2012年高考真题文科数学汇编5:数列
2012年高考全国卷文科数学含答案
一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设复数Z= — l—i(i为虚数单位),z的共轭复数为,则等于A. -1 -2iB. -2+iC. -l+2iD.1+2i2. 集合A={x|x2+x—6<0} ,B={y\y=lg( x2+l)}则A∩B 等于A. (-3,2)B. [0,3)C.[0,+oo)D. [0,2)3. 已知 , ,则等于A . 3 B. —3 C. 2 D. —24.设数列{an}是以2为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,则ba1 +ba2 + …+ba6“等于A. 78B. 84C. 124D. 1265.已知抛物线:y2=2px(p>0)上的点A(m,2)到直线x=-3/2的距离比到抛物线焦点的距离大 1,则点A到焦点的距离为(2)2 B.5/2 C. 3 D.3/26.已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于A . B. C. D.7.如图所示的程序框图,程序运行时,若输入的S=-10,则输出S的值为A. 8B. 9C. 10D. 118.已知命题p:” ”是“函数的图象经过第二象限”的充分不必要条件,命题q:a,b是任意实数,若a>b,则 .则A.“p且q”为真B.“p或q”为真C.p假q真D.p,q均为假命题9.将函数y=2sinxsin( +x)的图象向右平移少 ( >0)个单位,使得平移后的图象仍过点( , ),则的最小值为A B. C. D.10. 甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,现要求甲安排在另外两位前面且丙不安排在周五,则不同的安排方法共有A. 14 种B. 16 种C.20 种D.24 种11.巳知双曲线 (a>0,b>0),过其右焦点F且与渐近线y =- x平行的直线分别与双曲线的右支和另一条渐近线交于A、B两点,且 ,则双曲线的离心率为A . B. C. D. 212.已知关于x的方程有唯一解,则实数a的值为.A. 1B.—3C. 1 或一3D. —1 或 3第II卷本卷包括必考题和选考题两部分.第13题〜第21题为必考题,每个试题考生都必须做答,第 22题〜第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡中的横线上.13. =14.已知向量a,b夹角为,若 , , ,则(a+2b) • (a—b)= •15.在棱锥P-ABC中,侧棱PA、PB、PC两两垂直,Q 为底面∆ABC内一点,若点Q到三个侧面的距离分别为2、2、,则以线段PQ为直径的球的表面积为 .16.数列的前n项和为 ,若数列的各项排列如下:…, , … ,…,若,则 =___.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(本小题满分12分)在∆ABC中,角A、B、C的对边分别为a、b、c,若b- c=acos C.(1)求A的大小;(2)若∆ABC 的面积为,且 2abcos C—bc=a2 +c2,求 a.18.( 本小题满分12分)某娱乐中心拟举行庆祝活动,每位来宾交30元人场费,可参加一次抽奖活动,抽奖活动规则是:从一个装有分值分别为1,2,3,4,5,6六个相同小球的抽奖箱中,有放回地抽取两次,毎次抽取一个球,规定:若抽得两球分值之和为12分,则获得价值为m元礼品;若抽得两球分值之和为11分或10分,则获得价值为100元礼品;若抽得两球分值之和小于10分,则不获奖. (1) 求每位会员获奖的概率;(2) 假设这次活动中,娱乐中心既不赔钱,也不赚钱,则m应为多少元?19.(本小题满分1 2分)在如图的多面体中,EF丄平面 AEB,AE EB,AD//EF,EF//BC,BC=2AD = 4,EF=3,AE=BE=2,G是BC的中点.(1) 求证:BD丄EG; ](2) 求二面角C—DF—E的余弦值.20.(本小题满分12分)设Ai ,A2与B分别是椭圆E : 的左、右顶点与上顶点,直线A2B与圆 C:相切.(1) P是椭圆E上异于A1,A2 的一点,直线PA1,PA2的斜率之积为,求椭圆E的方程;(2)直线I与椭圆E交于M,N两点,且,试判断直线I与圆C的位置关系,并说明理由.21.(本小题满分12分)已知a€R,函数, (其中e为自然对数的底数).(1) 巳知a>0,若函数f(x)在区间(0,e]上满足f(x)>2恒成立,求a的取值范围;⑵是否存在实数 ,使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出X 。
2012年全国高考文科数学试题及答案-新课标
绝密*启用前2012年全国各地高考数学试题汇编汇总(新课标卷)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则(A)A ⊂≠B (B)B ⊂≠A (C)A =B (D)A ∩B =∅ (2)复数z =-3+i2+i 的共轭复数是(A)2+i (B)2-i (C)-1+i (D)-1-i 3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A)-1 (B)0 (C)12 (D)1(4)设F 1、F 2是椭圆E:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( ) (A)12 (B)23 (C)34 (D)455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x,y)在△ABC 内部,则z =-x+y 的取值范围是(A)(1-3,2) (B)(0,2) (C)(3-1,2) (D)(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则 (A)A+B 为a 1,a 2,…,a N 的和(B)A +B2为a 1,a 2,…,a N 的算术平均数(C)A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 (D)A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A)6π (B)43π (C)46π (D)63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ= (A)π4 (B)π3 (C)π2 (D)3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A,B 两点,|AB|=43,则C 的实轴长为(A) 2 (B)2 2 (C)4 (D)8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A)(0,22) (B)(22,1) (C)(1,2) (D)(2,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为 (A)3690 (B)3660 (C)1845 (D)1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012-2017年高考文科数学真题汇编:数列高考题老师版
