐标系中,点O 是原点,点B (0,3), 点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,则点M 的坐标是 .【答 案】 (1,3)【测量目标】基础知识和基本技能;数形结合思想; 【考试内容】图形的变化;图形与坐标 【预估难度】 0.60例3.如图,在平行四边形ABCD 中,AE 垂直于对角线BD ,垂足为E ,连接CE .若△BCE 是等边三角形,CD =27,则BD = .【参考答案】6【测量目标】基础知识和基本技能;推理能力;运算能力; 空间观念【考试内容】图形的性质 【预估难度】0.35 (三)解答题例1.计算: (-1)2÷12+(7-3)³34-(12)0.【参考答案】解:(-1)2÷12+(7-3)³34-(12)0=1³2+4³34-1=2+3-1 =4.【测量目标】基础知识和基本技能 【考试内容】数与式 【预估难度】0.85例2.在平面直角坐标系xOy 中,已知点A (8,0)及在第一象限的动点P (x ,y ),且x图 5DBACE+y =10.设△OP A 的面积为S ,求S 关于x 的函数解析式.【参考答案】 解:∵点P (x ,y )在第一象限,且x +y =10, ∴x >0且y >0. 即∴x >0且10-x >0. ∴0<x <10.S =12OA ³y P =4(10-x )=40-4 x .∴S 关于x 的函数解析式为S =40-4 x (0<x <10). 【测量目标】基础知识和基本技能;数形结合思想;运算能力 【考试内容】函数;图形与坐标 【预估难度】0.64例3.△ABC 中,AC =BC ,AB = 4,tan B = 2,DE 是△ABC 的中位线,延长BC 到点 F ,使得CF = 5,求EF 的长.【参考答案】 解:连接CD ,∵DE 是△ABC 的中位线, ∴DE ∥BC , DE =12BC ,D 是边AB 的中点,又∵AB =4,∴DB =2.∵AC =BC ,∴CD ⊥AB . 在R t △ABD 中,∠CDB =90°,∵tan B = 2,∴CD =4,BC =25. ∴DE =5. ∵CF =5,∴DE ∥CF 且 DE =CF∴四边形DCFE 是平行四边形,∴EF =CD =4.【测量目标】基础知识和基本技能;空间观念;推理能力 【考试内容】图形的性质 【预估难度】0.45例4.如图,⊙O 是△ABC 的外接圆,D 是︵ACB 的中点,DE ∥BC 交AC 的延长线于点E , 若AE=10,∠ACB=60°,求BC 的长.ED C BA图FEDC BA图 10F【参考答案】解:连结DA ,DB .∵D 是︵ACB 的中点, ∴ DA =DB .∵∠ACB=60°,∴∠ADB=60° ∴△ADB 是等边三角形.∴∠DAB=∠DBA=60°.连结DC .则∠DCB=∠DAB=60°.∵ DE ∥BC , ∴∠E=∠ACB=60°. ∴∠DCB=∠E .∵ ∠ECD=∠DBA=60°, ∴ △ECD 是等边三角形. ∴ ED=CD .∵ ︵CD=︵CD , ∴∠EAD=∠DBC .∴△EAD ≌△CBD .∴ BC=EA=10. 【测量目标】基础知识和基本技能;推理能力;空间观念 【考试内容】图形的性质 【预估难度】0.28;九、样卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1. 在四个数3,2,1.7,2中,最大的是A . 3B . 2C .1.7D .2 2.下列图形中,属于中心对称图形的是A . 锐角三角形B . 直角三角形C . 菱形D . 对角互补的四边形 3. 关于x 的一元二次方程ax 2+bx +c =0(a ≠0,b 2-4ac >0)的根是A .b ±b 2-4ac 2aB .-b +b 2-4ac 2aC .-b ±b 2-4ac 2D .-b ±b 2-4ac 2a4. 如图1,已知AB 是⊙O 的直径,C ,D ,E 是⊙O 上的三个点,在下列 各组角中,相等的是A . ∠C 和∠DB .∠DAB 和∠CABC .∠C 和∠EBAD .∠DAB 和∠DBE5. 某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分,笔试成绩为90分.若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是A .85+902B .85³7+90³32C .85³7+90³310D .85³0.7+90³0.3106. 如图2,点D ,E 在△ABC 的边BC 上,∠ADE =∠AED ,∠BAD =∠CAE .则下列结论正确的是A .△ABD 和△ACE 成轴对称B .△ABD 和△ACE 成中心对称C .△ABD 经过旋转可以和△ACE 重合 D .△ABD 经过平移可以和△ACE 重合7. 若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是A . a <-2B . a >-2C . -2<a <0D . -2≤a <0 8. 抛物线y =2(x -2)2+5向左平移3个单位长度,再向下平移2个单位长度,此时抛物线的对称轴是A . x =2B . x =-1C . x =5D . x =0 9. 如图3,点C 在︵AB 上,点D 在半径OA 上,则下列结论正确的是 A . ∠DCB +12∠O =180° B .∠ACB +12∠O =180°C .∠ACB +∠O =180°D .∠CAO +∠CBO =180°10. 某药厂2013年生产1t 甲种药品的成本是6000元.随着生产技术的进步,2015年生产1t 甲种药品的成本是3600元.设生产1t 甲种药品成本的年平均下降率为x ,则x 的值是 A .5-155 B .5+155 C .155 D .25二、填空题(本大题有6小题,每小题4分,共24分)11. 一个圆盘被平均分成红、黄、蓝、白、黑5个扇形区域,向其投掷一枚飞镖,且落在圆盘内,则飞镖落在白色区域的概率是 .12. 时钟的时针在不停地旋转,从下午3时到下午6时(同一天),时针旋转的角度是 .13. 当x = 时,二次函数 y =-2(x -1)2-5的最大值是 . 14. 如图4,四边形ABCD 内接于圆,AD =DC ,点E 在CD的延长线上.图3ABEDC若∠ADE =80°,则∠ABD 的度数是 .15. 已知□ABCD 的顶点B (1,1),C (5,1),直线BD ,CD 的解析式分别是y =kx ,y =mx -14,则BC = ,点A 的坐标是 . 16. 已知a -b =2,ab +2b -c 2+2c =0,当b ≥0,-2≤c <1时,整数a 的值是 .