2011年中考数学试卷
2011年中考数学试题含答案
2011年中考数学试题(含答案)班级:姓名:全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.一、选择题:(每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是()A.4 B.2 C.-2 D.2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有()A.D点B.A点C.A点和D点D.B点和C点3.下列运算正确的是()A.(ab)5=ab5 B.a8÷a2=a6 C.(a2)3=a5 D.(a-b)2=a2-b24.如图2,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补5.下列说法正确的是()A.频数是表示所有对象出现的次数B.频率是表示每个对象出现的次数C.所有频率之和等于1D.频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为(结果保留整数)()A.-26°C B.-22°C C.-18°C D.22°C7.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是()A.r>15 B.15<r<20 C.15<r<25 D.20<r<259.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为()A .3B .233C .33D.12011年高中阶段学校招生统一考试数学第Ⅱ卷(非选择题共90分)题号二三总分总分人17 18 19 20 21 22 23 24得分二、填空题:(每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD中,对角线AC、BD交于点O,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________.13.若A(1x,1y)、B(2x,2y)在函数12yx=的图象上,则当1x、2x满足_______________时,1y>2y.14.如图5,校园内有一块梯形草坪ABCD,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(212x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.19.(本小题满分8分)图4图2图5图1图7图3图6惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区? (2)要使救灾物资一次性地运往灾区,共有哪几种运货方案? 20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A 袋中放着分别标有数字1、2、3的三个小球,B 袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理. 21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx 的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; (3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标. 22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上. (1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少米?(结果可保留根号) 23.(本小题满分10分) 阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a =3b ,得a2-b2=(3b)2-b2=2b2=b·c .即a2-b2= bc .于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a2-b2=bc 都成立.(1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.24.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,过A 、B 、C 三点作抛物线. (1)求抛物线所对应的函数关系式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,连结BD ,求直线BD 所对应的函数关系式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.图8图9-1 图9-2 图9-3 图10图72011年中考数学试题参考答案及评分意见 说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同. 一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB. 二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可; 12.3434+(或34+3);13.x1<x2<0或 0<x1<x2; 14.4; 15.10 ; 16.9,12; 三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x -=12–2(2)x x - 4分 =22(2)x x --–2(2)x x -=12x - 5分 当x=1时,原式=121- 6分 = 1 7分说明:以上步骤可合理省略 . 18.(1) 内. 2分(2) 证法一:连接CD , 3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形, 4分 又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , 6分 ∴ □DECF 为菱形. 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI=DG , DG=DH .∴DH=DI . 4分∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, 5分 ∴S□DECF=CE·DH =CF·DI , ∴CE=CF . 6分∴□DECF 为菱形. 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, 1分∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区. 2分(2) 设安排甲种货车x 辆,则安排乙种货车(9–x)辆, 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩ 5分解得:1.5≤x ≤5 6分注意到x 为正整数,∴x=2,3,4,5 7分 ∴安排甲、乙两种货车方案共有下表4种:方 案 方案一 方案二 方案三 方案四 甲种货车2345乙种货车 7 6 5 48分说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程也给全分. 20.(1) 大双的设计游戏方案不公平. 1分可能出现的所有结果列表如下:1 23 4 4 8 12 551015或列树状图如下:4分∴P(大双得到门票)= P(积为偶数)=46=23,P(小双得到门票)= P(积为奇数)=13, 6分 ∵23≠13,∴大双的设计方案不公平. 7分 (2) 小双的设计方案不公平. 9分参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y=2kx 的图象经过点(1,1), ∴1=2k1分 解得k=2, 2分∴反比例函数的解析式为y=1x .3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A(12-,–2). 6分(3) P1(32,–2),P2(52-,–2),P3(52,2).(每个点各1分) 9分 22. (1) 在Rt △BPQ 中,PQ=10米,∠B=30°, 则BQ=cot30°×PQ =103,2分 又在Rt △APQ 中,∠PAB=45°, 则AQ=tan45°×PQ=10,即:AB=(103+10)(米); 5分 (2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B=30°,AB=103+10,∴ AE=sin30°×AB=12(103+10)=53+5, 7分∵∠CAD=75°,∠B=30°, ∴ ∠C=45°, 8分在Rt △CAE 中,sin45°=AEAC ,∴AC=2(53+5)=(56+52)(米) 10分 23. (1) 由题意,得∠A=90°,c=b ,a=2b , ∴a2–b2=(2b)2–b2=b2=bc . 3分(2) 小明的猜想是正确的. 4分理由如下:如图3,延长BA 至点D ,使AD=AC=b ,连结CD , 5分则ΔACD 为等腰三角形.∴∠BAC=2∠ACD ,又∠BAC=2∠B ,∴∠B=∠ACD=∠D ,∴ΔCBD 为等腰三角形,即CD=CB=a , 6分大双积 小双 图9-3图8图10答案图2图10答案图1又∠D =∠D ,∴ΔACD ∽ΔCBD , 7分 ∴AD CD CD BD =.即b aa b c =+.∴a2=b2+bc .∴a2–b2= bc 8分(3) a=12,b=8,c=10.10分24.(1) ∵以AB 为直径作⊙O′,交y 轴的负半轴于点C , ∴∠OCA+∠OCB=90°, 又∵∠OCB+∠OBC=90°, ∴∠OCA=∠OBC ,又∵∠AOC= ∠COB=90°, ∴ΔAOC ∽ ΔCOB , 1分 ∴OA OCOC OB =. 又∵A(–1,0),B(9,0), ∴19OC OC=,解得OC=3(负值舍去). ∴C(0,–3),3分设抛物线解析式为y=a(x+1)(x –9),∴–3=a(0+1)(0–9),解得a=13,∴二次函数的解析式为y=13(x+1)(x –9),即y=13x2–83x –3. 4分 (2) ∵AB 为O′的直径,且A(–1,0),B(9,0), ∴OO′=4,O′(4,0), 5分∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O′于点D ,∴∠BCD=12∠BCE=12×90°=45°,连结O′D 交BC 于点M ,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5. ∴D(4,–5). 6分∴设直线BD 的解析式为y=kx+b (k≠0) ∴90,4 5.k b k b +=⎧⎨+=-⎩ 7分解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y=x –9. 8分(3) 假设在抛物线上存在点P ,使得∠PDB=∠CBD ,解法一:设射线DP 交⊙O′于点Q ,则BQ CD =.分两种情况(如答案图1所示):①∵O′(4,0),D(4,–5),B(9,0),C(0,–3). ∴把点C 、D 绕点O′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q1重合, 因此,点Q1(7,–4)符合BQ CD =, ∵D(4,–5),Q1(7,–4),∴用待定系数法可求出直线DQ1解析式为y=13x –193.9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②∵Q1(7,–4),∴点Q1关于x 轴对称的点的坐标为Q2(7,4)也符合BQ CD =. ∵D(4,–5),Q2(7,4).∴用待定系数法可求出直线DQ2解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法二:分两种情况(如答案图2所示): ①当DP1∥CB 时,能使∠PDB=∠CBD . ∵B(9,0),C(0,–3).图10答案∴用待定系数法可求出直线BC 解析式为y=13x –3. 又∵DP1∥CB ,∴设直线DP1的解析式为y=13x+n .把D(4,–5)代入可求n= –193,∴直线DP1解析式为y=13x –193. 9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得11941229416x y ⎧-=⎪⎪⎨--⎪=⎪⎩,;2294122941.6x y ⎧+=⎪⎪⎨-+⎪=⎪⎩,∴点P1坐标为(9412+,29416-+),[坐标为(9412-,29416--)不符合题意,舍去].10分②在线段O′B 上取一点N ,使BN=DM 时,得ΔNBD ≌ΔMDB(SAS),∴∠NDB=∠CBD .由①知,直线BC 解析式为y=13x –3.取x=4,得y= –53,∴M(4,–53),∴O′N=O′M=53,∴N(173,0), 又∵D(4,–5),∴直线DN 解析式为y=3x –17. 11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).解法三:分两种情况(如答案图3所示): ①求点P1坐标同解法二. 10分②过C 点作BD 的平行线,交圆O′于G, 此时,∠GDB=∠GCB=∠CBD . 由(2)题知直线BD 的解析式为y=x –9,又∵ C (0,–3)∴可求得CG 的解析式为y=x –3, 设G (m,m –3),作GH ⊥x 轴交与x 轴与H ,连结O′G,在Rt △O′GH 中,利用勾股定理可得,m=7, 由D (4,–5)与G(7,4)可得, DG 的解析式为317y x =-,11分解方程组231718 3.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去]. 12分 ∴符合条件的点P 有两个:P1(9412+,29416-+),P2(14,25).说明:本题解法较多,如有不同的正确解法,请按此步骤给分.。
山东省临沂市2011年中考数学试卷(含解析)
2011年山东省临沂市中考数学试卷一、选择题(本大题共14小题,毎小题3分,共42分)在每小题所给的四个选项中.只有一项是符合题目要求的。
1、(2011•临沂)下列各数中,比﹣1小的数是()A、0B、1C、﹣2D、2考点:有理数大小比较。
专题:探究型。
分析:根据有理数比较大小的法则进行比较即可.解答:解:∵﹣1是负数,∴﹣1<0,故A错误;∵2>1>0,∴2>1>0>﹣1,故B、D错误;∵|﹣2|>|﹣1|,∴﹣2<﹣1,故C正确.故选C.点评:本题考查的是有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2、(2011•临沂)下列运算中正确的是()A、(﹣ab)2=2a2b2B、(a+b)2=a2+1C、a6÷a2=a3D、2a3+a3=3a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
分析:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式:两数和的平方等于它们的平方和加上它们积的2倍;同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;根据法则一个个筛选.解答:解:A、(﹣ab)2=(﹣1)2a2b2=a2b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a6÷a2=a6﹣2=a4,故此选项错误;D、2a3+a3=(2+1)a3=3a3,故此选项正确.故选D.点评:此题主要考查了积的乘方,完全平方公式,同底数幂的除法,合并同类项的计算,一定要记准法则才能做题.3、(2011•临沂)如图.己知AB∥CD,∠1=70°,则∠2的度数是()A、60°B、70°C、80°D、110考点:平行线的性质。
分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠2的度数,又由邻补角的性质,即可求得∠2的度数.解答:解:∵AB∥CD,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=110°.故选D.点评:此题考查了平行线的性质.注意数形结合思想的应用.4、(2011•临沂)计算﹣6+的结果是()A、3﹣2B、5﹣C、5﹣D、2考点:二次根式的加减法。
2011年山西中考数学试题含答案解析