学科教师辅导教案 学员姓名 年 级高三 辅导科目数 学授课老师课时数2h第 次课授课日期及时段2018年 月 日 : — :1.(2013安徽文)设nS 为等差数列{}na的前n 项和,8374,2Sa a ==-,则9a =( )(A )6- (B )4- (C)2- (D )2【答案】A 2.(2012福建理)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 【答案】B3.(2014福建理)等差数列{}na 的前n 项和nS ,若132,12a S ==,则6a =( ).8A .10B .12C .14D【答案】C 4.(2017·全国Ⅰ理)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8【解析】设{a n }的公差为d ,由错误!得错误!解得d =4。
故选C 。
5.(2012辽宁文)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D )24 【答案】B6.(2014新标2文) 等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和nS =( )A. (1)n n + B 。
(1)n n - C. (1)2n n + D 。
(1)2n n - 【答案】A7.(2012安徽文)公比为2的等比数列{na } 的各项都是正数,且 3a 11a =16,则5a =( )()A 1 ()B 2 ()C 4 ()D 8 【答案】A8.(2014大纲文)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A. 31 B. 32 C 。
63 D. 64历年高考试题集锦——数列【答案】C9.(2013江西理)等比数列x ,3x +3,6x +6,…的第四项等于( ) A .-24 B .0C .12D .24【答案】A10。
2012年高考新课标全国卷文科数学试题(附答案)(最新整理)
2012 年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合 A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B(D )A ∩B=∅-3 + i (2)复数 z =的共轭复数是2 + i(A ) 2 + i(B ) 2 - i(C ) -1+ i(D ) -1- i(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的1散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线 y =数据的样本相关系数为 x +1 上,则这组样本21 (A )−1(B )0(C )2(D )1x 2 y 2(4)设 F 1 , F 2 是椭圆 E : a 2 + b2 =1( a > b >0)的3a左、 右焦点, P 为直线 x = 上一点,△ F 2 PF 12是底角为300 的等腰三角形,则 E 的离心率为 1 2 3 4 (A )(B )(C )D .2345(5) 已知正三角形 ABC 的顶点 A (1,1),B (1,3),顶点 C 在第一象限,若点(x ,y )在△ABC 内部,则 z = -x + y 的取值范围是 (A )(1- 3,2)(B )(0,2)(C )( 3-1,2)(D )(0,1+ 3)(6) 如果执行右边的程序框图,输入正整数 N ( N ≥2)和实数 a 1, a 2 ,…, a N ,输出 A ,B ,则 (A ) A + B 为 a 1 , a 2 ,…, a N 的和 A + B (B )为 a , a ,…, a 的算术平均数 21 2 N(C ) A 和 B 分别为 a 1 , a 2 ,…, a N 中的最大数和最小数3 2 10 n n + n1(D ) A 和 B 分别为 a 1 , a 2 ,…, a N 中的最小数和最大数(7) 如图,网格上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18 (8)平面截球 O 的球面所得圆的半径为 1,球心 O 到平面的距离为2,则此球的体积为(A ) 6π (B )4 3π (C )4 6π(D )6 3π(9)已知>0, 0 << ,直线 x =和 x =5是函数 f (x ) = sin(x +) 图像的两条44相邻的对称轴,则=π (A )4 π (B )3 π (C )2 3π (D ) 4(10)等轴双曲线C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 2 = 16x 的准线交于 A 、B 两点, | AB | = 4 ,则C 的实轴长为(A ) (B ) 2 (11)当 0< x ≤1时, 4x< log 2 a2 (C )4 (D )8x ,则 a 的取值范围是2(A )(0, 2 ) (B )( 2,1) (C )(1, 2)(D )( 2,2)(12)数列{ a }满足 a + (-1)na = 2n -1,则{ a }的前 60 项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共 4 小题,每小题 5 分。
2012年全国高考文科数学试题及答案-新课标word版
绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动。
