高一数学函数一二次函数知识点测试题
新高一 二次函数基础练习
1.y=ax 2 +bx+c (a ,b ,c 是常数,a ≠0)叫做二次函数(,x 是自变量,a ,b ,c 分别二次项系数,一次项系数和常数项). 2、二次函数的解析式有三种形式:⑴一般式为 ;⑵顶点式为 。
其中,顶点坐标是( ),对称轴是 ; ⑶两点式为 。
其中x1,x2分别是抛物线与x 轴两交点的横坐标。
3. 二次函数y=ax 2 +bx+c 中a ,b ,c 的符号与图像性质的关系:c bx ax y ++=2对于二次函数c bx ax y ++=2(a ≠0), ⑴a 决定图象的 。
当a>0时,开口向 ,当a<0时,开口向 。
⑵c 决定图象与 轴的交点的 坐标。
若c=0,则抛物线过 点。
若c>0 或c<0呢? ⑶a 、b 共同决定对称轴,当a 、b 同号,对称轴在y 轴的 侧 ,当a 、b 异号呢?当b=0呢? 4.二次函数的图象及性质:二次函数和一元二次方程之间的关系,你还记得吗? 5.二次函数c bx ax y ++=2的图象与x 轴的位置关系∆=24b ac ->0[来源:学科网ZXXK] ∆=24b ac -=0 ∆=24bac -<0二、典型例题例1. 已知抛物线(1)求抛物线的开口方向、对称轴及顶点坐标;(2)求抛物线与轴、轴的交点坐标;(3)画出函数图象(草图); 5.二次函数c bx ax y ++=2的图象与x 轴的位置关系∆=24b ac ->0 [来源:学科网ZXXK] ∆=24b ac -=0 ∆=24bac -<01.y=ax 2+bx+c 二次项: 一次项: 常数项:2.a>0,开口向____,a<0, 开口向____3.对称轴:x=_________.4. a>0,开口向____,此时函数有最小值y=_________.5.顶点坐标( ) 6、二次函数1282+-=x x y 图象的开口向,对称轴是 ,顶点坐标为 。
二次函数测试题及答案
二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。
答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。
高中一年级数学二次函数练习题
高中一年级数学二次函数练习题在高中一年级的数学学习中,二次函数是一个非常重要的知识点。
为了帮助同学们更好地掌握这部分内容,下面为大家准备了一些二次函数的练习题。
一、选择题1、函数\(y = x^2 2x + 3\)的对称轴是()A \(x = 1\)B \(x =-1\)C \(y\)轴D \(x = 2\)2、二次函数\(y = 2(x 3)^2 + 1\)的图像的顶点坐标是()A \((3, 1)\)B \((-3, 1)\)C \((3, -1)\)D \((-3, -1)\)3、已知二次函数\(y = ax^2 + bx + c\)的图像经过点\((0, 3)\),\((1, 0)\),\((2, 5)\),则这个二次函数的解析式是()A \(y = x^2 2x + 3\)B \(y = x^2 + 2x 3\)C \(y =x^2 + 2x + 3\) D \(y = x^2 2x + 3\)4、对于二次函数\(y =-2(x + 1)^2 3\),下列说法正确的是()A 图像开口向上B 图像的对称轴是\(x = 1\)C 当\(x <-1\)时,\(y\)随\(x\)的增大而增大D 图像的顶点坐标是\((1, -3)\)5、二次函数\(y = ax^2 + bx + c\)的图像如图所示,则下列结论正确的是()A \(a > 0\),\(b > 0\),\(c > 0\)B \(a < 0\),\(b < 0\),\(c > 0\)C \(a < 0\),\(b > 0\),\(c < 0\)D \(a < 0\),\(b < 0\),\(c < 0\)二、填空题1、二次函数\(y = 2x^2 4x + 5\)的最小值是_____。
2、抛物线\(y =-3(x 1)^2 + 5\)的开口方向是_____,顶点坐标是_____。
3、把二次函数\(y = x^2 2x 3\)化成\(y = a(x h)^2 + k\)的形式是_____。
二次函数测试题及答案
二次函数测试题及答案一、选择题1. 下列哪个选项是二次函数的一般形式?A. y = x + 2B. y = x^2 + 3x + 1C. y = 2x^3D. y = 1/x答案:B2. 二次函数y = ax^2 + bx + c(a ≠ 0)的顶点坐标是:A. (-b, a)B. (-b/a, c)C. (-b/2a, 4ac - b^2/4a)D. (-b/2a, 4ac + b^2/4a)答案:C3. 如果二次函数y = ax^2 + bx + c的图像与x轴有两个交点,那么a、b、c之间的关系是:A. b^2 - 4ac > 0B. b^2 - 4ac < 0C. b^2 - 4ac = 0D. b^2 - 4ac ≠ 0答案:A二、填空题4. 二次函数y = -3x^2 + 6x - 5的顶点坐标是______。
答案:(1, -2)5. 如果二次函数y = ax^2 + bx + c的图像开口向上,那么a的值是______。
答案:> 0三、解答题6. 已知二次函数y = 2x^2 - 4x + 3,求其图像与x轴的交点。
解:令y = 0,得到方程2x^2 - 4x + 3 = 0。
通过求解这个方程,我们可以得到x的值。
首先计算判别式Δ = b^2 - 4ac = (-4)^2 - 4 * 2 * 3 = 16 - 24 = -8。
因为Δ < 0,所以这个二次方程没有实数解,即二次函数的图像与x轴没有交点。
7. 已知二次函数y = 3x^2 + 6x - 5,求其图像的对称轴。
解:二次函数y = ax^2 + bx + c的对称轴是x = -b/(2a)。
将a= 3, b = 6代入公式,得到对称轴为x = -6 / (2 * 3) = -1。
四、应用题8. 某工厂生产一种产品,其成本函数为C(x) = 0.5x^2 - 100x + 1000,其中x表示产品的数量。
一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册
第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。
二次函数的练习题及答案
二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。
A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。
A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。
A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。
2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。
三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。
2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。
四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。
求出当生产多少件产品时,成本最低,并求出最低成本。
2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。
设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。
答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。
2. 函数与x轴的交点坐标为(1,0)和(2,0)。
四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。
2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。
高一数学必修第一册《一元二次函数、方程和不等式》检测卷与答案
高一数学必修第一册《一元二次函数、方程和不等式》检测卷考试时间:120分钟;满分:150分一.选择题(共8小题,满分40分,每小题5分)1.(5分)若实数a,b满足>,则下列不等式成立的是()A.>B.+>+C.2>2D.B2>B22.已知条件G>1,条件G−2−2+3≤0,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知1≤+≤4,−1≤−≤2,则4−2的取值范围是()A.−4<<10B.−3<<6C.−2<<14D.−2≤≤104.若正实数、满足+=2,则1B的最小值为()A.0B.1C.2D.35.(5分)若关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),则不等式2+B−8r>0的解集为()A.(−4,1)∪(2,+∞)B.(−2,1)∪(4,+∞)C.(−∞,−2)∪(1,4)D.(−∞,−4)∪(1,2)6.(5分)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算()A.甲更合算B.乙更合算C.甲乙同样合算D.无法判断谁更合算7.(5分)若关于的不等式2−+2+2<0的解集中恰有3个整数,则实数的取值范围为()A.−2,−1∪5,6B.−2,−1∪3,6C.−3,−1∪3,6D.−1∪4,68.(5分)已知正数、满足−1−2=2,不等式3+2>恒成立.则实数的取值范围是()A.−∞,4+62B.6+42,+∞C.−∞,7+43D.8+43,+∞二.多选题(共4小题,满分20分,每小题5分)9.(5分)已知−1<<6,3<<8,则下列结果正确的有()A.−13<<2B.2<+<14C.−4<−<−2D.−3<B<4810.(5分)∀∈,关于的不等式2−B+>0恒成立,则实数的值可以是()A.0B.1C.2D.311.(5分)下列结论中,正确的结论有()A.函数=+1的最小值是2B.如果>0,>0,+3+B=9,那么B的最大值为3 C.函数op=的最小值为52D.如果>0,>0,且1r1+11+=1,那么+的最小值为2 12.(5分)已知关于x的不等式B2+B+≤0的解集是U≤−2或≥6()A.<0B.不等式B2−B+<0的解集是U−16<<C.++>0D.不等式B+>0的解集是U<−3三.填空题(共4小题,满分20分,每小题5分)13.(5分)比较大小:2+(请从“<”“>”“=”中选择合适的符号填空)14.(5分)若>0,>0,且+=6,则4+1的最小值为.15.(5分)已知二次方程B2+B+=0(>0)的两根分别为2和4,则不等式B2+B+<0的解集为.16.(5分)设>0,>1,若+=2,且不等式4+1K1>2+8恒成立,则的取值范围是.四.解答题(共6小题,满分70分)17.(10分)解关于的不等式.(1)2+−6<0;(2)−22−≤−6(3)(−p(−2)>0.18.(12分)比较下列各题中两个代数式值的大小. (1)2+12与4+2+1;(2)2−22+2与>>0.19.(12分)证明下列不等式:(1)已知>>>,求证:1K<1K;(2)已知>>0,<<0,<0,求证:K>K.20.(12分)已知>0,>0,+=1,求下列代数式的最小值(1)1r2+1r2;(2)1(+1).21.(12分)甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过100(km/h),若货车每小时的运输成本(以元为单位)由可变成本和固定成本组成,可变成本是速度km h的平方的34倍,固定成本为元.(1)将全程运输成本(元)表示为速度km h的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?22.(12分)已知函数op=2−B+.(1)若不等式op>0的解集为(−∞,1)∪(3,+∞),求实数s的值;(2)当−1=0时,(i)解关于x的不等式>0;(i)若存在∈[1,2],使得≤0,求实数a的取值范围.高一数学必修第一册《一元二次函数、方程和不等式》检测卷答案一.选择题(共8小题,满分40分,每小题5分)1.(5分)若实数a,b满足>,则下列不等式成立的是()A.>B.+>+C.2>2D.B2>B2【解题思路】利用不等式的性质即可判断.【解答过程】由=1,=−2,=0<,故A错;2<2,故C错;B2=B2,故D错;由不等式的性质易知B正确.故选:B.2.已知条件G>1,条件G−2−2+3≤0,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】解一元二次不等式结合充分不必要条件的定义即可得解.【解答过程】由题意条件G>1,条件G−2−2+3≤0⇔≤−3或≥1,所以是的充分不必要条件.故选:A.3.已知1≤+≤4,−1≤−≤2,则4−2的取值范围是()A.−4<<10B.−3<<6C.−2<<14D.−2≤≤10【解题思路】利用+和−范围求出0≤2≤6,然后利用不等式的性质求解即可【解答过程】由−1≤−≤2,1≤+≤4,得0≤−++≤6,即0≤2≤6,−2≤2−≤4,所以−2≤2−+2≤10,即−2≤4−2≤10,故选:D.4.若正实数、满足+=2,则1B的最小值为()A.0B.1C.2D.3【解题思路】利用基本不等式可求得1B的最小值.【解答过程】因为正实数、满足+=2,则1B≥12=1,当且仅当=+=2时,即当==1时,等号成立,故1B的最小值为1.故选:B.5.(5分)若关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),则不等式2+B−8r>0的解集为()A.