三、解答题(本大题有11小题,共86分) 17.(本题满分7分)计算:6³3-12+2.18.(本题满分7分)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号 码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,则取 出的两个小球上的号码恰好相同的概率是多少?19.(本题满分7分)解方程x 2+4x +1=0.20.(本题满分7分)在平面直角坐标系中,已知点A (1,0),B (2,2),请在图5中画出线段AB ,并画出线段AB 绕点O 顺时针旋转90°后的图形.21.(本题满分7分)画出二次函数y =-x 2的图象.22.(本题满分7分)如图6,在正方形ABCD 中,BC =2,E 是对角线BD 上的一点,且BE =AB ,求△EBC的面积.23.(本题满分7分) 图4图5图6CE D B A如图7,在□ABCD 中,∠ABC =70°,半径为r 的⊙O 经过点A ,B ,D ,︵AD 的长是πr2,延长CB 至点P ,使得PB =AB .判断直线P A 与⊙O 的位置关系,并说明理由.24.(本题满分7分)甲工程队完成一项工程需要n 天(n >1),乙工程队完成这项工程的时间是甲工程队的2倍多1天,则甲队的工作效率可以是乙队的3倍吗?请说明理由.25.(本题满分7分)高斯记号[x ]表示不超过x 的最大整数,即若有整数n 满足n ≤x <n +1,则[x ] =n .当-1≤x <1时,请画出点P (x ,x +[x ])的纵坐标随横坐标变化的图象,并说明理由. 26.(本题满分11分)已知锐角三角形ABC 内接于⊙O ,AD ⊥BC ,垂足为D .(1)如图8,︵AB =︵BC ,BD =DC ,求∠B 的度数;(2)如图9,BE ⊥AC ,垂足为E ,BE 交AD 于点F ,过点B 作BG ∥AD 交⊙O 于点G ,在AB 边上取一点H ,使得AH =BG .求证:△AFH 是等腰三角形.27.(本题满分12分)已知抛物线y =x 2+bx +c 的对称轴l 交x 轴于点A . (1)若此抛物线经过点(1,2),当点A 的坐标为(2,0)时,求此抛物线的解析式; (2)抛物线y =x 2+bx +c 交y 轴于点B .将该抛物线平移,使其经过点A ,B ,且与x 轴交于另一点C .若b 2=2c , b ≤-1,设线段OB ,OC 的长分别为m ,n ,试比较m与n +32的大小,并说明理由.图7图9参考答案一、选择题(本大题共10小题,每小题4分,共40分)11. 15. 12. 90°. 13.1,-5. 14. 40°.15. 4,(3,7). 16. 2,3. 三、解答题(本大题有11小题,共86分) 17.(本题满分7分) 6³3-12+ 2=18-12+ 2 =32-23+ 2 =42-2 318.(本题满分7分)P (两个小球的号码相同)=13.19.(本题满分7分)解:∵a =1,b =4,c =1,∴ △=b 2-4ac=12. ∴ x =-b ±b 2-4ac2a=-4±122.∴x 1=-2+3,x 2=-2-3.20.(本题满分7分) ……AB21.(本题满分7分) 解:22.(本题满分7分)解: 过点E 作EF ⊥BC 于F .∵四边形ABCD 是正方形,∴∠DBC =12∠ABC =45°,AB =BC . ∵BE =AB ,∴BE =2. 在Rt △EFB 中,∵∠EFB =90°,∠EBF =45°, ∴∠BEF =45°. ∴EF =FB . ∴EF 2+FB 2=BE 2 即2EF 2=BE 2. ∴EF =2.∴△EBC 的面积是 12³2³2=2.23.(本题满分7分)证明:连接OA ,OD .∵ ︵AD 的长是πr2,∴∠AOD =90°. 在⊙O 中, ∵OA =OD ,∴∠OAD =∠ODA =45°. ∵四边形ABCD 是平行四边形, ∴AD ∥BC .∴∠BAD +∠ABC =180°. ∵∠ABC =70°,∴∠BAD =110°. ∴∠BAO =110°-45°=65°.CEDBAF² º º ∵PB =AB ,∴∠P AB =∠P =12∠ABC =35°.∴∠P AO =100°.过点O 作OE ⊥P A 于E ,则OE 为点O 到直线P A 的距离. ∵OE <OA .∴直线P A 与⊙O 相交.24.(本题满分7分)解:由题意得,甲的工效是1n ,乙的工效是12n +1,若甲工程队的工效是乙队的3倍, 则1n =3³12n +1解得n =1 检验:当n =1时,2 n +1≠0 ∴n =1是原方程的解 ∵n >1∴n =1不合题意,舍去 答:甲工程队的工效不可以是乙队的3倍 25.(本题满分7分)解:当-1≤x <0时,[x ] =-1∴x +[x ] =x -1 记 y = x -1 当0≤x <1时,[x ] =0∴x +[x ] =x记y = x26.(本题满分11分) (1)(本小题满分4分)证明:∵AD ⊥BC , BD =DC ,∴AB =AC .∵︵AB =︵BC ,∴AB =BC . ∴AB =BC =AC .即△ABC 是等边三角形. ∴∠B =60°.(2)(本小题满分7分) 解:连接AG . ∵AD ⊥BC ,∴∠ADC =90°. ∵GB ∥AD ,∴∠GBC =∠ADC =90°. ∴∠GAC =90°. 即GA ⊥AC . ∵BE ⊥AC , ∴GA ∥BE .∴四边形AGBF 是平行四边形. ∴GB =AF . ∵AH =BG ,∴AH =AF .即△AFH 是等腰三角形.27.(本题满分12分) (1)(本小题满分5分)解:∵抛物线经过点(1,2),∴1+b +c =2 即b +c =1 ∵点A 的坐标为(2,0)∴-b2=2∴b =-4 ∴c =5,∴抛物线的解析式为y =x 2-4x +5 (2)(本小题满分7分) 解:由已知得点A (-b2,0),当b 2=2c 时,点B (0,b 22).设平移后的抛物线为y =x 2+qx +b 22.把A (-b 2,0)代入得q =3b2.∴y =x 2+3b 2x +b 22.当y =0时,x 2+3b 2x +b 22=0.解得x 1=-b2 ,x 2=-b .∴点C (-b ,0).∴OB =b 22,OC =-b . ∴m -(n +32)=12( b 2+2b -3) .设p =b 2+2b -3,∵抛物线p =b 2+2b -3开口向上,对称轴为b =-1,∴当b <-1时,p 随b 的增大而减小;当b >-1时,p 随b 的增大而增大. 又∵当b =-3或1,p =0,∴当b <-3或b >1时,p >0; 当-3<b <1时,p <0. ∵b ≤-1,∴当b ≤-3时,p ≥0,即m ≥n +32; 当-3<b ≤-1时,p <0,即m <n +32.。