用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3。
回答第Ⅱ卷时.将答案写在答题卡上。
写在本试卷上无效·4.考试结束后。
将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x|x2-x-2〈0},B={x|-1<x<1},则(A)A错误!B (B)B错误!A (C)A=B (D)A∩B=(2)复数z=错误!的共轭复数是(A)2+i (B)2-i (C)-1+i (D)-1-i3、在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=错误!x+1上,则这组样本数据的样本相关系数为(A)-1 (B)0 (C)错误!(D)1(4)设F1、F2是椭圆E:错误!+错误!=1(a〉b〉0)的左、右焦点,P为直线x=错误!上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()(A)错误!(B)错误!(C)错误!(D)错误!5、已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是(A)(1-错误!,2)(B)(0,2) (C)(错误!-1,2) (D)(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则(A)A+B为a1,a2,…,a N的和(B)错误!为a1,a2,…,a N的算术平均数(C)A和B分别是a1,a2,…,a N中最大的数和最小的数(D)A和B分别是a1,a2,…,a N中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为(A)错误!π(B)4错误!π(C)4错误!π(D)6错误!π(9)已知ω>0,0〈φ<π,直线x=错误!和x=错误!是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)错误!(B)错误!(C)错误!(D)错误!(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4错误!,则C的实轴长为(A)错误!(B)2错误!(C)4 (D)8(11)当0<x≤错误!时,4x<log a x,则a的取值范围是(A)(0,错误!)(B)(错误!,1)(C)(1,错误!)(D)(错误!,2)(12)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为(A)3690 (B)3660 (C)1845 (D)1830第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答,第22—24题为选考题,考生根据要求作答。
2012年全国统一高考数学试卷(文科)(新课标)(含解析版)
2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.15.(5分)已知向量夹角为45°,且,则=.16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【考点】18:集合的包含关系判断及应用.【专题】5J:集合.【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选:B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.。
2012年高考试题文科数学解析汇编5数列
2012高考试题分类汇编:5:数列一、选择题1.【2012高考安徽文5】公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = (A ) 1 (B )2 (C ) 4 (D )8 【答案】A【解析】2231177551616421a a a a a a =⇔=⇔==⨯⇔=。
2.【2012高考全国文6】已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S = (A )12-n (B )1)23(-n (C )1)32(-n (D )121-n【答案】B【解析】因为n n n S S a -=++11,所以由12+=n n a S 得,)(21n n n S S S -=+,整理得123+=n n S S ,所以231=+n n S S ,所以数列}{n S 是以111==a S 为首项,公比23=q 的等比数列,所以1)23(-=n n S ,选B.3.【2012高考新课标文12】数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为 (A )3690 (B )3660 (C )1845 (D )1830 【答案】D【解析】由12)1(1-=-++n a a n nn 得,12]12)1[()1(12)1(112++-+--=++-=-++n n a n a a n n n n n n 12)12()1(++--+-=n n a n n ,即1212)1(2++--=++n n a a n n n )(,也有3212)1(13+++--=+++n n a a nn n )(,两式相加得44)1(2321++--=++++++n a a a a nn n n n ,设k 为整数,则10`164)14(4)1(21444342414+=+++--=++++++++k k a a a a k k k k k , 于是1830)10`16()(14443424141460=+=+++=∑∑=++++=k a a a aS K k k k k K4.【2012高考辽宁文4】在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D)24【答案】B 【解析】48111(3)(7)210,a a a d a d a d +=+++=+21011121048()(9)210,16a a a d a d a d a a a a +=+++=+∴+=+=,故选B【点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。
2012年全国高考文科数学试题和答案-新课标word版
绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =-3+i 2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年全国高考文科数学试题及答案-新课标
