机械通气波形分析64285 PPT课件
合集下载
机械通气异常波形解读【57页】
压力“波峰”
Paw(cmH2O)
如果上升时间过短,可见压力波形上见一突起部,称为压力“波峰” ——需要减慢呼吸机送气阀的开放,增加上升时间
如果上升时间过长,压力波形将变得光滑且倾斜,将降低呼吸机气流的输出并且 可能无法满足病人的吸气需求 ——需加快送气阀的开放,降低上升时间
吸气终止切换
• 在压力支持通气时,何时由吸气转变为呼气取决于吸气终止切换 的设置
Paw(cmH2O)
PEEP和自主呼吸触发
病人触发 应用PEEP后整个压力波形的基线将抬高 若为病人自主触发的通气整个波形前将有一个负向波
压力时间曲线的解读
吸气保持
整个曲线下面积代表平 均气道压(Pmean) Pmean=(A+B+C)/Time
吸气开始 呼吸开始
PIP= Peak Inspiratory Pressure Pplateau = Plateau Pressure A= 气道阻力 (Raw) B= 肺泡扩张所需压力
• 气体陷闭 (auto-PEEP) • 气道阻力增加 • 顺应性改变 • 漏气 • 人机不同步
气体陷闭 (auto-PEEP)
• 原因 • 呼气时间不足 • 呼气时小气道的狭窄塌陷导致呼气气流受限
改善气道狭窄,增加吸气流速,减少吸气时间,使用PEEP
气道阻力增加 • 原因 • 支气管痉挛、痰栓形成、流速过大 • 气管插管问题 (口径过细, 导管扭曲、堵塞, 病人咬管) • 呼气阀或过滤器阻力过大或被阻塞
Time (sec)
-120
上图中,呼吸机的设置为:当流速下降至峰流速的30%时吸气终止
流速切换设置不当
A –切换流速的百分比设置过高,切换提早出现 ——导致吸气时间过短(潮气量不足)
机械通气波形分析 PPT课件
机械通low sensor
流速-时间曲线( F-T curve )
八种流速-时间曲线(F-T curve)
F
G
H
呼吸机在单位时间内输送出气体量或气体流动时变化;
横轴代表时间(sec), 纵轴代表流速(Flow), 在横轴上部代表 吸气流速,横轴下部代表呼气流速;
CPAP
• 双水平气道正压通气 (bi-phasic positive airway pressure, BIPAP/BiLevel/DuoPAP)
是指机械通气或自主呼吸时,呼吸机交 替给予两个不同水平的气道正压,且这 两个压力均采用压力控制方式。 代表机型:Dräger Evita2/2dura/4 PB840 Galileo Gold
• • • • • • 参数: PS(above PEEP), PEEP, FiO2 吸气触发: 患者 吸呼切换: 流速切换(25% peak flow) 流速形式: 递减波, 吸气压力: 恒定 潮气量:取决于患者的顺应性 (C = V/P)
P-CMV
PSV
CPAP (via ETT)
• • • • • • 参数: FiO2 ,PEEP 吸气触发: 患者 吸呼切换: 患者 流速形式: 取决于患者 吸气压力: 近似正弦波 潮气量:取决于患者的吸气努力,顺应性等
A. 自主呼吸;B. 指令通气
根据P-V环的斜率可了解肺顺应性
P-V环从吸气起点到吸气肢终点(即呼气开始)之间连接 线即斜率, 右侧图向横轴偏移 说明顺应性下降. 作为对 照左侧图钭率线偏向纵轴, 顺应性增加.