(−4,1)∪(2,+∞)B.(−2,1)∪(4,+∞)C.(−∞,−2)∪(1,4)D.(−∞,−4)∪(1,2)【解题思路】根据关于x的不等式B+<0的解集是U−1<<2,利用韦达定理可得=−1,=−2>0,进而求解.【解答过程】因为关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),所以2+B+=02,由韦达定理可得:=−1,=−2,所以2+B−8r>0>0,解得−2<<1或>4.所以原不等式的解集为(−2,1)∪(4,+∞),故选:B.6.(5分)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算()A.甲更合算B.乙更合算C.甲乙同样合算D.无法判断谁更合算【解题思路】根据题意列出甲乙两次加油的平均单价,进而根据不等式即可求解.【解答过程】设两次的单价分别是s≠元/升,甲加两次油的平均单价为600300+300=21+1,单位:元/升,乙每次加油升,加两次油的平均单价为B+B2=r2,单位:元/升,因为>0,>0,≠,+=2++>2+=4,即21+1<r 2,即甲的平均单价低,甲更合算.故选:A.7.(5分)若关于的不等式2−+2+2<0的解集中恰有3个整数,则实数的取值范围为()A .−2,−1∪5,6B .−2,−1∪3,6C .−3,−1∪3,6D .−1∪4,6【解题思路】含参解一元二次不等式,分类讨论的范围确定整数解即可.【解答过程】由2−+2+2<0,得−−2<0,当=2时,不等式的解集为∅,不符合题意,舍去;当<2时,不等式的解集为<<2,此时若有3个整数解,此时,解集中的三个整数分别为1、0、−1,则需−2≤<−1;当>2时,不等式的解集为2<<,此时若有3个整数解,此时,解集中的三个整数分别为3、4、5,则需5<≤6综上:所以−2≤<−1或5<≤6,故选:A .8.(5分)已知正数、满足−1−2=2,不等式3+2>恒成立.则实数的取值范围是()A .−∞,4+62B .6+42,+∞C .−∞,7+43D .8+43,+∞【解题思路】由不等式3+2>恒成立,故只需3+2min>,由基本不等式的乘“1”法,结合已知求出3+2的最小值即可.【解答过程】因为−1−2=2,>0,>0,所以B =2+,即1+2=1,所以由基本不等式可得3+2=3+27+2+6≥7+=7+43,等号成立当且仅当2=6>0,>0−1−2=2即=1+233=2+3综上所述,3+2的最小值为7+43;因为不等式3+2>恒成立,所以实数的取值范围是−∞,7+43.故选:C.二.多选题(共4小题,满分20分,每小题5分)9.(5分)已知−1<<6,3<<8,则下列结果正确的有()A.−13<<2B.2<+<14C.−4<−<−2D.−3<B<48【解题思路】根据题意,利用不等式的基本性质,逐项判定,即可求解.【解答过程】对于A中,由3<<8,可得18<1<13,由不等式的性质,可得−13<<2,所以A正确;对于B中,由−1<<6,3<<8,根据不等式的性质,可得2<+<14,所以B正确;对于C中,由3<<8,可得−8<−<−3,所以−9<−<3,所以C错误;对于D中,由−1<<6,3<<8,可得−8<B<48,所以D错误.故选:AB.10.(5分)∀∈,关于的不等式2−B+>0恒成立,则实数的值可以是()A.0B.1C.2D.3【解题思路】结合一元二次不等式恒成立有Δ<0,即可求范围.【解答过程】∀∈,关于的不等式2−B+>0恒成立,所以Δ=2−4<0,解得0<<4,对照选项知实数的值可以是1,2,3.故选:BCD.11.(5分)下列结论中,正确的结论有()A.函数=+1的最小值是2B.如果>0,>0,+3+B=9,那么B的最大值为3C.函数op=的最小值为52D.如果>0,>0,且1r1+11+=1,那么+的最小值为2【解题思路】利用基本不等式对选项逐个判断即可得.【解答过程】对A:当J−1时,=−1−1=−2,所以最小值不是2,故A错误;对B:由已知可得9−B=+3≥23B,解得0<B≤3,所以0<B≤3,当且仅当=3时成立,此时B的最大值为3,故B正确;=2+4+,设2+4=,≥2,对C:函数op==+1在2,+∞上单调递增,所以=2时,取最大值52,故C正确;对D :+=+1++1−2=[(+1)+(+1)](1r1+1r1)−2=1+1−2+r1r1+r1r1≥=2,当且仅当=时取得最小值为2,故D 正确.故选:BCD .12.(5分)已知关于x 的不等式B 2+B +≤0的解集是U ≤−2或≥6()A .<0B .不等式B 2−B +<0的解集是U −16<<C .++>0D .不等式B +>0的解集是U <−3【解题思路】根据一元二次不等式的解集性质进行逐一判断即可.【解答过程】因为关于x 的不等式B 2+B +≤0的解集是U ≤−2或≥6,所以有<0−2+6=−−2×6=⇒<0=−4=−12,因此选项A 正确;B 2−B +<0⇒−12B 2+4B +<0⇒122−4−1<0⇒−16<<12,因此选项B 正确;++=−4−12=−15>0,因此选项C 正确;B +>0⇒−4B−12>0⇒+3>0⇒>−3,因此选项D 不正确,故选:ABC.三.填空题(共4小题,满分20分,每小题5分)13.(5分)比较大小:2+(请从“<”“>”“=”中选择合适的符号填空)【解题思路】将两数都平方,然后作差法比较大小即可.【解答过程】由(2+6)2=8+43,则(2+6)2−42=4(3−2)<0,所以(2+6)2<42⇒2+6<4.故答案为:<.14.(5分)若>0,>0,且+=6,则4+1的最小值为32.【解题思路】根据基本不等式的乘“1”法即可求解.【解答过程】由于>0,>0,所以4+1=+=+4+≥+=32,当且仅当4=,即=4,=2时等号成立,故答案为:.15.(5分)已知二次方程B2+B+=0(>0)的两根分别为2和4,则不等式B2+B+<0的解【解题思路】根据二次方程的两根可得、与的关系,可化简B2+B+<0为2−6+8<0,再解不等式可得答案.【解答过程】二次方程B2+B+=0(>0)的两根分别为2和4,可得2+4=−2×4=,即=−6=8,由B2+B+<0>0可得2−6+8<0,解得2<<4,所以不等式2−6+8<0的解集为U2<<4.故答案为:U2<<4.16.(5分)设>0,>1,若+=2,且不等式4+1K1>2+8的取值范围是−9,1【解题思路】首先根据已知条件得到+−1=1⋅+−1即可求得最小值,再解关于的一元二次不等式即可求得的取值范围.【解答过程】因为>0,>1,+=2,所以+−1=1,则4+1⋅+−1=5++K1≥5+=9,=K1时,即=23,=43时取等号,所以9>2+8,解得−9<<1.故答案为:−9,1.四.解答题(共6小题,满分70分)17.(10分)解关于的不等式.(1)2+−6<0;(2)−22−≤−6(3)(−p(−2)>0.【解题思路】由公式解不含参数的一元二次不等式,分类讨论解含参数的一元二次不等式.【解答过程】(1)不等式2+−6<0,即+3−2<0,解得−3<<2,所以不等式的解集为U−3<<2;(2)不等式−2,所以不等式的解集为{U≤−2或≥32};(3)不等式−−2>0,当>2时,解集为<2或>,当<2时,解集为<或>2,当=2时,解集为{U≠2}.18.(12分)比较下列各题中两个代数式值的大小.(1)2+12与4+2+1;(2)2−22+2与>>0.【解题思路】(1)(2)利用作差法,化简后和0比较,即可判断大小关系.【解答过程】(1)2+12−4+2+1=4+22+1−4+2+1=2≥0,∴2+12≥4+(2)2−22+2−K r==∵>>0,∴>0,+>0,2+2>0,>0,∴2−22+2>K r.19.(12分)证明下列不等式:(1)已知>>>,求证:1K<1K;(2)已知>>0,<<0,<0,求证:K>K.【解题思路】(1)依题意可得−>−>0,再根据不等式的性质证明;(2)利用作差法证明即可.【解答过程】(1)∵>>>,即>s−>−,∴−>−>0,则1K<1K.(2)∵>>0,<<0,<0,∴−>−>0,∴−>则−===>0,∴−>−.20.(12分)已知>0,>0,+=1,求下列代数式的最小值(1)1r2+1r2;(2)1(+1).【解题思路】(1)运用配凑和常值代换法将其转化,利用基本不等式即可求得;(2)展开变形成2+1B,再将1换成+2展开,即可利用基本不等式求解..【解答过程】(1)因>0,>0,+=1,则(+2)+(+2)=5,于是得1r2+1r2=15[(+2)+(+2)](1r2+1r2)=15(2+r2r2+r2r2)≥15(2+=45,当且仅当r2r2=r2r2,即==12时取“=”,所以,当==12时,1r2+1r2的最小值是45;(2)因>0,>0,+=1,则1(+1)=2+1B=2+(rp2B=2+2B+22B=+2+2≥2=22+2,当且仅当=2,即=2−2,=2−1时取“=”,所以当=2−2,=2−1时,1(+1)的最小值是22+2.21.(12分)甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过100(km/h),若货车每小时的运输成本(以元为单位)由可变成本和固定成本组成,可变成本是速度km h的平方的34倍,固定成本为元.(1)将全程运输成本(元)表示为速度km h的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?【解题思路】(12元,固定成本为a元,求和后乘以时间即可;(2)由(1)的结论,利用基本不等式求最小值作答.【解答过程】(12元,固定成本为a元,所用时间为1000,则=10002+=1000(0, 100].(2)由(1)得=1000≥1000×=10003,当且仅当34=,即=易知函数=34+在+∞上单调递增.又0<≤100,所以当0<≤7500时,货车以=的速度行驶,全程运输成本最小;当>7500时,货车以100km/h的速度行驶,全程运输成本最小.22.(12分)已知函数op=2−B+.(1)若不等式op>0的解集为(−∞,1)∪(3,+∞),求实数s的值;(2)当−1=0时,(i)解关于x的不等式>0;(i)若存在∈[1,2],使得≤0,求实数a的取值范围.【解题思路】(1)根据题意,转化为得到1和3是方程2−B+=0的两个实数根据,列出方程组,即可求解;(2)(i)由−1=0,求得=−(+1),把不等式>0,转化为(+1)[−(+1)]>0,分类讨论,即可求得不等式的解集;(i i)由(i)中不等式的解集,结合存在∈[1,2],使得≤0,分类讨论,即可求解.【解答过程】(1)解:由函数op=2−B+,因为不等式op>0的解集为(−∞,1)∪(3,+∞),可得1和3是方程2−B+=0的两个实数根据,则1+3=1×3=,解得=4,=3.(2)解:(i)由函数op=2−B+,因为−1=0,可得o−1)=1++=0,即=−(+1),所以op=2−B−(+1),由不等式>0,即2−B−(+1)=(+1)[−(+1)]>0,当+1>−1时,即>−2时,解得<−1或>+1;当+1=−1时,即=−2时,即为(+1)2>0解得≠−1;当+1<−1时,即<−2时,解得<+1或>1,综上可得,当>−2时,不等式解集为(−∞,−1)∪(+1,+∞);当=−2时,不等式的解集为(−∞,−1)∪(−1,+∞);当<−2时,不等式的解集为(−∞,+1)∪(−1,+∞).(i i)由(i)知,当>−2时,不等式>0解集为(−∞,−1)∪(+1,+∞),若存在∈[1,2],使得≤0,则满足+1≥1,解得≥0;当=−2时,不等式>0的解集为(−∞,−1)∪(−1,+∞),此时不存在∈[1,2],使得≤0;当<−2时,不等式>0的解集为(−∞,+1)∪(−1,+∞),此时不存在∈[1,2],使得≤0,综上可得,实数的取值范围为[0,+∞).。
高一数学一次函数与二次函数试题答案及解析
高一数学一次函数与二次函数试题答案及解析1.已知二次函数,不等式的解集为.(1)求的解析式;(2)若函数在上单调,求实数的取值范围;(3)若对于任意的x∈[-2,2],都成立,求实数n的最大值.【答案】(1) ,(2)(3)-21.【解析】(1) 根据一元二次方程的根与一元二次不等式的解集关系,可列出两个独立条件,求出解析式. 依题得,为方程的两个实根,(2)二次函数单调性主要研究对称轴与定义区间相对位置关系,在上单调,二次函数开口向上,对称轴(3)恒成立问题,一般利用变量分离转化为最值问题. 依题得,只要,设当时,实数n的最大值为解:(1)依题得,为方程的两个实根,(2分)(4分)(5分)(2)在上单调,又二次函数开口向上,对称轴,(7分)(10分)(3)依题得,(12分)只要,(13分)设当时,(15分)(16分)【考点】一元二次方程的根与一元二次不等式的解集关系,二次函数单调性,不等式恒成立2.已知二次函数的二次项系数为,且不等式的解集为(1,3).⑴若方程有两个相等实数根,求的解析式.⑵若的最大值为正数,求实数的取值范围.【答案】(1),(2).【解析】(1)求二次函数解析式,一般用待定系数法,如何设二次函数解析式是解题关键.本题设零点式比较到位. ∵二次函数的二次项系数为,且不等式解集为(1,3),∴可设,且∴,由方程得,∵方程有两个相等的实根,∴或,而,∴从而,(2)由∴解得或.解:⑴∵二次函数的二次项系数为,且不等式解集为(1,3),∴可设,且 2分∴由方程得, 4分∵方程有两个相等的实根,∴或,而,∴从而 6分⑵由∴ 8分∴解得或 11分∴实数的取值范围是. 12分【考点】二次函数解析式3.对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是 ( ) A.1<x<3B.x<1或x>3C.1<x<2D.x<1或x>2【答案】B【解析】原问题可转化为关于a的一次函数y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,只需,∴故选B.【考点】二次函数的性质..4.已知(1)设,求的最大值与最小值;(2)求的最大值与最小值;【答案】(1)最大值9,最小值;(2)最大值67,最小值3【解析】(1)根据指数函数单调性求其最值。
