(高等数学)偏微分方程

合集下载

高等数学中的微分方程与偏微分方程的优化理论

高等数学中的微分方程与偏微分方程的优化理论

微分方程和偏微分方程是高等数学中研究特殊函数形式的方程的一种方法,它们在解决实际问题中的优化理论中具有重要的应用。

微分方程是描述变量之间关系的方程,而偏微分方程则描述了多个变量之间的关系,在实际问题中,通过建立模型,利用微分方程和偏微分方程可以优化求解问题。

微分方程和偏微分方程利用函数的导数和偏导数的性质,描述了系统的动态演化和变化规律,是自然科学和工程领域中广泛应用的数学工具。

例如,经典的牛顿第二定律和高斯法则都可以通过微分方程或偏微分方程来表达。

微分方程中的导数提供了系统的变化率,而偏微分方程中的偏导数则描述了系统在不同空间维度上的变化率。

在优化理论中,微分方程和偏微分方程的应用主要有两个方面:最优控制和优化求解。

最优控制是对动态系统进行控制的一种方法,通过优化目标函数来使系统达到最佳状态。

微分方程和偏微分方程在最优控制中起到了重要作用。

最优控制问题可以通过建立动态系统的微分方程或偏微分方程模型,并设定优化目标,通过对方程进行求解,得到最优控制策略。

这种方法可以用于控制系统仿真、飞行器设计以及经济管理等领域。

在优化求解中,微分方程和偏微分方程的应用主要包括最优化问题和约束优化问题。

最优化问题是在给定的约束下,使目标函数达到最优值。

在数学中,最优化问题可以通过微分方程或偏微分方程的方法求解。

通过建立目标函数的微分方程或偏微分方程模型,将问题转化为求解微分方程或偏微分方程的问题,并通过求解得到最优解。

优化求解在工程、物理学和金融领域有广泛的应用,可以用于设计优化、参数估计以及投资组合优化等问题。

总结来说,微分方程和偏微分方程在高等数学中的应用与优化理论密切相关。

通过建立微分方程和偏微分方程模型,可以描述系统的动态演化和变化规律,利用微分方程和偏微分方程的求解方法可以优化求解实际问题。

微分方程和偏微分方程的优化理论在科学研究和工程实践中具有重要的理论和实际价值。

高等数学中的偏微分方程

高等数学中的偏微分方程

高等数学中的偏微分方程在高等数学领域中,偏微分方程是一个重要的研究对象。

它是通过对函数的偏导数进行求解得到的方程,常常被用来描述自然界中的一些现象和非线性动态系统。

本文将介绍偏微分方程的基本概念、分类、解的方法以及在实际应用中的一些例子。

一、基本概念偏微分方程是包含多个未知函数的方程,其中函数的偏导数是方程的基本构成部分。

偏微分方程通常用来描述物理、生物、经济等领域中的问题,在不同的领域中有着不同的应用。

二、分类根据方程中出现的未知函数的个数和偏导数的阶数,偏微分方程可以分为几个主要类型:椭圆型偏微分方程、双曲型偏微分方程和抛物型偏微分方程。

具体的分类方法可以根据方程的形式和性质进行。

1. 椭圆型偏微分方程椭圆型偏微分方程的特点是方程中出现的未知函数的二阶偏导数的系数均不为零,通常用来描述稳态问题和静电场分布等现象。

2. 双曲型偏微分方程双曲型偏微分方程的特点是方程中出现的未知函数的二阶偏导数的系数满足双曲性条件,通常用来描述波动、传播等动态问题。

3. 抛物型偏微分方程抛物型偏微分方程的特点是方程中出现的未知函数的二阶偏导数的系数满足抛物性条件,通常用来描述热传导和扩散等问题。

三、解的方法求解偏微分方程通常是一个复杂的问题,不同类型的方程需要采用不同的方法进行求解。

下面介绍几种常用的解的方法。

1. 分离变量法分离变量法适用于一些特殊的偏微分方程,可以将多元函数的偏导数分离为几个单变量函数的常微分方程,通过求解这些常微分方程得到原方程的解。

2. 特征线法特征线法适用于一些双曲型偏微分方程,可以通过选取合适的坐标系和变换将方程化为常微分方程,进而求解得到解的形式。

3. 变换方法变换方法是一种常用的解偏微分方程的技巧,可以通过适当的变量代换将原方程转化为更简单的形式,然后进一步求解。

四、实际应用偏微分方程在实际应用中有着广泛的应用。

以下是一些例子:1. 热传导方程热传导方程是抛物型偏微分方程的一种,在描述热传导过程中起着重要的作用。

高等数学中的偏微分方程方法

高等数学中的偏微分方程方法

高等数学中的偏微分方程方法偏微分方程是数学中的一类非常重要的方程。

它们广泛应用于物理、工程和其他领域中,如热传导、电路等等。

因此,研究偏微分方程的方法和技巧尤为重要。

在高等数学中,有许多关于偏微分方程的方法,下面我们来介绍其中的几种。

1. 分离变量法分离变量法是解偏微分方程的一种常用方法。

这种方法的基本思想是假设解可以表示为形式为x、y、z等变量的函数之积的形式,然后通过代入相关偏微分方程中去求解出每个变量的解,最终将这些解组合起来得到总体解。

以拉普拉斯方程为例,其定义如下:$\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=0$假设解为$u(x,y,z)=X(x)Y(y)Z(z)$,则可以得到:$\frac{1}{X}\frac{\partial^2 X}{\partialx^2}+\frac{1}{Y}\frac{\partial^2 Y}{\partialy^2}+\frac{1}{Z}\frac{\partial^2 Z}{\partial z^2}=0$由于等式左边是一个只关于x的函数与一个只关于y的函数之和,所以这个等式必须等于常数k。

因此,我们可以得到:$\frac{1}{X}\frac{\partial^2 X}{\partial x^2}=k_1$,$\frac{1}{Y}\frac{\partial^2 Y}{\partial y^2}=k_2$,$\frac{1}{Z}\frac{\partial^2 Z}{\partial z^2}=k_3$然后我们可以对每一个方程分别求解得到:$X(x)=Ae^{\sqrt{k_1}x}+Be^{-\sqrt{k_1}x}$,$Y(y)=Ce^{\sqrt{k_2}y}+De^{-\sqrt{k_2}y}$,$Z(z)=Ee^{\sqrt{k_3}z}+Fe^{-\sqrt{k_3}z}$最终得到的总体解形式为:$u=\sum_{n=1}^{\infty} C_ne^{(-\sqrt{k_1^2+k_2^2+k_3^2})r}sin(n_1x)sin(n_2y)sin(n_3z)$2. 特征线法特征线法是一种常用于解决一阶偏微分方程的方法。

高考数学高分奇招高等数学偏微分方程求解

高考数学高分奇招高等数学偏微分方程求解

高考数学高分奇招高等数学偏微分方程求解高考数学高分奇招:高等数学偏微分方程求解在高考数学中,想要获得高分,掌握一些高等数学中的知识和方法往往能成为出奇制胜的法宝。

其中,偏微分方程的求解就是一个值得深入探究的领域。

一、什么是偏微分方程偏微分方程是含有未知函数及其偏导数的方程。

与我们在高中常见的常微分方程不同,偏微分方程涉及到多个自变量。

比如说,热传导方程就是一个典型的偏微分方程:$\frac{\partial u}{\partial t} =\alpha \left(\frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2} +\frac{\partial^2 u}{\partial z^2}\right)$,其中$u$ 是温度,$t$ 是时间,$x$、$y$、$z$ 是空间坐标,$\alpha$ 是热扩散系数。