2019年福建省初中学业考试大纲(数学)

2019年福建省初中学业考试大纲(数学)

2019年福建省初中学业考试大纲(数学)数与代数:整数、分数、小数、百分数的加减乘除;代数式的化简、展开和因式分解;方程的解法和应用;不等式的解法和应用等.空间与图形:平面图形的性质和计算;立体图形的性质和计算;坐标系和简单的几何变换;简单的向量运算等.统计与概率:统计调查的设计和分析;数据的整理和描述;简单的统计分析;基本的概率概念和计算等.课题研究:根据学生的实际情况和需求,选择适当的课题,进行探究和研究,培养学生的自主研究能力和创新精神.⑵数学活动过程考查的主要内容:观察、实验、猜测、验证、推理等数学活动过程.⑶数学思考考查的主要内容:分析问题、解决问题的思路和方法,理解和应用数学概念和方法,发现问题和解决问题的能力.⑷解决问题能力考查的主要内容:把数学知识和方法应用到实际问题中,分析和解决实际问题的能力.⑸对数学的基本认识考查的主要内容:数学的基本概念、基本思想和基本方法,数学与现实生活的关系,数学的发展历程和应用前景等.六、考试形式本次考试采用闭卷形式,考试时间为120分钟,试卷分为第Ⅰ卷和第Ⅱ卷,共100分.第Ⅰ卷包括选择题、填空题和计算(求解)题,共70分;第Ⅱ卷包括证明题、开放性问题、应用性问题、阅读分析题和探索性问题,共30分.七、考试要求1.认真审题,仔细答题,按要求作答,不得在试卷和答卷上乱涂乱写.2.做题时要注意单位、精度、符号等,保证计算正确.3.解答应简明、清晰、规范,文字、符号、图形要正确、清晰、美观.4.对于选择题和填空题,要把答案写在答题卡上,注意填写准确.5.对于计算(求解)题和证明题,要写出解题过程,逐步推理,说明思路,注明结论.6.对于开放性问题、应用性问题、阅读分析题和探索性问题,要理性思考,充分发挥自己的想象和创造力,写出完整的解题过程和结论.7.考试结束后,要保持试卷、答题卡清洁整齐,交回监考老师.2019年福建省初中学业考试大纲(数学)规定,该考试是义务教育初中阶段的终结性省级考试,旨在全面、准确地评估初中毕业生是否达到《义务教育数学课程标准(实验)》所规定的学业水平,考试结果既是衡量学生是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据。

2016年福建省泉州市数学初中毕业

2016年福建省泉州市数学初中毕业

2016年福建省泉州市数学初中毕业、升学考试(满分:150分 考试时间:120分钟)一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分.)1. -3的绝对值是( ) A. 3 B. -3 C. -13 D. 132. (x 2y )3 的结果是( )A. x 5y 3B. x 6yC. 3x 2yD. x 6y 33. 不等式组⎩⎪⎨⎪⎧x -1>0x ≤2的解集是( )A. x ≤2B. x >1C. 1<x ≤2D. 无解4. 如图,AB 和⊙O 相切于点B ,∠AOB =60°,则∠A 的大小为( )A. 15°B. 30°C. 45°D. 60° 第4题图 5. 一组数据:2,5,4,3,2的中位数是( ) A. 4 B. 3.2 C. 3 D. 26. 如图,圆锥底面半径为r cm ,母线长为10 cm ,其侧面展开图是圆心角为216°的扇形,则r 的值为( )A. 3B. 6C. 3πD. 6π第6题图 第7题图7. 如图,已知点A (-8,0)、B (2,0),点C 在直线y =-34x +4上,则使△ABC 是直角三角形的点C的个数为( )A. 1B. 2C. 3D. 4二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8. 27的立方根是______.9. 我国的陆地面积约为9600000平方千米,把9600000用科学记数法表示为_________. 10. 因式分解:1-x 2=____________.11. 如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若BC =8,则DE 的长为_________.第11题图第14题图12. 十边形的外角和是______°.13. 计算:3mm+1+3m+1=_________.14. 如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=______.15. 如图,⊙O的弦AB、CD相交于点E,若CE∶BE=2∶3,则AE∶DE=______.第15题图16. 找出下列各图形中数的规律,依此,a的值为226.第16题图17. 如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.(1)若AB=DC,则四边形ABCD的面积S=_____;(2)若AB>DC,则此时四边形ABCD的面积S′____S(用“>”或“=”或“<”填空).第17题图三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18. (9分)计算:(π-3)0+|-2|-20÷5+(-1)-1.19. (9分)先化简,再求值:(x+2)2-4x(x+1),其中x= 2.20. (9分)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CE B.第20题图21. (9分)A、B两组卡片共5张,A中三张分别写有数字2、4、6,B中两张分别写有3、5.它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?22. (9分)近期,我市中小学广泛开展了“传承中华文化,共筑精神家园”爱国主义读书教育活动,某中学为了解学生最喜爱的活动形式,以“我最喜爱的一种活动”为主题,进行随机抽样调查,收集数据整理后,绘制出以下两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:(1)在这次抽样调查中,一共调查了多少名学生?扇形统计图中“讲故事”部分的圆心角是多少度?(2)如果这所中学共有学生3800名,那么请你估计最喜爱征文活动的学生人数.23. (9分)已知反比例函数的图象经过点P(2,-3).