二次函数试题及答案
二次函数试题及答案一、选择题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且与x轴有两个交点,则a、b、c之间的关系是()。
A. b^2-4ac>0B. b^2-4ac=0C. b^2-4ac<0D. b^2-4ac≤0答案:A2. 若二次函数y=ax^2+bx+c的图象与y轴的交点为(0,3),则c的值为()。
A. 3B. -3C. 0D. 1答案:A二、填空题1. 若二次函数y=ax^2+bx+c的图象的顶点坐标为(2,-1),则b=______。
答案:-4a-42. 已知抛物线y=ax^2+bx+c与x轴的交点为(-1,0)和(3,0),则b=______。
答案:-2a三、解答题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象经过点(1,2)和(-1,0),求该二次函数的解析式。
答案:将点(1,2)和(-1,0)代入二次函数的解析式,得到方程组:\begin{cases}a+b+c=2 \\9a-3b+c=0\end{cases}解得a=1,b=-2,c=1,所以二次函数的解析式为y=x^2-2x+1。
2. 已知抛物线y=ax^2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过点(0,3),求抛物线的解析式。
答案:由对称轴为直线x=1,可知-b/2a=1,即b=-2a。
又抛物线经过点(0,3),代入解析式得c=3。
设a=1,则b=-2,c=3,所以抛物线的解析式为y=x^2-2x+3。
四、综合题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴的交点为(2,0)和(-3,0),且抛物线的顶点坐标为(-1,-4),求该二次函数的解析式。
答案:由抛物线与x轴的交点可知,2和-3是方程ax^2+bx+c=0的两个根,所以有:\begin{cases}4a+2b+c=0 \\9a-3b+c=0\end{cases}又因为顶点坐标为(-1,-4),所以有:\begin{cases}-\frac{b}{2a}=-1 \\\frac{4ac-b^2}{4a}=-4\end{cases}解得a=1,b=4,c=-6,所以二次函数的解析式为y=x^2+4x-6。
一元二次函数、方程和不等式专项测试卷及答案解析
高一上学期数学专项测试卷一元二次函数、方程和不等式考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 若10<<a ,则关于x 的不等式()x a -01>⎪⎭⎫ ⎝⎛-a x 的解集为 【 】 (A )⎭⎬⎫⎩⎨⎧<<a x a x 1 (B )⎭⎬⎫⎩⎨⎧<<a x a x 1 (C )⎭⎬⎫⎩⎨⎧<>a x a x x 1或 (D )⎭⎬⎫⎩⎨⎧<>a x a x x 或1 2. 如果二次函数222+++=m mx x y 有两个不同的零点,那么实数m 的取值范围是 【 】(A ){}12<<-m m (B ){}21<<-m m(C ){}21>-<m m m 或 (D ){}12>-<m m m 或3. 记不等式()()02<+-x m x 的解集为A ,不等式()1-x x ≤0的解集为B .若A B ⊆,则正数m 的取值范围为 【 】(A ){}1>m m (B ){}1≥m m (C ){}1<m m (D ){}1≤m m4. 要使关于x 的方程()02122=-+-+a x a x 的一个根比1大且另一根比1小,则实数a 的取值范围是 【 】(A ){}21<<-a a (B ){}12<<-a a(C ){}2-<a a (D ){}1>a a5. 若关于x 的不等式()012<++-a x a x 的解集中恰有一个整数,则a 的取值范围是 【 】(A ){}3201<≤≤<-a a a 或 (B ){}4312≤<-≤<-a a a 或(C ){}3201≤<<≤-a a a 或 (D ){}4312<<-<<-a a a 或6. 共享单车给市民出行带来了诸多便利,某公司购买了一批共享单车投放到某地给市民使用,据市场分析,每辆单车的累计收入y (单位: 元)与营运天数x (∈x N*)满足关系式80060212-+-=x x y ,要使累计收入高于800元,则营运天数x 的取值范围为 【 】 (A ){}*,9030N x x x ∈<< (B ){}*,4030N x x x ∈<<(C ){}*,8040N x x x ∈<< (D ){}*,6020N x x x ∈<<7. 已知1≤x ≤2,02>-ax x 恒成立,则实数a 的取值范围是 【 】(A ){}1≥a a (B ){}1>a a (C ){}1≤a a (D ){}1<a a8. 设集合{}01<<-=m m P ,{}恒成立对任意实数x mx mx R m Q 0442<-+∈=,则下列说法正确的是 【 】(A )P 是Q 的真子集 (B )Q 是P 的真子集(C )Q P = (D )∅=Q P9. 某小区的蓄水池每日零时均有水400吨,并从零时开始,以每小时60吨的速度匀速向蓄水池注水,同时向该小区不间断供水,t 小时内供水总量为t 6120(0≤t ≤24)吨.若蓄水池的供水量小于80吨,则会出现供水紧张的情况,则每日处于供水紧张情况的时长为 【 】(A )6小时 (B )7小时 (C )8小时 (D )9小时10. 在R 上定义运算⊗:()y x y x -=⊗1.若不等式()()1<+⊗-a x a x 对任意实数x 都成立,则实数a 的取值范围为 【 】(A )⎭⎬⎫⎩⎨⎧<<-2321a a (B ){}20<<a a (C ){}11<<-a a (D )⎭⎬⎫⎩⎨⎧<<-2123a a 11.(多选)已知02>++c bx ax 的解集为{}21<<-x x ,则下列x 的取值范围能使不等式()()ax c x b x a 2112<+-++成立的是 【 】(A ){}30<<x x (B ){}3>x x(C ){}0<x x (D ){}12<<-x x12.(多选)若关于x 的一元二次方程()()m x x =--32有实数根21,x x ,且21x x <,则下列结论正确的是 【 】(A )当0=m 时,3,221==x x(B )41->m (C )当0>m 时,3221<<<x x(D )二次函数()()m x x x x y +--=21的图象与x 轴交点的坐标为()0,2和()0,3第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13. 已知集合(){}0122=+++=x m x x A ,集合{}0>=x x B ,若∅=B A ,则实数m 的取值范围是_____________.14. 若实数21,x x 为方程0622=++-m mx x 的两根,则实数m 的取值范围是____________,()()222122-+-x x 的最小值是__________.(第一空2分,第二空3分)15. 如图所示,有长为30 m 的篱笆,一面利用墙(墙的最大可用长度为10 m ),围成中间隔有一道篱笆(平行于AB )的矩形花圃.设花圃的一边AB 为x m,面积为y m 2.如果围成的花圃的面积不少于63 m 2,则x 的取值范围是_____________.DCB A16. 研究问题:已知关于x 的不等式02>+-c bx ax 的解集为{}21<<x x ,解关于x 的不等式02>+-a bx cx ,解法为:由02>+-c bx ax 得0112>⎪⎭⎫ ⎝⎛+-x c x b a ,令x y 1=,则121<<y ,所以不等式02>+-a bx cx 的解集为⎭⎬⎫⎩⎨⎧<<121x x .参考上述解法,已知关于x 的不等式++a x k 0<++c x b x 的解集为{}3212<<-<<-x x x 或,则关于x 的不等式0111<--+-cx bx ax kx 的解集为_____________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)(1)当3=a 时,求不等式022<++ax x 的解集;(2)若不等式022>++ax x 的解集为R ,求实数a 的取值范围.18.(本题满分12分)当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.解关于x 的不等式3222--+m mx x ≤()()922422--++-m x m x m .20.(本题满分12分)某辆汽车以x 千米/时的速度在高速公路上匀速行驶(考虑到高速公路上行车安全,要求60≤x ≤120)时,每小时耗油(所需要的汽油量)⎪⎭⎫ ⎝⎛+-x k x 450051升,其中k 为常数,60≤k ≤100. (1)若汽车以120千米/时的速度行驶,每小时耗油11. 5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.设p :实数x 满足03222<--a ax x (0>a ),q :实数x 满足2≤4<x .(1)若1=a ,且q p ,都为真命题,求x 的取值范围;(2)若q 是p 充分不必要条件,求实数a 的取值范围.22.(本题满分12分)已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.高一上学期数学专项测试卷一元二次函数、方程和不等式答案解析考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 若10<<a ,则关于x 的不等式()x a -01>⎪⎭⎫ ⎝⎛-a x 的解集为 【 】 (A )⎭⎬⎫⎩⎨⎧<<a x a x 1 (B )⎭⎬⎫⎩⎨⎧<<a x a x 1 (C )⎭⎬⎫⎩⎨⎧<>a x a x x 1或 (D )⎭⎬⎫⎩⎨⎧<>a x a x x 或1 答案 【 A 】解析 本题考查含参不等式的解法,注意解集的形式,在进行根的大小比较时要注意分类讨论.另外,在解一元二次不等式时,要把不等式化为左边是几个因式的乘积,且每个因式最高次项的系数为正,右边是0的形式.∵()x a -01>⎪⎭⎫ ⎝⎛-a x ,∴()a x -01<⎪⎭⎫ ⎝⎛-a x . ∵10<<a ,∴a a>1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x a x 1. ∴选择答案【 A 】.2. 如果二次函数222+++=m mx x y 有两个不同的零点,那么实数m 的取值范围是 【 】(A ){}12<<-m m (B ){}21<<-m m(C ){}21>-<m m m 或 (D ){}12>-<m m m 或答案 【 C 】解析 本题考查零点的定义: 我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点.对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.∵二次函数222+++=m mx x y 有两个不同的零点∴方程0222=+++m mx x 有两个不相等实数根.∴()()084424222>--=+-=∆m m m m ,解之得:2>m 或1-<m .∴实数m 的取值范围是{}21>-<m m m 或.∴选择答案【 C 】.3. 记不等式()()02<+-x m x 的解集为A ,不等式()1-x x ≤0的解集为B .若A B ⊆,则正数m 的取值范围为 【 】(A ){}1>m m (B ){}1≥m m (C ){}1<m m (D ){}1≤m m答案 【 A 】解析 本题考查一元二次不等式的解法和根据集合之间的基本关系确定参数的取值范围. 解不等式()1-x x ≤0得: 0≤x ≤1. ∴{}10≤≤=x x B .∵m 为正数,∴2->m ,∴原不等式的解集为{}m x x A <<-=2.∵A B ⊆,∴1>m .∴正数m 的取值范围为{}1>m m .∴选择答案【 A 】.4. 要使关于x 的方程()02122=-+-+a x a x 的一个根比1大且另一根比1小,则实数a 的取值范围是 【 】(A ){}21<<-a a (B ){}12<<-a a(C ){}2-<a a (D ){}1>a a答案 【 B 】解析 本题考查一元二次方程实数根的分布(K 分布).结论 一元二次方程02=++c bx ax (0>a )的一个根大于k ,另一根小于k 的条件是()0<k f .设()()2122-+-+=a x a x x f由题意可知:()021112<-+-+=a a f ,解之得:12<<-a .∴实数a 的取值范围是{}12<<-a a .∴选择答案【 B 】.5. 若关于x 的不等式()012<++-a x a x 的解集中恰有一个整数,则a 的取值范围是 【 】(A ){}3201<≤≤<-a a a 或 (B ){}4312≤<-≤<-a a a 或(C ){}3201≤<<≤-a a a 或 (D ){}4312<<-<<-a a a 或答案 【 C 】解析 本题考查含参一元二次不等式的解法.原不等式可化为:()()01<--a x x .当1>a 时,原不等式的解集为{}a x x <<1.∵其解集中恰有一个整数,∴a <2≤3;当1=a 时,()012<-x ,原不等式的解集为空集,不符合题意;当1<a 时,原不等式的解集为{}1<<x a x .