二、为什么要在高考数学中涉及偏微分方程高考作为选拔性考试,旨在考查学生的综合数学素养和思维能力。

了解偏微分方程的求解,能够帮助学生更好地理解数学的整体性和连贯性,提升逻辑思维和解决复杂问题的能力。

而且,在一些高考压轴题中,会出现与偏微分方程相关的思想和方法,虽然不会直接要求求解偏微分方程,但如果学生对此有一定的了解,就能更快地找到解题的突破口。

三、偏微分方程的基本类型常见的偏微分方程类型有:椭圆型偏微分方程、抛物型偏微分方程和双曲型偏微分方程。

椭圆型偏微分方程的典型代表是拉普拉斯方程:$\Delta u =0$ ,其中$\Delta$ 是拉普拉斯算子。

抛物型偏微分方程如前面提到的热传导方程。

双曲型偏微分方程的例子是波动方程:$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2} +\frac{\partial^2 u}{\partialz^2}\right)$。

高等数学中的偏微分方程数值解法

高等数学中的偏微分方程数值解法

偏微分方程是数学中的一大重要分支,广泛应用于物理、工程、金融等领域。

其求解方法可以分为解析解法和数值解法。

解析解法要求方程具有可积性,适用于一些简单的方程,但是对于复杂的方程往往无法得到解析解。

而数值解法通过将方程离散化,利用数值计算方法得到数值解,是一种弥补解析解法不足的重要手段。

在高等数学中,偏微分方程数值解法主要包括差分法、有限元法和有限差分法。

其中,差分法是最早应用于求解偏微分方程的数值方法之一。

差分法通过将偏微分方程中的导数用差商的形式来近似表示,将连续的问题转化为离散的问题,再通过计算机程序来进行求解。

差分法的优点是简单易懂、计算速度快,适用于一些较为简单的偏微分方程。

但是差分法的精度受到离散化步长的影响,不适用于一些对精度要求较高的问题。

有限元法是一种更为广泛应用的偏微分方程数值解法。

有限元法通过将求解区域分割成有限多个小区域,用简单形状的基函数来逼近真实解,再通过求解线性方程组得到数值解。

有限元法的优点在于适用于复杂的几何形状、能够处理不规则的边界条件,并且精度较高。

有限元法还具有较好的可扩展性,可以处理大规模的求解问题。

因此,有限元法在工程领域的应用非常广泛。

有限差分法是一种通过计算导数来逼近微分方程的数值解法。

有限差分法基于泰勒展开公式,将微分算子在某点处的展开为有限多个导数的差商的线性组合。

通过将微分算子离散化,可以将偏微分方程转化为代数方程组,再通过求解方程组来得到数值解。

有限差分法的优点在于简单易懂,计算速度较快。

但是由于差商的导数逼近误差,有限差分法的精度受到离散化步长的影响,需要选择合适的步长来保证精度。

总的来说,高等数学中的偏微分方程数值解法是研究偏微分方程数值计算的一大热点和难点。

不同的数值方法适用于不同的问题,需要根据具体情况来选择适合的数值方法。

在求解偏微分方程时,还需要注意数值误差对结果的影响,并通过适当选择离散化步长和网格数量等参数来提高数值解的精度。

随着计算机技术的发展,偏微分方程数值解法将会越来越广泛地应用于实际问题的求解中。

高等数学偏微分方程教材

高等数学偏微分方程教材

高等数学偏微分方程教材引言:高等数学偏微分方程教材是一本专注于讲解偏微分方程的教材。

它旨在帮助学生深入理解该领域的概念和技巧,培养他们的数学思维和解决实际问题的能力。

本教材的编写旨在提供清晰、系统和综合的课程内容,以满足学生对高等数学偏微分方程的学习需求。

第一章偏微分方程简介1.1 偏微分方程的概念与分类- 偏微分方程的定义与基本概念- 常见的偏微分方程分类及其特点1.2 偏微分方程的数学建模- 偏微分方程在自然科学和工程领域的应用- 建立数学模型与偏微分方程的联系第二章一阶偏微分方程2.1 一阶偏微分方程的基本概念与解法- 一阶线性偏微分方程的解法- 一阶齐次与非齐次偏微分方程的解法2.2 传热问题与一维热传导方程- 一维热传导方程的物理背景与模型建立- 定解条件与初值问题解法- 热传导问题的数值解法与应用第三章二阶线性偏微分方程3.1 二阶线性偏微分方程的基本理论- 二阶线性偏微分方程的一般形式与特征方程 - 常系数与变系数二阶线性偏微分方程的解法3.2 波动方程与振动问题- 波动方程的物理背景与模型建立- 结束条件与初值问题的解法- 波动问题的数值解法与应用第四章椭圆型偏微分方程4.1 椭圆型偏微分方程的基本理论- 椭圆型偏微分方程的定义与性质- 球坐标与柱坐标下的椭圆型偏微分方程4.2 热传导问题与二维热传导方程- 二维热传导方程的模型建立与解法- 边值问题与数值解法- 热传导问题的应用案例第五章抛物型偏微分方程5.1 抛物型偏微分方程的基本理论- 抛物型偏微分方程的定义与分析 - 热传导方程与时间相关问题5.2 扩散过程与扩散方程- 扩散方程的模型与解法- 边界条件与初始值问题的解法- 扩散问题的数值解法与应用第六章偏微分方程的数值解法6.1 偏微分方程的数值离散化- 偏微分方程的差分格式与有限元法 - 空间离散化与时间离散化的方法6.2 常见数值解法的实现与应用- 追赶法与矩阵分解法- 迭代法与收敛性分析- 各种数值方法的优缺点与应用领域结语:高等数学偏微分方程教材的编写旨在全面深入地介绍偏微分方程的理论与应用。

高数微分方程总结(一)

高数微分方程总结(一)

高数微分方程总结(一)前言高等数学(高数)是大学数学的重要基础课程之一,微分方程则是高等数学中的一大难点。

本文将对高数微分方程进行总结,希望能够对学习高数微分方程的同学提供一些帮助和指导。

正文什么是微分方程•微分方程是描述函数变化率的方程。

•包含未知函数、函数的导数及自变量的关系。

微分方程的分类1.常微分方程:–只包含有限个未知函数及其导数的方程。

–常微分方程的阶数为未知函数导数的最高阶数。

2.偏微分方程:–包含多个未知函数及其偏导数的方程。

–偏微分方程的阶数为未知函数偏导数的最高阶数。

微分方程的解法1.可分离变量法:–将未知函数与自变量的各项分离,在两边同时积分得到解。

2.齐次方程法:–换元化为可分离变量方程。

3.一阶线性方程:–使用积分因子法进行求解。

4.变量分离法:–将微分方程转化为关于不同变量的可分离变量方程。

5.常数变易法:–猜测一个常数解,进行代入验证,得到通解。

6.特征方程法:–对常数系数线性齐次微分方程,使用特征方程法求解。

微分方程应用领域•物理学:描述物理系统的运动规律。

•工程学:分析工程问题中的变化过程。

•经济学:研究经济发展、增长和波动等问题。

•生物学:描述生物体内的各种动态过程。

结尾通过对高数微分方程的总结,我们了解了微分方程的定义、分类以及常见的解法。

微分方程在许多学科领域都有广泛的应用,对于深入研究这些学科具有重要意义。

希望本文对正在学习高数微分方程的同学们有所帮助,加油!继续常见的微分方程类型•一阶线性常微分方程•一阶非线性常微分方程•一阶高阶常微分方程•二阶常系数齐次线性微分方程•二阶常系数非齐次线性微分方程•高阶齐次线性微分方程•高阶非齐次线性微分方程•可降阶的高阶微分方程微分方程的应用示例1.挂钟摆动的微分方程:–使用二阶常系数齐次线性微分方程描述,可求得钟摆的运动规律。