山西省2011年中考数学试题第Ⅰ卷 选择题 (共24分)一、选择题 (本大题共l2个小题,每小题2分,共24分)1. 6-的相反数是(D) A .6- B .16- C .16D . 6 考点:七年级上册 第一章 有理数 相反数.分析:相反数就是只有符号不同的两个数.解答:解:根据概念,与-6只有符号不同的数是6.即-6的相反数是6.故选D .例题:-2+5的相反数是( )A .3B .-3C .-7D .72.点(一2.1)所在的象限是(B )A .第一象限B .第二象限C .第三象限D .第四象限考点:七年级下册 第六章 平面直角坐标系 点的坐标.分析:根据点在第二象限内的坐标特点解答即可.解答:解:∵A (-2,1)的横坐标小于0,纵坐标大于0,∴点在第二象限,故选B .例题:如图,在平面直角坐标系中,点P 的坐标是( )A .(1,2)B .(2,1)C .(-1,2)D .(2,-1)3.下列运算正确的是( A )A .236(2)8a a -=- B .3362a a a += C .632a a a ÷= D .3332a a a ⋅= 考点:七年级上册 第一章 有理数 同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解. 解答:解:A 项幂的乘方和积的乘方,本选项正确,B 项为合并同类项,系数相加字母和字母的指数不变,故本选项错误,C 项为同底数幂的除法,底数不变指数相减,故本选型错误,D 项为同底数幂的乘法,底数不变指数相加,故本选项错误.故选择A .例题: 下列合并同类项正确的有( )A .2x+4x=8x 2B .3x+2y=5xyC .7x 2-3x 2=4D .9a 2b-9ba 2=04.2011年第一季度.我省固定资产投资完成475.6亿元.这个数据用科学记数法可表示为( C )A .947.5610⨯元B .110.475610⨯元C .104.75610⨯元 D. 94.75610⨯元考点:七年级上册 第一章 有理数 科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:解:将475.6亿元用科学记数法表示为4.756×1010.故选C .例题:2011年4月28日,国家统计局公布了第六次全国人口普查结果,总人口为1 339 000 000人,将1 339 000 000用科学记数法表示为( )A .1.339×108B .13.39×108C .1.339×109D .1.339×10105.如图所示,∠AOB 的两边.OA 、OB 均为平面反光镜,∠AOB=35°,在OB 上有一点E ,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB 平行,则∠DEB 的度数是(B )A .35°B .70°C .110°D .120°考点:七年级下册第五章相交线与平行线平行线的性质.分析:过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,∴∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数是70°.解答:解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°.故选B.例题:把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A.115°B.120°C.145°D.135°6.将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是(A )考点:八年级上册 第十二章 轴对称 剪纸问题.分析:按照题意要求,动手操作一下,可得到正确的答案.解答:解:严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论. 故选A .例题: 在如图所示的四个剪纸图案中,形如轴对称图形的图案是( )A .B .C .D . 7.一个正多边形,它的每一个外角都等于45°,则该正多边形是( C ) A .正六边形 B .正七边形 C .正八边形 D .正九边形考点:七年级下册 第七章 三角形 多边形内角与外角.分析:多边形的外角和是360度,因为是正多边形,所以每一个外角都是45°,即可得到外角的个数,从而确定多边形的边数.解答:解:360÷45=8,所以这个正多边形是正八边形.故选C .例题:一个多边形的内角和是720°,这个多边形的边数是( )A .4B .5C .6D .78.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是( B lA .13π2cmB .17π2cmC .66π2cmD .68π2cm考点:九年级下册 第二十九章 投影与视图 圆柱的计算;由三视图判断几何体.分析:根据三视图可知该几何体是两个圆柱体叠加在一起,体积是两个圆柱体的体积的和.解答:解:根据三视图可知该几何体是两个圆柱体叠加在一起,底面直径分别是2cm 和4cm ,高分别是4cm 和1cm ,∴体积为:4π×22+π=17πcm3.故选B .例题: 一个几何体的三视图如图所示,该几何体的内接圆柱侧面积的最大值为.9.分式方程1223x x =+的解为( B } A .1x =- B .1x = C .2x = D . 3x =考点:八年级下册 第十六章 分式 解分式方程.分析:观察可得最简公分母是2x (x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程的两边同乘2x (x+3),得x+3=4x ,解得x=1.检验:把x=1代入2x (x+3)=8≠0.∴原方程的解为:x=1. 故选B . 例题:A .-1B .0C .1D .10.“五一”节期间,某电器按成本价提高30%后标价,-再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( A )A .(130%)80%2080x +⨯=B .30%80%2080x ⋅⋅=C .208030%80%x ⨯⨯=D .30%208080%x ⋅=⨯考点:七年级上册 第三章 一元一次方程 由实际问题抽象出一元一次方程.分析:设该电器的成本价为x 元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程.解答:解:设该电器的成本价为x 元,x (1+30%)×80%=2080.故选A .例题:小芬买15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x 元,则依题意可列出下列哪一个一元一次方程式( )A .15(2x+20)=900B .15x+20×2=900C .15(x+20×2)=900D .15×x ×2+20=90011.如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为 (D)A .33cmB .4cmC .23cmD .25cm考点:七年级下册 第七章 三角形 三角形中位线定理;八年级上册 第十二章 轴对称 等腰三角形的性质;八年级下册 第十八章 勾股定理 勾股定理;八年级下册 第十九章 四边形 正方形的性质.分析:根据三角形的中位线定理可得出BC=4,由AB=AC ,可证明BG=CF=1,由勾股定理求出CE ,即可得出AC 的长.解答:解:∵点D 、E 分别是边AB 、AC 的中点,∴DE=BC ,∵DE=2cm ,∴BC=4cm ,∵AB=AC ,四边形DEFG 是正方形.∴△BDG ≌△CEF ,∴BG=CF=1,∴EC=,∴AC=2cm .故选D .例题:、如图,在正方形网格上,与△ABC 相似的三角形是( )A .△NBDB .△MBDC .△EBD D .△FBD12.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( B )A ,0ac >B .方程20ax bx c ++=的两根是1213x x =-=,C .20a b -=D .当x>0时,y 随x 的增大而减小.考点:九年级下册 第二十六章 二次函数 二次函数图象与系数的关系;抛物线与x 轴的交点.分析:根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断.解答:解:A 、∵抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,ac <0,故本选项错误;B 、∵抛物线对称轴是x=1,与x 轴交于(3,0),∴抛物线与x 轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C 、∵抛物线对称轴为x=-=1,∴b=-2a ,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误.故选B .例题:下列二次函数中,( )的图象与x 轴没有交点.A .y=3x2B .y=2x2-4C .y=3x2-3x+5D .y=8x2+5x-3第Ⅱ卷 非选择题 (共96分)二、填空题(本大题共6个小题,每小题3分,共l8分.)13. 计算:101826sin 45-+-=_________(12) 考点:七年级上册 第一章 有理数 负整数指数幂;八年级上册 第十三章 实数 实数的运算; 九年级下册 第二十八章 锐角三角函数 特殊角的三角函数值.分析:根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+0.5-6×=,故答案为.例题:14.如图,四边形ABCD是平行四边形,添加一个条件__________________,可使它成为矩形.(∠ABC=90°或AC=BD)考点:八年级下册第十九章四边形矩形的判定;平行四边形的性质.分析:根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.解答:解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD.例题:能判定平行四边形是矩形的条件是()A.对角线互相平分B.对角线互相垂直C.对角线互相垂直平分D.对角线相等15.“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约l000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为___________。
2011年浙江省宁波市中考数学试卷(含参考答案)
2011年宁波市中考数学试卷试 题 卷 Ⅰ一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列各数中是正整数的是( )A.1-B. 2C.0.5D.2 2.下列计算正确的是( ) A.632)(a a =B. 422a a a =+C.a a a 6)2()3(=⋅D.33=-a a3.不等式1x >在数轴上表示正确的是( ) A.B.C.D.4.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为( ) A.5106057.7⨯人 B.6106057.7⨯人C. 7106057.7⨯人D. 71076057.0⨯人5.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.)3,2( 6.如图所示的物体的俯视图是( )7.一个多边形的内角和是720°,这个多边形的边数是( ) A.4 B. 5 C. 6 D. 78.如图所示,AB ∥CD ,∠E =37°,∠C =20°,则∠EAB 的度数为( ) A. 57° B. 60° C. 63° D.123°(第6题) A. B. C.D.主视方向9.如图,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为( )A.sin h αB.tan h αC.cos hαD.αsin ⋅h10.如图,Rt △ABC 中,∠ACB =90°,22==BC AC ,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为( )A.4πB.42πC.8πD.82π11.(2011宁波)如图,⊙O 1 的半径为1,正方形ABCD 的边长为6,点O 2为正方形ABCD 的中心,O 1O 2垂直AB 于P 点,O 1O 2 =8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现( )A.3次B.5次C.6次D.7次12.(2011宁波)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A.4m cmB.4n cmC. 2(m +n ) cmD.4(m -n ) cm试 题 卷 Ⅱ二、填空题(每小题3分,共18分) 13.实数27的立方根是 . 14.因式分解:y xy -= .15.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:选手 甲 乙 丙 平均数 9.3 9.3 9.3 方差 0.026 0.015 0.032则射击成绩最稳定的选手是 . (填“甲”、“乙”、“丙”中的一个)16.将抛物线2x y =的图象向上平移1个单位,则平移后的抛物线的解析式为 .17.(2011宁波)如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC = cm .18.(2011宁波)如图,正方形1112A B PP 的顶点1P 、2P 在反比例函数2(0)y x x=>的图象上,顶点1A 、1B 分别在x 轴、y 轴的正半轴上,再在其右侧作正方形2232B A P P ,顶点3P 在反比例函数2(0)y x x=>的图象上,顶点2A 在x 轴的正半轴上,则点3P 的坐标为 .三、解答题(本大题有8小题,共66分)19.(本题6分)先化简,再求值:)1()2)(2(a a a a -+-+,其中5=a .20.(本题6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回..,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.21.(本题6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图不能重复)(第21题)图① 图② 图③22.(本题8分)图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部...各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整. (2)商场服装部...5月份的销售额是多少万元? (3)小刚观察图②后认为,5月份商场服装部...的销售额比4月份减少了.你同意他的看法吗?请说明理由.23.(本题8分)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过A 点作AG ∥BD 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.ABCDG E F(第23题)22% 17% 14% 12%16%5% 10% 15% 20%25% 123 45月份商场服装部...各月销售额占商场当月销售 总额的百分比统计图百分比 10090658020 40 60 80100 商场各月销售总额统计图12345销售总额(万元) 月份(第22题)图②图①24.(本题10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.25.(2011宁波)(本题10分)阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b a,若Rt△ABC是奇异三角形,求::a b c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点, C、D在直径AB两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.26.(2011宁波)(本题12分)如图,平面直角坐标系xOy中,点A的坐标为,点B的坐标为(6,6),抛物线经过A、O、B三点,连结OA、OB、AB,(2,2)线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连结ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连结AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.2011年宁波市中考数学试卷参考答案及评分标准一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、(2011浙江宁波,1,3)下列各数中是正整数的是( )A 、-1B 、2C 、0.5D 、2【考点】实数。