∵其解集中恰有一个整数,∴1-≤0<a .综上所述,实数a 的取值范围是{}3201≤<<≤-a a a 或.∴选择答案【 C 】.6. 共享单车给市民出行带来了诸多便利,某公司购买了一批共享单车投放到某地给市民使用,据市场分析,每辆单车的累计收入y (单位: 元)与营运天数x (∈x N*)满足关系式80060212-+-=x x y ,要使累计收入高于800元,则营运天数x 的取值范围为 【 】 (A ){}*,9030N x x x ∈<< (B ){}*,4030N x x x ∈<<(C ){}*,8040N x x x ∈<< (D ){}*,6020N x x x ∈<<答案 【 C 】解析 本题考查一元二次不等式的应用.由题意可知:80080060212>-+-x x ,整理得:032001202<+-x x . 解之得:8040<<x ,且∈x N*.∴营运天数x 的取值范围为{}*,8040N x x x ∈<<.∴选择答案【 C 】.7. 已知1≤x ≤2,02>-ax x 恒成立,则实数a 的取值范围是 【 】(A ){}1≥a a (B ){}1>a a (C ){}1≤a a (D ){}1<a a答案 【 D 】解析 本题考查一元二次不等式的恒成立问题.∵1≤x ≤2,02>-ax x 恒成立∴x a <恒成立,∴1min =<x a .∴实数a 的取值范围是{}1<a a .∴选择答案【 D 】.8. 设集合{}01<<-=m m P ,{}恒成立对任意实数x mx mx R m Q 0442<-+∈=,则下列说法正确的是 【 】(A )P 是Q 的真子集 (B )Q 是P 的真子集(C )Q P = (D )∅=Q P答案 【 A 】解析 本题考查含参一元二次不等式的恒成立问题,注意对二次项系数是否等于0进行讨论. 对于集合Q ,当0=m 时,04<-恒成立,符合题意;当0≠m 时,则有:()⎩⎨⎧<+=∆<016402m m m ,解之得:01<<-m . 综上所述,{}{}010442≤<-=<-+∈=m m x mx mx R m Q 恒成立对任意实数. ∵{}01<<-=m m P ,∴Q P ≠⊂.∴选择答案【 A 】.9. 某小区的蓄水池每日零时均有水400吨,并从零时开始,以每小时60吨的速度匀速向蓄水池注水,同时向该小区不间断供水,t 小时内供水总量为t 6120(0≤t ≤24)吨.若蓄水池的供水量小于80吨,则会出现供水紧张的情况,则每日处于供水紧张情况的时长为 【 】 (A )6小时 (B )7小时 (C )8小时 (D )9小时 答案 【 C 】解析 本题考查数学核心素养——数学建模. 由题意可知:80612060400<-+t t . 整理得:t t 66163<+.∵0163>+t ,∴()()2266163t t <+.整理得:025612092<+-t t ,∴()()032383<--t t .解之得:33238<<t . ∵838332=-,∴每日处于供水紧张情况的时长为8小时.∴选择答案【 C 】.10. 在R 上定义运算⊗:()y x y x -=⊗1.若不等式()()1<+⊗-a x a x 对任意实数x 都成立,则实数a 的取值范围为 【 】(A )⎭⎬⎫⎩⎨⎧<<-2321a a (B ){}20<<a a(C ){}11<<-a a (D )⎭⎬⎫⎩⎨⎧<<-2123a a答案 【 A 】解析 本题考查与一元二次不等式有关的恒成立问题. ∵()y x y x -=⊗1∴()()1<+⊗-a x a x ,即()()11<---a x a x . 整理得:()0122>----a a x x .由题意可知:()()014122<--+-=∆a a ,∴()()03212<-+a a ,解之得:2321<<-a .∴实数a 的取值范围为⎭⎬⎫⎩⎨⎧<<-2321a a . ∴选择答案【 A 】.另解: 由上面的解法知: ()0122>----a a x x .∴x x a a -<--221恒成立,只需()min 221x x a a -<--即可.∵412122-⎪⎭⎫ ⎝⎛-=-x x x ≥41-,∴()41min 2-=-x x .∴4112-<--a a ,∴03442<--a a ,解之得:2321<<-a . ∴实数a 的取值范围为⎭⎬⎫⎩⎨⎧<<-2321a a .∴选择答案【 A 】.11.(多选)已知02>++c bx ax 的解集为{}21<<-x x ,则下列x 的取值范围能使不等式()()ax c x b x a 2112<+-++成立的是 【 】(A ){}30<<x x (B ){}3>x x (C ){}0<x x (D ){}12<<-x x 答案 【 BC 】解析 本题考查一元二次不等式与对应的一元二次方程之间的关系.注意,一元二次不等式的解集的端点值就是对应一元二次方程的解(实数根). ∵02>++c bx ax 的解集为{}21<<-x x ∴0<a ,方程02=++c bx ax 的解分别为1-和2.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-2121ac ab ,∴⎩⎨⎧-=-=ac a b 2.∵()()ax c x b x a 2112<+-++∴()()ax a x a x a 22112<---+,∴032<-ax ax . ∵0<a ,∴032<-ax ax 同解于032>-x x . 解之得:3>x 或0<x . ∴选择答案【 BC 】.12.(多选)若关于x 的一元二次方程()()m x x =--32有实数根21,x x ,且21x x <,则下列结论正确的是 【 】 (A )当0=m 时,3,221==x x (B )41->m (C )当0>m 时,3221<<<x x(D )二次函数()()m x x x x y +--=21的图象与x 轴交点的坐标为()0,2和()0,3 答案 【 ABD 】解析 本题考查一元二次函数、一元二次方程之间的关系.对于(A ),当0=m 时,()()032=--x x ,解之得:3,221==x x ,故(A )正确;对于(B ),整理()()m x x =--32得:0652=-+-m x x .由题意可知,该方程有两个不相等的实数根,∴()()06452>---=∆m ,解之得:41->m .故(B )正确; 对于(C ),采用数形结合的思想方法,设()()321--=x x y ,m y =2,则方程()()m x x =--32的解的问题就转化为两个函数21,y y 的图象的交点问题.如下图所示,显然,当0>m 时,有2132x x <<<.故(C )错误;对于(D ),∵方程()()m x x =--32,即()()032=---m x x 的实数根为21,x x ∴()()()()m x x x x x x ---=--3221.∴()()()()()()323221--=+---=+--=x x m m x x m x x x x y .∴二次函数()()m x x x x y +--=21的图象与x 轴交点的坐标为()0,2和()0,3.故(D )正确.∴选择答案【 ABD 】.第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13. 已知集合(){}0122=+++=x m x x A ,集合{}0>=x x B ,若∅=B A ,则实数m 的取值范围是_____________. 答案 {}4->m m解析 本题考查一元二次不等式与一元二次方程的关系.在利用条件∅=B A 时,要注意分∅=A 和∅≠A 两种情况进行讨论.当∅=A 时,显然∅=B A .此时()044222<+=-+=∆m m m ,解之得:04<<-m ; 当∅≠A 时,设方程()0122=+++x m x 的两个实数根分别为21,x x . ∵{}0>=x x B ,∅=B A∴方程()0122=+++x m x 无正实数根.由根与系数的关系定理可得:()221+-=+m x x ,0121>=⋅x x ,显然,21,x x 均为负数.∴()⎩⎨⎧<+-≥+=∆02042m m m ,解之得:m ≥0.综上所述,实数m 的取值范围是{}4->m m .14. 若实数21,x x 为方程0622=++-m mx x 的两根,则实数m 的取值范围是____________,()()222122-+-x x 的最小值是__________.(第一空2分,第二空3分)答案 m ≥3或m ≤2-, 2解析 本题考查一元二次方程与一元二次函数的关系.由题意可知:()()6422+--=∆m m ≥0,解之得:m ≥3或m ≤2-. 由根与系数的关系定理可得:6,22121+==+m x x m x x .∴()()()844444222122212221212221++-+=+-++-=-+-x x x x x x x x x x ()()()2122121212212422444x x x x x x x x x x -+-+=-+++-+=.∴()()()()4414546242222222221-⎪⎭⎫ ⎝⎛-=+-+-=-+-m m m x x . ∴当3=m 时,()()222122-+-x x 取得最小值,最小值为244145342=-⎪⎭⎫ ⎝⎛-⨯. 另解: ()()222122-+-x x ≥()()()()8862842222212121+-+=++-=--m m x x x x x x 206+-=m . 当且仅当2221-=-x x ,即21x x =时,等号成立.此时,()()06422=+--=∆m m ,解之得:3,221=-=m m .显然,当3=m 时,()()222122-+-x x 取得最小值,最小值为22036=+⨯-.15. 如图所示,有长为30 m 的篱笆,一面利用墙(墙的最大可用长度为10 m ),围成中间隔有一道篱笆(平行于AB )的矩形花圃.设花圃的一边AB 为x m,面积为y m 2.如果围成的花圃的面积不少于63 m 2,则x 的取值范围是_____________.DCB A答案 ⎥⎦⎤⎢⎣⎡7,320解析 本题考查一元二次不等式的解法及其应用. 由题意可知:()x BC 330-=m,则有:()x x 330-≥63,且x 330-≤10.解之得:320≤x ≤7. ∴x 的取值范围是⎥⎦⎤⎢⎣⎡7,320. 16. 研究问题:已知关于x 的不等式02>+-c bx ax 的解集为{}21<<x x ,解关于x 的不等式02>+-a bx cx ,解法为:由02>+-c bx ax 得0112>⎪⎭⎫ ⎝⎛+-x c x b a ,令x y 1=,则121<<y ,所以不等式02>+-a bx cx 的解集为⎭⎬⎫⎩⎨⎧<<121x x .参考上述解法,已知关于x 的不等式++a x k0<++c x b x 的解集为{}3212<<-<<-x x x 或,则关于x 的不等式0111<--+-cx bx ax kx 的解集为_____________.答案 ⎭⎬⎫⎩⎨⎧-<<-<<3121121x x x 或解析 本题考查一元二次不等式的解法. 用x1-代替++a x k 0<++c x b x 中的x 可得:0111111<--+-=+-+-++-cx bx ax kx c xb x a x k . ∵++a x k 0<++cx bx 的解集为{}3212<<-<<-x x x 或 令x y 1-=,则有12-<<-y 或32<<y .∴112-<-<-x 或312<-<x ,解之得:121<<x 或3121-<<-x .∴不等式0111<--+-cx bx ax kx 的解集为⎭⎬⎫⎩⎨⎧-<<-<<3121121x x x 或.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(1)当3=a 时,求不等式022<++ax x 的解集;(2)若不等式022>++ax x 的解集为R ,求实数a 的取值范围. 解:(1)当3=a 时,0232<++x x ,解之得:12-<<-x . ∴原不等式的解集为{}12-<<-x x ; (2)∵不等式022>++ax x 的解集为R ∴082<-=∆a ,解之得:2222<<-a . ∴实数a 的取值范围是{}2222<<-a a . 18.(本题满分12分)当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析: 本题的意思即方程m mx x 2122-=++有两个不相等的实数根,且两个实数根均在()1,0内,考查了一元二次方程实数根的K 分布.解: 原方程可化为: 02122=+++m mx x ,设()m mx x x f 2122+++=.由题意可得:()()()()⎪⎪⎩⎪⎪⎨⎧>+++=>+=<-<>+-=∆021211021010021422m m f m f m m m ,解之得:2121-<<-m .∴实数m 的取值范围是⎭⎬⎫⎩⎨⎧-<<-2121m m .19.(本题满分12分)解关于x 的不等式3222--+m mx x ≤()()922422--++-m x m x m . 解: 原不等式整理得:()6232++-x m mx ≤0.当0=m 时,62+-x ≤0,解之得:x ≥3,原不等式的解集为{}3≥x x ;当0≠m 时,原不等式可化为:()⎪⎭⎫⎝⎛--m x x m 23 ≤0.当0<m 时,原不等式同解于()⎪⎭⎫ ⎝⎛--m x x 23≥0,∴原不等式的解集为⎭⎬⎫⎩⎨⎧≤≥m x x x 23或; 当0>m 时,原不等式同解于()⎪⎭⎫⎝⎛--m x x 23 ≤0.