流速-容积曲线(F-V curve)
方波和递减波的流速-容积曲线(F-V曲线)
流 速
测定第一拐点(LIP)、二拐点(UIP)
流速-时间曲线( F-T curve )
八种流速-时间曲线(F-T curve)
F
G
H
呼吸机在单位时间内输送出气体量或气体流动时变化;
横轴代表时间(sec), 纵轴代表流速(Flow), 在横轴上部代表 吸气流速,横轴下部代表呼气流速;
CPAP
• 双水平气道正压通气 (bi-phasic positive airway pressure, BIPAP/BiLevel/DuoPAP)
是指机械通气或自主呼吸时,呼吸机交 替给予两个不同水平的气道正压,且这 两个压力均采用压力控制方式。 代表机型:Dräger Evita2/2dura/4 PB840 Galileo Gold
• • • • • • 参数: PS(above PEEP), PEEP, FiO2 吸气触发: 患者 吸呼切换: 流速切换(25% peak flow) 流速形式: 递减波, 吸气压力: 恒定 潮气量:取决于患者的顺应性 (C = V/P)
P-CMV
PSV
CPAP (via ETT)
• • • • • • 参数: FiO2 ,PEEP 吸气触发: 患者 吸呼切换: 患者 流速形式: 取决于患者 吸气压力: 近似正弦波 潮气量:取决于患者的吸气努力,顺应性等
A. 自主呼吸;B. 指令通气
根据P-V环的斜率可了解肺顺应性
P-V环从吸气起点到吸气肢终点(即呼气开始)之间连接 线即斜率, 右侧图向横轴偏移 说明顺应性下降. 作为对 照左侧图钭率线偏向纵轴, 顺应性增加.
流速-容积曲线(F-V curve)
方波和递减波的流速-容积曲线(F-V曲线)
流 速
测定第一拐点(LIP)、二拐点(UIP)
机械通气的基本模式及波形分析 ppt课件
3L/min
No patient effort
吸入端流-呼出端流速> 触发灵敏度
无触发: 吸入端流速 = 呼出端流速 PPT课件
--病人触发 16
流速触发
流速触发灵敏度一般设置在2~5L/min,根据 具体情况而定
降低病人触发所作的呼吸功 可减少病人吸气和呼吸机供气之间的时间延迟 克服气道漏气(设置超过漏气的触发灵敏度),
压力 Patient effort
Patient effort
PPT课件
PEEP
触发灵敏度设置水平
8
-1cmH2O
PPT课件
9
-2cmH23ccmmHH22OO
PPT课件
11
Dynamic hyperinflation plus intrinsic expiratory flow limitation
高压报警
Pressure Inspiration Expiration
Paw
DP
时间
PPT课件
Time 31
容量控制与容量辅助/控制通气
跟随自主呼吸的触发 提供容量通气支持;
触发后每一次送气与 控制通气一样
频率可能增加; 分钟通气量可能增加
PPT课件
32
气道峰压过高与PLV
容量控制通气的限压PLV 通过设置Pmax实现; 送气流量变为减速波 吸气时间足够的情况下, 容量保证
用于小儿病人
PPT课件
17
Question
呼吸机设置流速触发灵敏度 3 L/min ,呼吸机在 呼气末提供的基础流速为5 L/min ,患者呼吸回路 存在持续漏气2 L/min,请问患者吸气流速至少为 多少时才能触发呼吸机
机械通气-PPT课件
流速需求
对于一个保持很强吸气努力的病人,则应给予 一个较高的吸气流速提高设置的吸气流速
改换为减速波,可在吸气开始给予一个最高的流速; 吸气峰流速必须达到一定水平,以避免呼气时间太 短
改换为压力支持模式,通过改变压力设置水平可以 获得较高的初始吸气流速
控制通气方式—CMV