山东省威海市2011年中考数学试卷-解析版
山东省威海市2011年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1、(2011•威海)在实数0,﹣,,﹣2中,最小的是()A、﹣2B、﹣C、0D、考点:实数大小比较。
专题:计算题。
分析:根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.解答:解:∵正数大于0和一切负数,所以只需比较和﹣2的大小,因为|﹣|<|﹣|,所以最小的数是﹣2.故选A.点评:此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、(2011•威海)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A、180,180,178B、180,178,178C、180,178,176.8D、178,180,176.8考点:众数;算术平均数;中位数。
专题:计算题。
分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.再根据平均数、众数和中位数的定义求解即可.解答:解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列(164,170,172,176,176,180,180,180,184,186),处于中间位置的那两个数为176,180,那么由中位数的定义可知,这组数据的中位数是178;平均数为:(164+170+172+176+176+180+180+180+184+186)÷10=176.8.故选C.点评:本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A、1:2B、1:3C、2:3D、2:5考点:相似三角形的判定与性质;平行四边形的性质。
2011年中考数学试题及答案
2011年九年级教学质量检测数 学 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321 B .27 C .6 D .32.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7) 3.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103 B .6.28×104 C .6.2828×104 D .0.62828×105 4.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( ). A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33第6题图第11题图7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将A B C △沿D E 折叠,使点A 与B C边的中点F 重合,下列结论中①EF AB ∥且12E F A B =;②BAF C AF ∠=∠;③DE AF 21S ADFE∙=四边形;④2B D F F E C B A C ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ). A .a <3 B .a >3 C .a <-3 D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°DABCO第7题图xb +x第9题图第8题图第12题图第16题图第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x m x +=--无解.14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程012)1(2=-++x x k 有两个不相同的实数根,则k 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图2图1最喜欢的体育活 动项目的人数/人育活动项目19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,B D 为圆O 的直径,A B A C =,A D 交B C 于E ,2A E =,4E D =.(1)求证:A B E A D B △∽△,并求A B 的长;(2)延长D B 到F ,使B F B O =,连接F A ,那么直线F A 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.C23.(本题满分11分)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC 交BC的延长线于E点.(1)求证:四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y轴分别相交于A (-6,0),B (0,-8)两点.(1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABCS S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分x181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%. (3)1(302624)20-++=%%%% 20020100÷=% (人)…6分8100100016050⨯⨯=% (人)答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分 (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.(1)证明:A B A C = ,ABC C ∴=∠∠,C D = ∠∠,ABC D ∴=∠∠.又BAE D AB = ∠∠,ABE AD B ∴△∽△.A B A E A D A B∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线F A 与⊙O 相切.理由如下: 连接O A .BD 为⊙O 的直径,∴∠.BD ∴====1122B F B O B D ∴===⨯=AB = ,BF BO AB ∴==.90OAF ∴= ∠.∴直线F A 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆. 方案一的费用是(元); 方案二的费用是(元);方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点 ……………………4分∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分 ∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD=⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(y kx b k =+∵直线AB经过(60)(08)A B --,,,,∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB的函数表达式为483y x =--. (4)分(2)在R t AO B △中,由勾股定理,得10AB ===,x∵圆M 经过O A B ,,三点,且90AO B ∠=°,AB∴为圆M 的直径,∴半径5M A =,设抛物线的对称轴交x 轴于点N ,M N x ⊥∵,∴由垂径定理,得132A N O N O A ===.在R t A M N △中,4M N ===,541C N M C M N ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++, 它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结A C ,B C ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,, 2D E ∴=;设在抛物线上存在点()P x y ,,使得111511515P D E A B C S S =⨯=△△=,则1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =--2(3)P ∴-+-1,3(3)P ---1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P ---.…………………….12分。
山东省东营市2011年中考数学试卷及答案-解析版
2011年山东省东营市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1、(2011•东营)的倒数是()A、2B、﹣2C、﹣D、考点:倒数。
专题:计算题。
分析:根据倒数的定义即可解答.解答:解:的倒数是2.故选A.点评:本题主要考查了倒数的定义,正确理解定义是解题的关键.2、(2011•东营)下列运算正确的是()A、x3+x3=2x6B、x6÷x2=x4C、x m•x n=x nmD、(﹣x5)3=x15考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
专题:计算题。
分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、x3+x3=2x3,故本选项错误;B、x6÷x2=x4,故本选项正确;C、x m•x n=x n+m,故本选项错误;D、(﹣x5)3=﹣x15,故本选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3、(2011•东营)一个几何体的三视图如图所示,那么这个几何体是()A、B、C、D、考点:由三视图判断几何体。
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:从这个几何体的三视图上看,这个几何体一定是带棱的,故从C,D中选,D的主视图是三角形,俯视图是:,只有C的三视图符合条件.故选C.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4、(2011•东营)方程组的解是()A、B、C、D、考点:解二元一次方程组。
专题:计算题。
分析:解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y,得到一个关于x的一元一次方程,解出x的值,再把x的值代入方程组中的任意一个式子,都可以求出y的值解答:解:,①+②得:2x=2,x=1,把x=1代入①得:1+y=3,y=2,∴方程组的解为:故选:A,点评:此题主要考查了二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.5、一副三角板如图叠放在一起,则图中∠α的度数为()A、75°B、60°C、65°D、55°考点:三角形的外角性质;三角形内角和定理。
2011年中考数学试题及答案(Word版)
A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。
山东省潍坊市2011年中考数学试卷及答案-解析版
山东省潍坊市2011年中考数学试卷-解析版一、选择题(共12小题,每小题3分,满分36分)1、(2011•潍坊)下面计算正确的是()A、B、C、D、考点:二次根式的混合运算。
专题:计算题。
分析:根据二次根式的混合运算方法,分别进行运算即可.解答:解:A.3+不是同类项无法进行运算,故此选项错误;B.===3,故此选项正确;C.=,×==,故此选项错误;D.=﹣2,∵==2,故此选项错误;故选:B.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.2、(2011•潍坊)我国以2010年11月1日零时为标准时点进行了笫六次全国人口普查,普查得到全国总人口为1370536875人,该数用科学记数法表示为()(保留3个有效数字)A、13.7亿B、13.7×108C、1.37×109D、1.4×109考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1370536875有10位,所以可以确定n=10﹣1=9.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:1370536875=1.370536875×109≈1.37×109.故选:C.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2011•潍坊)如图,△ABC中,BC=2,DE是它的中位线,下面三个结论:(1)DE=1;(2)△ADE∽△ABC;(3)△ADE的面积与△ABC的面积之比为1:4.其中正确的有()A、0个B、1个C、2个D、3个考点:相似三角形的判定与性质;三角形中位线定理。
福州2011年中考数学试题及答案
福建省南平市2011年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.)1、(2011•南平)2的相反数等于()A、﹣2B、2C、﹣D、2、(2011•南平)方程组的解是()A、B、C、D、3、(2011•南平)下列调查中,适宜采用全面调查方式的是()A、了解南平市的空气质量情况B、了解闽江流域的水污染情况C、了解南平市居民的环保意识D、了解全班同学每周体育锻炼的时间4、(2011•南平)下列运算中,正确的是()A、a3•a5=a15B、a3÷a5=a2C、(﹣a2)3=﹣a6D、(ab3)2=﹣ab65、(2011•南平)下列说法错误的是()A、必然事件发生的概率为1B、不确定事件发生的概率为0.5C、不可能事件发生的概率为0D、随机事件发生的概率介于0和1之间6、(2011•南平)边长为4的正三角形的高为()A、2B、4C、D、27、(2011•南平)已知⊙O1、⊙O2的半径分别是2、4,若O1O2=6,则⊙O1和⊙O2的位置关系是()A、内切B、相交C、外切D、外离8、(2011•南平)有一等腰梯形纸片ABCD(如图),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下,由△DEC 与四边形ABED不一定能拼成的图形是()A、直角三角形B、矩形C、平行四边形D、正方形9、(2011•南平)某商店销售一种玩具,每件售价92元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程正确的是()A、=15%B、=15%C、92﹣x=15%D、x=92×15%10、(2011•南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为()A、78B、66C、55D、50二、填空题:(本大题共8小题,每小题3分,共24分)11、计算:=_________.12、分解因式:mx2+2mx+m=_________.13、(2011•南平)已知△ABC的周长为18,D、E分别是AB、AC的中点,则△ADE的周长为_________.14、(2011•南平)抛掷一枚质地均匀的硬币两次,正面都朝上的概率是_________.15、(2011•南平)已知反比例函数y=的图象经过点(2,5),则k=_________.16、(2011•南平)某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数平均次数中位数方差甲45 135 149 180乙45 135 151 130下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;(3)甲班成绩优秀人数少于乙班成绩优秀人数(跳绳次数≥150次为优秀).其中正确的命题是_________.(只填序号)17、(2011•南平)如图是一个几何体的三视图,根据图中标注的数据可得该几何体的体积为_________.(结果保留π)18、(2011•南平)一个机器人从点O出发,每前进1米,就向右转体a°(1<a<180),照这样走下去,如果他恰好能回到O点,且所走过的路程最短,则a的值等于_________.