2.放射性衰变的微分方程:–使用一阶非线性常微分方程描述,可得到放射性物质的衰变速率。

3.电路中的无源电报方程:–使用二阶常系数非齐次线性微分方程描述,可分析电路中电流和电压的变化。

高等数学中的微分方程简介

高等数学中的微分方程简介

高等数学中的微分方程简介微分方程是数学中的一个重要概念,广泛应用于物理、工程、经济等各个领域。

它描述了变量之间的关系,并通过求解方程来研究这些关系的性质和行为。

在高等数学中,微分方程是一个重要的研究内容,本文将对微分方程的基本概念、分类以及求解方法进行简要介绍。

一、微分方程的基本概念微分方程是包含未知函数及其导数的方程。

一般形式为:\[F(x, y, y', y'', ..., y^{(n)}) = 0\]其中,\(y\)是未知函数,\(y'\)表示\(y\)的一阶导数,\(y''\)表示二阶导数,\(y^{(n)}\)表示\(y\)的\(n\)阶导数。

方程中的\(F\)是已知函数,它是\(x\)、\(y\)及其导数的函数。

二、微分方程的分类微分方程可以分为常微分方程和偏微分方程两大类。

1. 常微分方程常微分方程中只涉及一个自变量,如\(y'=f(x)\)、\(y''+y=0\)等。

常微分方程又可分为一阶常微分方程和高阶常微分方程两类。

- 一阶常微分方程:形如\(y'=f(x,y)\)的方程,其中\(f\)是已知函数。

- 高阶常微分方程:涉及到\(n\)阶导数的方程,如\(y^{(n)}+a_1y^{(n-1)}+...+a_{n-1}y'+a_ny=0\)。

2. 偏微分方程偏微分方程中涉及多个自变量,如\(u_{xx}+u_{yy}=0\)、\(u_t=ku_{xx}\)等。

偏微分方程的求解相对复杂,一般需要借助数值计算方法。

三、微分方程的求解方法求解微分方程是微分方程学的核心内容,常见的求解方法有以下几种。

1. 变量分离法变量分离法适用于一阶常微分方程,通过将方程中的变量分离并进行积分求解。

例如,对于方程\(y'=f(x)g(y)\),可以将方程改写为\(\frac{dy}{g(y)}=f(x)dx\),然后对两边同时积分得到解。

高数上知识点总结

高数上知识点总结

高数上知识点总结高等数学作为一门重要的学科,在大学阶段是必修课程之一。

作为一门复杂的高级数学课程,它包含了多个重要的知识点,这些知识点是学习数学的基础,对于学术和实践都非常重要。

在本篇文章中,我们将重点关注高等数学中的重要知识点。

1.极限与连续极限与连续是高等数学的基础知识点。

极限是函数在一个点的取值趋近于某个值时的性质。

连续则是函数在一个点上沿着整个取值域的变化都是连续的。

在高等数学中,极限与连续是一个很基本的概念,被广泛应用于微积分、实变函数等多个数学学科中。

熟练掌握这两个概念的定义和性质是高等数学的重要基础。

2.导数与微分导数是函数图像上任何一点切线斜率的极限,导数被广泛地应用于微积分和分析几何等数学领域。

微分则是导数的一种形式化运算,它表示函数图像在某一点上的微小变化量。

导数和微分在计算机科学、经济学、物理学、统计学以及金融学等学科中都是关键的数学工具。

3.积分积分也是高等数学的重要知识点,主要用于计算曲线、曲面的面积、体积以及求解区域的质心和惯量等问题。

积分在实际应用中非常广泛,例如在物理学中用于计算力学和电磁场问题;在经济学中用于计算成本和收益;在信号处理中用于分析音频和图像等。

4.偏微分方程偏微分方程是包含多个变量和微分算子的方程,它们是高等数学最复杂的概念之一。

在科学研究中,偏微分方程被广泛应用于计算物理学、工程学、金融学等领域。

偏微分方程求解通常采用数值计算和解析法,并由此衍生出了很多研究方向,例如泛函分析、非线性控制论等。

5.复变函数复变函数是以复数为自变量和因变量的函数,与实数变量的普通函数不同。

复变函数包含了数学中重要的概念,如全纯函数、解析性、特殊函数、调和函数等,这些概念在科学研究和技术创新中都非常重要。

综上所述,高等数学作为一门复杂而重要的学科,包含了多个重要的知识点。

熟练掌握这些知识点对于深入理解现代数学、应用数学和学术研究至关重要。

高等数学第八章知识点总结

高等数学第八章知识点总结

高等数学第八章知识点总结1.常微分方程:常微分方程是指只涉及一个自变量的微分方程。

常微分方程可以分为一阶常微分方程和二阶常微分方程两种。

2. 一阶常微分方程:一阶常微分方程的一般形式为dy/d某 =f(某,y),其中f(某,y)是已知函数。

可以通过分离变量、变量代换和齐次方程等方法求解。

一阶线性常微分方程的一般形式为dy/d某 + P(某)y = Q(某),可以用积分因子法求解。

3.二阶常微分方程:二阶常微分方程的一般形式为y''+P(某)y'+Q(某)y=f(某),其中P(某)、Q(某)和f(某)是已知函数。

可以通过齐次方程的通解和非齐次方程的特解相加得到二阶常微分方程的通解。

常见的二阶线性常微分方程有齐次线性方程、非齐次线性方程和欧拉方程。

4.偏微分方程:偏微分方程是指涉及多个自变量的微分方程。

偏微分方程的求解方法与常微分方程有所不同。

常见的分为线性偏微分方程和非线性偏微分方程。

5. 二阶线性偏微分方程:二阶线性偏微分方程的一般形式为Au_某某 + 2Bu_某y + Cu_yy + Du_某 + Eu_y + Fu = 0,其中A、B、C、D、E和F为已知函数。