2012年普通高等学校招生全国统一考试文科数学(新课标卷)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅2、复数z =-3+i 2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )14、设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A ) A +B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D)A和B分别是a1,a2,…,a N中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年高考真题文科数学汇编5:数列
2012高考文科试题解析分类汇编:数列一、选择题1.【2012高考安徽文5】公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = (A ) 1 (B )2 (C ) 4 (D )8 【答案】A2231177551616421a a a a a a =⇔=⇔==⨯⇔=2.【2012高考全国文6】已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S = (A )12-n (B )1)23(-n (C )1)32(-n (D )121-n【答案】B【命题意图】本试题主要考查了数列中由递推公式求通项公式和数列求和的综合运用。
【解析】由12n n S a +=可知,当1n =时得211122a S == 当2n ≥时,有12n n S a += ① 12n n S a -= ②①-②可得122n n n a a a +=-即132n n a a +=,故该数列是从第二项起以12为首项,以32为公比的等比数列,故数列通项公式为2113()22n n a -⎧⎪=⎨⎪⎩(1)(2)n n =≥,故当2n ≥时,1113(1())3221()3212n n n S ---=+=-当1n =时,11131()2S -==,故选答案B3.【2012高考新课标文12】数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为 (A )3690 (B )3660 (C )1845 (D )1830 【答案】D【命题意图】本题主要考查灵活运用数列知识求数列问题能力,是难题. 【解析】【法1】有题设知21a a -=1,① 32a a +=3 ② 43a a -=5 ③ 54a a +=7,65a a -=9,76a a +=11,87a a -=13,98a a +=15,109a a -=17,1110a a +=19,121121a a -=,……∴②-①得13a a +=2,③+②得42a a +=8,同理可得57a a +=2,68a a +=24,911a a +=2,1012a a +=40,…,∴13a a +,57a a +,911a a +,…,是各项均为2的常数列,24a a +,68a a +,1012a a +,…是首项为8,公差为16的等差数列, ∴{n a }的前60项和为11521581615142⨯+⨯+⨯⨯⨯=1830. 【法2】可证明:14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+112341515141010151618302b a a a a S ⨯=+++=⇒=⨯+⨯= 4.【2012高考辽宁文4】在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D)24 【答案】B【解析】48111(3)(7)210,a a a d a d a d +=+++=+21011121048()(9)210,16a a a d a d a d a a a a +=+++=+∴+=+=,故选B【点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。
2012年全国新课标高考文科数学真题及答案(Word版)
绝密*启用前2012年普通高等学校招生全国统一考试 文科数学 注息事项:1. 本试卷分第I 卷(选择题)和第n 卷 号填写在本试卷和答题卡相应位置上。
2. 问答第I 卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动 擦干净后,再选涂其它答案标号。
写在本试卷上无效3.回答第n 卷时。
将答案写在答题卡上 .写在本试卷上无效•4. 考试结束后.将本试卷和答且卡一并交回。
1y i ) (i=1,2,…,n)都在直线y=2x+1上,则这组样本数据的样本相关系数为x 2 y 2 3aF 2是椭圆E :耸+ y^= 1(a>b>0)的左、右焦点,P 为直线x=3a 上一点,△ F 1PF 2是底角为30°a b 2 的等腰三角形,则 E 的离心率为()(A) 1 ( B ) 2 (C ) 4( D ) 4 5、已知正三角形 ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,丫)在厶ABC 内部,贝U z= —x+y 的取值范围是 (A ) (1 — 3, 2) ( B ) (0, 2)( C ) ( 3— 1, 2)( D ) (0,1+ 3)(6)如果执行右边的程序框图,输入正整数 N(N >2)和实数a 1,a 2,…,a N ,输出A,B ,则(A)A+B 为 a 1,a 2,…,a N 的和 A + B(B)—2 —为a1,a 2,…,a N 的算术平均数(A )— 1(B) 0 (D) 1(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证.