三、解答题(本大题共8小题,共86分.)19、(2011•南平)先化简,再求值:x(x+1)﹣(x﹣1)(x+1),其中x=﹣1.20、(2011•南平)解不等式组:,并把它的解集在数轴上表示出来.21、(2011•南平)如图,△ABC三个顶点坐标分别为A (1,2),B (3,1),C (2,3),以原点O为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′;(不要求写画法)(2)△A′B′C′的面积是:_________.22、(2011•南平)在“5•12防灾减灾日”之际,某校随机抽取部分学生进行“安全逃生知识”测验根据这部分学生的测验成绩(单位:分)绘制成如下统计图(不完整):请根据上述图表提供的信息,完成下列问题:(1)分别补全频数分布表和频数分布直方图;(2)若从该校随机1名学生进行这项测验,估计其成绩不低于80分的概率约为_________.23、(2011•南平)为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x个,购买篮球和排球的总费用y元.(1)求y与x之间的函数关系式;(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?24、(2011•南平)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE 为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=28°,⊙O的半径为6,求线段AD的长.(结果精确到0.1)25、(2011•南平)(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.26、(2011•南平)定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2﹣2x+2是黄金抛物线.(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);(3)将黄金抛物线沿对称轴向下平移3个单位①直接写出平移后的新抛物线的解析式;②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)]【提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)】.答案与评分标准一、选择题(本大题共10小题,每小题4分,共40分)1、(2011•南平)2的相反数等于()A、﹣2B、2C、﹣D、考点:相反数。
2011年天津中考数学试卷及答案
2011年天津市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(2011•天津)sin45°的值等于()A.B.C.D.12.(2011•天津)下列汽车标志中,可以看作是中心对称图形的是()A.B.C.D.3.(2011•天津)根据第六次全国人口普査的统计,截止到2010年11月1日零时,我国总人口约为1 370 000 000人,将1 370 000 000用科学记数法表示应为()A.0.137x1010B.1.37xlO9C.13.7x108D.137x1074.(2011•天津)估计的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间5.(2011•天津)如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF 的大小为()A.15°B.30°C.45°D.60°6.(2011•天津)已知⊙O1与⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则⊙O1与⊙O2的位置关系是()A.相交B.相离C.内切D.外切7.(2011•天津)如图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是()A.B.C.D.8.(2011•天津)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定9.(2011•天津)一家电信公司给顾客提供两种上网收费方式:方式A以毎分0.1元的价格按上网所用时间计费;方式B除收月基费20元外,再以毎分0.05元的价格按上网所用时间计费.若上网所用时间为x分,计费为y元,如图,是在同一直角坐标系中,分别描述两种计费方式的函数的图象.有下列结论:①图象甲描述的是方式A;②图象乙描述的是方式B;③当上网所用时间为500分时,选择方式方法B省钱.其中,正确结论的个数是()A.3 B.2 C.1 D.010.(2011•天津)若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=0二、填空题(共8小题,每小题3分,满分24分)11.(2011•天津)﹣6的相反数是_________.12.(2011•天津)若分式的值为0,则x的值等于_________.13.(2011•天津)已知一次函数的图象经过点(0,1),且满足y随x的增大而增大,则该一次函数的解析式可以为_________.14.(2011•天津)如图,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、FD,则图中平行四边形的个数为_________.15.如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD交AC于点B,若OB=5,则BC等于_________.16.(2011•天津)同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为_________.17.(2011•天津)如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.18.(2011•天津)如图,有一张长为5宽为3的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.(I)该正方形的边长为_________(结果保留根号)(II)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要说明剪拼的过程:_________.三、解答题(共8小题,满分66分)19.(2011•天津)解不等式组.20.(2011•天津)已知一次函数y1=x+b(b为常数)的图象与反比例函数(k为常数,且k≠0 )的图象相交于点P(3,1).(I )求这两个函数的解析式:(II)当x>3时,试判断y1与y2的大小,并说明理由.21.(2011•天津)在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 3 13 16 17 1(1)求这50个样本数据的平均数、众数和中位数:(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.22.(2011•天津)已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.23.(2011•天津)某校兴趣小组坐游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300m,在A 处测得望海楼B位于A的北偏东30°方向,游轮沿正北方向行驶一段时间后到达C,在C处测得望海楼B位于C的北偏东60°方向,求此时游轮与望海楼之间的距离BC(取1.73,结果保留整数).24.(2011•天津)注意:为了使同学们更好地解答本题,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.某商品现在的售价为每件35元,毎天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当毎件商品降价多少元时,可使毎天的销售额最大,最大销售额是多少?设每件商品降价x元,毎天的销售额为y元.原价每件降价1元毎件降价2元…毎件降价x元每件售价(元)35 34 33 …毎天销量(件) 50 52 54 …(II)由以上分析,用含x的式子表示y,并求出问题的解.25.(2011•天津)在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0。
2011年河南中考数学试题及答案
(第2题)21c ba 第8题DCBA一、选择题:(每小题3分,共18分)1. -5的绝对值是( )A .5B . -5C . 15D . 15- 2. 如图,直线a ,b 被直线c 所截,a ∥b ,若∠1=35°,则∠2的大小为( ) A .35° B .145° C .55°D .125°3. 下列各式计算正确的是( )A .11(1)()32---=-— B .235+=C .224246a a a +=D .236()a a =4. 不等式组 的解集在数轴上表示正确的是( )A .-203B .30-2-203C .D.-2035. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是610x =甲千克,608x =乙千克,亩产量的方差分别是229.6S =甲,2 2.7S =乙,则关于两种小麦推广种植的合理决策是( ) A . 甲的平均亩产量较高,应推广甲 B . 甲、乙的平均亩产量相差不多,均可推广 C . 甲的平均亩产量较高,且亩产量比较稳定,应推广甲D . 甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A '的坐标为( ) A .(3,1) B .(1,3) C .(3,-1) D .(1,1)二、填空题:(每小题3分,共27分)7. 27的立方根是_______.8. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,∠A =36°,则∠BDC 的度数为________.2011年河南中考数学试题(满分120分,考试时间100分钟)20x +>12x ≤-(第14题)俯视图主视图左视图10129. 已知点P (a b ,)在反比例函数2y x=的图象上,若点P 关于y 轴对称的点在反比例函数ky x=的图象上,则k 的值为_______.10. 如图,CB 切⊙O 于点B ,CA 交⊙O 于点D ,且AB 为⊙O 的直径,点E 是弧ADB 上异于点A 、D 的一点.若∠C =40°,则∠E 的度数为________.11. 点A (2,1y )、B (3,2y )是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小关系为1y ____2y (填“>”、“<”或“=”). 12. 现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是_________.13. 如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为__________.14. 如图,是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为________.15. 如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,∠C =60°,BC =2AD =23,点E 是BC 边的中点,△DEF 是等边三角形,DF 交AB 于点G ,则△BFG 的周长为__________.三、解答题:(本大题8个题,共75分)16. 先化简2144(1)11x x x x -+-÷--,然后从2-≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.(第13题)CBPDAA DBCE MN17. 如图,在梯形ABCD 中,AD ∥BC ,延长CB 到点E ,使BE =AD ,连接DE 交AB 于点M . (1)求证:△AMD ≌△BME ;(2)若N 是CD 的中点,且MN =5,BE =2,求BC 的长.18. 为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).克服酒驾——你认为哪一种方更好? A. 司机酒驾,乘客有责,让乘客帮助监督 B. 在汽车上张贴“请勿酒驾”的提醒标志 C. 签订“永不酒驾”保证书 D. 希望交警加大检查力度E. 查出酒驾,追究就餐饭店的连带责任 在随机调查了本市全部5000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m =_________.(2)该市支持选项B 的司机大约有多少人? (3)若从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”提醒标志,则支持该选项的司机小李被选中的概率是多少?19. 如图所示,中原福塔(河南广播电视塔)是世界第一高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D 处,测得地面上点B 的俯角 为45°,点D 到AO的距离DG 为10米;从地面上的点B 沿BO 方向走50米到达点C 处,测得塔尖A 的仰角β为60°.请你根据以上数据计算塔高AO ,并求出计算结果与实际塔高388米之间的误差.(参考数据:3 1.732,2 1.414≈≈.结果精确到0.1米).20. 如图,一次函数112y k x =+与反比例函数22ky x =的图象交于点A (4,m )和点B (-8,-2),与y 轴交于点C .(1)1k =__________,2k =________;(2)根据函数图象可知,当1y >2y 时,x 的取值范围是____________;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当ODE ODAC S S △四边形:=3:1,求点P 的坐标.21. 某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下: 人数m 0<m ≤100 100<m ≤200m >200 收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20800元,若两校联合组团只需花费18000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人.(第22题)CFBDEAxyA BO22. 如图,在Rt △ABC 中,∠B =90°,BC =53,∠C =30°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接 DE 、EF . (1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由; (3)当t 为何值时,△DEF 为直角三角形?请说明理由.23. (11分)如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8. (1)求该抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E . ①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值;②连接P A ,以P A 为边作图示一侧的正方形APFG .随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.xyECDABO PF G(备用图)河南卷参考答案一、选择题123A B D456B D C二、填空题7. 3 8. 729. -2 10. 40 11.<12. 1613.414.90π15.3+3三、解答题16. 当x=0时,原式=12-(或:当x=-2时,原式=14).17.(1)证明略(2)BC=8 18.(1)图略,20(2)1150(3)2 2319.6.9米.20.(1)12,16;(2)-8<x<0或x>4;(3)P的坐标为(42,22)21.(1)这两所学校报名参加旅游的学生人数之和等于240人,超过200人(2)甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人22.(1)证明略(2)能,当103t=时,四边形AEFD为菱形(3)当52t=或4时,△DEF为直角三角形.23.(1)2135442y x x=--+(2)①当3x=-时,l最大=15②满足题意的点P有三个,分别是12317317(,2),(,2),22P P-+--3789789(,).22P-+-+。