若320<<m ,则m 23<,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤m x x 23;若32=m ,则()23-x ≤0,原不等式的解集为{}3=x x ; 若32>m ,则m 23>,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤32x m x .综上所述,当0=m 时,原不等式的解集为{}3≥x x ;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≥m x x x 23或;当320<<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤m x x 23;当32=m 时,原不等式的解集为{}3=x x ;当32>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤32x m x .20.(本题满分12分)某辆汽车以x 千米/时的速度在高速公路上匀速行驶(考虑到高速公路上行车安全,要求60≤x ≤120)时,每小时耗油(所需要的汽油量)⎪⎭⎫⎝⎛+-x k x 450051升,其中k 为常数,60≤k ≤100.(1)若汽车以120千米/时的速度行驶,每小时耗油11. 5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.解:(1)∵汽车以120千米/时的速度行驶,每小时耗油11. 5升∴5.115.75124120450012051=+-=⎪⎭⎫ ⎝⎛+-⨯k k ,解之得:100=k . ∴每小时耗油⎪⎭⎫⎝⎛+-x x 450010051升.由题意可知:⎪⎭⎫⎝⎛+-x x 450010051≤9.整理得:45001452+-x x ≤0,解之得:45≤x ≤100. ∵60≤x ≤120∴x 的取值范围为[]100,60;(2)设该汽车行驶100千米的油耗为y 升,则有201201900004500511002+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-⨯=x k x x k x x y .设x t 1=,则1201≤t ≤601,2020900002+-=kt t y . ∴9002090009000022k k t y -+⎪⎭⎫ ⎝⎛-=. ∵60≤k ≤100,∴1501≤9000k ≤901(故6019000<k ) 当9000k ≥1201,即75≤k ≤100时,900202min k y -=,此时9000kt =,k x 9000=;当12019000<k ,即60≤75<k 时,1201=t ,64105201201201201900002min k k y -=+⨯-⎪⎭⎫ ⎝⎛⨯=. 综上所述,当75≤k ≤100时,该汽车行驶100千米的油耗的最小值为⎪⎭⎫ ⎝⎛-900202k 升,当60≤75<k 时,该汽车行驶100千米的油耗的最小值为⎪⎭⎫⎝⎛-64105k 升. 21.(本题满分12分)设p :实数x 满足03222<--a ax x (0>a ),q :实数x 满足2≤4<x . (1)若1=a ,且q p ,都为真命题,求x 的取值范围; (2)若q 是p 充分不必要条件,求实数a 的取值范围. 解:(1)当1=a 时,0322<--x x ,解之得:31<<-x . ∵q p ,都为真命题∴x 的取值范围是{}{}{}324231<≤=<≤<<-x x x x x x ; (2)不等式03222<--a ax x 可化为()()03<-+a x a x . ∵0>a ,∴该不等式的解集为{}a x a x 3<<-. 设{}a x a x A 3<<-=,{}42<≤=x x B . ∵q 是p 充分不必要条件,∴A B ≠⊂∴a 3≥4,解之得:a ≥34. ∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,34. 22.(本题满分12分) 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a 整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.。
高考数学一次函数与二次函数单选题专题复习题(含答案)
高考数学一次函数与二次函数单选题专题复习题1.函数()()()f x x a x b =--(其中a b >)的图象如图所示,则函数()2x g x a b =+-的图像是()A. B.C. D.2.某超市商品的日利润y (单位:元)与该商品的当日售价x (单位:元)之间的关系为21221025x y x =-+-,那么该商品的日利润最大时,当日售价为()A.120元 B.150元 C.180元D.210元3.若0ab >,2240a ab b c -+-=,当cab取最小值时,2a b c +-的最大值为()A.76B.1312C.1918D.25244.若全集U =R ,集合{}21A y y x ==+,{}12B x x =-≤≤,则()A B =U ð()A.(),1-∞-B.()1,+∞C.()(),12,-∞-+∞ D.()(),12,-∞+∞ 5.如果函数()f x 的导函数为()f x ',且满足2()(0)f x f x x '=⋅-,那么()f x 的最大值一定为()A.14-B.0C.14D.16.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为12x =-.有下列4个结论:①<0abc ;②b a c <+;③34b c <-;④当12x >-时,y 随x 的增大而增大.其中,正确的结论有()A.1个B.2个C.3个D.4个7.二次函数()()22f x ax x c x =++∈R 的值域为[)1,+∞,则14a c+的最小值为()A.-3B.3C.-4D.48.如果不等式20ax x c -+>的解集为{21}x x -<<∣,那么函数2y ax x c =++的图象大致为()A. B.C. D.9.已知函数()222,0,2,0,x x x f x x x x ⎧+≥=⎨-+<⎩,如果满足()()22f a f a ->,那么实数a 的取值范围是()A.()(),12,-∞-+∞B.()1,2-C.()2,1- D.()(),21,-∞-+∞10.设函数()()()2ln f x a x x b =-+,若()0f x ≤,则22a b +的最小值为()A.15B.5C.12D.211.如图所示,关于二次函数2y ax bx c =++的图象有四个不同说法:①0ac <;②方程20ax bx c ++=的根是11x =-,23x =;③0a b c ++>;④当1x >时,y 随x 的增大而增大。
高一数学一次函数与二次函数试题
高一数学一次函数与二次函数试题1.已知函数.(1)若函数有两个零点,求的取值范围;(2)若函数在区间与上各有一个零点,求的取值范围.【答案】(1);(2).【解析】(1)由题意可得,,且,由此求得的范围.(2)若函数在区间与上各有一个零点,则由二次函数的图象可得不等式,由此求得的范围.试题解析:(1)函数有两个零点,即方程有两个不等定理,令,即,解得,又,所以的取值范围为.(2)若函数在区间与上各有一个零点,由的图像可知,只需,即,解得.【考点】1.二次函数的性质;2.函数的零点;3.函数零点与图象的关系.2.已知函数(1)若在[-3,2]上具有单调性,求实数的取值范围。
(2)若的有最小值为-12,求实数的值;【答案】(1)或;(2)或【解析】(1)二次函数的单调性与对称轴有关,单调区间在对称轴的一侧,可数形结合解题;图像开口上, 对称轴为,区间在对称轴左侧为单调减函数, 区间在对称轴右侧为单调增函数,(2)二次函数在区间上的最值在端点处或顶点处,遇到对称轴或区间含有待定的字母,则要按对称轴在不在区间内以及区间中点进行讨论. 图像开口上,当对称轴为在区间内时,最小值位于对称轴处; 当区间在对称轴左侧为单调减函数,最小值位于右端点处. 试题解析:(1)的对称轴为又在上具有单调性所以或即或(2) 由在有最小值为Ⅰ.当即时解得: 或Ⅱ.当即时解得: (舍)综上所述: 或【考点】二次函数单调性与最值.3.设为实数,函数.(Ⅰ)若,求的取值范围;(Ⅱ)求函数的最小值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由条件代入可解得;(Ⅱ)结合一元二次函数的最值以及分段函数可以求得函数的最小值,详解如下;试题解析:(Ⅰ)因为,,所以,可知,得到,所以;(Ⅱ)将函数去掉绝对值,化简有:.令;.当,所以;当,所以.综上,函数的最小值为:.【考点】分段函数,一元二次函数的最值.4.已知函数在区间[0,1]上有最小值-2,求的值.【答案】或.【解析】这是二次函数在给定区间上的最小值问题,一般我们通过考察对称轴与给定区间的关系,来确定函数的最小值在哪一点取得.本题中二次函数的二次项系数为正,因此对最小值问题,要分成三类,即(是二次函数图象的对称轴).试题解析:(1)当时,是函数取得最小值,∴,,∴. 3分(2)当时,是函数取得最小值,∴,,∴. 6分(3)当时,是函数取得最小值,∴,,舍去. 10分综上或. 12分【考点】二次函数的最值问题.5.设函数仅有一个负零点,则m的取值范围为()A.B.C.D.【答案】D【解析】令,即,(I)当时,;解得,符合题意;(II)当时,当,即时,,解得,符合题意;当,即时,此时两根为一正一负或者一负一零,所以,解得;综上所述,的取值范围为或,所以答案选.【考点】1.函数的零点;2.二次函数性质与应用.6.如果函数在区间上是减少的,那么实数的取值范围是()A.B.C.D.【答案】A【解析】因为,函数在区间上是减少的,所以,在图象对称轴的左侧,即,所以,,选A。
高一数学一次函数与二次函数试题
高一数学一次函数与二次函数试题1.已知二次函数在区间上是增函数,则实数的范围是___________.【答案】【解析】由于二次函数的单调递增区间为,则得.【考点】二次函数的单调性.2.已知且,,当时均有,则实数的取值范围是 .【答案】【解析】解:,当时,变开为:,构造函数,,其中,且,由图像可知,当时,的图像在的图像下方.当时,有,即,得,即当时,有,即,得,即,由(1)(2)可知,实数的取值范围是【考点】本题考查二次函数的图像与性质,指数函数的图像与性质,考查函数的恒成立问题.3.若函数在上单调递减,则的取值范围是A.B.C.D.【答案】C【解析】(1)当时,函数变为,由一次函数的性质知,在R上是减函数,符合题意;(2)当时,,对称轴为,根据在上单调递减,可判断出函数开口向上,解得:;综上:,故选:C.【考点】二次函数的图像与性质4.把长为10cm的细铁丝截成两段,各自围成一个正方形,求这两个正方形面积之和的最小值。
【答案】【解析】设出其中一段的长为,表示出另一段的长,从而得正方形面积表示式为二次函数即可求解,但要注意自变量得取值范围,即函数定义域。
试题解析:设铁丝一段长,,两正方形面积之和为, 3分则另一段铁丝长, 5分依题意,, 10分当时,取最大值. 13分答:(略) 14分【考点】二次函数最值.5.如果函数在区间上是减少的,那么实数的取值范围是()A.B.C.D.【答案】A【解析】因为,函数在区间上是减少的,所以,在图象对称轴的左侧,即,所以,,选A。
【考点】二次函数的图像和性质点评:简单题,二次函数问题,一般考虑其开口方向,对称轴等。
6.已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小:(1)f(6)与f(4)【答案】 (1) f(6)<f(4);(2)【解析】思路分析: (1)结合y=f(x)的图像开口向下,及对称轴是x=3,得到f(x)的减区间,比较大小。
高一数学一次函数和二次函数试题
高一数学一次函数和二次函数试题1.函数的最小值为___________________.【答案】1【解析】主要考查二次函数的性质与图象。
解:因为二次项系数为正,图象开口向下,对称轴,所以函数在是增函数,所以函数的最小值为=1.2.已知函数(1)、已知,求(2)、不计算函数值,比较的大小【答案】 (1),(2).【解析】主要考查二次函数的性质与图象。
配方,确定顶点对称轴,根据二次项系数为正,明确单调区间,比较大小。
解:,对称轴为(1)、,又函数在上递增,.3.设不等式对满足的一切实数的取值都成立,求的取值范围。
【答案】【解析】主要考查一次、二次函数的性质与图象。
这里利用变更主元法,化为一次函数问题解:因为不等式对满足的一切实数的取值都成立,即在[-2,2]恒成立。
当=0,即,只有=1符合题意;当0时,只需,即,解得,所以。
综上所知所求取值范围是。
4.已知一次函数,它的图象在y轴上的截距为-4,则的值为()A.-4B.2C.1D.2或1【答案】D【解析】主要考查一次函数概念、图象和性质。
令=0得图象在y轴上的截距=-4,解得为2或1,选D。
5.若点三点共线,则a的值为()A.6B.-6C.D.6或3【答案】A【解析】主要考查一次函数概念、图象和性质。
两种方法,一是先由求得一次函数解析式,再将代入,求得a的值为6;二是可利用点三点共线,直线AB,AC的斜率相等。
故选A。
6.已知函数,则其图象的形状为()A.一条直线B.一条线段C.一系列点D.不存在【答案】B【解析】主要考查一次函数概念和图象。
因为函数,所以其图象的形状为一条线段,故选B。
7.若直线与重合,则m=______________.【答案】-2【解析】主要考查一次函数概念。
解:因为直线与重合,所以=1,且,解得=-2.8.已知正比例函数与一次函数的图象交于点(1)、求斜率的值;(2)、如果一次函数与x轴交于一点A,求A点的坐标.【答案】①;②令。
高一数学第二单元一二次函数知识点及测精彩试题
高一数学第二单元一二次函数知识点及测试题一次函数二次函数知识点:一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