辅助控制通气方式—ACMV
辅助控制通气方式—ACMV
同步间歇强制通气方式—SIMV
SIMV触发窗的确定:
设定的SIMV周期TIMV的后25%
设定的TIMV =60/fSIMV
(触发窗=60/fCMV)
ACMV
吸气触发 病人 吸气流速 设置 吸气潮气量 设置 呼气触发 设置
SIMV
病人 设置 设置 设置
PSV
病人 病人 设置与病人 病人
压力支持通气
PSV的主要目的是降低呼吸肌用力和改善患者 呼吸做功的有效性
PSV是一种正压呼吸模式 在吸气期间呼吸机维持升高的靶压力值 呼吸由患者开始和结束 呼吸机升高吸气流量以满足患者的需要,直到
达到靶压力值 达到峰值流率的靶百分比进行切换 呼吸机传送流量终止,允许患者呼气 呼吸开始和结束之间的间隔为吸气时间
PEEPi产生的机制—等压点学说
等压点学说图解
肺泡与胸膜压之差=20cmH2O 肺泡压=50cmH2O 胸膜压=30cmH2O
压力差相当于肺的弹性回缩力,同时也是上游 段的驱动压力
一般认为等压点所产生的流量为最大流量
等压点学说图解
在等压点,就不在可能有气体自肺泡外流,当 气道内压再继续减小时,视腔内外压差大小及 管壁坚固程度,气道可被压闭,在肺泡内形成 气体闭陷(gas trapping)
病理状况下生理死腔增加,肺泡死腔增加100-200ml
机械通气的基本模式及波形分析 ppt课件
吸气峰值流速的5%
Siemens Servo 900
吸气峰值流速的25%
VersaMed iVent
吸气峰值流速的25%
Newport E200
(Ti) PF
、和常数,Ti本呼吸周期过去吸气时间,PF吸气峰流速
PPT课件
58
PSV注意事项
适应证:自主呼吸,呼吸中枢稳定 监测参数: VT
24
容量控制通气
呼吸机按预设的频率、按预设的潮气量送气 流速恒定
PPT课件
25
容量控制通气
设置参数
---基本参数
潮气量、吸气时间、呼吸频率、气道压力上限
---不同呼吸机上述参数设置方式不全相同
-VT,RR,Ti%,Tpause%
-VT,RR,Ti,Flow
(其他参数:PEEP、FiO2)
X
X -2c触发灵敏度设置 -2cmH2O--触发 -3cmH2O--不能触发
PPT课件
7
压力触发
压力触发灵敏度一般设置在2~4cmH2O,根据具体情况而定 存在PEEPi,触发较困难(须克服PEEPi) 气道漏气时无法应用
当压力下降至灵敏度时 呼吸机开始送气
当压力下降未达灵敏度 时,呼吸机不送气
指令通气 在触发窗外,患者可进行自主呼吸
还允许对自主呼吸进行一定水平的压力支持(SIMV+PSV)
PPT课件
50
同步间歇指令通气(SIMV)
基本设置参数:Vt、RR、吸气时间 (其他参数:PEEP、触发灵敏度)
触发窗(不同呼吸机触发窗设置不同)
PPT课件
51
自主呼吸触发
SIMV波形
3L/min
No patient effort
机械通气完整ppt课件
V/Q恶化
肺泡压过高,肺血管受压,肺血流减少; V/Q升高。 通气差的区域血流增多,分流增加; V/Q降低。 胸内压增加心输出量降低,死腔通气增加。
精选PPT课件
14
呼吸力学变化---对弥散的影响
弥散功能增强
肺水肿减轻,弥散膜变薄。 功能残气量增加使膜弥散能力增加。
弥散功能降低
胸内压过高,回心血量减少,使肺血管床面 积减少。
气道平均压(mean airway pressure, Pmean)气 道压的平均值。与影响PD的因素及吸气时间长短有关。 Pmean的大小直接与对心血管系统的影响有关。
精选PPT课件
9
机械通气压力波形
精选PPT课件
10
呼吸力学变化---阻力指标
气道阻力(resistance, R)
人工气道使气道阻力增加,与人工气道的管 径及长度有关。正压通气对气道的机械性扩 张作用使气道阻力降低。