2011年山东省烟台市中考数学试卷
2011年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题4分,共48分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(4分)(﹣2)0的相反数等于()A.1B.﹣1C.2D.﹣22.(4分)从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.3.(4分)下列计算正确的是()A.a2+a3=a5B.a6÷a3=a2C.4x2﹣3x2=1D.(﹣2x2y)3=﹣8x6y34.(4分)不等式4﹣3x≥2x﹣6的非负整数解有()A.1个B.2个C.3个D.4个5.(4分)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.(4分)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是()A.8B.9C.10D.127.(4分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2m B.3m C.6m D.9m8.(4分)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,则这组数据的中位数和极差分别是()A.2.1,0.6B.1.6,1.2C.1.8,1.2D.1.7,1.29.(4分)如果△ABC中,sin A=cos B=,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形10.(4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是()A.m=n,k>h B.m=n,k<h C.m>n,k=h D.m<n,k=h 11.(4分)在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1个B.2个C.3个D.4个12.(4分)如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中,,,,,,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,….当AB=1时,l2011等于()A.B.C.D.二、填空题(本题共6个小题,每小题4分,满分24分).13.(4分)微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为平方毫米.14.(4分)等腰三角形的周长为14,其一边长为4,那么它的底边为.15.(4分)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.16.(4分)如图,△ABC的外心坐标是.17.(4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是.18.(4分)通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.三、解答题(本大题共8各小题,满分78分).19.(6分)先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.20.(8分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?21.(8分)综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)22.(8分)如图,已知反比例函数(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?23.(12分)“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?24.(10分)已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.25.(12分)已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.(1)如图1,当点E在直径AB上时,试证明:OE•OP=r2;(2)当点E在AB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.26.(14分)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D 在y轴上.直线CB的表达式为y=﹣x+,点A、D的坐标分别为(﹣4,0),(0,4).动点P自A点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外).(1)求出点B、C的坐标;(2)求s随t变化的函数关系式;(3)当t为何值时s有最大值?并求出最大值.2011年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题4分,共48分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.【分析】先根据0指数幂的运算法则求出(﹣2)0的值,再由相反数的定义进行解答即可.【解答】解:∵(﹣2)0=1,1的相反数是﹣1,∴(﹣2)0的相反数是﹣1.故选:B.【点评】本题考查的是0指数幂及相反数的定义,解答此题的关键熟知任何非0数的0次幂等于1.2.【分析】俯视图就是从物体的上面看物体,从而得到的图形;找到从上面看所得到的图形即可.【解答】解:选项A的图形是从茶壶上面看得到的图形.故选:A.【点评】本题考查了三视图的知识,明确一个物体的三视图:俯视图就是从物体的上面看物体,从而得到的图形.3.【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.分别计算即可.【解答】解:A、a2+a3=a5不是同类项,不能合并,故A选项错误;B、a6÷a3=a3,故B选项错误;C、4x2﹣3x2=x2,故C选项错误;D、(﹣2x2y)3=﹣8x6y3,故D选项正确.故选:D.【点评】本题考查了合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质和法则是解题的关键.4.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:移项,得﹣3x﹣2x≥﹣6﹣4,合并同类项,得:﹣5x≥﹣10,系数化成1得:x≤2.则非负整数解是:0、1和2共3个.故选:C.【点评】本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.5.【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.【分析】根据三角形中位线定理易得所求的三角形的各边长为原三角形各边长的一半,那么所求的三角形的周长就等于原三角形周长的一半.【解答】解:连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC﹣DK)=(DC﹣AB),∵EG为△BCD的中位线,∴EG=BC,又∵FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=9.故选:B.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.7.【分析】根据:△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积即可求解.【解答】解:在直角△ABC中,BC=8m,AC=6m.则AB===10.∵中心O到三条支路的距离相等,设距离是r.△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积即:AC•BC=AB•r+BC•r+AC•r即:6×8=10r+8r+6r∴r==2.故O到三条支路的管道总长是2×3=6m.故选:C.【点评】本题主要考查了三角形的内心的性质,三角形内心到三角形的各边的距离相等,利用三角形的面积的关系求解是解题的关键.8.【分析】根据极差,中位数的定义即可求得.【解答】解:排序后为:1.0、1.3、1.6、1.8、2.0、2.2∴中位数为1.7由题意可知,极差为2.2﹣1.0=1.2米.故选:D.【点评】极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.9.【分析】根据特殊角的三角函数值,直接得出∠A,∠B的角度从而得出答案.【解答】解:∵sin A=cos B=,∴∠A=∠B=45°,∴△ABC是等腰直角三角形.故选:C.【点评】此题主要考查了特殊角的三角函数值,正确的记忆特殊角的三角函数值是解决问题的关键.10.【分析】由图看出两抛物线的对称轴相同,故m=n,由抛物线顶点上下的位置关系,故k>h,故选项A正确,其他错误.【解答】解:A,由图看出两抛物线的对称轴相同,故m=n,由抛物线顶点上下的位置关系,故k>h,故该选项正确;B,由A选项分析相同,故本选项错误;C,由A选项分析相同,故本选项错误;D,由A选项分析相同,故本选项错误.故选:A.【点评】本题考查了二次函数的性质,由图看出抛物线的顶点的位置关系同函数关系式中数值的关系.本题为非常基础的二次函数性质的应用题.11.【分析】由图象可知起跑后1小时内,甲在乙的前面;在跑了1小时时,乙追上甲,此时都跑了10千米;乙比甲先到达终点;求得乙跑的直线的解析式,即可求得两人跑的距离,则可求得答案.【解答】解:根据图象得:起跑后1小时内,甲在乙的前面;故①正确;在跑了1小时时,乙追上甲,此时都跑了10千米,故②正确;乙比甲先到达终点,故③错误;设乙跑的直线解析式为:y=kx,将点(1,10)代入得:k=10,∴解析式为:y=10x,∴当x=2时,y=20,∴两人都跑了20千米,故④正确.所以①②④三项正确.故选:C.【点评】此题考查了函数图形的意义.解题的关键是根据题意理解各段函数图象的实际意义,正确理解函数图象横纵坐标表示的意义,理解问题的过程.12.【分析】利用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2011的长.【解答】解:l1==l2==l3==l4==按照这种规律可以得到:l n=∴l2011=.故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2011的长.二、填空题(本题共6个小题,每小题4分,满分24分).13.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 7=7×10﹣7.故答案为:7×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是4时,则另两边是4,6,且4+4>6,6﹣4<4,满足三边关系定理,当底边是4时,另两边长是5,5,5+4>5,5﹣4<5,满足三边关系定理,∴该等腰三角形的底边为4或6,故答案为:4或6.【点评】本题考查了等腰三角形的性质,应从边的方面考查三角形,涉及分类讨论的思想方法,难度适中.15.【分析】两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.【解答】解:因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故答案为:.【点评】此题主要考查几何概率的意义:一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有P(A)=.16.【分析】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂直平分线,两垂直平分线的交点即为△ABC的外心.【解答】解:∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).故答案为:(﹣2,﹣1).【点评】此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.17.【分析】根据题意作图,连接O1B,O1C,可得△O1BF≌△O1CG,那么可得阴影部分的面积与正方形面积的关系,同理得出另两个正方形的阴影部分面积与正方形面积的关系,从而得出答案.【解答】解:连接O1B、O1C,如图:∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,∴∠BO1F=∠CO1G,∵四边形ABCD是正方形,∴∠O1BF=∠O1CG=45°,在△O1BF和△O1CG中∴△O1BF≌△O1CG(ASA),∴O1、O2两个正方形阴影部分的面积是S正方形,同理另外两个正方形阴影部分的面积也是S正方形,∴S阴影部分=S正方形=2.故答案为:2.【点评】本题主要考查了正方形的性质及全等三角形的证明,把阴影部分进行合理转移是解决本题的难点,难度适中.18.【分析】对称规律是:(1)这几幅图是A、B、C、D、E、F六个字母的对称图形;(2)1、3、5是上下对称;2、4、6是左右对称.根据此规律即可得到图形.【解答】解:由题意,1,3,5上下对称即得,且图形由复杂变简单.故答案为.【点评】本题考查了图形的变化,1,3,5图形上下对称,2,4,6左右对称,即得.三、解答题(本大题共8各小题,满分78分).19.【分析】先把原式化为最简形式,再利用公式法求出一元二次方程x2﹣2x﹣2=0的根,把正根代入原式计算即可.【解答】解:原式=÷=•=.解方程x2﹣2x﹣2=0得:x1=1+>0,x2=1﹣<0,所以原式==.【点评】本题考查的是分式的化简求值及解一元二次方程,解答此题的关键是把原分式化为最简形式,再进行计算.20.【分析】设出平路和坡路的路程,从家里到学校走平路和下坡路一共用10分钟,从学校到家里走上坡路和平路一共用15分钟,利用这两个关系式列出方程组解答即可.【解答】解:设平路有x米,坡路有y米,根据题意列方程得,,解这个方程组,得,所以x+y=700.所以小华家离学校700米.【点评】此题主要利用时间、速度、路程三者之间的关系解答,解答时注意来回坡路的变化,由此找出关系式,列方程组解决问题.21.【分析】过点F作FG∥EM交CD于G.则MG=EF=10米,根据∠FGN=∠α=36°即可求出∠GFN的度数,进而可得出FN的长,利用FR=FN×sinβ即可得出答案.【解答】解:过点F作FG∥EM交CD于G,则MG=EF=10米.∵∠FGN=∠α=36°.∴∠GFN=∠β﹣∠FGN=72°﹣36°=36°.∴∠FGN=∠GFN,∴FN=GN=50﹣10=40(米).在Rt△FNR中,FR=FN×sinβ=40×sin72°=40×0.95≈38(米).答:河宽FR约为38米.【点评】本题考查的是解直角三角形的应用﹣方向角问题,根据题意作出辅助线是解答此题的关键.22.【分析】(1)设OC=m.根据已知条件得,AC=2,则得出A点的坐标,从而得出反比例函数的解析式和一次函数的表达式;(2)易得出点B的坐标,反比例函数y1的图象在一次函数y2的图象的上方时,即y1大于y2.【解答】解:(1)在Rt△OAC中,设OC=m.∵tan∠AOC==2,∴AC=2×OC=2m.∵S△OAC=×OC×AC=×m×2m=1,∴m2=1.∴m=1,m=﹣1(舍去).∴m=1,∴A点的坐标为(1,2).把A点的坐标代入中,得k1=2.∴反比例函数的表达式为.把A点的坐标代入y2=k2x+1中,得k2+1=2,∴k2=1.∴一次函数的表达式y2=x+1;(2)B点的坐标为(﹣2,﹣1).当0<x<1或x<﹣2时,y1>y2.【点评】本题考查了一次函数和反比例函数的交点问题,以及用待定系数法求二次函数的解析式,是基础知识要熟练掌握.23.【分析】(1)首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量,则可补全统计图;(2)根据概率公式直接求解即可求得答案;(3)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较是否相等即可求得答案.【解答】解:(1)设D地车票有x张,则x=(x+20+40+30)×10%,解得x=10.即D地车票有10张.补全统计图如图所示.(2)小胡抽到去A 地的概率为=.(3)不公平.以列表法说明:1234小李掷得数字小王掷得数字1(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)或者画树状图法说明(如图)由此可知,共有16种等可能结果.