高一数学第二单元一二次函数知识点及测试题一次函数二次函数知识点:一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k 为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k <0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
通用版高中数学必修一一次函数与二次函数知识点题库
(每日一练)通用版高中数学必修一一次函数与二次函数知识点题库单选题1、对数函数y=log ax(a>0且a≠1)与二次函数y=(a﹣1)x2﹣x在同一坐标系内的图象可能是()A.B.C.D.答案:A解析:<0,故排除C ①当0<a<1时,对数函数y=log ax为减函数,二次函数开口向下,且其对称轴为x=12(a−1)>0,故B错与D;②当a>1时,对数函数y=log ax为增函数,二次函数开口向上,且其对称轴为x=12(a−1)误.解:由对数函数y=log ax(a>0且a≠1)与二次函数y=(a﹣1)x2﹣x可知,①当0<a<1时,此时a﹣1<0,对数函数y=log ax为减函数,<0,故排除C与D;而二次函数y=(a﹣1)x2﹣x开口向下,且其对称轴为x=12(a−1)②当a>1时,此时a﹣1>0,对数函数y=log ax为增函数,而二次函数y=(a﹣1)x2﹣x开口向上,且其对称轴为x=12(a−1)>0,故B错误,而A符合题意.故选:A.2、已知函数f(x)=x2−2(a+1)x+a2,g(x)=−x2+2(a−1)x−a2+2,记H1(x)=f(x)+g(x)−|f(x)−g(x)|2,H2(x)=f(x)+g(x)+|f(x)−g(x)|2,则H1(x)的最大值与H2(x)的最小值的差为()A.−4B.4C.a2−a+4D.a2+a+8答案:B解析:先求y=f(x),y=g(x)交点横坐标,再转化H1(x)、H2(x),结合图象确定H1(x)的最大值与H2(x)的最小值的取法,最后作差得结果.令f(x)=g(x),则x2−2(a+1)x+a2=−x2+2(a−1)x−a2+2∴(x−a)2=1∴x=a±1H1(x)=f(x)+g(x)−|f(x)−g(x)|2=min{f(x),g(x)}H2(x)=f(x)+g(x)+|f(x)−g(x)|2=max{f(x),g(x)}作y=f(x),y=g(x)图象,由图可知实线部分为H1(x),虚线部分为H2(x)因此H1(x)的最大值为g(a−1)=3−2a,H2(x)的最小值为f(a+1)=−1−2a,从而H1(x)的最大值与H2(x)的最小值的差为(3−2a)−(−1−2a)=4,故选:B小提示:本题考查二次函数图像、分段函数最值,考查数形结合思想方法以及基本分析求解能力,属中档题.3、函数f(x)=x2−3x+2在区间(1,2)内的函数值为()A.大于等于0B.等于0C.大于0D.小于0答案:D解析:将f(x)因式分解,根据x的范围,可得f(x)的正负,即可得答案.由已知得f(x)=x2﹣3x+2=(x﹣1)(x﹣2),因为1<x<2,所以x﹣1>0,x﹣2<0,所以f(x)<0,即f(x)=x2﹣3x+2在区间(1,2)内的函数值小于0;故选:D.解答题4、已知函数f(x)=(a2−a−1)x(1−a)(2+a)是幂函数(a∈R),且f(1)<f(2).(1)求函数f(x)的解析式;(2)试判断是否存在实数b,使得函数g(x)=3−f(x)+2bx在区间[−1,1]上的最大值为6,若存在,求出b 的值;若不存在,请说明理由.答案:(1)f(x)=x2;(2)存在,b=±2.解析:(1)根据函数f(x)=(a2−a−1)x(1−a)(2+a)是幂函数(a∈R),且f(1)<f(2),求出实数a,即可求出函数f(x)的解析式;(2)化简得g(x)=−(x−b)2+b2+3,求出对称轴,分b≤−1,b≥1,−1<b<1三种情况分别求得函数的最大值,即可求出实数b的值.解:因为函数f(x)=(a2−a−1)x(1−a)(2+a)是幂函数,所以a2−a−1=1,解得a=2或a=−1,当a=2时,f(x)=x−4,则f(1)>f(2),故不符题意,当a=−1时,f(x)=x2,则f(1)<f(2),符合题意,所以f(x)=x2;(2)由(1)得g(x)=3−f(x)+2bx=−x2+2bx+3=−(x−b)2+b2+3,函数图像开口向下,对称轴为:x=b,当b≤−1时,函数g(x)在区间[−1,1]上递减,则g(x)max=g(−1)=−1−2b+3=6,解得b=−2,符合题意;当b≥1时,函数g(x)在区间[−1,1]上递增,则g(x)max=g(1)=−1+2b+3=6,解得b=2,符合题意;当−1<b<1时,g(x)max=g(b)=−b2+2b2+3=6,解得b=±√3,不符题意,综上所述,存在实数b=±2满足题意.5、已知f(x)=2+log3x , x∈[1 , 9](1)求函数y=f(x2)的定义域;(2)求y=[f(x)]2+f(x2)的最大值及其对应的x值.答案:(1)[−3,−1]∪[1,3](2)x=3时,y的最大值为13解析:(1)由f(x)的定义域直接求解y=f(x2)的定义域;(2)由f(x)的定义域,求出y=[f(x)]2+f(x2)的定义域,计算y=[f(x)]2+f(x2)的值域.(1)∵f(x)=2+log3x,x∈[1,9],∴y=f(x2)中x满足1≤x2≤9,∴1≤x≤3或−3≤x≤−1即定义域为[−3,−1]∪[1,3];(2)∵f(x)=2+log3x,x∈[1,9],y=[f(x)]2+f(x2)的定义域为{1≤x≤91≤x2≤9;∴即定义域为[1,3],∴0≤log3x≤1,∴y=[f(x)]2+f(x2)=(2+log3x)2+(2+log3x2)=(log3x+3)2−3∴当log3x=1时,即x =3时,y最大为13;小提示:本题考查了复合函数的定义域问题及二次函数的值域问题,注意研究函数的值域时,先看定义域是关键,属于易错题.。
高中数学必修一一次函数与二次函数基础知识题库
(每日一练)高中数学必修一一次函数与二次函数基础知识题库单选题1、若平面向量a⃑,b⃑⃑满足|a⃑|=|b⃑⃑|=a⃑⋅b⃑⃑=2,则对于任意实数λ,|λa⃑+(1−λ)b⃑⃑|的最小值是()A.√3B.1C.2√3D.2答案:A解析:转化|λa⃑+(1−λ)b⃑⃑|=√(λa⃑+(1−λ)b⃑⃑)2=√λ2|a⃑|2+(1−λ)2|b⃑⃑|2+2λ(1−λ)a⃑⋅b⃑⃑,结合题干条件和二次函数的性质,即得解由题意,|λa⃑+(1−λ)b⃑⃑|=√(λa⃑+(1−λ)b⃑⃑)2=√λ2|a⃑|2+(1−λ)2|b⃑⃑|2+2λ(1−λ)a⃑⋅b⃑⃑=√4λ2+4(1−λ)2+4λ(1−λ)=√4λ2−4λ+4=√4(λ−12)2+3≥√3当且仅当λ=12时等号成立故|λa⃑+(1−λ)b⃑⃑|的最小值是√3故选:A2、已知函数f(x)={x2+1,x≥0−x3+3x+a,x<0的值域为[1,+∞),则实数a的取值范围是()A.[1,+∞)B.(1,+∞)C.(3,+∞)D.[3,+∞)答案:D解析:求出函数y=x2+1在x≥0时值的集合,函数y=−x3+3x+a在x<0时值的集合,再由已知并借助集合包含关系即可作答.当x≥0时,f(x)=x2+1在[0,+∞)上单调递增,∀x∈[0,+∞),f(x)≥f(0)=1,则f(x)在[0,+∞)上值的集合是[1,+∞),当x<0时,f(x)=−x3+3x+a,f′(x)=−3x2+3=−3(x+1)(x−1),当x<−1时,f′(x)<0,当−1<x<0时,f′(x)>0,即f(x)在(−∞,−1)上单调递减,在(−1,0)上单调递增,∀x<0,f(x)≥f(−1)=a−2,则f(x)在(−∞,0)上值的集合为[a−2,+∞),因函数f(x)={x2+1,x≥0−x3+3x+a,x<0的值域为[1,+∞),于是得[a−2,+∞)⊆[1,+∞),则a−2≥1,解得a≥3,所以实数a的取值范围是[3,+∞).故选:D3、正数a,b满足9a+b=ab,若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则实数m的取值范围是A.[3,+∞)B.(−∞,3]C.(−∞,6]D.[6,+∞)答案:A解析:利用基本不等式求得a+b的最小值,把问题转化为m≥f(x)恒成立的类型,求解f(x)的最大值即可.∵9a+b=ab,∴1a +9b=1,且a,b为正数,∴a+b=(a+b)(1a +9b)=10+ba+9ab⩾10+2√ba⋅9ab=16,当且仅当ba =9ab,即a=4,b=12时,(a+b)min=16,若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则16≥−x2+2x+18−m对任意实数x恒成立,即m≥−x2+2x+2对任意实数x恒成立,∵−x2+2x+2=−(x−1)2+3⩽3,∴m≥3,故选:A小提示:本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.4、已知函数f(x)=−x2+2x+1,x∈[0,2],函数g(x)=ax−1,x∈[−1,1],对于任意x1∈[0,2],总存在x2∈[−1,1],使得g(x2)=f(x1)成立,则实数a的取值范围是()A.(−∞,−3]B.[3,+∞)C.(−∞,−3]∪[3,+∞)D.(−∞,−3)∪(3,+∞)答案:C解析:先求得f(x)的值域,根据题意可得f(x)的值域为[1,2]是g(x)在[−1,1]上值域的子集,分a>0,a<0两种情况讨论,根据g(x)的单调性及集合的包含关系,即可求得答案.因为f(x)=−(x−2)2+2,x∈[0,2],所以{f(x)min=f(0)=1f(x)max=f(2)=2,即f(x)的值域为[1,2],因为对于任意x1∈[0,2],总存在x2∈[−1,1],使得g(x2)=f(x1)成立,所以f(x)的值域为[1,2]是g(x)在[−1,1]上值域的子集,当a>0时,g(x)在[−1,1]上为增函数,所以g(−1)≤g(x)≤g(1),所以g(x)∈[−a−1,a−1],所以{−a −1≤1a −1≥2,解得a ≥3, 当a <0时,g(x)在[−1,1]上为减函数,所以g(1)≤g(x)≤g(−1),所以g(x)∈[a −1,−a −1]所以{a −1≤1−a −1≥2,解得a ≤−3, 综上实数a 的取值范围是(−∞,−3]∪[3,+∞),故选:C小提示:解题的关键是将题干条件转化为两函数值域的包含关系问题,再求解,考查分析理解的能力,属中档题.5、函数y =lg (x 2−2x −3)的单调递增区间为( )A .(−∞,−1)B .(1,+∞)C .(3,+∞)D .(−1,3)答案:C解析:根据二次函数与对数函数的性质,结合据复合函数的单调性的判定方法,即可求解.设g (x )=x 2−2x −3,可得函数g (x )在(−∞,1)单调递减,在(1,+∞)单调递增,又由函数y =lg (x 2−2x −3),满足x 2−2x −3>0,解得x <−1或x >3,根据复合函数的单调性,可得函数f (x )的单调递增区间为(3,+∞).故选:C.小提示:本题主要考查对数函数的性质,二次函数图象与性质,以及复合函数的单调性的判定,其中解答中熟记对数函数和二次函数的性质,以及复合函数的单调性的判定方法是解答的关键,着重考查推理与运算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学第二单元一二次函数知识点及测试题一次函数二次函数知识点:一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。
g=S-ft。
