乘用车总体设计计算参数

合集下载

汽车的主要技术参数和性能指标

汽车的主要技术参数和性能指标

汽车的主要技术参数和性能指标一、汽车的主要技术参数1、尺寸参数长,宽,高,轴距,轮距,前悬,后悬,最小离地间隙,接近角,离去角,转弯直径,通道圆与外摆值。

《道路车辆外廓尺寸、轴荷及质量限值》(GB1589-2004)和《机动车运行安全技术条件》(GB7258—2004)均对我国道路车辆的极限尺寸作了规定:货车、乘用车及二轴客车的长度不大于12米,宽度不大于2.5米,高度不大于4米。

2、质量参数1)轴荷轴荷是指汽车满载时各车轴对地面的垂直载荷。

国家标准《道路车辆外廓尺寸、轴荷及质量限值》(GB1589—2004),以及国家标准《机动车运行安全技术条件》(GB7258—2004)均规定:二轴货车的最大允许轴荷不得超过101;客车及三轴以上(含三轴)货车的最大允许轴荷不得超过101。

2)汽车总质量汽车总质量是指装备齐全时的汽车自身质量与按规定装满客(包括驾驶员)、货时的载质量之和,也称满载质量。

即:总质量=自身质量(整备质量)+载质量3)载质量汽车载质量是指在硬质良好路面上行驶时所允许的额定载质量。

当汽车在碎石路面上行驶时,载质量应有所减少(约为好路的75%〜80%)。

越野汽车的载质量是指越野行驶或土路上行驶的载质量。

轿车的装载量是以座位数表示。

城市公共汽车的装载量等于座位数并包括站立乘客数(一般按每人不小于0.125m2面积计),其他城市客车按每人不小于0.15m2面积计。

长途客车和旅游客车的装载质量等于座位数。

二、汽车的主要性能指标1、动力性汽车的动力性可用最高车速、加速能力、爬度能力三个指标来评定。

(1)汽车的最高车速——是指汽车满载时,在平直良好的路面上(水泥路面和沥青路面)所能达到的最高行驶速度。

(2)汽车的加速能力一一是指汽车在行驶中迅速增加行驶速度的能力。

汽车的加速能力常用汽车的原地起步加速性和超车加速性来评价。

(3)汽车的爬坡能力一一是指汽车满载时,在良好的路面上以最低前进档所能爬行的最大坡度(货车为30%,即16.50。

汽车整车参数设计完整

汽车整车参数设计完整

汽车整车参数设计完整一、车身尺寸:车身尺寸是汽车整车参数设计中最基本的部分,包括车长、车宽、车高和轴距。

车长一般指车辆整体长度,车宽指车辆侧视时的最大宽度,车高指车辆顶部到地面的垂直距离,轴距指前后轮中心之间的距离。

车身尺寸是衡量汽车空间利用率和外观特点的重要指标。

二、车辆重量:车辆重量是指整车在空载状态下的重量,包括车身重量、发动机重量、底盘重量等。

车辆重量不仅是影响汽车性能和燃油经济性的重要指标,也是制定汽车安全标准和交通法规的基础。

三、发动机参数:发动机参数包括最大功率、最大扭矩、排量、气缸数、气门数等。

最大功率和最大扭矩是衡量发动机性能的重要指标,排量和气缸数决定了发动机的功率和扭矩输出水平,气门数影响发动机的进、排气效率。

四、动力系统参数:动力系统参数包括传动方式、变速器类型和挡位数等。

传动方式有前驱、后驱和四驱等,不同的传动方式对于车辆的操控性和动力分配有着不同的影响。

变速器类型一般有手动和自动两种,手动变速器具有操控性好和燃油经济性高的特点,而自动变速器则更加方便和舒适。

挡位数决定了车辆的加速性和换挡平顺性。

五、悬挂系统参数:悬挂系统参数包括前悬挂类型、后悬挂类型和悬挂方式等。

前悬挂类型有麦弗逊式、双叉臂式和横臂式等,后悬挂类型有多连杆式和扭力梁式等,不同的悬挂类型对于车辆的操控性、稳定性和舒适性有着不同的影响。

悬挂方式通常有独立悬挂和非独立悬挂两种,独立悬挂具有更好的路感和操控性,非独立悬挂则更加简单和经济。

六、制动系统参数:制动系统参数包括制动器类型和制动器尺寸等。

制动器类型一般有盘式和鼓式两种,盘式制动器具有散热性好和制动效果稳定的特点,鼓式制动器则更加经济和简单。

制动器尺寸决定了制动器的制动力大小,较大的制动器尺寸通常意味着更好的制动性能。

综上所述,汽车整车参数设计是衡量汽车性能和功能的重要部分,包括车身尺寸、车辆重量、发动机参数、动力系统参数、悬挂系统参数和制动系统参数等。

汽车参数计算

汽车参数计算
1)直接档最大动力因数D0 max
2)I档最大动力因数DI max
DI max直接影响汽车的最大爬坡能力和通过困难路段的能力以及起步并连续换档时的加速能力。它主要取决于所要求的最大爬坡度和附着条件。
3)最高车速Va max
以汽车行驶的功率平衡来确定。
GB/T 12544-90汽车最高车速试验方法
4)汽车的比功率和比转矩
前悬架螺旋弹簧规格
钢丝直径弹簧直径自由高度旋向有效圈数弹簧刚度
后悬架扭杆规格
直径材料剪切弹性模量作用长度扭杆臂长度