其中小王掷得数字比小李掷得数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴小王掷得数字比小李掷得数字小的概率为=.则小王掷得数字不小于小李掷得数字的概率为=.∴这个规则对双方不公平.【点评】本题考查的是用列表法或画树状图法求概率与概率公式得到应用.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.【分析】(1)根据勾股定理AB2+BC2=AC2,得出AB2+BC2=2AB2,进而得出AB=BC;(2)首先证明CDEF是矩形,再根据△BAE≌△CBF,得出AE=BF,进而证明结论.【解答】证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴BC2=AB2,∵AB>0,BC>0,∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,CF⊥BE,CD⊥AD,∴∠FED=∠CFE=∠D=90°,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴在△BAE与△CBF中∴,∴△BAE≌△CBF.(AAS)∴AE=BF.∴BE=BF+EF=AE+CD.【点评】此题主要考查了勾股定理的应用以及三角形的全等证明,根据已知得出四边形CDEF是矩形以及△BAE≌△CBF是解决问题的关键.25.【分析】(1)如图,连接FO并延长交⊙O于Q,连接DQ.由FQ是⊙O直径得到∠QFD+∠Q=90°,又由CD⊥AB得到∠P+∠C=90°,然后利用已知条件即可得到∠QFD=∠P,然后即可证明△FOE∽△POF,最后利用相似三角形的性质即可解决问题;(2)(1)中的结论成立.如图2,依题意画出图形,连接FO并延长交⊙O于M,连接CM.由FM是⊙O直径得到∠M+∠CFM=90°,又由CD⊥AB,得到∠E+∠D=90°,接着利用已知条件即可证明∠CFM=∠E,然后利用已知条件证明△POF∽△FOE,最后利用相似三角形的性质即可证明题目的结论.【解答】(1)证明:如图1,连接FO并延长交⊙O于Q,连接DQ.∵FQ是⊙O直径,∴∠FDQ=90°.∴∠QFD+∠Q=90°.∵CD⊥AB,∴∠P+∠C=90°.∵∠Q=∠C,∴∠QFD=∠P.∵∠FOE=∠POF,∴△FOE∽△POF.∴.∴OE•OP=OF2=r2.(2)解:(1)中的结论成立.理由:如图2,依题意画出图形,连接FO并延长交⊙O于M,连接CM.∵FM是⊙O直径,∴∠FCM=90°,∴∠M+∠CFM=90°.∵CD⊥AB,∴∠E+∠D=90°.∵∠M=∠D,∴∠CFM=∠E.∵∠POF=∠FOE,∴△POF∽△FOE.∴,∴OE•OP=OF2=r2.【点评】此题分别考查了相似三角形的性质与判定、垂径定理及圆周角定理,同时也考查了简单的作图问题,解题的关键是充分利用相似三角形的性质证明题目的结论.26.【分析】(1)把y=4代入y=﹣x+,求得x的值,则可得点C的坐标,把y=0代入y=﹣x+,求得x的值,即可得点B的坐标;(2)作CM⊥AB于M,则可求得CM与BM的值,求得∠ABC的正弦值,然后分别从0<t<4时,当4<t≤5时与当5<t≤6时去分析求解即可求得答案;(3)在(2)的情况下s的最大值,然后比较即可求得答案.【解答】解:(1)把y=4代入y=﹣x+,得x=1.∴C点的坐标为(1,4).当y=0时,﹣x+=0,∴x=4.∴点B坐标为(4,0).(2)作CM⊥AB于M,则CM=4,BM=3.∴BC===5.∴sin∠ABC==.①0<t<4时,作QN⊥OB于N,则QN=BQ•sin∠ABC=t.∴S=OP•QN=(4﹣t)×t=﹣t2+t(0<t<4).②当4<t≤5时,(如图1),连接QO,QP,作QN⊥OB于N.同理可得QN=t.∴S=OP•QN=×(t﹣4)×t=t2﹣t(4<t≤5).③当5<t≤6时,(如图2),连接QO,QP.S=×OP×OD=(t﹣4)×4=2t﹣8(5<t≤6).(3)①在0<t<4时,当t=﹣=2时,S最大==.②在4<t≤5时,对于抛物线S=t2﹣t,当t=﹣=2时,S最小=×22﹣×2=﹣.∴抛物线S=t2﹣t的顶点为(2,﹣).∴在4<t≤5时,S随t的增大而增大.∴当t=5时,S最大=×52﹣×5=2.③在5<t≤6时,在S=2t﹣8中,∵k=2>0,∴S随t的增大而增大.∴当t=6时,S最大=2×6﹣8=4.∴综合三种情况,当t=6时,S取得最大值,最大值是4.【点评】此题考查了点与函数的关系,三角形面积的求解方法以及利用二次函数的知识求函数的最大值的问题.此题综合性很强,难度较大,解题时要注意分类讨论思想,方程思想与数形结合思想的应用.。
2011年杭州市中考数学试卷及参考答案
2011年杭州市各类高中招生文化考试数 学考生须知:1. 本试卷满分120分,考试时间100分钟。
2. 答题前,在答题纸上写姓名和准考证号。
3. 必须在答题纸的对应答题位置上答题,写在其它地方无效。
答题方式详见答题纸上的说明。
4. 考试结束后,试题卷和答题纸一并上交。
试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列各式中,正确的是 A. 3)3(2-=- B. 332-=- C. 3)3(2±=± D. 332±=2. 正方形纸片折一次,沿折痕剪开,能剪得的图形是A. 锐角三角形B. 钝角三角形C. 梯形D.菱形3. =⨯36)102(A. 9106⨯B. 9108⨯C. 18102⨯D.18108⨯4. 正多边形的一个内角为135°,则该多边形的边数为A. 9B. 8C. 7D. 45. 在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径的圆A. 与x 轴相交,与y 轴相切B. 与x 轴相离,与y 轴相交C. 与x 轴相切,与y 轴相交D. 与x 轴相切,与y 轴相离6. 如图,函数11-=x y 和函数x y 22=的图像相交于点M (2,m ),N(-1,n ),若21y y >,则x 的取值范围是A. 1-<x 或20<<xB. 1-<x 或2>x C. 01<<-x 或20<<x D. 01<<-x 或2>x7. 一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是8. 如图是一个正六棱柱的主视图和左视图,则图中的=aA. 32B. 3C. 2D. 19. 若2-=+b a ,且a ≥2b ,则A. a b 有最小值21B. ab有最大值1C. b a 有最大值2D. b a 有最小值98- 10. 在矩形ABCD 中,有一个菱形BFDE (点E ,F 分别在线段AB ,CD上),记它们的面积分别为ABCD S 和BFDE S ,现给出下列命题: ①若232+=BFDE ABCD S S ,则33tan =∠EDF ; ②若EF BD DE ⋅=2,则DF=2AD则A. ①是真命题,②是真命题B. ①是真命题,②是假命题C. ①是假命题,②是真命题D. ①是假命题,②是假命题二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11. 写出一个比-4大的负.无理数_________ 12. 当7=x 时,代数式)1)(3()1)(52(+--++x x x x 的值为__________13. 数据,,,,,的众数是___________;中位数是_______________14. 如图,点A ,B ,C ,D 都在⊙O 上,的度数等于84°,CA 是∠OCD 的平分线,则∠ABD+∠CAO=________°15. 已知分式ax x x +--532,当2=x 时,分式无意义,则=a _______;当6<x 时,使分式无意义的x 的值共有_______个16. 在等腰Rt △ABC 中,∠C=90°,AC=1,过点C 作直线l ∥AB ,F是l 上的一点,且AB=AF ,则点F 到直线BC 的距离为__________三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤。
2011年湖北省黄石市中考数学试卷及解析
2011年湖北省黄石市中考数学试卷及解析2011年湖北省黄石市中考数学试卷一、选择题(共10 小题,每小题3 分,满分30 分)1、(2011�6�1黄石)的值为()A、2 B、-2 C、土2 D、不存在考点:算术平方根。
专题:计算题。
分析:直接根据算术平方根的定义求解.解答:解:因为4 的算术平方根是2,所以=2.故选A.点评:此题主要考查了算术平方根的定义,属于基础题型.2、(2011�6�1黄石)黄石市2011 年6 月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为()A、(11+t)℃B、(11-t)℃ C、(t-11)℃ D、(-t-11)℃考点:列代数式。
专题:计算题。
分析:由已知可知,最高气温-最低气温=温差,从而求出最低气温.解答:解:设最低气温为x℃,则:t-x=11,x=t-11.故选C.点评:此题考查的知识点是列代数式,此题要明确温差就是最高气温减去最低气温.3、(2011�6�1黄石)若双曲线的图象经过第二、四象限,则k 的取位范圃是()A、B、C、D、不存在考点:反比例函数的性质。
专题:探究型。
分析:先根据反比例函数的图象经过第二、四象限得到关于k 的不等式,求出k 的取值范围即可.解答:解:∵双曲线y= 的图象经过第二、四象限,∴2k -1<0,∴k<.故选B.点评:本题考查的是反比例函数的性质,即反比例函数y= (k≠0)中,k<0 时,其图象在二、四象限.4、(2011�6�1黄石)有如下图形:①函数y=x-1 的图象;②函数的图象;③一段圆弧;④平行四边形.其中一定是轴对称图形的有()A、1 个B、2 个C、3 个D、1 个考点:轴对称图形;一次函数的图象;反比例函数的图象;平行四边形的性质;圆的认识。
专题:综合题。
分析:根据轴对称图形的概念,分析各图形的特征求解.解答:解:①函数y=x -1 的图象是一条直线,不是轴对称图形,②函数的图象是双曲线,是轴对称图形,③圆弧是轴对称图形,④平行四边形不是轴对称图形,是中心对称图形.故选:B.点评:此题主要考查了轴对称图形的概念,关键是寻找对称轴,图形两部分折叠后可重合.5、(2011�6�1黄石)如图所示的几何体的俯视图是()A、B、C、D、考点:简单组合体的三视图。
2011年中考湖北武汉数学试卷及解析
2011年湖北省武汉市中考数学试题第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数-3的相反数是A.3.B.-3.C.31 D.31-. 2.函数2-=x y 中自变量x 的取值范围是A.x≥0.B.x≥-2.C.x≥2.D.x≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0,x-3>0.B.x+1>0,3-x>0.C.x+1<0,x-3>0.D.x+1<0,3-x>0.4.下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是A.4.B.3.C.-4.D.-3.6.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104.B.67.5×105.C.6.75×106.D.0.675×107.7.如图,在梯形ABCD 中,AB ∥DC,AD=DC=CB,若∠ABD =25°,则∠BAD 的大小是A.40°.B.45°.C.50°.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25.10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:① 在2010年总投入中购置器材的资金最多;② ②2009年购置器材投入资金比2010年购置器材投入资金多8%;③ ③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A.0.B.1.C.2.D.3.12.如图,在菱形ABCD 中,AB=BD,点E,F 分别在AB,AD 上,且AE=DF.连接BF 与DE 相交于点G,连接CG 与BD 相交于点H.下列结论:①△AED ≌△DFB ;②S 四边形 B C D G = 43 CG 2; ③若AF=2DF,则BG=6GF.其中正确的结论A. 只有①②.B.只有①③.C.只有②③.D.①②③.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A,B 的坐标分别是A(-1,0),B(0,-2),顶点C,D 在双曲线y=xk 上,边AD 交y 轴于点E,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22xx x x x -÷-,其中x=3. 19.(本题满分6分)如图,D,E,分 别 是 AB,AC 上 的 点 ,且AB=AC,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE 的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作OP 的垂线AB,垂足为点C,交⊙O 于点B.延长BO 与⊙O 交于点D,与PA 的延长线交于点E.(1)求证:PB 为⊙O 的切线;(2)若tan ∠ABE=21,求sinE 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC 中,点D,E,Q 分别在AB,AC,BC 上,且DE ∥BC,AQ 交DE 于点P.求证:QCPE BQ DP . (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG,AF 分别交DE 于M,N 两点.①如图2,若AB=AC=1,直接写出MN 的长;②如图3,求证MN 2=DM·EN.25.(本题满分12分)如图1,抛物线y=ax 2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y 轴交于点C,与直线OM 交于点D.现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x 轴的直线交抛物线于E,F 两点.问在y 轴的负半轴上是否存在点P,使△PEF 的内心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.2011年湖北省武汉市中考数学答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D二、填空题13.1/214.105;105;10015.816.12三、解答题 17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4×1×1=5>0∴x=-3±25 ∴x 1=-3+ 25,x 2=-3-25 18.(本题6分)解:原式=x(x-2)/x÷(x+2)(x-2)/x=x(x-2)/x· x/(x+2)(x-2)=x/(x+2)∴当x=3时,原式=3/519.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A=∠A AE =AD∴△ABE≌△ACD∴∠B=∠C 20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P (至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:以下同解法1(略)21.(本题7分)(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F(-1,-1)左 直 右左 (左,左) (左,直) (左,右)直 (直,左) (直,直) (直,右)右 (右,左) (右,直) (右,右)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA∵PA为⊙O的切线,∴∠PAO=90°∵OA=OB,OP⊥AB于C∴BC=CA,PB=PA∴△PBO≌△PAO∴∠PBO=∠PAO=90°∴PB为⊙O的切线(2)解法1:连接AD,∵BD是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP∴△ADE∽△POE∴EA/EP=AD/OP 由AD∥OC得AD=2OC ∵tan∠ABE=1/2 ∴OC/BC=1/2,设OC=t,则BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t ∴EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m∵PA=PB∴PB=3m∴sinE=PB/EP=3/5(2)解法2:连接AD,则∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC ∵tan∠ABE=1/2,∴OC/BC=1/2,设OC=t,BC=2t,AB=4t由△PBC∽△BOC,得PC=2BC =4t,∴PA=PB=25t 过A作AF⊥PB于F,则AF·PB=AB·PC∴AF=558t 进而由勾股定理得PF=556t∴sinE=sin∠FAP=PF/PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1124.