(1)求该函数的解析式;(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使得点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.24. (9分)某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.(1)试求出y与x之间的一个函数关系式;(2)利用(1)的结论:①求每千克售价为多少元时,每天可以获得最大的销售利润.②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能进多少千克?第24题图25. (13分)我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直这条弧所对的弦.你可以利用这平分结论解决问题.如图,点P 在以MN (南北方向)为直径的⊙O 上,MN =8,PQ ⊥MN 交⊙O 于点Q ,垂足为H ,PQ ≠MN ,弦PC 、PD 分别交MN 于点E 、F ,且PE =PF .(1)比较CQ ︵与DQ ︵的大小;(2)若OH =22,求证:OP ∥CD ;(3)设直线MN 、CD 相交所成的锐角为α,试确定cos α=32时,点P 的位置.第25题图26. (13分)如图,在四边形ABCD 中,AD ∥BC ,∠A =∠C ,点P 在边AB 上. (1)判断四边形ABCD 的形状并加以证明;(2)若AB =AD ,以过点P 的直线为轴,将四边形ABCD 折叠,使点B 、C 分别落在点B ′、C ′上,且B ′C ′经过点D ,折痕与四边形的另一交点为Q .①在图②中作出四边形PB ′C ′Q (保留作图痕迹,不必说明作法和理由); ②如果∠C =60°,那么APPB为何值时,B ′P ⊥A B.第26题图① 第26题图②2016年福建省泉州市初中毕业、升学考试一、选择题1. A 【解析】负数的绝对值是它的相反数,所以-3的绝对值是3.2. D 【解析】根据积的乘方和幂的乘方法则知:(x 2y )3=(x 2)3y 3=x 6y3.3. C 【解析】解不等式x -1>0得x >1,又由不等式x ≤2可得不等式组的解集为1<x ≤2.4. B 【解析】∵AB 和⊙O 相切于点B ,∴OB ⊥AB ,∴∠ABO =90°,∴∠A =∠ABO -∠AOB =30°.5. C 【解析】将这组数据按从小到大的顺序排列:2,2,3,4,5,所以这组数据的中位数为中间的数字3.6. B 【解析】圆锥的侧面展开图是扇形,根据圆锥的底面周长等于扇形弧长,可得方程:2πr =216π·10180,解得r =6. 7. C 【解析】当∠A =90°时,过点A 作AC 1⊥x 轴交直线y =-34x +4于点C 1,此时△ABC 1是以点A为直角顶点的直角三角形;当∠B =90°时,过点B 作BC 2⊥x 轴交直线y =-34x +4于点C 2,此时△ABC 2是以B 为直角顶点的直角三角形;当∠C 3=90°时,则∠AC 3B 是以AB 为直径作圆的圆周角,若以AB 为直径所作的圆与直线y =-34x +4有交点,则交点即为所求的点.设直线y =-34x +4与x 轴交点为N ,与y 轴交点为P ,取AB 的中点M ,连接MP ,∵A (-8,0),B (2,0),∴M (-3,0)即OM =3,由题易得P (0,4),N (163,0),∴MP =5,MN =253,∴MP MN =OM MP =35,又∵∠PMO =∠NMP ,∴△MPO ∽△MNP ,∴∠MPN =∠MOP =90°,∴直线y =-34x +4与半圆M 相切于点P ,此时∠APB =90°,即点P 即为所求的C 3.故有3个点使△ABC 为直角三角形,即为C 1,C 2,C 3.第7题解图二、填空题8. 3 【解析】∵33=27,∴27的立方根是3. 9. 9.6×106 【解析】9600000=9.6×106. 10. (1+x )(1-x ) 【解析】1-x 2=(1+x )(1-x ).11. 4 【解析】∵点D 、E 分别是AB 、AC 的中点,∴由三角形的中位线定理可知DE =12BC =4.12. 360 【解析】n 边形的外角和都是360°,故十边形的外角和是360°. 13. 3 【解析】3m m +1+3m +1=3m +3m +1=3(m +1)m +1=3.14. 5 【解析】∵E 是Rt △ABC 斜边AB 的中点,∴根据直角三角形斜边中线等于斜边的一半可知:CE =12AB =5.15. 2∶3 【解析】根据同弧所对圆周角相等可得:∠A =∠D ,∠C =∠B ,∴△ACE ∽△DBE ,∴AEDE =CE BE =23. 16. 226 【解析】观察可得:2=1×0+2;10=2×3+4;26=4×5+6;50=6×7+8…可以得到规律:右下角三角形中的数等于左下角三角形的数字与正上方三角形数字的积加上中间三角形数字的和,故a =14×15+16=226.17. 15;= 【解析】(1)∵AB ∥CD ,AB =CD , ∴四边形ABCD 是平行四边形,∴S =BC ×EF =15;(2)连接BE 并延长交CD 的延长线于点G ,过点G 作GH ⊥BC 交BC 的延长线于点H .∵AB ∥CG ,∴∠ABE =∠DGE ,又∵∠AEB =∠DEG ,AE =DE ,∴△ABE ≌△DGE (AAS ),∴S △ABE =S △DGE ,BE =EG ,∵EF ⊥BC ,GH ⊥BC ,∴EF ∥GH ,∴△BEF ∽△BGH ,∴BE BG =EF GH =12,∴GH =2EF =6,∴S △BCG =12BC ·GH =12×5×6=15,∴四边形ABCD 的面积S ′=15,∴S ′=S △BCG =15.第17题解图三、解答题18.【思路分析】分别计算每一小项,(π-3)0=1,|-2|=2,20÷5=205=4=2,(-1)-1=1(-1)1=-1,再代入原式计算即可.解:原式=1+2-2-1(6分)=0.(9分)19.解:原式 =x 2+4x +4-4x 2-4x (5分)=-3x 2+4.(7分)当x =2时,原式=-6+4=-2.(9分)20.【思路分析】若证两三角形全等,题目条件中已知两组对应边相等,则可证明夹角相同,然后利用SAS 证明全等,欲证夹角相等,可利用同角的余角相等即可证得.证明:∵△ABC 、△CDE 都是等腰三角形,∴∠BCE +∠ECA =∠ECA +∠ACD =90°,BC =AC ,EC =DC ,(5分) ∴∠BCE =∠ACD , ∴在△CDA 和△CEB 中,⎩⎪⎨⎪⎧AC =BC ∠ACD =∠BCE DC =EC,(7分) ∴△CDA ≌△CEB (SAS ).(9分)21.