可以通过分离变量、变量代换和变系数法等方法求解。

6.泊松方程和拉普拉斯方程:泊松方程的一般形式为△u=f(某,y,z),拉普拉斯方程是泊松方程的特例,即泊松方程中f(某,y,z)为零。

泊松方程和拉普拉斯方程在物理学中有广泛应用。

7.边值问题和初值问题:求解偏微分方程时,通常需要给出边界条件或初值条件。

边值问题是指在一定边界上给出方程的解,初值问题是指在某一初始时刻给出方程的解。

8.分离变量法和变量代换法:分离变量法将偏微分方程中的变量分离出来,变成常微分方程来求解;变量代换法通过适当的变量代换,将偏微分方程转化为常微分方程来求解。

总的来说,高等数学第八章主要讲述了常微分方程和偏微分方程的求解方法和应用,为后续学习微分方程的相关内容打下基础。

(高等数学)偏微分方程

(高等数学)偏微分方程

第十四章 偏微分方程物理、力学、工程技术和其他自然科学经常提出大量的偏微分方程问题.由于实践的需要和一些数学学科(如泛函分析,计算技术)的发展,促进了偏微分方程理论的发展,使它形成一门内容十分丰富的数学学科.本章主要介绍一阶偏微分方程、线性方程组及二阶线性偏微分方程的理论.在二阶方程中,叙述了极值原理、能量积分及惟一性定理.阐明了一些解的性质和物理意义,介绍典型椭圆型、双曲型、抛物型方程的常用解法:分离变量法,基本解,格林方法,黎曼方法,势位方法及积分变换法.最后,扼要地介绍了有实用意义的数值解法:差分方法和变分方法.§1 偏微分方程的一般概念与定解问题[偏微分方程及其阶数] 一个包含未知函数的偏导数的等式称为偏微分方程.如果等式不止一个,就称为偏微分方程组.出现在方程或方程组中的最高阶偏导数的阶数称为方程或方程组的阶数.[方程的解与积分曲面] 设函数u 在区域D 内具有方程中所出现的各阶的连续偏导数,如果将u 代入方程后,能使它在区域D 内成为恒等式,就称u 为方程在区域D 中的解,或称正规解. ),,,(21n x x x u u = 在n +1维空间),,,,(21n x x x u 中是一曲面,称它为方程的积分曲面. [齐次线性偏微分方程与非齐次线性偏微分方程] 对于未知函数和它的各阶偏导数都是线性的方程称为线性偏微分方程.如()()()()y x f u y x c yuy x b x u y x a ,,,,=+∂∂+∂∂就是线性方程.在线性方程中,不含未知函数及其偏导数的项称为自由项,如上式的f (x,y ).若自由项不为零,称方程为非齐次的.若自由项为零,则称方程为齐次的.[拟线性方程与半线性方程] 如果一个方程,对于未知函数的最高阶偏导数是线性的,称它为拟线性方程.如()()()()()()0,,,,,,,,,,,,22222122211=+∂∂+∂∂+∂∂+∂∂∂+∂∂u y x c y uu y x b x u u y x a yu u y x a y x u u y x a x u u y x a就是拟线性方程,在拟线性方程中,由最高阶偏导数所组成的部分称为方程的主部.上面方程的主部为()()()22222122211,,,,,,yuu y x a y x u u y x a x u u y x a ∂∂+∂∂∂+∂∂如果方程的主部的各项系数不含未知函数,就称它为半线性方程.如()()()()0,,,,,,2222=∂∂+∂∂+∂∂+∂∂y yu y x d x y u y x c yu y x b x u y x a就是半线性方程.[非线性方程] 不是线性也不是拟线性的方程称为非线性方程.如1)()1(222=∂∂+∂∂+yux u u就是一阶非线性偏微分方程.[定解条件] 给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程.如果附加一些条件(如已知开始运动的情况或在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件.表示开始情况的附加条件称为初始条件,表示在边界上受到约束的条件称为边界条件.[定解问题] 给定了泛定方程(在区域D 内)和相应的定解条件的数学物理问题称为定解问题.根据不同定解条件,定解问题分为三类.1︒ 初值问题 只有初始条件而没有边界条件的定解问题称为初值问题或柯西问题. 2︒ 边值问题 只有边值条件而没有初始条件的定解问题称为边值问题.3︒ 混合问题 既有边界条件也有初始条件的定解问题称为混合问题(有时也称为边值问题).[定解问题的解] 设函数u 在区域D 内满足泛定方程,当点从区域D 内趋于给出初值的超平面或趋于给出边界条件的边界曲面时,定解条件中所要求的u 及它的导数的极限处处存在而且满足相应的定解条件,就称u 为定解问题的解.[解的稳定性] 如果定解条件的微小变化只引起定解问题的解在整个定义域中的微小变化,也就是解对定解条件存在着连续依赖关系,那末称定解问题的解是稳定的.[定解问题的适定性] 如果定解问题的解存在与惟一并且关于定解条件是稳定的,就说定解问题的提法是适定的.§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂nn x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x u x u t u u x x x t F()()0,,,,,,211211=∂∂++∂∂nn n n x u x x x a x u x x x a (1) 式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2)称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ 的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) )是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni i n i x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ 解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2. 非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n i n i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R t un i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()u x x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 ===为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x up p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂== 若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂yb b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒ 0≡∂∂≡∂∂bVa V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解. 2︒ 如0=∂∂=∂∂=∂∂=∂∂yb x b y a x a ,即回到完全解. 3︒ 当0/,0/≡∂∂≡∂∂b Va V 时,必有()()0,,=∂∂y x b a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uFp x F t p p F p t u p Ft x i i i ni iii i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或u F p x F p u F p x F p p Fp up F x p F xp F x n nnni i i nn ∂∂+∂∂-==∂∂+∂∂-=∂∂=∂∂==∂∂=∂∂∑=d d d d d d 11112211为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, =那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分.[求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组()()F x y z p q G x y z p q a,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解.例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x zq y az=+=-22, 积分微分方程dz a x zdx y azdy =++-22 得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln(b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为zFqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数)可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为n n n n i i iin n n x f p x f p p f p z p f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111 可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10.[克莱罗方程] 方程()z p x f p p p i i n i n=+=∑121,,,称为克莱罗方程,其完全解为()z c x f c c c i i n i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1)称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yP x Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足 zU R y U Q x U P ∂∂=∂∂=∂∂=,,从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P xz发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c 的通解 ()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数. [特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-j i j i t xa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线. [狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ 的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量. 作变换()()n i u v nj jj i i ,,2,11==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ 所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλ ϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i tnj i j i ij i i ii i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i (k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关. (ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c)).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1 ,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ图14.3于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B tu A xv D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统. 考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且()()()()()()()()v u t x u t x v v u t x u x t v v u t x v tx u v u t x v x t u ,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A ut D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂t x v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.§3 二阶偏微分方程一、 二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程()0),,,,,,(111,2=∂∂∂∂+∂∂∂∑=nnnj i j i ij x u x u u x x F y x u x a (1) 式中a ij (x )=a ij (x 1,x 2,…,x n )为x 1,x 2,…,x n 的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程()01,=∑=nj i jiijaa x a称为二阶方程(1)的特征方程;这里a 1,a 2,…,a n 是某些参数,且有012≠∑=ni i a .如果点x ︒=(x 1︒,x 2︒,…,x n ︒)满足特征方程,即()01,o =∑=nj i jiijaa x a则过x ︒的平面()01o=-∑=nk kk k x x a 的法线方向l :(a 1,a 2,…,a n )称为二阶方程的特征方向;如果一个(n 1-)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n 1-)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n 个自变量方程的分类与标准形式] 在点P (x 1︒,x 2︒,…,x n ︒),根据二次型()∑=nj i jinijaa x x x a 1,o o 2o 1,,, (a i 为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P 为椭圆型.(ii) 特征根都不为零,有n 1-个具有同一种符号 ,余下一个符号相反,称方程在点P 为双曲型.(iii) 特征根都不为零,有m n -个具有同一种符号(n >m >1),其余m 个具有另一种符号,称方程在点P 为超双曲型.(iv) 特征根至少有一个是零,称方程在点P 为抛物型.若在区域D 内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D 内是椭圆型、双曲型或抛物型.在点P 作自变量的线性变换可将方程化为标准形式:椭圆型:∑==+∂∂ni ix u1220Φ双曲型:∑==+∂∂-∂∂n i ix ux u 22120Φ超双曲型:()10112222>>=+∂∂-∂∂∑∑=+=m n x ux u m i nm i ii Φ抛物型:()00122>=+∂∂∑-=m x umn i iΦ 式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为0,,,,222222122211=⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂y u x u u y x F y u a y x u a x u a (2) a 11,a 12,a 22为x ,y 的二次连续可微函数,不同时为零. 方程a 11d y 22-a 12d x d y +a 22d x 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线. 在某点P (x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类: 当Δ>0时,方程为双曲型; 当Δ=0时,方程为抛物型; 当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将方程化为标准形式:(i ) 双曲型:因Δ>0,存在两族实特征曲线11),(c y x =ϕ,22),(c y x =ϕ,作变换),(1y x ϕξ=,),(2y x ϕη=和,,ηηξ-=+=s t s 方程化为标准形式),,,,(2222tus u u t s t u s u ∂∂∂∂=∂∂-∂∂Φ或),,,,(12ηξηξΦηξ∂∂∂∂=∂∂∂uu u u (ii ) 抛物型: 因Δ=0,只存在一族实的特征曲线c y x =),(ϕ,取二次连续可微函数),(y x ψ,使0),(),(≠∂∂y x ψϕ,作变换),(y x ϕξ=,),(y x ψη=,方程化为标准形式),,,,(222ηξηξΦη∂∂∂∂=∂∂uu u u (iii ) 椭圆型:因Δ<0,不存在实特征曲线,设c y x i y x y x =+=),(),(),(21ϕϕϕ为11221121212d d a a a a a x y -+=的积分,y x ϕϕ,不同时为零,作变量替换),(1y x ϕξ=,),(2y x ϕη=,方程化为标准形式),,,,(32222ηξηξΦηξ∂∂∂∂=∂∂+∂∂uu u u u二、 极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用. [椭圆型方程的极值原理与解的惟一性定理]1︒ 极值原理 设D 为n 维欧氏空间E n 的有界区域,S 是D 的边界,在D 内考虑椭圆型方程()()()()x x x x f u c x ub x x u a Lu ni i i n j i j i ij =+∂∂+∂∂∂≡∑∑==11,2式中a ij (x ),b i (x ),c (x ),f (x )在D 上连续,c (x )≤0且二次型()∑=nj i j i ij a a a 1,x 正定,即存在常数μ>0,对任意x D ∈和任意的a i 有()∑∑==≥ni i nj i jiija aa a 121,μx定理1 设u (x )为D 内椭圆型方程的解,它在D 内二次连续可微,在D 上连续,且不是常数,如f (x )≤0(或f (x )≥0),则u (x )不能在D 的内点取非正最小值(或非负最大值). 如果过边界S 上的任一点P 都可作一球,使它在P 点与S 相切且完全包含在区域D 内,则有 定理2 设u (x )为椭圆型方程在D 内二次连续可微,在D 上连续可微的解,且不是常数,并设f (x )≤0(或f (x )≥0).若u (x )在边界S 上某点M 处取非正最小值(或非负最大值),只要外法向导数错误!未定义书签。