(本题10分)(1)证明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ, ∴DP/BQ=AP/AQ.同理在△ACQ中,EP/CQ=AP/AQ.∴DP/BQ=EP/CQ.(2)929.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG·EF=CF·BG又∵DG=GF=EF,∴GF2=CF·BG由(1)得DM/BG=MN/GF=EN/CF∴(MN/GF)2=(DM/BG)·(EN/CF)∴MN2=DM·EN25.(1)抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点∴9a-3b+3=0 且a-b+3=0解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M(-2,,1)∴直线OD 的解析式为y=21x 于是设平移的抛物线的顶点坐标为(h,21 h),∴平移的抛物线解析式为y=(x-h)2+21h.①当抛物线经过点C 时,∵C (0,9),∴h 2+21h=9, 解得h=41451-±. ∴ 当 4145-1-≤h<41451-+ 时,平移的抛物线与射线CD 只有一个公共点.②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h)2+21h,y=-2x+9. 得 x 2+(-2h+2)x+h 2+21h-9=0,∴△=(-2h+2)2-4(h 2+21h-9)=0, 解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或 4145-1-≤h<41451-+. (3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x 2,设EF 的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P(0,t),如图,过P 作GH∥x 轴,分别过E,F 作GH 的垂线,垂足为G,H.∵△PEF 的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP ,∴△GEP∽△HFP ,...............9分∴GP /PH=GE/HF,∴-x E /x F =(y E -t)/(y F -t)=(kx E +3-t)/(kx F +3-t)∴2kx E ·x F =(t-3)(x E +x F )由y=x 2,y=-kx+3.得x 2-kx-3=0.∴x E +x F =k,x E ·x F =-3.∴2k(-3)=(t-3)k,∵k≠0,∴t=-3.∴y 轴的负半轴上存在点P(0,-3),使△PEF 的内心在y 轴上.方法2 设EF 的解析式为y=kx+3(k≠0),点E,F 的坐标分别为(m,m 2)(n,n 2)由方法1知:mn=-3.作点E 关于y轴的对称点R(-m,m 2),作直线FR 交y 轴于点P,由对称性知∠EPQ=∠FPQ ,∴点P 就是所求的点.由F,R 的坐标,可得直线FR 的解析式为y=(n-m)x+mn.当x=0,y=mn=-3,∴P (0,-3).∴y 轴的负半轴上存在点P(0,-3),使△PEF 的内心在y 轴上.武汉市光谷三初 冉瑞洪整理。
2011年山东省威海市中考数学试卷
2011年山东省威海市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选均不得分)1.(3分)在实数0,,,﹣2中,最小的是()A.﹣2B.C.0D.2.(3分)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A.180,180,178B.180,178,178C.180,178,176.8D.178,180,176.83.(3分)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2B.1:3C.2:3D.2:54.(3分)下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.(﹣ab)5÷(﹣ab)2=﹣a3b35.(3分)下列各点中,在函数图象上的是()A.(﹣2,﹣4)B.(2,3)C.(﹣6,1)D.(,3)6.(3分)在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF 7.(3分)二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是()A.﹣1<x<3B.x<﹣1C.x>3D.x<﹣3或x>3 8.(3分)计算1的结果是()A.﹣m2﹣2m﹣1B.﹣m2+2m﹣1C.m2﹣2m﹣1D.m2﹣19.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是()A.0B.8C.4±2D.0或810.(3分)如图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是()A.3B.4C.5D.611.(3分)如果不等式组><的解集是x<2,那么m的取值范围是()A.m=2B.m>2C.m<2D.m≥212.(3分)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分,只要求填出最后结果)13.(3分)计算的结果是.14.(3分)正方形ABCD在平面直角坐标系中的位置如图所示,已知A点坐标(0,4),B 点坐标(﹣3,0),则C点坐标.15.(3分)如图,⊙O的直径AB与弦CD交于点E,AE=5,BE=1,CD=4,则∠AED =.16.(3分)因式分解:16﹣8(x﹣y)+(x﹣y)2=.17.(3分)如图①,将一个量角器与一张等腰三角形(△ABC)纸片放置成轴对称图形.∠ACB=90°,CD⊥AB,垂足为D,半圆(量角器)的圆心与点D重合,测得CE=5cm;将量角器沿DC方向平移2cm,半圆(量角器)恰与△ABC的边AC,BC相切,如图②.则AB的边长为cm.(精确到0.1cm)18.(3分)如图,在平面直角坐标系xOy中,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…l n分别交于点A1,A2,A3,…A n,函数y=2x的图象与直线l1,l2,l3,…l n分别交于点B1,B2,B3,…B n.如果△OA1B1的面积记为S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2011=.三、解答题(本大题共7小题,共66分)19.(7分)解方程:.20.(8分)我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心.(1)如图①,△ABC≌△DEF.△DEF能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由;(2)如图②,△ABC≌△MNK.△MNK能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(保留必要的作图痕迹)21.(9分)甲乙二人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜,你认为这个游戏公平吗?试说明理由.22.(9分)为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.23.(10分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.24.(11分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数;(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由;(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.25.(12分)如图,抛物线y=ax2+bx+c交x轴于点A(﹣3,0),点B(1,0),交y轴于点E(0,﹣3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F 且与y轴平行.直线y=﹣x+m过点C,交y轴于D点.(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.2011年山东省威海市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是正确的,每小题选对得3分,选错、不选或多选均不得分)1.(3分)在实数0,,,﹣2中,最小的是()A.﹣2B.C.0D.【解答】解:∵正数大于0和一切负数,所以只需比较和﹣2的大小,因为||<||,所以最小的数是﹣2.故选:A.2.(3分)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A.180,180,178B.180,178,178C.180,178,176.8D.178,180,176.8【解答】解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列(164,170,172,176,176,180,180,180,184,186),处于中间位置的那两个数为176,180,那么由中位数的定义可知,这组数据的中位数是178;平均数为:(164+170+172+176+176+180+180+180+184+186)÷10=176.8.故选:C.3.(3分)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2B.1:3C.2:3D.2:5【解答】解:∵四边形ABCD是平行四边形,∴△AEF∽△BCF,∴,∵点E为AD的中点,∴,故选:A.4.(3分)下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.(﹣ab)5÷(﹣ab)2=﹣a3b3【解答】解:A、a3•a2=a5,故A错误;B、(x3)3=x9,故B错误;C、x5+x5=2x5,故C错误;D、(﹣ab)5÷(﹣ab)2=﹣a5b5÷a2b2=﹣a3b3,故D正确.故选:D.5.(3分)下列各点中,在函数图象上的是()A.(﹣2,﹣4)B.(2,3)C.(﹣6,1)D.(,3)【解答】解:∵函数,∴﹣6=xy,只要把点的坐标代入上式成立即可,把答案A、B、D的坐标代入都不成立,只有C成立.故选:C.6.(3分)在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF 【解答】解:A、∵EF∥AB,∴∠BDF=∠EFD,∵DE分别是ABAC的中点,∴DE BC,DE∥BC(三角形的中位线定理),∴∠EDF=∠BFD(平行线的性质),∵DF=DF,∴△BFD≌△EDF,故本选项正确;B、∵DE BC=BF,∠EDF=∠BFD,DF=DF,∴△BFD≌△EDF,故本选项正确;C、由∠A=∠DFE证不出△BFD≌△EDF,故本选项错误;D、∵∠B=∠DEF,∠EDF=∠BFD,DF=DF,∴△BFD≌△EDF(AAS),故本选项正确.故选:C.7.(3分)二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是()A.﹣1<x<3B.x<﹣1C.x>3D.x<﹣3或x>3【解答】解:由图象可以看出:y<0时,自变量x的取值范围是﹣1<x<3;故选:A.8.(3分)计算1的结果是()A.﹣m2﹣2m﹣1B.﹣m2+2m﹣1C.m2﹣2m﹣1D.m2﹣1【解答】解:11(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m ﹣1.故选:B.9.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是()A.0B.8C.4±2D.0或8【解答】解:∵一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=0,即(m﹣2)2﹣4×1×(m+1)=0,整理,得m2﹣8m=0,解得m1=0,m2=8.故选:D.10.(3分)如图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是()A.3B.4C.5D.6【解答】解:根据主视图与左视图,第一行的正方体有1(只有一边有)或2(左右都有)个,第二行的正方形可能有2(左边有)或3(左右都有)个,∵1+2=3,1+3=4,2+2=4,2+3=5,故不可能有6个.故选:D.11.(3分)如果不等式组><的解集是x<2,那么m的取值范围是()A.m=2B.m>2C.m<2D.m≥2【解答】解:解第一个不等式得,x<2,∵不等式组><的解集是x<2,∴m≥2,故选:D.12.(3分)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【解答】解:当点N在AD上时,即0≤x≤1,S△AMN x×3x x2,点N在CD上时,即1≤x≤2,S△AMN x×3x,y随x的增大而增大,所以排除A、D;当N在BC上时,即2≤x≤3,S△AMN x×(9﹣3x)x2x,开口方向向下.故选:B.二、填空题(本大题共6小题,每小题3分,共18分,只要求填出最后结果)13.(3分)计算的结果是3.【解答】解:原式=(52)3.故答案为:3.14.(3分)正方形ABCD在平面直角坐标系中的位置如图所示,已知A点坐标(0,4),B 点坐标(﹣3,0),则C点坐标(1,﹣3).【解答】解:过C点作CE⊥x轴于E.∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,又∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∠AOB=∠BEC=90°,∴△ABO≌△BCE,∴CE=OB=3,BE=OA=4,∴C点坐标为(4﹣3,﹣3),即(1,﹣3).故答案为:(1,﹣3).15.(3分)如图,⊙O的直径AB与弦CD交于点E,AE=5,BE=1,CD=4,则∠AED =30°.【解答】解:连接OD,过圆心O作OH⊥CD于点H.∴DH=CH CD(垂径定理);∵CD=4,∴DH=2;又∵AE=5,BE=1,∴AB=6,∴OA=OD=3(⊙O的半径);∴OE=2;∴在Rt△ODH中,OH1(勾股定理);在Rt△OEH中,OH OE,∴∠OEH=30°,即∠AED=30°.故答案为:30°.16.(3分)因式分解:16﹣8(x﹣y)+(x﹣y)2=(4﹣x+y)2.【解答】解:16﹣8(x﹣y)+(x﹣y)2,=[4﹣(x﹣y)]2,=(4﹣x+y)2.故答案为:(4﹣x+y)2.17.(3分)如图①,将一个量角器与一张等腰三角形(△ABC)纸片放置成轴对称图形.∠ACB=90°,CD⊥AB,垂足为D,半圆(量角器)的圆心与点D重合,测得CE=5cm;将量角器沿DC方向平移2cm,半圆(量角器)恰与△ABC的边AC,BC相切,如图②.则AB的边长为24.5cm.(精确到0.1cm)【解答】解:如图,设图②中半圆的圆心为O,与BC的切点为M,连接OM,则OM⊥MC,∴∠OMC=90°,依题意知道∠DCB=45°,设AB为2x,∵△ABC是等腰直角三角形,∴CD=BD=x,而CE=5cm,又将量角器沿DC方向平移2cm,∴半圆的半径为x﹣5,OC=x﹣2,∴sin∠DCB,∴,∴x,∴AB=2x=224.5(cm).故答案为:24.5.18.(3分)如图,在平面直角坐标系xOy中,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…l n分别交于点A1,A2,A3,…A n,函数y=2x的图象与直线l1,l2,l3,…l n分别交于点B1,B2,B3,…B n.