【思路分析】(1)A 中共有三张卡片,抽取一张,可利用概率公式P =mn 进行计算;(2)通过画树状图或列表可知所有情况,再分别计算出3的倍数有几种,剩余几种,从而求得两种概率,并比较大小即可.解:(1)P (抽到数字2)=13;(3分)(2)画树状图如解图所示,第21题解图 (6分)或列表如下:B 积A 2463 6 12 18 5102030(6分)由树状图或列表可知,所有等可能的情况共有6种,其中所选出的两数之积为3的倍数的有4种情况,所选出的两数之积不是3的倍数的有2种情况,(7分)∴P (甲获胜)=46=23,P (乙获胜)=26=13,(8分)∵23≠13,∴游戏规则不公平.(9分)22.【思路分析】(1)在两种统计图表中,都给出了“征文”和“演讲”的数据,用任意一种的两个数据相除都可求得学生总数;用“讲故事”的人数除以样本总人数再乘以360°,就是所求圆心角的度数;(2)根据用样本估计总体的统计思想,将总体人数乘以样本中“征文”所占百分数即得所求.解:60÷20%=300(名).(2分) ∴一共调查了300名学生.(3分)“讲故事”部分的圆心角是30300×360°=36°;(5分)(2)3800×20%=760(名),(7分)∴喜爱征文活动的学生人数为760名.(9分)23.【思路分析】(1)用待定系数法求得解析式;(2)先求得点P 沿x 轴负方向平移后点的坐标,再将横坐标代入解析式求得两次平移后的坐标,两纵坐标求差即得n 值和平移方向.解:(1)设反比例函数的解析式为y =k x, ∵点P (2,-3)在反比例函数图象上,∴k =2×(-3)=-6,(3分)∴该反比例函数的解析式为y =-6x;(4分) (2)点P (2,-3)向x 轴负方向平移3个单位后的坐标为(-1,-3),(5分)把x =-1代入y =-6x得y =6.(6分) ∴n =6-(-3)=9,(7分)∴点P 沿y 轴的正半轴平移.(9分)24.【思路分析】(1)观察图象,图象上的点可连成一条直线,可设为一次函数解析式,用待定系数法可求得解析式;(2)①先求得利润与售价之间的函数关系式,再利用顶点公式或配方法求最值;②根据售价的取值范围,可求出销量的取值范围,然后可求出在销售时间内最多可进货的数量即可.解:(1)设y 与x 之间的函数关系式为y =kx +b ,将(37,38),(39,34)两点代入函数解析式中,⎩⎪⎨⎪⎧37k +b =3839k +b =34,解得⎩⎪⎨⎪⎧k =-2b =112,(3分) ∴y 与x 之间的函数关系式为y =-2x +112;(4分)(2)①根据题意得W 利润=(x -20)(-2x +112)=-2x 2+112x +40x -2240=-2x 2+152x -2240=-2(x -38)2+648.(6分)∴当x =38时,即每千克售价为38元时,每天可以获得最大利润.(7分)②∵由题意知x ≥30,销量y 与售价x 之间的函数关系式为y =-2x +112,∴0≤y ≤52,(8分)∴一天最多的销售量为52千克,∴一次最多可进货量为52×(30-5)=1300(千克),∴一次进货最多只能进1300千克.(9分)25.【思路分析】(1)比较两弧的大小可以转化为比较两弧所对圆周角的大小,利用三线合一定理即可证明;(2)若证平行,可转化为证明内错角相等.由半径和OH 的值可得△POH 是等腰直角三角形,从而证明出∠3=45°-∠2,再利用圆内接四边形的对角互补和直径对直角证明出∠4=45°-∠1,结合第(1)问证出的∠1=∠2,即可得证;(3)由已知可得出α=30°,继而得出∠2+∠4=60°,再利用直径对直角、圆内接四边形的对角互补和等量代换得到∠OPH =30°,∠PON =60°,即看出点P 的位置.(1)解:如解图,∵PE =PF ,PQ ⊥MN 于点H ,∴∠1=∠2,∴CQ ︵=DQ ︵;(2分)(2)证明:作直径PG ,连接CD 、CG ,如解图,∵MN 是直径,MN =8,∴OP =4,又∵在Rt △POH 中,OH =22, 第25题解图∴PH =OP 2-OH 2=42-(22)2=22,∴△POH 为等腰直三角形,∴∠HPO =∠2+∠3=45°,(3分)∴∠3=45°-∠2,(4分)∵PG 为⊙O 的直径,∴∠5=90°,∵由圆内接四边形的性质知∠1+∠2+∠3+∠4+∠5=180°,∴∠1+∠4=45°,∴∠4=45°-∠1,(5分)又∵∠1=∠2,∴∠3=∠4,∴OP ∥CD ;(7分)(3)解:设直线MN 、CD 交于点K ,∵cos α=32,α为锐角, ∴∠α=30°,(8分)又∵∠KHQ =90°,∴∠6=60°=∠2+∠4,(9分)又∵∠1+∠2+∠3+∠4+∠5=180°,∠5=90°,∴∠1+∠3=30°,(10分)又∵∠1=∠2,∴∠HPO =∠2+∠3=30°,(11分)∴∠7=60°,(12分)∴点P 在半圆O 的三等分点上.(13分)26.【思路分析】(1)由一组对边平行可得一组邻角互补,由已知一组对角相等可以证得另一组邻角互补,所以可判定这个四边形为平行四边形;(2)①先确定折痕即对称轴,再分别作出点B 、C 的对称点B ′、C ′,从而作出所求四边形;②以∠C 为突破口,得到四边形ABCD 各角的度数.设AP =1,AB =x ,则由对称和垂直条件得到B ′M 的长度,再利用特殊角的锐角三角函数值列方程求出x 值,从而求得比值.(1)解:四边形ABCD 是平行四边形.(2分)理由如下:∵AD ∥BC ,∴∠A +∠B =180°,∵∠A =∠C ,∴∠C +∠B =180°,∴AB ∥CD ,【作法提示】∴四边形ABCD 是平行四边形;(4分)(2)①解:作四边形PB ′C ′Q 加解图①所示.(8分)1. 以点P 为圆心,PD 为半径作弧,交直线BC 于点D ′,2. 作线段DD ′的中垂线PE 交CD 于点Q ,第26题解图① 3. 作点B 、C 关于PE 的对称点B ′,C ′,4. 连接B ′P ,B ′C ′,C ′Q ,四边形PB ′C ′Q 即为所求四边形.②证明:设AD 与B ′P 相交于点M ,∵∠C =60°,∴在▱ABCD 中,∠A =∠BCD =60°,∠B =120°,根据对称性可得∠PB ′D =∠B =120°,设AP =1,AB =x ,则PB ′=PB =x -1,∵B ′P ⊥AB ,∴AM =2,MP =3, ∴B ′M =PB ′-MP =x -1-3,∵∠B ′MD =∠AMP =90°-60°=30°,∴∠B ′DM =180°-120°-30°=30°,∴B ′D =B ′M ,过点B ′作B ′N ⊥DM 于点N ,如解图②所示,∴MN =12DM =12(AD -AM )=x -22,∵cos ∠B ′MN =MNB ′M ,第26题解图② ∴x -22x -1-3=32,∴x =2+3,∴AP PB =13+1=3-12,∴当AP PB =3-12时,B ′P ⊥A B.