驱动压计算公式:P=VT/C+F×R。 其中P为压力,VT为潮气量,C为顺
应性,R为阻力,F为流速。
精选PPT课件
8
呼吸力学变化---压力指标
吸气峰压(peak dynamic pressure PD)机械通气 时所能达到的最高压力。与吸气流速、潮气量、气道 阻力、胸肺顺应性和呼气末正压(PEEP)有关。
依吸-呼切换方式不同
定压(压力切换)、定容(容量切换)、 定时(时间切换)。
依调控方式不同
简单、微电脑控制。
精选PPT课件
6
正压通气的生理学效应
对呼吸肌的影响
全部或部分替代呼吸肌做功,呼吸肌放松、休息; 通过纠正低氧和 CO2 潴留,使呼吸肌做功环境得以改善; 呼吸肌废用性萎缩,功能降低。
肺泡压过高,肺血管受压,肺血流减少; V/Q升高。 通气差的区域血流增多,分流增加; V/Q降低。 胸内压增加心输出量降低,死腔通气增加。
精选PPT课件
14
呼吸力学变化---对弥散的影响
弥散功能增强
肺水肿减轻,弥散膜变薄。 功能残气量增加使膜弥散能力增加。
弥散功能降低
胸内压过高,回心血量减少,使肺血管床面 积减少。
气道平均压(mean airway pressure, Pmean)气 道压的平均值。与影响PD的因素及吸气时间长短有关。 Pmean的大小直接与对心血管系统的影响有关。
精选PPT课件
9
机械通气压力波形
精选PPT课件
10
呼吸力学变化---阻力指标
气道阻力(resistance, R)
人工气道使气道阻力增加,与人工气道的管 径及长度有关。正压通气对气道的机械性扩 张作用使气道阻力降低。
驱动压计算公式:P=VT/C+F×R。 其中P为压力,VT为潮气量,C为顺
应性,R为阻力,F为流速。
精选PPT课件
8
呼吸力学变化---压力指标
吸气峰压(peak dynamic pressure PD)机械通气 时所能达到的最高压力。与吸气流速、潮气量、气道 阻力、胸肺顺应性和呼气末正压(PEEP)有关。
依吸-呼切换方式不同
定压(压力切换)、定容(容量切换)、 定时(时间切换)。
依调控方式不同
简单、微电脑控制。
精选PPT课件
6
正压通气的生理学效应
对呼吸肌的影响
全部或部分替代呼吸肌做功,呼吸肌放松、休息; 通过纠正低氧和 CO2 潴留,使呼吸肌做功环境得以改善; 呼吸肌废用性萎缩,功能降低。
机械通气基本模式及波形分析
压力与流速时间波形
Expiratory Sensitivity
(ESens)
Peak Inspiratory Flow
40% 20%
5%
T
35% (Leak Rate) 20% (Set)
40% (Set)
time
PSV
病人触发
吸气压力固定 根据病人情况 设定
流速: 减速 病人决定f、峰流速 Ti和Vt
机械通气 基本模式及波形分析
内容简介
机械通气基本原理
控制通气模式 o VCV(容量控制通气) o PCV(压力控制通气) o PRVCV(压力调节容量保证通气)
辅助通气模式 o SIMV(同步间歇指令通气) o BIPAP(双水平气道正压通气) o PSV(压力支持通气) o CPAP(持续气道内正压通气)
流速、最低压力输送潮气量,压力变化幅度小于 3 mbar 2. 自主呼吸叠加于任何时相 3. Pplate受报警限Paw限制,最高值低于Paw 5mbar,不
能达到所设VT时,VT不恒定报警 4. 有Vt警报上限设置,防止容量伤,自动切换至PEEP
IPPV+autoflow
打开 AutoFlow
顺应性 改变
气源故障(压缩泵或氧气);调整Fio2不当
对因处理
呼吸暂停
自主呼吸停止或触发敏感度调节不当
对因处理
Thank you for your attention!