2024年考研高等数学一偏微分方程概念与方法历年真题

2024年考研高等数学一偏微分方程概念与方法历年真题

2024年考研高等数学一偏微分方程概念与方法历年真题一、简介偏微分方程是数学中的重要分支,广泛应用于自然科学和工程技术领域。

作为考研高等数学的一部分,偏微分方程是必考的内容之一。

本文将对2024年考研高等数学一偏微分方程概念与方法历年真题进行分析和讨论。

二、问题一【2023年考研高等数学一真题】设u(x, t)为一个具有连续偏导数的二元函数,满足偏微分方程:∂u/∂t + ∂u/∂x = 0其中x为实数,t为正实数。

已知初始条件为u(x, 0) = sin(x),求解u(x, t)。

解答:根据题目中的偏微分方程和初始条件,可以使用分离变量法对该问题进行求解。

假设u(x, t)的解为u(x, t) = X(x)T(t),其中X(x)为只与x 相关的函数,T(t)为只与t相关的函数。

代入偏微分方程,得到:X'(x)T(t) + X(x)T'(t) + X(x)T(t) = 0整理后,得到两个关于X(x)和T(t)的方程:X'(x)/X(x) = -T'(t)/T(t) = λ对于X(x)的方程,得到X'(x)/X(x) = λ,即X'(x) - λX(x) = 0。

求解该常微分方程得到X(x) = C1e^(λx),其中C1为常数。

由于要满足题目中给出的初始条件u(x, 0) = sin(x),可以得到X(x) = sin(x)。

对于T(t)的方程,得到T'(t)/T(t) = -λ。

求解该常微分方程得到T(t) = C2e^(-λt),其中C2为常数。

将X(x)和T(t)代入u(x, t) = X(x)T(t),得到:u(x, t) = (C1sin(x))(C2e^(-λt))由于X(x)和T(t)的函数形式已经确定,我们只需要确定C1、C2和λ的值即可。