(13分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:文中红字的是2015的考试大纲2016年福建省初中学业考试大纲(数 学)一、考试性质初中数学学业考试是义务教育初中阶段的终结性省级考试,目的是全面、准确地反映初中毕业生是否达到《义务教育数学课程标准(2011年版)》(以下简称《数学课程标准》)所规定的学业水平.考试结果不仅是衡量学生是否达到毕业标准的主要依据,也是高一级学校招生的重要依据,还是检测区域和群体的数学教学质量一项依据.初中数学学业考试是义务教育初中阶段的终结性省级考试,目的是全面、准确地反映初中毕业生是否达到《义务教育数学课程标准(2011年版)》(以下简称《数学课程标准》)所规定的学业水平.考试结果既是衡量学生是否达到毕业标准的主要依据,也是高一级学校招生的重要依据.二、命题依据《数学课程标准》及本考试大纲.以《义务教育数学课程标准(2011年版)》为指导,以《2015年福建省初中学业考试大纲(数学)》为依据,结合初中数学教学实际进行命题。

三、命题原则1.导向性:命题应体现义务教育的性质,面向全体学生,关注每个学生的不同发展;体现《数学课程标准》的理念,落实《数学课程标准》所设立的课程目标,关注数学概念的理解和解释,关注数学规则的选择和运用,关注数学问题的发现与解决;促进师生在教学方式、学习方式上的转变,促进数学教学质量的提升.2.公平性:试题素材、背景应符合学生所能理解的生活现实、数学现实和其他学科现实,考虑城乡学生认知的差异性,避免出现偏题、怪题.3.科学性:试卷的命制应严格按照命题的程序和要求进行,有效发挥各种题型的功能,保持测量目标与行为目标一致,避免出现知识性、技术性、科学性错误.4.基础性:命题应突出基础知识、基本技能、基本思想、基本活动经验的考查,注重对数学问题解决的通性通法的考查,注重考查学生对其中所蕴含的数学本质的理解,关注学生学习数学过程与结果的考查.5.发展性:命题应突出对学生数学思考能力、解决问题能力和数学素养的发展性评价,重视反映数学思想方法、数学探究活动的过程性评价,注重对学生的应用意识和创新意识的考查,提倡评价标准多样化,促进学生的个性化发展.四、考试范围《数学课程标准》(7—9年级)中:数与代数、图形与几何、统计与概率、综合与实践四个部分的内容.凡是《数学课程标准》中标有*的选学内容,不作为考试要求.五、内容目标(一)基础知识与基本技能考查的主要内容了解数产生的意义,理解代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地应用代数运算、代数模型及相关概念解决问题;能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性;正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果作合理的预测;了解概率的涵义,能够借助概率模型、或通过设计活动解释一些事件发生的概率.(二)“数学基本能力”考查的主要内容数学基本能力指学生在运算能力、推理能力、空间观念、数据分析观念、应用意识、创新意识等方面的发展情况,其内容主要包括:1.运算能力:主要是指能够根据法则和运算律正确地进行运算的能力.2.推理能力:凭借经验和直觉,通过观察、尝试、归纳、类比等活动获得数学猜想,并能进一步从已有的事实和确定的规则出发,按照逻辑推理的法则进行证明和计算.3.空间观念:主要指能依据语言的描述画出图形,懂得描述图形的运动和变化,并利用图形描述和分析问题,研究基本图形性质.4.数据分析观念:指会收集、分析数据,并根据数据中蕴涵的信息选择合适的方法做出判断,体验随机性.5.应用意识:认识到现实生活中蕴含着大量与数量和图形有关的问题可以抽象成数学问题,并有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题.6.创新意识:主要指能发现和提出简单数学问题,初步懂得应用所学的数学知识、技能和基本思想进行独立思考;能归纳概括得到猜想和规律,并加以验证.(三)“数学基本思想”考查的主要内容数学基本思想着重考查学生对函数与方程思想、数形结合思想、分类与整合思想、特殊与一般思想、化归与转化思想、或然与必然思想等的领悟程度.1.函数与方程思想函数思想的实质是抛开所研究对象的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立各变量之间固有的函数关系,通过函数形式,利用函数的有关性质,使问题得到解决.方程思想是将所求的量设成未知数,用它表示问题中的其它各量,根据题中隐含的等量关系,列方程(组),通过解方程(组)或对方程(组)进行研究,以求得问题的解决.函数与方程是整体与局部、一般与特殊、动态与静止等相互联系的,在一定条件下,它们可以相互转化.2.数形结合思想数形结合思想就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,包含“以形助数”和“以数辅形”两个方面.其中“以形助数”是指借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的.“以数辅形”是指借助于数的精确性和规范严密性来阐明形的某些属性,即以数为手段,形作为目的.3.分类与整合思想在解某些数学问题时,当被研究的问题包含了多种情况时,就必须抓住主导问题发展方向的主要因素,在其变化范围内,根据问题的不同发展方向,划分为若干部分分别研究.这里集中体现的是由大化小,由整体化为部分,由一般化为特殊的解决问题的方法,其研究的基本方向是“分”,但分类解决问题之后,还必须把它们整合在一起,这种“合—分—合”的解决问题的思想,就是分类与整合思想.4.特殊与一般思想人们对一类新事物的认识往往是通过对某些个体的认识与研究,逐渐积累对这类事物的了解,逐渐形成对这类事物总体的认识,发现特点,掌握规律,形成共识,由浅入深,由现象到本质,由局部到整体,这种认识事物的过程是由特殊到一般的认识过程.但这并不是目的,还需要用理论指导实践,用所得到的特点和规律解决这类事物中的新问题,这种认识事物的过程是由一般到特殊的认识过程.于是这种由特殊到一般再由一般到特殊反复认识的过程,就是人们认识世界的基本过程之一.数学研究也不例外,这种由特殊到一般,由一般到特殊的研究数学问题的思想,就是数学研究中的特殊与一般思想.5.化归与转化思想化归与转化思想是指在研究解决数学问题时采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种解题策略.