自主呼吸的作用
dorsal
Mandatory ventilation
L/min
dorsal
Spontaneous breathing
L/min
镇静对呼吸的影响
Diaphragm
《医学机械通气》PPT课件
机械通气的肺功能指标
项目 正常值 机械通气的指征 1.潮气量(VT),ml/kg 5~8 〈5 2.肺活量(VC),ml/kg 65~75 <15 3.第1秒用力呼气量(FEV1),ml/kg 50~60 <10 4.功能残气量(FRC)占预计值的百分比,(%) 80~100 <50 5.呼吸频率(f),次/min 12~20 >35 6.最大吸气力(MIF)(cmH2O) 80~100 20 每分通气量(E),L/min 5~6 >10 7.死腔百分比(VD/VT),% 25~40 >60 8.PaCO2 (mmHg) 36~44 55 9.PaO2 (mmHg) 75~100 (50)(吸空气) 10。P(A-a)O2(mmHg),吸入100%氧 25~65 350
机械通气
呼吸机的类型
一、定压型呼吸机 呼吸机向肺部释出一定压力的气体,使肺泡扩张,随 着胸廓和肺脏的扩大,呼吸道的压力逐渐升高,达到压 力预定值时,气流中止,即转换为呼气相。 二、定容型呼吸机 呼吸机在一定压力下将预定的潮气量释入呼吸道,使 肺部扩张,当该容量的气体释出后,即转为呼气相。 三、定时型呼吸机 此类呼吸机的结构和性能兼有定压型与定容型呼吸机 的某些特点,按预定时间将气体送入肺部,潮气量与吸 气时及流速有关。
机械通气
三、间歇强制通气(IMV) IMV,即呼吸机在一定预定间隙期间,自动释出预 定的潮气量,患者也可自主呼吸,决定自己的呼吸频 率和潮气量
同步间歇强制通气(synchronized intermittent mandatory ,SIMV) SIMV允许患者自主呼吸,每隔预定时间,由患者自 主呼吸的吸气负压触发呼吸机,给予一次同步正压通 气
常见机械通气波形解读PPT课件
持续气道正压通气波形显示气道压力随时间的变化,通常包括吸气峰压、 呼气末压和吸气时间等参数。
持续气道正压通气适用于治疗各种原因引起的呼吸衰竭,如慢性阻塞性 肺疾病、急性呼吸窘迫综合征等。
03
机械通气波形与临床应 用
波形与患者病情的关系
正常波形
正常波形通常呈现规则的周期性 波动,表明患者呼吸状态稳定, 与病情好转或稳定有关。
波形在临床诊断中的应用
判断通气效果
通过观察机械通气波形可以判断通气效果,了解患者呼吸状态和通气质量。
诊断呼吸道疾病
机械通气波形可以反映呼吸道阻力和顺应性的变化,有助于诊断呼吸道疾病, 如哮喘、慢性阻塞性肺病等。
波形在呼吸机撤离中的应用
评估撤离时机
通过观察机械通气波形可以评估撤离时机,了解患者是否具备自主呼吸能力和适 应能力。
展望
新技术应用
个性化治疗
随着科技的发展,新的机械通气波形解读 技术和方法将不断涌现,提高波形解读的 准确性和效率。
基于患者个体差异的机械通气波形解读, 将有助于实现更个性化的治疗策略。
跨学科合作
临床与科研结合
加强呼吸治疗、护理和工程等跨学科合作 ,共同推进机械通气波形解读的研究和应 用。
加强临床实践与科学研究的结合,推动机 械通气波形解读技术的持续改进和创新。
THANKS FOR WATCHING
感谢您的观看
压力控制通气适用于治疗各种原 因引起的呼吸衰竭,如慢性阻塞 性肺疾病、急性呼吸窘迫综合征
等。
容量控制通气波形解读
容量控制通气是通过设置目标 潮气量来控制患者的呼吸。
容量控制通气波形显示潮气量 随时间的变化,通常包括吸气 峰流速、呼气末流速和吸气时 间等参数。
持续气道正压通气适用于治疗各种原因引起的呼吸衰竭,如慢性阻塞性 肺疾病、急性呼吸窘迫综合征等。
03
机械通气波形与临床应 用
波形与患者病情的关系
正常波形
正常波形通常呈现规则的周期性 波动,表明患者呼吸状态稳定, 与病情好转或稳定有关。
波形在临床诊断中的应用
判断通气效果