如果△OA1B1的面积记为S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2011=2010.5.【解答】解:∵函数y=x的图象与直线l1,l2,l3,…l n分别交于点A1,A2,A3,…A n,∴A1(1,1),A2(2,2),A3(3,3)…A n(n,n),又∵函数y=2x的图象与直线l1,l2,l3,…l n分别交于点B1,B2,B3,…B n,∴B1(1,2),B2(2,4),B3(3,6),…B n(n,2n),∴S1•1•(2﹣1),S2•2•(4﹣2)•1•(2﹣1),S3•3•(6﹣3)•2•(4﹣2),…S n•n•(2n﹣n)•(n﹣1)[2(n﹣1)﹣(n﹣1)]n2(n﹣1)2=n.当n=2011,S2011=20112010.5.故答案为2010.5.三、解答题(本大题共7小题,共66分)19.(7分)解方程:.【解答】解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.20.(8分)我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心.(1)如图①,△ABC≌△DEF.△DEF能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由;(2)如图②,△ABC≌△MNK.△MNK能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(保留必要的作图痕迹)【解答】解:(1)能.点O1就是所求作的旋转中心;(2)能.点O2就是所求作的旋转中心.21.(9分)甲乙二人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜,你认为这个游戏公平吗?试说明理由.【解答】解:公平.理由:∴一共有36种结果,每种结果出现的可能性是相同的,其中两个数字之和为偶数的有18种,数字之和为奇数的有18种,∴P(甲胜)=P(乙胜).∴游戏是公平的.22.(9分)为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【解答】解:方法1:设自行车路段的长度为x米,长跑路段的长度为y米,则:,解得.答:自行车路段的长度为3000米,长跑路段的长度为2000米.方法2:设自行车路段的长度为x米,长跑路段的长度为(5000﹣x)米,则:15,解得x=3000,5000﹣x=5000﹣3000=2000.答:自行车路段的长度为3000米,长跑路段的长度为2000米.23.(10分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC×tan60°=10,∵AB∥CF,∴BM=BC×sin30°=105,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.24.(11分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数;(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由;(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.【解答】解:(1)∵四边形ABCD是矩形,∴AM∥DN.∴∠KNM=∠1.∵∠1=70°,∴∠KNM=∠KMN=∠1=70°,∴∠MKN=40°.(2)不能.过M点作ME⊥DN,垂足为E,则ME=AD=1.∵∠KNM=∠KMN,∴MK=NK,又∵MK≥ME,∴NK≥1.∴△MNK的面积NK•ME.∴△MNK的面积不可能小于.(3)分两种情况:情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合.MK=MB=x,则AM=5﹣x.由勾股定理得12+(5﹣x)2=x2,解得x=2.6.∴MD=ND=2.6.S△MNK=S△MND 1.3.情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC.MK=AK=CK=x,则DK=5﹣x.同理可得MK=NK=2.6.∵MD=1,∴S△MNK 1.3.△MNK的面积最大值为1.3.25.(12分)如图,抛物线y=ax2+bx+c交x轴于点A(﹣3,0),点B(1,0),交y轴于点E(0,﹣3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F 且与y轴平行.直线y=﹣x+m过点C,交y轴于D点.(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.【解答】解:(1)设抛物线的函数表达式为y=a(x﹣1)(x+3)∵抛物线交y轴于点E(0,﹣3),将该点坐标代入上式,得a=1∴所求函数表达式为y=(x﹣1)(x+3),即y=x2+2x﹣3;(2)∵点C是点A关于点B的对称点,点A坐标(﹣3,0),点B坐标(1,0),∴点C坐标(5,0),∴将点C坐标代入y=﹣x+m,得m=5,∴直线CD的函数表达式为y=﹣x+5,设K点的坐标为(t,0),则H点的坐标为(t,﹣t+5),G点的坐标为(t,t2+2t﹣3),∵点K为线段AB上一动点,∴﹣3≤t≤1,∴HG=(﹣t+5)﹣(t2+2t﹣3)=﹣t2﹣3t+8=﹣(t)2,∵﹣3<<1,∴当t时,线段HG的长度有最大值;(3)∵点F是线段BC的中点,点B(1,0),点C(5,0),∴点F的坐标为(3,0),∵直线l过点F且与y轴平行,∴直线l的函数表达式为x=3,∵点M在直线l上,点N在抛物线上,∴设点M的坐标为(3,m),点N的坐标为(n,n2+2n﹣3),∵点A(﹣3,0),点C(5,0),∴AC=8,分情况讨论:①若线段AC是以点A、C,M、N为顶点的平行四边形的边,则需MN∥AC,且MN=AC=8.当点N在点M的左侧时,MN=3﹣n,∴3﹣n=8,解得n=﹣5,∴N点的坐标为(﹣5,12),当点N在点M的右侧时,MN=n﹣3,∴n﹣3=8,解得n=11,∴N点的坐标为(11,140),②若线段AC是以点A、C,M、N为顶点的平行四边形的对角线,由“点C与点A关于点B中心对称”知:点M与点N关于点B中心对称,取点F关于点B的对称点P,则P 点坐标为(﹣1,0)过P点作NP⊥x轴,交抛物线于点N,将x=﹣1代入y=x2+2x﹣3,得y=﹣4,过点N作直线NM交直线l于点M,在△BPN和△BFM中,∠NBP=∠MBF,BF=BP,∠BPN=∠BFM=90°,∴△BPN≌△BFM,∴NB=MB,∴四边形ANCM为平行四边形,∴坐标(﹣1,﹣4)的点N符合条件,∴当N的坐标为(﹣5,12),(11,140),(﹣1,﹣4)时,以点A、C、M、N为顶点的四边形为平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年中考数学试卷—解析版一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每小题3分,计45分)1、(2011•宜昌)如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A、轴对称性B、用字母表示数C、随机性D、数形结合考点:生活中的轴对称现象。
分析:根据轴对称的定义可以得出,数学美体现在蝴蝶图案的对称性.解答:解:用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的对称性.故选A.点评:此题主要考查了轴对称的应用,根据图形得出一种数学美,有利于同学们的生活的喜爱以及数学与生活之间的联系.2、(2011•宜昌)如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作()A、+0.02克B、﹣0.02克C、0克D、+0.04克考点:正数和负数。
分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答解答:解:根据题意可得:超出标准质量记为+,所以低于标准质量记为:﹣,因此,低于标准质量0.02克记为﹣0.02克.故选B.点评:此题主要考查了正负数表示的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3、(2011•宜昌)要调查城区九年级8000名学生了解禁毒知识的情况,下列调查方式最合适的是()A、在某校九年级选取50名女生B、在某校九年级选取50名男生C、在某校九年级选取50名学生D、在城区8000名九年级学生中随机选取50名学生考点:全面调查与抽样调查。
专题:分类讨论。
分析:本题需要根据具体情况正确选择普查或抽样调查等方法,并理解有些调查是不适合使用普查方法的.要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.解答:解:要调查城区九年级8000名学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的全面性,所以应在城区8000名九年级学生中随机选取50名学生.故选D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、(2011•宜昌)我市大约有34万中小学生参加了“廉政文化进校园”教育活动,将数据34万用科学记数法表示,正确的是()A、0.34×105B、3.4×105C、34×105D、340×105考点:科学记数法—表示较大的数。
分析:科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:解:数据34万用科学记数法表示为3.4×105.故选B.点评:本题考查了用科学记数法表示一个数,方法是(1)确定a:a 是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).5、(2011•宜昌)如图,数轴上A、B两点分别对应实数a,b,则下列结论正确的是()A、a<bB、a=bC、a>bD、ab>0考点:实数大小比较;实数与数轴。
专题:存在型。
分析:根据各点在数轴上的位置判断出a、b的符号,再比较出其大小即可.解答:解:∵b在原点左侧,a在原点右侧,∴b<0,a>0,∴a>b,故A、B错误,C正确;∵a、b异号,∴ab<0,故D错误.故选C.点评:本题考查的是实数大小比较及数轴的特点,熟知数轴上各数的特点是解答此题的关键.6、(2011•宜昌)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A、越来越小B、越来越大C、大小不变D、不能确定考点:中心投影。
分析:解答本题关键是要区分开平行投影和中心投影.根据题意,灯光下影子越长的物体就越高,可联系到中心投影的特点,从而得出答案.解答:解:灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离有关,此距离越大影子才越大.故选:B.点评:此题主要考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.7、(2011•宜昌)下列计算正确的是()A、3a﹣a=3B、2a•a3=a6C、(3a)2=2a6D、2a÷a=2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、3a﹣a=(3﹣1)a=2a,故此选项错误;B、2a•a3=2a4,故此选项错误;C、(3a)2=9a2,故此选项错误;D、2a÷a=2,故此选项正确.故选D.点评:此题主要考查了同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.8、(2011•宜昌)一个圆锥体按如图所示摆放,它的主视图是()A、B、C、D、考点:简单几何体的三视图。
专题:几何图形问题。
分析:找到圆锥体从前面看所得到的图形即可.解答:解:圆锥体的主视图是一个三角形.故选A.点评:本题考查了三视图的知识,主视图是从物体的前面看得到的视图.9、(2011•宜昌)按图1的方法把圆锥的侧面展开,得到图2,其半径04=3,圆心角∠AOB=120°,则的长为()A、πB、2πC、3πD、4π考点:弧长的计算。
专题:常规题型。
分析:弧长的计算公式为,把半径和圆心角代入公式可以求出弧长.解答:解:==2π.故选B.点评:本题考查的是弧长的计算,知道圆心角和半径,代入弧长公式计算.10、(2011•宜昌)下列说法正确的是()A、若明天降水概率为50%,那么明天一定会降水B、任意掷一枚均匀的1元硬币,一定是正面朝上C、任意时刻打开电视,都正在播放动画片《喜洋洋》D、本试卷共24小题考点:概率的意义。
分析:利用概率的意义和必然事件的概念的概念进行分析.解答:解:A,,概率是针对数据非常多时,趋近的一个数,所以降水概率为50%,那么明天也不一定会降水,故此选项错误;B,必然事件是一定会发生的事件,则对于选项B很明显不一定能发生,有可能反面朝上,故此选项错误;C,必然事件是一定会发生的事件,则对于选项C很明显不一定能发生,故此选项错误;D,此试卷确实共24小题,所以是必然事件,故此选项正确.故选D.点评:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.11、(2011•宜昌)如图是教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=,则边BC的长为()A、30cmB、20cmC、10cmD、5cm考点:解直角三角形;特殊角的三角函数值。
专题:计算题。
分析:因为教学用的直角三角板为直角三角形,所以利用三角函数定义,一个角的正切值等于这个角的对边比邻边可知角BAC的对边为BC,邻边为AC,根据角BAC的正切值,即可求出BC的长度.解答:解:在直角三角形ABC中,根据三角函数定义可知:tan∠BAC=,又AC=30cm,tan∠BAC=,则BC=ACtan∠BAC=30×=10cm.故选C.点评:此题考查学生掌握三角函数正弦、余弦及正切的定义,是一道基础题.要求注意观察生活中的数学问题,培养学生利用数学知识解决实际问题的能力,体现了数学来自于生活且服务于生活.12、(2011•宜昌)如图,在梯形ABCD中,AB∥CD,AD=BC,点E、F、G、H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是()A、∠HGF=∠GHEB、∠GHE=∠HEFC、∠HEF=∠EFGD、∠HGF=∠HEF考点:等腰梯形的性质;三角形中位线定理;菱形的判定与性质。
专题:计算题。
分析:利用三角形中位线定理证明四边形HEFG是平行四边形,进而可以得到结论.解答:解:连接BD,∵E、F、G、H分别是AB,BC,CD,DA的中点,∴HE GE=BD,∴四边形HEFG是平行四边形,∴∠HGF=∠HEF,故选D.点评:本题考查了等腰梯形的性质及三角形的中位线定理,解题的关键是利用中位线定理证得四边形为平行四边形.13、(2011•宜昌)如图,矩形OABC的顶点O为坐标原点,点A在x 轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为()A、(2,1)B、(﹣2,1)C、(﹣2,﹣1)D、(2,﹣l)考点:坐标与图形变化-旋转。
分析:将矩形0ABC绕点O顺时针旋转180°,就是把矩形0ABC上的每一个点绕点O顺时针旋转180°,求点B1的坐标即是点B关于点O 的对称点B1点的坐标得出答案即可.解答:解:∵点B的坐标是(2,1),∴点B关于点O的对称点B1点的坐标是(﹣2,﹣1).故选C.点评:此题主要考查了旋转变换,本题实际就是一个关于原点成中心对称的问题,要根据中心对称的定义,充分利用网格的辅助解题.14、(2011•宜昌)夷昌中学开展“阳光体育活动”,九年级一班全体同学在2011年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是()A、50B、25C、15D、10考点:频数(率)分布直方图;扇形统计图。
分析:从直方图可知,参加巴山舞的有25人,从扇形图可知巴山舞占总体的50%,从而可求出总人数,总人数减去参加巴山舞的人数,减去篮球的人数即为所求.解答:解:25÷50%=50(人),50﹣25﹣10=15(人).参加乒乓球的人数为15人.故选C.点评:本题考查了频数分布直方图和扇形统计图,直方图告诉每组里面的具体数,扇形图说明的是部分占整体的百分比,从而根据所给的数据求出总体或部分.15、(2011•宜昌)如图,直线y=x+2与双曲线y=在第二象限有两个交点,那么m的取值范围在数轴上表示为()A、B、C、D、考点:反比例函数与一次函数的交点问题;在数轴上表示不等式的解集。