根据初始条件u(x, 0) = sin(x),可以得到C1 = 1。

由于t为正实数,所以C2e^(-λt)不能为0。

高等数学中的偏微分方程

高等数学中的偏微分方程

高等数学中的偏微分方程偏微分方程,是一类研究多变量函数的方程。

相比于普通的微积分方程,偏微分方程多了一维变量,需要对其中的某几个变量进行求导。

在工程、物理、数学等领域都有很多重要的应用。

本文将重点介绍高等数学中的偏微分方程。

一、偏微分方程的定义偏微分方程,简称PDE(Partial Differential Equation)。

它是描述自然界各种变化的数学模型,如声、光、电、热、流体和弹性等。

偏微分方程中存在一些未知的函数和它们的偏导数,求解这些未知函数可以帮助我们更好地理解自然界中的各种现象。

二、偏微分方程的分类1. 常微分方程:通常是指只有一个自变量的方程,其中的函数是关于该自变量的函数。

常微分方程通常用来描述动力学系统中的行为。

2. 偏微分方程:通常是指涉及两个或多个自变量的微分方程,其中的函数是多变量函数。

偏微分方程通常用来描述波动、扩散、传输和流体等现象。

3. 线性偏微分方程:研究线性偏微分方程的目的是从物理和数学的角度解释某些自然现象。

线性偏微分方程是指可以分解为若干个因子的方程,其中每个因子是一个线性微分算子。

4. 非线性偏微分方程:非线性偏微分方程是指无法分解为若干个线性方程的方程。

非线性偏微分方程适用于研究波的非线性传播、颗粒物理学、纳米技术、天体物理学等问题。

三、偏微分方程的解法偏微分方程的解法比较复杂,通常需要利用变量分离法、特征线法、变换、对称性等方法来解决。

其中,变量分离法是最常用的一种方法,在它的帮助下,偏微分方程可以通过分离变量的方式求解。

变量分离法主要是根据偏微分方程的特性,将多个变量化简为一个变量。

这样,原本的偏微分方程就可以变成只有一个变量的普通微分方程,进而直接解出未知数。

除此之外,特征线法也是常用的一种解法,它主要用于解决一些双曲型偏微分方程。

变换法通常用于将偏微分方程转化为某个已知形式方程,比如说将热传导方程转化为泊松方程或者亥姆霍兹方程等。

对称性则可以帮助我们在求解偏微分方程时更加简单。

高等数学中的椭圆型偏微分方程

高等数学中的椭圆型偏微分方程

椭圆型偏微分方程是高等数学中的重要内容之一。

它是描述物理现象中平衡状态的方程,并广泛应用于物理学、工程学、经济学等领域中。

在数学上,椭圆型偏微分方程是一类具有判别式小于零的二阶偏微分方程。

它们的解具有良好的性质和稳定的行为,给出了物理过程中的稳定平衡情况。

椭圆型偏微分方程的最常见的例子是拉普拉斯方程。

它可以用于描述许多物理过程,例如热传导、电荷分布、静电平衡等。

拉普拉斯方程的一般形式为Δu= 0,其中Δ是拉普拉斯算子,u是未知函数。

在常见的二维情况下,拉普拉斯算子可以写为∂²u/∂x²+∂²u/∂y²。

这个方程描述了一个没有外力作用下,无时变的平衡状态。

椭圆型偏微分方程具有很多重要性质。

首先,它们的解在给定区域上是光滑的。

这意味着它们可以通过无限次的求导,以任意高的精度来逼近解。

这一性质在工程学中非常重要,因为它保证了解在物理仿真和工程设计中的连续性和稳定性。

其次,椭圆型偏微分方程的解在有界区域上满足最大值原理。

这意味着解的最大值和最小值在边界上取到,而不在区域内部。

这个性质对于物理现象的实际解释具有重要意义。

椭圆型偏微分方程的求解方法通常采用分离变量法或变换法。

分离变量法将未知函数表示为单变量的乘积形式,然后将其代入偏微分方程中,通过选择特定的系数,使得最终方程变为可以分离变量的形式。

变换法则通过适当的变量替换,将原偏微分方程转化成为一个更简单的形式,从而求得解。

这些方法在实际问题中具有广泛的应用,例如求解曲面上的稳定温度分布、电场分布等问题。

椭圆型偏微分方程在实际应用中具有重要的意义。

它们被广泛应用于物理学、工程学、经济学等领域中。

例如,热传导方程可以用于描述材料的温度分布,静电平衡方程可以用于分析电荷分布和电场强度,其中无论是静电平衡还是热传导过程都可以使用椭圆型偏微分方程来描述。

总之,高等数学中的椭圆型偏微分方程是一类非常重要的方程。

它们广泛应用于描述物理过程中的平衡状态,并具有光滑性和稳定性的性质。

《高等数学课件:偏微分方程》

《高等数学课件:偏微分方程》
《高等数学课件:偏微分方程》
深入浅出地介绍偏微分方程的基本概念,探索解法和应用领域,为大家带来 一场关于高等数学的精彩之旅。
什么是偏微分方程
解释偏微分方程及其与常微分方程的区别,介绍偏微分方程在数学和实际应 用中的重要性。
一阶偏微分方程的基本形式
探索一阶偏微分方程的基本形式,讨论其定义、特点和解法。通过实例理解 其在实际问题中的应用。
抛物型、双曲型和椭圆型方程 的定义和区别
详细解释偏微分方程的分类和特点,探讨抛物型、双曲型和椭圆型方程的定 义和区别,并分析其数学性质。
常系数线性偏微分方程的解法
讲解常系数线性偏微分方程的解法,并通过实例分析其在物理和工程学中的应用。
变系数线性偏微分方程的解法
研究变系数线性偏微分方程的解法,包括得到特殊解和通解的方法。分析其 在经济学中的具体应用。
变系数二阶线性方程
讨论解变系数二阶线性方程 的特征值和特解的求解方法, 解释它们在量子力学和热传 导问题中的应用。
热传导方程的理解与求解
深入研究热传导方程的概念和数学描述,介绍其求解方法,并以实际物理现 象进行实例分析。
波动方程的理解与求解
详细解释波动方程的相关概念和特性,探讨其可行解的求取方法,并以声波 和电磁波现象为例说明。
二阶偏微分方程的基本形式
研究二阶偏微分方程的基本形式,详细说明其构造和性质。举例说明二阶偏微分方程的实际物理意义。
分类讨论一阶偏微分方程的解法
1
可分离变量法
介绍可分离变量法,并通过示例演示其
线性方程和特殊形式
2
应用步骤和技巧。
讲解一阶线性方程和特殊形式的解法,
包括常数变易法和齐次方程的方法。
3
常系数一阶线性方程

高等数学中的偏微分方程及其应用

高等数学中的偏微分方程及其应用

高等数学中的偏微分方程及其应用在高等数学中,偏微分方程是一种特殊的数学方程,它不仅在数学中有重要性,在物理、工程学、经济学等领域中也有广泛的应用。

一、偏微分方程的定义和类型偏微分方程是由未知函数的偏导数组成的方程,它是数学中研究偏微分方程理论最基本的概念之一。

常见的偏微分方程有波动方程、热传导方程、拉普拉斯方程等。

其中,波动方程描述了一维和二维的振动系统的运动规律,热传导方程描述了热的传播过程,拉普拉斯方程描述了无旋流场的运动规律。

二、偏微分方程的应用1、物理学物理学中有很多与偏微分方程相关的内容。

其中最具代表性的当属波动方程和薛定谔方程。

波动方程是用来描述振动传播的,由一维振动到三维振动,都需要用到波动方程。

而薛定谔方程则是用来描述量子力学中粒子的运动状态,是量子力学中的重要概念。

2、工程学在工程学中,偏微分方程被广泛应用于建筑、航空、航天、电子、通信、交通、机械和能源等领域。

例如,建筑结构分析和设计中,需要用到结构力学方程组,这些方程组就包含了偏微分方程。

3、经济学在经济学中,偏微分方程被广泛应用于市场预测、风险控制、创新和经济决策等领域。

例如,在股票市场中,经济学家可以使用偏微分方程来预测市场的运行趋势和风险情况。

三、总结偏微分方程是数学中的一个重要领域,也是物理、工程学、经济学等领域中的重要工具。

它能够描述很多实际问题,如光、电、热等的传播,非常具有应用价值。

然而,偏微分方程的解法不是简单的代数方式,而是需要借助偏微分方程的理论和数学工具来求得解的近似或精确解。

因此,在实际应用过程中,需要结合实际问题和数学理论,选用合适的方法求解,以达到较好的解析效果。

高考数学中函数极值与偏微分方程

高考数学中函数极值与偏微分方程

高考数学中函数极值与偏微分方程高考数学里面有两个比较重要的知识点,一个是函数极值,另一个是偏微分方程。

函数极值是数学中的常见概念,偏微分方程是高等数学中的一个研究方向。

这两个知识点虽然看似纷繁复杂,但实际上它们之间有很大的联系。

一. 函数极值的定义与类型函数极值是指某个函数在一定范围内取最大值或最小值的点。

在高考数学中,我们可以通过函数图像来判断函数的极值。

根据二阶导数的正负性来判断函数的极值类型。

具体来说,如果函数的二阶导数大于0,则函数在该点取得极小值;如果二阶导数小于0,则函数在该点取得极大值。

在高考数学中,函数极值分为两种情况,一个是存在临界点的极值问题,另一个是无临界点的极值问题。

临界点指的是函数的导数等于0的点,通过求导可得到。

二. 偏微分方程的定义与分类偏微分方程是数学分析学科中的重要分支,其中以二阶线性偏微分方程为研究重点。

偏微分方程之所以重要,是因为它在自然科学、工程学、经济学等领域中的应用十分广泛。

偏微分方程根据方程的类型和性质的不同可分为一些基本类型,如调和方程、波动方程、热传导方程等。

三. 函数极值与偏微分方程的关系函数极值与偏微分方程之间有很大的联系,一个明显的例子是波动方程问题。

波动方程与函数的波动过程有很大的关系,因此不难看出函数极值的求解与波动方程问题是有一定联系的。

偏微分方程问题中需要求解的是方程前面的未知函数,如波浪振动的折射,通过分析其数学模型发现,能反应振动频率特征,也就是各种振动波长长短对应的能量谐振峰的个数限制对光纤折射率的特殊要求,从而提出了各种方程模型,其中考虑边值情况的偏微分方程是一种解法。