数学题中的条件与条件、条件与结论之间存在着差异,差异即矛盾,解题过程就是有目的地不断转化矛盾,最终解决矛盾的过程.6.必然与或然思想人们发现事物或现象可以是确定的,也可以是模糊的,或随机的.随机现象有两个最基本的特征,一是结果的随机性,即重复同样的试验,所得到的结果未必相同,以至于在试验之前不能预料试验的结果;二是频率的稳定性,即在大量重复试验中,每个试验结果发生的频率“稳定”在一个常数附近.概率与统计研究的对象均是随机现象,研究的过程是在“或(偶)然”中寻找“必然”,然后再用“必然” 的规律去解决“或然”的问题,这其中所体现的数学思想就是必然与或然思想.(四)对考查目标的要求层次依据数学课程标准,考试要求的知识技能目标分为四个不同层次:了解;理解;掌握;运用.具体涵义如下:了解:从具体事例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象.理解:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系.掌握:在理解的基础上,把对象用于新的情境.运用:综合使用已掌握的对象,选择或创造适当的方法解决问题.(五)考试内容与要求数 与 代 数考试内容目标水平1.有理数有理数的意义理解用数轴上的点表示有理数掌握比较有理数的大小掌握相反数和绝对值的意义理解求有理数的相反数与绝对值掌握|a|的含义(这里a表示有理数)了解乘方的意义理解有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)掌握有理数的运算律理解用运算律简化运算掌握用有理数的运算解决简单的问题运用2.实数平方根、算术平方根、立方根的概念了解用根号表示数的平方根、算术平方根、立方根理解乘方与开方互为逆运算了解用平方运算求百以内整数的平方根理解用立方运算求百以内整数(对应的负整数)的立方根理解用计算器求平方根和立方根理解无理数和实数的概念了解实数与数轴上的点一一对应了解求实数的相反数与绝对值掌握用有理数估计一个无理数的大致范围掌握近似数了解(一)数与式在解决实际问题中,用计算器进行近似计算,并按问题的要求对结果取近似值掌握二次根式、最简二次根式的概念了解二次根式(根号下仅限于数)加、减、乘、除的运算法则了解用二次根式(根号下仅限于数)加、减、乘、除运算法则进行有关的简单四则运算理解3.代数式代数式了解用字母表示数的意义理解分析具体问题中的简单数量关系,用代数式表示掌握求代数式的值理解4.整式与分式整数指数幂的意义和基本性质了解用科学记数法表示数(包括在计算器上表示)理解整式的概念理解合并同类项和去括号的法则掌握进行简单的整式加法和减法运算掌握进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)掌握推导乘法公式:(a+b)( a-b) = a 2- b 2,(a±b)2 = a 2±2ab + b 2掌握平方差、完全平方公式的几何背景了解利用平方差、完全平方公式进行简单计算掌握用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数掌握是正整数)分式和最简分式的概念了解利用分式的基本性质进行约分和通分掌握进行简单的分式加、减、乘、除运算掌握(二)方程与不等式1.方程与方程组根据具体问题中的数量关系列出方程掌握等式的基本性质掌握解一元一次方程、可化为一元一次方程的分式方程掌握代入消元法和加减消元法掌握解二元一次方程组掌握配方法理解用配方法、公式法、因式分解法解数字系数的一元二次方程掌握用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等理解根据具体问题的实际意义,检验方程的解是否合理掌握2.不等式与不等式组不等式的意义了解解数字系数的一元一次不等式掌握在数轴上表示出一元一次不等式的解集掌握用数轴确定由两个一元一次不等式组成的不等式组的解集理解根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题掌握1.函数常量、变量的意义了解函数的概念和三种表示法了解结合图象对简单实际问题中的函数关系进行分析掌握(三)函数确定简单实际问题中函数自变量的取值范围掌握求出函数值理解用适当的函数表示法刻画简单实际问题中变量之间的关系掌握结合对函数关系的分析,对变量的变化情况进行初步讨论掌握2.一次函数根据已知条件确定一次函数的表达式掌握利用待定系数法确定一次函数的表达式理解画出一次函数的图象掌握k>0和k<0时,一次函数y = kx + b(k≠0)图象的变化情况理解正比例函数理解用一次函数解决简单实际问题掌握3.反比例函数根据已知条件确定反比例函数的表达式掌握画出反比例函数的图象掌握k>0和k<0时,y=(k≠0)图象的变化情况理解用反比例函数解决简单实际问题掌握4.二次函数用描点法画出二次函数的图象理解通过图象了解二次函数的性质了解用配方法将数字系数的二次函数的表达式化为的形式理解能根据二次函数表达式得到图象的顶点坐标,开口方向和对称轴,掌握用二次函数解决简单实际问题掌握用二次函数图象求一元二次方程的近理解似解图 形 与 几 何考试内容目标水平1.点、线、面、角从物体抽象出来的几何体、平面、直线和点的认识了解线段长短的比较理解线段的和、差以及线段中点的意义理解基本事实:两点确定一条直线掌握基本事实:两点之间线段最短掌握两点间距离的意义理解两点间距离的度量掌握角的概念理解角的大小的比较掌握度、分、秒的意义,度、分、秒间的换算,角的和、差的计算理解2.相交线与对顶角、余角、补角等的概念理解对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质掌握垂线、垂线段等的概念理解用三角尺或量角器过一点画已知直线的垂线掌握点到直线的距离的意义理解度量点到直线的距离掌握基本事实:过一点有且只有一条直线与已知直线垂直掌握同位角、内错角、同旁内角的定义理解平行线的概念理解两条直线被第三条直线所截,如果同掌握平行线位角相等,那么两直线平行基本事实:过直线外一点有且只有一掌握条直线与这条直线平行平行线的性质定理:两条平行直线被掌握第三条直线所截,同位角相等用三角尺和直尺过已知直线外一点画掌握这条直线的平行线平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同掌握旁内角互补),那么两直线平行平行线的性质定理:两条平行直线被掌握第三条直线所截,内错角相等(或同旁内角互补)平行于同一条直线的两条直线平行了解三角形及其内角、外角、中线、高理解线、角平分线等的概念三角形的稳定性了解三角形的内角和定理掌握三角形的内角和定理的推论:三角形掌握的外角等于与它不相邻的两个内角的和三角形的任意两边之和大于第三边理解全等三角形的概念理解全等三角形中的对应边、对应角的意理解义基本事实:两边及其夹角分别相等的掌握两个三角形全等基本事实:两角及其夹边分别相等的掌握两个三角形全等基本事实:三边分别相等的两个三角掌握形全等(一)图形的性质3.