用橡皮 、选择题: 本大题共 12小题, 每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合 A={ x|x 2— x — 2<0}, B={ x|— 1<x<1},(A) A B(B ) B A (C ) A=B(D ) A n B=(2)复数 z =—的共轭复数是2+i(A) 2+i( B ) 2 — i(C )— 1+i (D )— 1— i3、在一组样本数据(X 1, y 1), (x 2, y 2),…,(x n .y n ) ( n > 2, X 1,x 2,…,X n 不全相等)的散点图中,若所有样本点(X i ,(4)设 F 1、(C) A和B分别是a i,a2,…,a N中最大的数和最小的数(D) A和B分别是a i,a2,…,a N中最小的数和最大的数(7) 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A) 6(B) 9(C) 12(D)18(8) 平面a截球0的球面所得圆的半径为1球心O到平面a的距离为,2,则此球的体积为(A) 6n ( B) 4 3n (C) 4 6n (D) 6 3n(9) 已知3>0, 0< o <n直线x=4和x=5^函数f(x)=sin( ®x+妨图像的两条相邻的对称轴,贝Un n n 3 n(A ) 4 (B) 3 ( C) 2 ( D) G(10) 等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=l6x的准线交于A , B两点, 则C的实轴长为(A ) 2 (B) 2 2 (C) 4 ( D) 8(11) 当0<x< 2时,4x<|og a x,贝y a的取值范围是(A ) (0,子) (B)(今,1) (C) (1 , 2) ( D) (.2, 2)(12) 数列{a n}满足a n+1 + (- 1)n a n = 2n- 1,则{a n}的前60项和为(A) 3690 ( B) 3660 (C) 1845 ( D) 1830本卷包括必考题和选考题两部分。
2012年高考文科数学真题全国卷新课标版
(D) 1
(D) A B (D) 1 i
x2 4、设 F1, F2 是椭圆 E : a 2
绝密★启用前 2012 年普通高等学校招生全国统一考试
文科数学
为 30 的等腰三角形,则 E 的离心率为
1
(A)
2
2
(B)
3
y2 b2
1a b 0的左、右焦点, P 为直线 x
本点
xi
,
(A) 1
yi
i
1,2,, n都在直线
(B) 0
y
1 2
x
1上,则这组样本数据的样本相关系数为
1
(C)
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012高考试题分类汇编:数列一、选择题1.【2012高考安徽文5】公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = (A ) 1 (B )2 (C ) 4 (D )8 【答案】A2.【2012高考全国文6】已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S = (A )12-n (B )1)23(-n (C )1)32(-n (D )121-n【答案】B3.【2012高考新课标文12】数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为 (A )3690 (B )3660 (C )1845 (D )1830 【答案】D4.【2012高考辽宁文4】在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D)24 【答案】B【点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。
5.【2012高考湖北文7】定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”。
现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x ²;②f (x )=2x ;③;④f (x )=ln|x |。
则其中是“保等比数列函数”的f (x )的序号为 A.①② B.③④ C.①③ D.②④ 7. 【答案】C6.【2012高考四川文12】设函数3()(3)1f x x x =-+-,数列{}n a 是公差不为0的等差数列,127()()()14f a f a f a ++⋅⋅⋅+=,则127a a a ++⋅⋅⋅+=( )A 、0B 、7C 、14D 、21 【答案】D.7.【2102高考福建文11】数列{a n }的通项公式2cos πn a n =,其前n 项和为S n ,则S 2012等于 A.1006 B.2012 C.503 D.0【答案】A .8.【2102高考北京文6】已知为等比数列,下面结论种正确的是(A )a 1+a 3≥2a 2 (B )2223212a a a ≥+ (C )若a 1=a 3,则a 1=a 2(D )若a 3>a 1,则a 4>a 2【答案】B9.【2102高考北京文8】某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为(A )5(B )7(C )9(D )11 【答案】C二、填空题10.【2012高考重庆文11】首项为1,公比为2的等比数列的前4项和4S = 【答案】1511.【2012高考新课标文14】等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______ 【答案】2-12.【2012高考江西文13】等比数列{a n }的前n 项和为S n ,公比不为1。
若a 1=1,且对任意的都有a n +2+a n +1-2a n =0,则S 5=_________________。
【答案】1113.【2012高考上海文7】有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++=【答案】78。
【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列, ∴1V +2V +…+n V=811811--n =)811(78n -,∴78。
14.【2012高考上海文14】已知1()1f x x=+,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=,若20102012a a =,则2011a a +的值是【答案】265133+。
15.【2012高考辽宁文14】已知等比数列{a n }为递增数列.若a 1>0,且2(a n +a n+2)=5a n+1 ,则数列{a n }的公比q = _____________________. 【答案】216.【2102高考北京文10】已知{a n }为等差数列,S n 为其前n 项和,若211=a ,S 2=a 3,则a 2=______,S n =_______。