通过观察机械通气波形可以判断通气效果,了解患者呼吸状态和通气质量。
诊断呼吸道疾病
机械通气波形可以反映呼吸道阻力和顺应性的变化,有助于诊断呼吸道疾病, 如哮喘、慢性阻塞性肺病等。
波形在呼吸机撤离中的应用
评估撤离时机
通过观察机械通气波形可以评估撤离时机,了解患者是否具备自主呼吸能力和适 应能力。
展望
新技术应用
个性化治疗
随着科技的发展,新的机械通气波形解读 技术和方法将不断涌现,提高波形解读的 准确性和效率。
基于患者个体差异的机械通气波形解读, 将有助于实现更个性化的治疗策略。
跨学科合作
临床与科研结合
加强呼吸治疗、护理和工程等跨学科合作 ,共同推进机械通气波形解读的研究和应 用。
加强临床实践与科学研究的结合,推动机 械通气波形解读技术的持续改进和创新。
THANKS FOR WATCHING
感谢您的观看
压力控制通气适用于治疗各种原 因引起的呼吸衰竭,如慢性阻塞 性肺疾病、急性呼吸窘迫综合征
等。
容量控制通气波形解读
容量控制通气是通过设置目标 潮气量来控制患者的呼吸。
容量控制通气波形显示潮气量 随时间的变化,通常包括吸气 峰流速、呼气末流速和吸气时 间等参数。
机械通气的波形和环ppt课件
机械通气的波形和环
呼吸图形监测的重要性
监测参数和图形的显示来源于呼吸机的测量值和计算值
➢ 判断通气模式 ➢ 设置并调整合适的呼吸机参数,如:吸气时间Ti和呼气时间Te,
送气流速,压力上升时间 Rise Time等 ➢ 及时发现并处理通气中存在的问题,如:触发灵敏度是否合适人
机同步如何?有无Auto-PEEP的产生等
.A tI
.b Insp.-
Flow
tE 1/f
Time
低,到C点停止送气,转为呼气相 ,压力下降至PEEP值;此时呼气阀
a. .c
打开,吸气阀关闭;
Time
• 因吸气压力保持恒定,潮气量完全
取决于病人的顺应性(Vt=PxCp)
波形Ⅰ:气道峰压升高
原因: 气道阻力R升高
处理: -降低潮气量 -降低吸气流速 -改善气道阻力 -Pmax
Paw
cmH2O -60
40
20
VT
LITERS
0.6
0.4
0.2
0
20
40
60
压力 – 容量环 P-V Loop
Paw
cmH2O -60
40
20
VT
LITERS
0.6
0.4
0.2
Inspiration
0
20
40
60
压力 – 容量环 P-V Loop
Paw
cmH2O -60
40
20
VT
LITERS
Volume (ml)
呼气
流速 – 容量环 F-V Loop
Flow (L/min)
气体泄漏
吸气
有漏气(ml)
Volume (ml)
呼吸图形监测的重要性
监测参数和图形的显示来源于呼吸机的测量值和计算值
➢ 判断通气模式 ➢ 设置并调整合适的呼吸机参数,如:吸气时间Ti和呼气时间Te,
送气流速,压力上升时间 Rise Time等 ➢ 及时发现并处理通气中存在的问题,如:触发灵敏度是否合适人
机同步如何?有无Auto-PEEP的产生等
.A tI
.b Insp.-
Flow
tE 1/f
Time
低,到C点停止送气,转为呼气相 ,压力下降至PEEP值;此时呼气阀
a. .c
打开,吸气阀关闭;
Time
• 因吸气压力保持恒定,潮气量完全
取决于病人的顺应性(Vt=PxCp)
波形Ⅰ:气道峰压升高
原因: 气道阻力R升高
处理: -降低潮气量 -降低吸气流速 -改善气道阻力 -Pmax
Paw
cmH2O -60
40
20
VT
LITERS
0.6
0.4
0.2
0
20
40
60
压力 – 容量环 P-V Loop
Paw
cmH2O -60
40
20
VT
LITERS
0.6
0.4
0.2
Inspiration
0
20
40
60
压力 – 容量环 P-V Loop
Paw
cmH2O -60
40
20
VT
LITERS
Volume (ml)
呼气
流速 – 容量环 F-V Loop
Flow (L/min)
气体泄漏
吸气
有漏气(ml)
Volume (ml)