三角形定理:两角分别相等及其中一组等角的对边相等的两个三角形全等掌握角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上掌握线段垂直平分线的概念理解线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上掌握等腰三角形、等边三角形的概念了解等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形掌握等边三角形的性质定理:等边三角形的各角都等于60°掌握等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形掌握直角三角形的概念了解直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半掌握直角三角形的判定定理:有两个角互余的三角形是直角三角形掌握勾股定理理解勾股定理的逆定理了解运用勾股定理及其逆定理解决一些简运用单的实际问题判定直角三角形全等的“斜边、直角边”定理掌握三角形重心的概念了解4.四边形多边形的定义,多边形的顶点、边、内角、外角、对角线等的概念了解多边形内角和与外角和公式掌握平行四边形、矩形、菱形、正方形等的概念以及它们之间的关系理解四边形的不稳定性了解平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分掌握平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形掌握两条平行线之间距离的意义了解两条平行线之间距离的度量掌握矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;正方形具有矩形和菱形的一切性质掌握矩形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形掌握三角形的中位线定理掌握圆、弧、弦、圆心角、圆周角等的概5.圆念理解等圆、等弧的概念了解点与圆的位置关系了解圆周角与圆心角及其所对弧的关系理解圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补掌握三角形的内心和外心的意义了解直线和圆的位置关系了解切线的概念掌握切线与过切点的半径的关系掌握用三角尺过圆上一点画圆的切线理解圆的弧长、扇形的面积的计算理解正多边形的概念及正多边形与圆的关系了解6.尺规作图基本作图:作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线掌握利用基本作图作三角形:已知三边、两边及其夹角、两角及其夹边作三角形;已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形理解利用基本作图完成:过不在同一直线上的三点作圆;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形理解尺规作图的道理(保留作图的痕迹,不要求写出作法)了解7.定义、命题、定理定义、命题、定理、推论的意义了解命题的条件和结论的意义理解原命题及其逆命题的概念了解两个互逆的命题的识别理解原命题成立,其逆命题不一定成立了解证明的意义和证明的必要性,证明要合乎逻辑,证明的过程可以有不同的表达形式了解综合法证明的格式理解反例的意义及其作用(利用反例判断一个命题是错误的)了解反证法的含义理解1.图形的轴对称轴对称的概念了解轴对称的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分理解画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴的对称图形掌握轴对称图形的概念了解等腰三角形、矩形、菱形、正多边形、圆的轴对称性质理解自然界和现实生活中的轴对称图形了解平面图形关于旋转中心的旋转的认识了解平面图形关于旋转中心的旋转的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线理解(二)图形的变化2.图形的旋转所成的角相等中心对称、中心对称图形等的概念了解中心对称、中心对称图形的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分理解线段、平行四边形、正多边形、圆的中心对称性质理解自然界和现实生活中的中心对称图形了解3.图形的平移平移的认识了解平移的意义及其基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等理解平移在自然界和现实生活中的应用了解运用图形的轴对称、旋转、平移进行图案设计运用4.图形的相似比例的基本性质、线段的比、成比例的线段了解黄金分割了解图形相似的认识了解相似多边形和相似比了解基本事实:两条直线被一组平行线所截,所得的对应线段成比例掌握相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等了解于相似比的平方图形的位似,利用位似可以将一个图形放大或缩小了解利用图形的相似解决一些简单的实际问题理解锐角三角函数(sinA,cosA,tanA)理解30°,45°,60°角的三角函数值了解使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角掌握用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题掌握5.图形的投影中心投影和平行投影等的概念了解画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图理解简单物体视图的判断掌握根据视图描述简单的几何体理解直棱柱、圆柱、圆锥的侧面展开图了解根据展开图想象实物模型掌握视图与展开图在现实生活中的应用了解1.坐标与图形位置用有序数对表示物体的位置理解平面直角坐标系的有关概念理解画出直角坐标系;在给定的直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标掌握建立适当的直角坐标系,描述物体的位置掌握对给定的正方形,选择适当的直角坐标系,写出它的顶点坐标理解。

相关文档
最新文档