而函数极值的问题需要根据函数图像及导数的情况来判断,这一点与偏微分方程计算中的导数有很大的相似性。

四. 思考与质疑高考数学中函数极值与偏微分方程的相关性是一个相对较新的领域,虽然看似独立,但我们不妨通过思考来寻找它们之间的关联点。

在计算机科学领域中,人工智能技术的发展最近几年实现了飞跃性发展,也就是人工智能概念的发展理论解析。

数学中的偏微分方程理论应用

数学中的偏微分方程理论应用

数学中的偏微分方程理论应用偏微分方程在科学和工程中发挥着极其重要的作用,这些方程描述了许多自然现象和工程中的问题。

由于偏微分方程的非线性和复杂性质,研究和解决偏微分方程问题是数学中最重要的研究领域之一。

本文将介绍偏微分方程理论的基础知识以及该领域在科学和工程中的应用。

偏微分方程的定义和分类偏微分方程是描述多元函数中各个方向变化率之间的关系的方程。

它们被广泛应用于物理和工程问题的建模,例如描述电场、热传导、弹性、流体流动等。

偏微分方程可以分为几类,其中比较重要的是几个标准方程,它们是:1. 热方程:描述热流动的方程;2. 波动方程:描述波在介质中的传播;3. 拉普拉斯方程:描述平衡态下的分布规律;4. 广义泊松方程:描述物理现象中的一些特殊情况,如介质中存在多个电荷。