六、常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁|当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x ₂)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.二次函数1.解析式、待定系数法若()2f x x bx c =++,且()10f =,()30f =,求()1f -的值. 变式1:若二次函数()2f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为(0,11),则A .1,4,11a b c ==-=-B .3,12,11a b c ===C .3,6,11a b c ==-=D .3,12,11a b c ==-=变式2:若()()223,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______. 变式3:若二次函数()2f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、()2,0B x ,且2212269x x +=,试问该二次函数的图像由()()231f x x =--的图像向上平移几个单位得到?2.图像特征 将函数()2361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值或最小值,并画出它的图像.变式1:已知二次函数()2f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则122x x f +⎛⎫= ⎪⎝⎭A .2b a -B .b a- C . c D .244ac b a - 变式2:函数()2f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、()1f 的大小关系是A .()()()110f f f <-<B .()()()011f f f <-<C .()()()101f f f <<-D .()()()101f f f -<<变式3:已知函数()2f x ax bx c =++的图像如右图所示, 请至少写出三个与系数a 、b 、c 有关的正确命题_________.3.)单调性已知函数()22f x x x =-,()()22[2,4]g x x x x =-∈. (1)求()f x ,()g x 的单调区间;(2) 求()f x ,()g x 的最小值.xyO变式1:已知函数()242f x x ax =++在区间(),6-∞内单调递减,则a 的取值范围是 A .3a ≥ B .3a ≤ C .3a <- D .3a ≤-变式2:已知函数()()215f x x a x =--+在区间(12,1)上为增函数,那么()2f 的取值范围是_________.变式3:已知函数()2f x x kx =-+在[2,4]上是单调函数,求实数k 的取值范围. 4.最值已知函数()22f x x x =-,()()22[2,4]g x x x x =-∈. (1)求()f x ,()g x 的单调区间;(2) 求()f x ,()g x 的最小值.变式1:已知函数()223f x x x =-+在区间[0,m ]上有最大值3,最小值2,则m 的取值范围是A .[)1,+∞B .[]0,2C .[]1,2D .(),2-∞变式2:若函数y =的最大值为M ,最小值为m ,则M + m 的值等于________. 变式3:已知函数()224422f x x ax a a =-+-+在区间[0,2]上的最小值为3,求a 的值.5.奇偶性已知函数()f x 是定义在R 上的奇函数,当x ≥0时,()()1f x x x =+.画出函数()f x 的图像,并求出函数的解析式.变式1:若函数()()()22111f x m x m x =-+-+是偶函数,则在区间(],0-∞上()f x 是A .增函数B .减函数C .常数D .可能是增函数,也可能是常数 变式2:若函数()()2312f x ax bx a b a x a =+++-≤≤是偶函数,则点(),a b 的坐标是________.变式3:设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈.(I)讨论)(x f 的奇偶性;(II)求)(x f 的最小值.6.(北师大版第64页A 组第9题)图像变换已知2243,30()33,0165,16x x x f x x x x x x ⎧++-≤<⎪=-+≤<⎨⎪-+-≤≤⎩.(1)画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值和最小值. 变式1:指出函数223y x x =-++的单调区间.变式2:已知函数)(|2|)(2R x b ax x x f ∈+-=.给下列命题:①)(x f 必是偶函数;② 当)2()0(f f =时,)(x f 的图像必关于直线x =1对称;③ 若02≤-b a ,则)(x f 在区间[a ,+∞)上是增函数;④)(x f 有最大值||2b a -.其中正确的序号是________.③变式3:设函数,||)(c bx x x x f ++=给出下列4个命题:①当c =0时,)(x f y =是奇函数;②当b =0,c >0时,方程0)(=x f 只有一个实根; ③)(x f y =的图象关于点(0,c )对称;④方程0)(=x f 至多有两个实根. 上述命题中正确的序号为 .7.(北师大版第54页A 组第6题)值域求二次函数2()26f x x x =-+在下列定义域上的值域:(1)定义域为{}03x Z x ∈≤≤;(2) 定义域为[]2,1-.变式1:函数()2()2622f x x x x =-+-<<的值域是A .20,2⎡-⎢⎣⎦ B .()20,4- C .920,2⎛⎤- ⎥⎝⎦ D .920,2⎛⎫- ⎪⎝⎭变式2:函数y =cos2x +sin x 的值域是__________.变式3:已知二次函数 f (x ) = a x 2 + bx (a 、b 为常数,且 a ≠ 0),满足条件 f (1 + x ) = f (1-x ),且方程 f (x ) = x 有等根.(1)求 f (x ) 的解析式;(2)是否存在实数 m 、n (m < n ),使 f (x ) 的定义域和值域分别为 [m ,n ] 和 [3m ,3n ],如果存在,求出 m 、n 的值,如果不存在,说明理由.8.(北师大版第54页B 组第5题)恒成立问题当,,a b c 具有什么关系时,二次函数()2f x ax bx c =++的函数值恒大于零?恒小于零?变式1:已知函数 f (x ) = lg (a x 2 + 2x + 1) .(I)若函数 f (x ) 的定义域为 R ,求实数 a 的取值范围; (II)若函数 f (x ) 的值域为 R ,求实数 a 的取值范围.变式2:已知函数2()3f x x ax a =++-,若[]2,2x ∈-时,有()2f x ≥恒成立,求a的取值范围.变式3:若f (x ) = x 2 + bx + c ,不论 α、β 为何实数,恒有 f (sin α )≥0,f (2 + cos β )≤0.(I) 求证:b + c = -1; (II) 求证: c ≥3;(III) 若函数 f (sin α ) 的最大值为 8,求 b 、c 的值. 9.(北师大版第54页B 组第1题)根与系数关系右图是二次函数()2f x ax bx c =++的图像,它与x 轴交于点()1,0x 和()2,0x ,试确定,,a b c 以及12x x ,12x x +的符号.变式1:二次函数b ax y +=2与一次函数)(b a b ax y >+=在同一个直角坐标系的图像为D .C .xyO xyO OxyA .B .变式2:直线3-=mx y 与抛物线x m x y C m mx x y C )12(:,45:2221-+=-+=23,m +-23:323C y x mx m =+--中至少有一条相交,则m 的取值范围是.变式3:对于函数 f (x ),若存在 x 0 ∈ R ,使 f (x 0) = x 0 成立,则称 x 0 为 f (x ) 的不动点.如果函数 f (x ) = a x 2 + bx + 1(a > 0)有两个相异的不动点 x 1、x 2.(I)若 x 1 < 1 < x 2,且 f (x ) 的图象关于直线 x = m 对称,求证m > 12;(II)若 | x 1 | < 2 且 | x 1-x 2 | = 2,求 b 的取值范围. 10.(北师大版第52页例3)应用绿缘商店每月按出厂价每瓶3元购进一种饮料.根据以前的统计数据,若零售价定为每瓶4元,每月可销售400瓶;若每瓶售价每降低0.05元,则可多销售40瓶.在每月的进货量当月销售完的前提下,请你给该商店设计一个方安:销售价应定为多少元和从工厂购进多少瓶时,才可获得最大的利润?变式1:在抛物线()2f x x ax =-+与x 轴所围成图形的内接矩形(一边在x 轴上)中(如图),求周长最长的内接矩形两边之比,其中a 是正实数.变式2:某民营企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图一;B 产品的利润与投资的算术平方根成正比,其关系如图二(注:利润和投资单位:万元)(1) 分别将A 、B 两种产品的利润表示为投资的函数关系式;(2) 该企业已筹集到10万元资金,并全部投入A ,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润?其最大利润约为多少元(精确到1万元)?变式3:设a 为实数,记函数x x x a x f -+++-=111)(2的最大值为g (a ) .B CxyDO A(Ⅰ)求g (a );(Ⅱ)试求满足)1()(ag a g 的所有实数a .二次函数答案1.(人教A 版第27页A 组第6题)解析式、待定系数法变式1: 解:由题意可知22241411ba ac bac ⎧-=⎪⎪-⎪=-⎨⎪=⎪⎪⎩,解得31211a b c =⎧⎪=-⎨⎪=⎩,故选D . 变式2: 解:由题意可知212b +=,解得b =0,∴012c+=,解得c =2. 变式3:解:由题意可设所求二次函数的解析式为()()231f x x k =--+, 展开得()2363f x x x k =-+-+,∴121232,3k x x x x -+==, ∴()2221212122629x x x x x x +=+-=,即()2326439k --=,解得43k =. 所以,该二次函数的图像是由()()231f x x =--的图像向上平移 43 单位得到的,它的解析式是()()24313f x x =--+,即()25363f x x x =-+-. 2.(北师大版第52页例2)图像特征变式1: 解:根据题意可知1222x x b a +=-,∴ 122x x f +⎛⎫=⎪⎝⎭244ac ba -,故选D . 变式2: 解:∵()()11f x f x +=-,∴抛物线()2f x x px q =++的对称轴是1x =,∴ 12p-=即2p =-, ∴()22f x x x q =-+,∴()0f q =、()13f q -=+、()11f q =-+, 故有()()()101f f f ->>,选C . 变式3: 解:观察函数图像可得:① a >0(开口方向);② c =1(和y 轴的交点);③ 4210a b ++=(和x 轴的交点);④10a b ++<(()10f <);⑤ 240b a ->(判别式);⑥ 122ba<-<(对称轴). 3.(人教A 版第43页B 组第1题)单调性xyO变式1: 解:函数()242f x x ax =++图像是开口向上的抛物线,其对称轴是2x a =-,由已知函数在区间(),6-∞内单调递减可知区间(),6-∞应在直线2x a =-的左侧, ∴26a -≥,解得3a ≤-,故选D .变式2:解:函数()()215f x x a x =--+在区间(12 ,1)上为增函数,由于其图像(抛物线)开口向上,所以其对称轴12a x -=或与直线12x =重合或位于直线12x =的左侧,即应有1122a -≤,解得2a ≤, ∴()()241257f a =--⨯+≥,即()27f ≥.变式3:解:函数()2f x x kx =-+的图像是开口向下的抛物线,经过坐标原点,对称轴是2kx =, ∵ 已知函数在[2,4]上是单调函数,∴ 区间[2,4]应在直线2kx =的左侧或右侧, 即有22k ≤或42k≥,解得4k ≤或8k ≥. 4.(人教A 版第43页B 组第1题)最值变式1: 解:作出函数()223f x x x =-+的图像,开口向上,对称轴上x =1,顶点是(1,2),和y 轴的交点是(0,3),∴m 的取值范围是12m ≤≤,故选C .变式2: 解:函数有意义,应有240x -+≥,解得22x -≤≤,∴ 2044x ≤-+≤ ⇒02≤≤ ⇒06≤≤,∴ M =6,m =0,故M + m =6.变式3: 解:函数()f x 的表达式可化为()()24222a f x x a ⎛⎫=-+- ⎪⎝⎭.① 当022a≤≤,即04a ≤≤时,()f x 有最小值22a -,依题意应有223a -=,xyO解得12a =-,这个值与04a ≤≤相矛盾. ②当02a <,即0a <时,()2022f a a =-+是最小值,依题意应有2223a a -+=,解得1a =,又∵0a <,∴1a =③当22a>,即4a >时,()2216822f a a a =-+-+是最小值,依题意应有2168223a a a -+-+=,解得5a =,又∵4a >,∴5a =为所求.综上所述,1a =5a =. 5.(人教A 版第43页A 组第6题)奇偶性变式1: 解:函数()()()22111f x m x m x =-+-+是偶函数 ⇒ 210m -= ⇒1m =±,当1m =时,()1f x =是常数;当1m =-时,()221f x x =-+,在区间(],0-∞上()f x 是增函数,故选D .变式2:解:根据题意可知应有120a a -+=且0b =,即13a =且0b =,∴点(),a b 的坐标是1,03⎛⎫ ⎪⎝⎭.变式3: 解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=-,此时,)(x f 为偶函数;当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠,此时)(x f 既不是奇函数,也不是偶函数. (II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f , 若21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f ,若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-,若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43; 当2121≤<-a 时,函数)(x f 的最小值为12+a ;当21>a 时,函数)(x f 的最小值为a +43.6.(北师大版第64页A 组第9题)图像变换变式1: 解:函数可转化为二次函数,作出函数图像,由图像可得单调区间.当0x ≥时,()222314y x x x =-++=--+, 当0x <时,()222314y x x x =--+=-++. 作出函数图像,由图像可得单调区间.在(),1-∞-和(]0,1上,函数是增函数;在[]1,0-和()1,+∞上,函数是减函数. 