【答案】12=a ,n n S n 41412+=17.【2012高考广东文12】若等比数列{}n a 满足2412a a =,则2135a a a = . 【答案】14三、解答题18.【2012高考浙江文19】(本题满分14分)已知数列{a n }的前n 项和为S n ,且S n =22n n +,n ∈N ﹡,数列{b n }满足a n =4log 2b n +3,n ∈N ﹡. (1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .【解析】(1) 由S n =22n n +,得当n=1时,113a S ==;当n ≥2时,1n n n a S S -=-=2222(1)(1)41n n n n n ⎡⎤+--+-=-⎣⎦,n ∈N ﹡.由a n =4log 2b n +3,得21n b n =-,n ∈N ﹡.(2)由(1)知1(41)2n n n a b n -=-⋅,n ∈N ﹡所以()21372112 (412)n n T n -=+⨯+⨯++-⋅,()2323272112...412n n T n =⨯+⨯+⨯++-⋅, ()212412[34(22...2)]n n n n T T n --=-⋅-++++(45)25n n =-+(45)25n n T n =-+,n ∈N ﹡.19.【2012高考江苏20】(16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:221nn n n n b a b a a ++=+,*N n ∈,(1)设n n n a b b +=+11,*N n ∈,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列; (2)设nnn a b b •=+21,*N n ∈,且{}n a 是等比数列,求1a 和1b 的值. 【答案】解:(1)∵n n n a b b +=+11,∴1n a +=。
∴ 11n n ba ++=∴ ()2222111*n n n n n n b b b n N a a a ++⎛⎫⎛⎫⎛⎫-=-=∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
∴数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是以1 为公差的等差数列。
(2)∵00n n a >b >,,∴()()22222n n n n n n a b a b <a b +≤++。
∴11n <a +≤(﹡) 设等比数列{}n a 的公比为q ,由0n a >知0q >,下面用反证法证明=1q若1,q >则212=a a <a q1log q n >时,11n n a a q +=若01,<q <则212=1a a >a >q ,∴当11log q n >a 时,111n n a a q <+=,与(﹡)矛盾。
∴综上所述,=1q 。
∴()1*n a a n N =∈,∴11<a ≤又∵11n n n n b b b a +=()*n N ∈,∴{}n b1的等比数列。
若1a ≠11,于是123b <b <b 。
又由221nn n n n b a b a a ++=+即1a =,得11n b a -。
∴123b b b ,,中至少有两项相同,与123b <b <b矛盾。
∴1a 。
∴1n b -∴ 12=a b【考点】等差数列和等比数列的基本性质,基本不等式,反证法。
【解析】(1)根据题设221nn n n n b a b a a ++=+和n n n a b b +=+11,求出11n n ba ++=证明22111n n n n b b a a ++⎛⎫⎛⎫-= ⎪⎪⎝⎭⎝⎭而得证。
(2)根据基本不等式得到11n <a +={}n a 的公比=1q 。
从而得到()1*n a a n N =∈的结论,再由11nn n n b b b a a +=•知{}n b 是公比是1a 的等比数列。
最后用反证法求出12=ab 20.【2012高考四川文20】(本小题满分12分)已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立。
(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设10a >,100λ=,当n 为何值时,数列1{lg }na 的前n 项和最大? 【解析】21.【2012高考湖南文20】(本小题满分13分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元. (Ⅰ)用d 表示a 1,a 2,并写出1n a +与a n 的关系式;(Ⅱ)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示). 【答案】【解析】(Ⅰ)由题意得12000(150%)3000a d d =+-=-,2113(150%)2a a d a d =+-=-, 13(150%)2n n n a a d a d +=+-=-.(Ⅱ)由(Ⅰ)得132n n a a d -=-2233()22n a d d -=-- 233()22n a d d -=-- =12213333()1()()2222n n a d --⎡⎤=-++++⎢⎥⎣⎦. 整理得 1133()(3000)2()122n n n a d d --⎡⎤=---⎢⎥⎣⎦13()(30003)22n d d -=-+. 由题意,134000,()(30003)24000,2n n a d d -=∴-+=解得13()210001000(32)2332()12n n n n nn d +⎡⎤-⨯⎢⎥-⎣⎦==--. 故该企业每年上缴资金d 的值为缴11000(32)32n n n n+--时,经过(3)m m ≥年企业的剩余资金为4000元. 【点评】本题考查递推数列问题在实际问题中的应用,考查运算能力和使用数列知识分析解决实际问题的能力.第一问建立数学模型,得出1n a +与a n 的关系式132n n a a d +=-,第二问,只要把第一问中的132n n a a d +=-迭代,即可以解决. 22.【2012高考重庆文16】(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)) 已知{}n a 为等差数列,且13248,12,a a a a +=+=(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值。