这些方程包含一定数量的未知函数和它的偏导数,它们一般是非线性的,有复杂的行为和解。

因此,它们需要使用高等数学和数值计算来解决。

偏微分方程理论的基础知识偏微分方程的解有两种基本类型:初值问题和边值问题。

前者需要规定方程在某一时刻的初始条件,而后者规定在两侧边界上的条件。

最近二十年来,人们发展了各种各样的高效算法,以解决偏微分方程解的问题。

众所周知,许多偏微分方程无法通过解析方法获得解。

然而,数值方法也有其局限性,越是复杂的偏微分方程,使用数值方法来解决就越困难,而这也就导致了偏微分方程理论或许是数学领域中最具挑战性和前沿性的研究领域之一。

偏微分方程理论的应用偏微分方程有广泛的应用,从物理学、化学、生物学到工程学。

与偏微分方程理论相关的应用领域有许多,包括计算流体力学、数值天文学、材料科学、图形学、医学成像、信号处理、图像处理等等。

例如,在计算流体力学中,偏微分方程被广泛应用于对流、扩散、方程中热和质量传输等流体力学现象的模拟。

对于之前提到的标准方程中的热方程,人们在材料科学中计算热传导、热骤变、焊接等。

在生物学和医学中,偏微分方程可以被用来模拟不同的生物过程,如神经元运动、蛋白质分子运动等,用于解决代表性分析问题、生物进化、海洋环流等一系列理论和实际的问题。

高等数学中的微分方程与偏微分方程的控制理论

高等数学中的微分方程与偏微分方程的控制理论

微分方程和偏微分方程是数学中的两个重要分支,它们在许多领域中都有着广泛的应用,特别是在物理学、工程学、经济学等学科中。

控制理论是指通过对系统的输入和输出进行控制,以实现系统的目标。

在高等数学中,微分方程与偏微分方程的控制理论是通过对微分方程与偏微分方程进行研究,寻找最优控制策略,从而实现系统最佳性能的一种理论方法。

微分方程是一种描述物体运动、变化的数学模型。

它通过描述物体的位置、速度和加速度之间的关系来描述物体的运动规律。

而偏微分方程是描述同时依赖空间和时间的物理现象的数学工具,如波动方程、热传导方程和扩散方程等。

这两类方程在数学中有着广泛的应用,例如求解物理中的运动方程、电路中的电流方程和热传导方程等。

控制理论可以帮助我们在给定的初始条件和约束条件下,通过对系统的输入进行控制,使系统的状态达到最优。

具体来说,控制理论通过研究微分方程或偏微分方程的特性,分析系统的稳定性、可控性和可观测性等性质,从而找到最优的控制策略,使系统的性能最佳化。

控制理论的研究可以适用于各种不同类型的系统,包括机械系统、电路系统和化学系统等。

在微分方程与偏微分方程的控制理论中,最常见的方法是使用数值方法或优化算法来求解微分方程或偏微分方程。

数值方法是通过将微分方程或偏微分方程离散化,将其转化为一系列代数方程,并通过迭代求解这些方程来得到近似解。

优化算法是通过寻找系统目标函数的最小值或最大值来确定最优控制策略。

这些方法能够提供近似的解析解或数值解,从而帮助我们实现对系统的控制。

微分方程与偏微分方程的控制理论在许多领域中都有着广泛的应用。

例如,在机械工程中,通过对控制方程进行优化,可以使机械系统的性能达到最佳。

在经济学中,通过对经济模型的微分方程进行研究,可以找到最优的经济政策。

在生物学中,通过对生物系统的偏微分方程进行控制,可以实现对生物过程的精确调控。

总之,高等数学中的微分方程与偏微分方程的控制理论是一种重要的数学工具,它能够帮助我们找到系统的最优控制策略,实现系统的最佳性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章 偏微分方程物理、力学、工程技术和其他自然科学经常提出大量的偏微分方程问题.由于实践的需要和一些数学学科(如泛函分析,计算技术)的发展,促进了偏微分方程理论的发展,使它形成一门内容十分丰富的数学学科.本章主要介绍一阶偏微分方程、线性方程组及二阶线性偏微分方程的理论.在二阶方程中,叙述了极值原理、能量积分及惟一性定理.阐明了一些解的性质和物理意义,介绍典型椭圆型、双曲型、抛物型方程的常用解法:分离变量法,基本解,格林方法,黎曼方法,势位方法及积分变换法.最后,扼要地介绍了有实用意义的数值解法:差分方法和变分方法.§1 偏微分方程的一般概念与定解问题[偏微分方程及其阶数] 一个包含未知函数的偏导数的等式称为偏微分方程.如果等式不止一个,就称为偏微分方程组.出现在方程或方程组中的最高阶偏导数的阶数称为方程或方程组的阶数.[方程的解与积分曲面] 设函数u 在区域D 内具有方程中所出现的各阶的连续偏导数,如果将u 代入方程后,能使它在区域D 内成为恒等式,就称u 为方程在区域D 中的解,或称正规解. ),,,(21n x x x u u = 在n +1维空间),,,,(21n x x x u 中是一曲面,称它为方程的积分曲面. [齐次线性偏微分方程与非齐次线性偏微分方程] 对于未知函数和它的各阶偏导数都是线性的方程称为线性偏微分方程.如()()()()y x f u y x c yuy x b x u y x a ,,,,=+∂∂+∂∂就是线性方程.在线性方程中,不含未知函数及其偏导数的项称为自由项,如上式的f (x,y ).若自由项不为零,称方程为非齐次的.若自由项为零,则称方程为齐次的.[拟线性方程与半线性方程] 如果一个方程,对于未知函数的最高阶偏导数是线性的,称它为拟线性方程.如()()()()()()0,,,,,,,,,,,,22222122211=+∂∂+∂∂+∂∂+∂∂∂+∂∂u y x c y uu y x b x u u y x a yu u y x a y x u u y x a x u u y x a就是拟线性方程,在拟线性方程中,由最高阶偏导数所组成的部分称为方程的主部.上面方程的主部为()()()22222122211,,,,,,yuu y x a y x u u y x a x u u y x a ∂∂+∂∂∂+∂∂如果方程的主部的各项系数不含未知函数,就称它为半线性方程.如()()()()0,,,,,,2222=∂∂+∂∂+∂∂+∂∂y yu y x d x y u y x c yu y x b x u y x a就是半线性方程.[非线性方程] 不是线性也不是拟线性的方程称为非线性方程.如1)()1(222=∂∂+∂∂+yux u u就是一阶非线性偏微分方程.[定解条件] 给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程.如果附加一些条件(如已知开始运动的情况或在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件.表示开始情况的附加条件称为初始条件,表示在边界上受到约束的条件称为边界条件.[定解问题] 给定了泛定方程(在区域D 内)和相应的定解条件的数学物理问题称为定解问题.根据不同定解条件,定解问题分为三类.1︒ 初值问题 只有初始条件而没有边界条件的定解问题称为初值问题或柯西问题. 2︒ 边值问题 只有边值条件而没有初始条件的定解问题称为边值问题.3︒ 混合问题 既有边界条件也有初始条件的定解问题称为混合问题(有时也称为边值问题).[定解问题的解] 设函数u 在区域D 内满足泛定方程,当点从区域D 内趋于给出初值的超平面或趋于给出边界条件的边界曲面时,定解条件中所要求的u 及它的导数的极限处处存在而且满足相应的定解条件,就称u 为定解问题的解.[解的稳定性] 如果定解条件的微小变化只引起定解问题的解在整个定义域中的微小变化,也就是解对定解条件存在着连续依赖关系,那末称定解问题的解是稳定的.[定解问题的适定性] 如果定解问题的解存在与惟一并且关于定解条件是稳定的,就说定解问题的提法是适定的.§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂nn x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x u x u t u u x x x t F()()0,,,,,,211211=∂∂++∂∂nn n n x u x x x a x u x x x a (1) 式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2)称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ 的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) )是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni i n i x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ 解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2. 非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n i n i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R t un i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()u x x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 ===为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x up p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂== 若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂yb b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒ 0≡∂∂≡∂∂bVa V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解. 2︒ 如0=∂∂=∂∂=∂∂=∂∂yb x b y a x a ,即回到完全解. 3︒ 当0/,0/≡∂∂≡∂∂b Va V 时,必有()()0,,=∂∂y x b a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uFp x F t p p F p t u p Ft x i i i ni iii i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或u F p x F p u F p x F p p Fp up F x p F xp F x n nnni i i nn ∂∂+∂∂-==∂∂+∂∂-=∂∂=∂∂==∂∂=∂∂∑=d d d d d d 11112211为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, =那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分.[求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组()()F x y z p q G x y z p q a,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解.例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x zq y az=+=-22, 积分微分方程dz a x zdx y azdy =++-22 得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln(b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为zFqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数)可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为n n n n i i iin n n x f p x f p p f p z p f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111 可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10.[克莱罗方程] 方程()z p x f p p p i i n i n=+=∑121,,,称为克莱罗方程,其完全解为()z c x f c c c i i n i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1)称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yP x Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足 zU R y U Q x U P ∂∂=∂∂=∂∂=,,从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P xz发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c 的通解 ()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数. [特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-j i j i t xa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线. [狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ 的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量. 作变换()()n i u v nj jj i i ,,2,11==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ 所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλ ϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i tnj i j i ij i i ii i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i (k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关. (ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c)).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1 ,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ图14.3于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B tu A xv D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统. 考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且()()()()()()()()v u t x u t x v v u t x u x t v v u t x v tx u v u t x v x t u ,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A ut D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂t x v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.§3 二阶偏微分方程一、 二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程()0),,,,,,(111,2=∂∂∂∂+∂∂∂∑=nnnj i j i ij x u x u u x x F y x u x a (1) 式中a ij (x )=a ij (x 1,x 2,…,x n )为x 1,x 2,…,x n 的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程()01,=∑=nj i jiijaa x a称为二阶方程(1)的特征方程;这里a 1,a 2,…,a n 是某些参数,且有012≠∑=ni i a .如果点x ︒=(x 1︒,x 2︒,…,x n ︒)满足特征方程,即()01,o =∑=nj i jiijaa x a则过x ︒的平面()01o=-∑=nk kk k x x a 的法线方向l :(a 1,a 2,…,a n )称为二阶方程的特征方向;如果一个(n 1-)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n 1-)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n 个自变量方程的分类与标准形式] 在点P (x 1︒,x 2︒,…,x n ︒),根据二次型()∑=nj i jinijaa x x x a 1,o o 2o 1,,, (a i 为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P 为椭圆型.(ii) 特征根都不为零,有n 1-个具有同一种符号 ,余下一个符号相反,称方程在点P 为双曲型.(iii) 特征根都不为零,有m n -个具有同一种符号(n >m >1),其余m 个具有另一种符号,称方程在点P 为超双曲型.(iv) 特征根至少有一个是零,称方程在点P 为抛物型.若在区域D 内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D 内是椭圆型、双曲型或抛物型.在点P 作自变量的线性变换可将方程化为标准形式:椭圆型:∑==+∂∂ni ix u1220Φ双曲型:∑==+∂∂-∂∂n i ix ux u 22120Φ超双曲型:()10112222>>=+∂∂-∂∂∑∑=+=m n x ux u m i nm i ii Φ抛物型:()00122>=+∂∂∑-=m x umn i iΦ 式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为0,,,,222222122211=⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂y u x u u y x F y u a y x u a x u a (2) a 11,a 12,a 22为x ,y 的二次连续可微函数,不同时为零. 方程a 11d y 22-a 12d x d y +a 22d x 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线. 在某点P (x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类: 当Δ>0时,方程为双曲型; 当Δ=0时,方程为抛物型; 当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将方程化为标准形式:(i ) 双曲型:因Δ>0,存在两族实特征曲线11),(c y x =ϕ,22),(c y x =ϕ,作变换),(1y x ϕξ=,),(2y x ϕη=和,,ηηξ-=+=s t s 方程化为标准形式),,,,(2222tus u u t s t u s u ∂∂∂∂=∂∂-∂∂Φ或),,,,(12ηξηξΦηξ∂∂∂∂=∂∂∂uu u u (ii ) 抛物型: 因Δ=0,只存在一族实的特征曲线c y x =),(ϕ,取二次连续可微函数),(y x ψ,使0),(),(≠∂∂y x ψϕ,作变换),(y x ϕξ=,),(y x ψη=,方程化为标准形式),,,,(222ηξηξΦη∂∂∂∂=∂∂uu u u (iii ) 椭圆型:因Δ<0,不存在实特征曲线,设c y x i y x y x =+=),(),(),(21ϕϕϕ为11221121212d d a a a a a x y -+=的积分,y x ϕϕ,不同时为零,作变量替换),(1y x ϕξ=,),(2y x ϕη=,方程化为标准形式),,,,(32222ηξηξΦηξ∂∂∂∂=∂∂+∂∂uu u u u二、 极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用. [椭圆型方程的极值原理与解的惟一性定理]1︒ 极值原理 设D 为n 维欧氏空间E n 的有界区域,S 是D 的边界,在D 内考虑椭圆型方程()()()()x x x x f u c x ub x x u a Lu ni i i n j i j i ij =+∂∂+∂∂∂≡∑∑==11,2式中a ij (x ),b i (x ),c (x ),f (x )在D 上连续,c (x )≤0且二次型()∑=nj i j i ij a a a 1,x 正定,即存在常数μ>0,对任意x D ∈和任意的a i 有()∑∑==≥ni i nj i jiija aa a 121,μx定理1 设u (x )为D 内椭圆型方程的解,它在D 内二次连续可微,在D 上连续,且不是常数,如f (x )≤0(或f (x )≥0),则u (x )不能在D 的内点取非正最小值(或非负最大值). 如果过边界S 上的任一点P 都可作一球,使它在P 点与S 相切且完全包含在区域D 内,则有 定理2 设u (x )为椭圆型方程在D 内二次连续可微,在D 上连续可微的解,且不是常数,并设f (x )≤0(或f (x )≥0).若u (x )在边界S 上某点M 处取非正最小值(或非负最大值),只要外法向导数错误!未定义书签。

相关文档
最新文档