变式2: 解:若1,1,a b ==则22()|21|21f x x x x x =-+=-+,显然不是偶函数,所以①是不正确的;若1,4,a b =-=-则2()|24|f x x x =+-,满足)2()0(f f =,但)(x f 的图像不关于直线x =1对称,所以②是不正确的;若02≤-b a ,则22()|2|2f x x ax b x ax b =-+=-+,图像是开口向上的抛物线,其对称轴是x a =,∴)(x f 在区间[a ,+∞)上是增函数,即③是正确的;显然函数()2()|2|f x x ax b x R =-+∈没有最大值,所以④是不正确的.xyO变式3: 解:22,0()||,0x bx c x f x x x bx c x bx c x ⎧++≥⎪=++=⎨-++<⎪⎩,(1)当c =0时,()f x x x bx =+,满足()()f x f x -=-,是奇函数,所以①是正确的;(2)当b =0,c >0时,22,0(),0x c x f x x x c x c x ⎧+≥⎪=+=⎨-+<⎪⎩,方程0)(=x f 即200x c x ⎧+=⎨≥⎩ 或20x c x ⎧-+=⎨<⎩ ,显然方程200x c x ⎧+=⎨≥⎩无解;方程20x c x ⎧-+=⎨<⎩的唯一解是x =,所以② 是正确的;(3)设()00,x y 是函数()||f x x x bx c =++图像上的任一点,应有0000||y x x bx c =++,而该点关于(0,c )对称的点是()00,2x c y --,代入检验00002||c y x x bx c -=--+即0000||y x x bx c -=---,也即0000||y x x bx c =++,所以()00,2x c y --也是函数()||f x x x bx c =++图像上的点,所以③是正确的;(4)若1,0b c =-=,则()||f x x x x =-,显然方程||0x x x -=有三个根,所以④ 是不正确的.7.(北师大版第54页A 组第6题)值域变式1: 解:作出函数()2()2622f x x x x =-+-<<的图象,容易发现在32,2⎛⎤- ⎥⎝⎦上是增函数,在3,22⎡⎫⎪⎢⎣⎭上是减函数,求出(2)20f -=-,(2)4f =,39()22f =,注意到函数定义不包含2x =-,所以函数值域是920,2⎛⎤- ⎥⎝⎦.变式2:解:∵ y = cos2x +sin x =-2sin 2x +sin x +1,令t = sin x ∈ [-1,1],则y =-2t 2+t +1,其中t ∈ [-1,1],∴y ∈ [-2, 98 ],即原函数的值域是[-2, 98 ].变式3: 解:(I) ∵f (1 + x ) = f (1-x ),∴ -b2a= 1,又方程 f (x ) = x 有等根 ⇔ a x 2 + (b -1) x = 0 有等根,∴ △= (b -1) 2 = 0 ⇒ b = 1 ⇒ a = -12, ∴ f (x ) = -12x 2 + x . (II) ∵ f (x ) 为开口向下的抛物线,对称轴为 x = 1,1︒ 当 m ≥1 时,f (x ) 在 [m ,n ] 上是减函数,∴ 3m = f (x )min = f (n ) = -12n 2 + n (*), 3n = f (x )max = f (m ) = -12m 2 + m , 两式相减得:3 (m -n ) = -12(n 2-m 2) + (n -m ), ∵ 1≤m < n ,上式除以 m -n 得:m + n = 8,代入 (*) 化简得:n 2-8n + 48 = 0 无实数解.2︒ 当 n ≤1 时,f (x ) 在 [m ,n ] 上是增函数,∴ 3m = f (x )min = f (m ) = -12m 2 + m , 3n = f (x )max = f (n ) = -12n 2 + n , ∴ m = -4,n = 0.3︒ 当 m ≤1≤n 时,对称轴 x = 1 ∈ [m ,n ],∴ 3n = f (x )max = f (1) = 12 ⇒ n = 16与 n ≥1 矛盾. 综合上述知,存在 m = -4、n = 0 满足条件.8.(北师大版第54页B 组第5题)恒成立问题变式1: 解:(I) 函数 f (x ) 的定义域为 R ,即不等式a x 2 + 2x + 1 > 0 的解集为 R ,∴应有 ⎩⎨⎧ a > 0 △= 4-4a < 0⇒ a > 1, ∴ 实数 a 的取值范围是(1,+∞) .(II) 函数 f (x ) 的值域为 R ,即a x 2 + 2x + 1 能够取 (0,+∞) 的所有值.1︒ 当 a = 0 时,a x 2 + 2x + 1 = 2x + 1满足要求;2︒ 当 a ≠ 0 时,应有⎩⎨⎧ a > 0 △= 4-4a ≥0⇒ 0 < a ≤1. ∴ 实数 a 的取值范围是[0,1] .变式2: 解法一:(转化为最值)()2f x ≥在[]2,2-上恒成立,即2()10f x x ax a =++-≥在[]2,2-上恒成立.⑴()2410a a ∆=--≤, 22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或,52a ∴-≤<-. 综上所述2225-≤≤-a .解法二:(运用根的分布) ⑴当22a -<-,即4a >时,应有()(2)732g a f a =-=-≥, 即53a ≤,a ∴不存在; ⑵当222a -≤-≤,即44a -≤≤时,应有2()()3224a a g a f a =-=--+≥, 即222222-≤≤-a -,2224-≤≤-∴a ;⑶当22a ->,即4a <-时,应有()(2)72g a f a ==+≥,即5a ≥- , 54a ∴-≤<- 综上所述2225-≤≤-a .变式3: 证明:(I) 依题意,f (sin π2) = f (1)≥0,f (2 + cos π) = f (1)≤0, ∴ f (1) = 0 ⇒ 1 + b + c = 0 ⇒ b + c = -1,(II) 由 (I) 得: f (x ) = x 2-(c + 1) x + c (*)∵ f (2 + cos β )≤0 ⇒ (2 + cos β ) 2-(c + 1) (2 + cos β ) + c ≤0⇒ (1 + cos β ) [c -(2 + cos β )]≥0,对任意 β 成立.∵ 1 + cos β ≥0 ⇒ c ≥2 + cos β ,∴ c ≥(2 + cos β )max = 3.(III) 由 (*) 得:f (sin α ) = sin 2α-(c + 1) sin α + c ,设 t = sin α ,则g (t ) = f (sin α ) = t 2-(c + 1) t + c ,-1≤t ≤1,这是一开口向上的抛物线,对称轴为 t =c + 12, 由 (II) 知:t ≥3 + 12= 2, ∴ g (t ) 在 [-1,1] 上为减函数.∴ g (t )max = g (-1) = 1 + (c + 1) + c = 2c + 2 = 8,∴ c = 3∴ b = -c -1 = -4.9.(北师大版第54页B 组第1题)根与系数关系变式1: 解:二次函数b ax y +=2与一次函数图象b ax y +=交于两点),(b o 、),1(b a +,由二次函数图象知b a ,同号,而由C B ,中一次函数图象知b a ,异号,互相矛盾,故舍去C B ,.又由b a >知,当0>>b a 时,1->-ab ,此时与A 中图形不符,当0a b >>时,1b a-<-,与D 中图形相符. 变式2: 解:原命题可变为:求方程m mx x mx 4532-+=-,3)12(322-+-+=-m x m x mx ,32332--+=-m mx x mx 中至少有一个方程有实数解,而此命题的反面是:“三个方程均无实数解”,于是,从全体实数中除去三个方程均无实数解的m 的值,即得所求.解不等式组⎪⎩⎪⎨⎧<--<--<+--,0)2(44,04)1(,0)34(4)4(2222m m m m m m 得 123-<<-m , 故符合条件的m 取值范围是23-≤m 或1-≥m . 变式3: 解:(I) 由 f (x ) 表达式得 m = -b 2a, ∵ g (x ) = f (x )-x = a x 2 + (b -1) x + 1,a > 0,由 x 1,x 2 是方程 f (x ) = x 的两相异根,且 x 1 < 1 < x 2,∴ g (1) < 0 ⇒ a + b < 0 ⇒ -b a > 1 ⇒ -b 2a > 12 ,即 m > 12. (II) △= (b -1) 2-4a > 0 ⇒ (b -1) 2 > 4a ,x 1 + x 2 = 1-b a ,x 1x 2 = 1a, ∴ | x 1-x 2 | 2 = (x 1 + x 2) 2-4x 1x 2 = (1-b a ) 2-4a= 2 2, ∴ (b -1) 2 = 4a + 4a 2 (*)又 | x 1-x 2 | = 2,∴ x 1、x 2 到 g (x ) 对称轴 x = 1-b 2a的距离都为1, 要 g (x ) = 0 有一根属于 (-2,2),则 g (x ) 对称轴 x =1-b 2a ∈ (-3,3), ∴ -3 < b -12a < 3 ⇒ a > 16| b -1 |, 把代入 (*) 得:(b -1) 2 > 23 | b -1 | + 19(b -1) 2,解得:b < 14 或 b > 74, ∴ b 的取值范围是:(-∞, 14 )∪( 74,+∞). 10.(北师大版第52页例3)应用变式1: 解:设矩形ABCD 在x 轴上的边是BC ,BC 的长是x (0<x <a ),则B 点的坐标为,02a x -⎛⎫ ⎪⎝⎭,A 点的坐标为22,24a x a x ⎛⎫-- ⎪⎝⎭. 设矩形ABCD 的周长为P ,则P =2()2222221122242222a x a a x x x x ⎛⎫-+=-++=--++ ⎪⎝⎭(0<x <a ). ① 若a >2,则当x =2时,矩形的周长P 有最大值,这时矩形两边的长分别为2和224a x -,两边之比为8:()24a -; ②若0 <a ≤2,此时函数P =()2212222a x --++无最大值,也就是说周长最大的内接矩形不存在.综上所述,当a >2时,周长最大的内接矩形两边之比为8:()24a -;当0 <a ≤2时,周长最大的内接矩形不存在.变式2: 解:(I) 依题意设 A 、B 两种产品的利润表示为投资的函数关系式分别为 f (x ) = kx ,g (x ) = m x ,由 f (1) = k = 0.25, g (4) = 2m = 2.5 ⇒ m = 54, ∴ f (x ) = 14 x (x ≥0),g (x ) = 54 x . (II) 设企业在 B 产品投资 x 万元,则在 A 产品投资 10-x 万元,∴ 企业的利润 y = 14 (10-x ) + 54 x = 14 [-(x -52 ) 2 + 654](0≤x ≤10), ∴ x = 52 ,即 x = 6.25 万元时,企业获得最大利润 6516≈4 万元. 答:在 A 产品投资 3.75 万元,在 B 产品投资 6.25 万元,企业获得最大利润约 4 万元.变式3: 解:设x x t -++=11,要使t 有意义,必须01≥+x 且01≥-x ,即11≤≤-x , ∵]4,2[12222∈-+=x t ,且0≥t ……①∴t 的取值范围是]2,2[. 由①得:121122-=-t x ,不妨设t t a t m +-=)121()(2a t at -+=221,]2,2[∈t . (I )由题意知)(a g 即为函数)(t m a t at -+=221,]2,2[∈t 的最大值, 当0=a 时,t t m =)(,]2,2[∈t ,有)(a g =2;当0a ≠时,此时直线a t 1-=是抛物线)(t m a t at -+=221的对称轴, ∴可分以下几种情况进行讨论:(1)当0>a 时,函数)(t m y =,]2,2[∈t 的图象是开口向上的抛物线的一段, 由01<-=at 知)(t m 在]2,2[∈t 上单调递增,故)(a g )2(m =2+=a ; (2)当0<a 时,,函数)(t m y =,]2,2[∈t 的图象是开口向下的抛物线的一段, 若at 1-=]2,0(∈即22-≤a 时,)(a g 2)2(==m , 若a t 1-=]2,2(∈即]21,22(--∈a 时,)(a g aa a m 21)1(--=-=, 若a t 1-=),2(+∞∈即)0,21(-∈a 时,)(a g )2(m =2+=a . 综上所述,有)(a g =⎪⎪⎪⎩⎪⎪⎪⎨⎧-≤-≤<---->+)22(2)2122(,21)21(2a a a a a a . (II )若a >0,则1a >0,此时g(a )=g( 1a ) ⇔ a +2= 1a +2 ⇔ a = 1a⇒a =1(舍去a =-1); 若-12 <a <0,则1a <-2,此时g(a )=g( 1a ) ⇔ a +2= 2 ⇒ a =-2+ 2 <-12(舍去); 若-2 2 <a ≤-12 ,则-2≤1a<- 2 , 此时g(a )=g( 1a ) ⇔ -a -12a = 2 ⇒ a =- 2 2(舍去); 若- 2 ≤a ≤- 2 2 ,则- 2 ≤1a ≤- 2 2, 此时g(a )=g( 1a) ⇔ 2 = 2 恒成立; 若-2≤a <- 2 ,则- 2 2 <1a ≤-12, 此时g(a )=g( 1a ) ⇔ 2 =-a -12a ⇒ a =- 2 2(舍去); 若a <-2,则-12 <1a<0, 此时g(a )=g( 1a ) ⇔ 2 = a +2⇒ a =-2+ 2 >-2 (舍去) .综上所述,满足)1()(a g a g =的所有实数a 为:222-≤≤-a 或1=a .。