减振器规格(复原阻力、压缩阻力指活塞速度为0.3m/s时的阻力)(特性曲线)
最大长度最小长度工作行程复原阻力压缩阻力
稳定杆
直径
扭转刚度
转向系
转向传动比
等效刚度
轮胎(最好提供轮胎特性曲线)
2)车身侧倾角
汽车以0.4g的向心加速度坐定圆等速行驶时,车身倾角在3o内最好,最大不得超过7o。
3)制动点头角
汽车以0.4g减速度制动时的车身点头角应不大于1.5 o,否则将影响乘坐舒适性。
GB 6323-86汽车操纵稳定性试验方法。
GB/T6323.6-94
表四粗略操纵稳定性计算需要数据
总质量
绕Oz轴转动惯量
这两个参数分别表示发动机最大功率和最大转矩与汽车总质量之比。
5)加速时间
“0—100km/h”或“0—80km/h”的换档加速时间。
GB/T 12543-90汽车加速性能试验方法
表一常见轿车的动力性参数范围
发动机排量直接档最大动力因数D0 max I档最大动力因数DI max最高车速
va max
/km/h比功率
(簧上质量、簧下质量)前轴(满载、空载)簧上质量

国产车辆设计方案参数值

国产车辆设计方案参数值

国产车辆设计方案参数值近年来,中国汽车工业得到了极大的发展,国产品牌的数量和质量也在不断提升。

在汽车生产中,设计是至关重要的一环。

针对不同类型、不同定位的车辆,其设计方案参数值需要有所不同。

本文将对国产车辆设计方案参数值进行详细探讨。

轿车轿车是指载人定向的汽车,根据其定位和用途,设计方案参数值会有很大不同。

车身尺寸和质量轿车车身尺寸和质量直接影响其舒适性、行驶稳定性和油耗等性能。

常见轿车车身尺寸和质量参数值如下:•车长:4.5-5.5米•车宽:1.7-2米•车高:1.4-1.6米•轴距:2.6-3米•总质量:1.2-2.5吨•底盘离地高:140-170mm发动机轿车发动机的性能直接决定着汽车的动力和经济性能。

常见轿车发动机参数值如下:•排量:1.2-2.5升•气缸数:4-6缸•最大功率:80-200kW•最大扭矩:150-400N·m•燃油喷射方式:直喷或多点喷射底盘和悬挂底盘和悬挂是轿车行驶稳定性和舒适性的保障。

常见轿车底盘和悬挂参数值如下:•前后悬挂:麦弗逊式/多连杆独立悬挂•制动方式:前盘式/后盘式/四轮盘式•转向方式:机械转向/液压转向/电动助力转向SUVSUV是指运动型多用途车,具备了轿车和越野车的双重属性。

对于SUV车型,设计方案参数值也会有所不同。

车身尺寸和质量SUV车型需要具备更高的越野性能,因此其车身尺寸和质量相对较大。

常见SUV车身尺寸和质量参数值如下:•车长:4.8-6.5米•车宽:1.8-2.2米•车高:1.7-2米•轴距:2.8-4米•总质量:1.5-3吨•底盘离地高:180-260mm发动机SUV车型发动机需要具备更强大的动力输出和爬坡能力。

常见SUV发动机参数值如下:•排量:2.0-3.5升•气缸数:4-6缸•最大功率:130-250kW•最大扭矩:300-500N·m•燃油喷射方式:直喷或多点喷射底盘和悬挂SUV对底盘和悬挂的要求较高。

常见SUV底盘和悬挂参数值如下:•前后悬挂:麦弗逊式/多连杆独立悬挂•制动方式:前盘式/后盘式/四轮盘式•转向方式:机械转向/液压转向/电动助力转向汽车电动化随着电动汽车技术的不断发展,越来越多的汽车厂商开始注重电动化的技术开发。

汽车的主要技术参数

汽车的主要技术参数
(5)轴距
轴距是指通过车辆同一侧相邻两车轮的中点并垂直于车辆纵向平面的两垂线之间的距离如图所示.
对于三轮以上的车辆,其轴距由从最前面的相邻两车轮之间的轴距分别表示,后轴距则为各轴距之和,如图所示.
(6)轮距
汽车轴的两端为单车轮时,轮距为车轮在支撑平面上留下轨迹的中心线之间的距离.如图所示。
6.汽车的排放污染物
汽车污染物各排放源相对排放量如下表所示。
汽车的噪声
汽车噪声源大致可分为:与发动机转速有关的声源和与车速有关的声源.
与发动机转速有关声源主要有:进气噪声、排气噪声、冷却系统风扇噪声和发动机表面辐射噪声。用发动机带动旋转的各种发动机附件(如空气压缩机,发电机等)的噪声也属此类。
2.质量参数
轴荷 轴荷是指汽车满载时各车轴对地面的垂直载荷。国家标准有规定。 单轴。汽车及挂车单轴的最大允许轴荷不得超过下表规定的最大限值.
并装轴。汽车及挂车并装轴的最大允许轴荷不得超过下表规定的最大限值。
其他类型的车轴。对于其他类型的车轴其最大允许轴荷不得超过该轴轮胎数×3000 kg。
全挂车长:全挂车车长有包括和不包括牵引杆两种长度,按国家标准规定,第二个数值写在括号内。在确定包括有牵引杆在内的全挂车长时,牵引杆座位于车辆正前方,牵引杆的销孔或连接头中心线应垂直于水平面。
半挂车长:半挂车除全长外,还有半挂车牵引杆销中心至个挂车后端之间的距离,此数值按国家标准规定写在括号内。
国家标准规定我国道路车辆的汽车总长极限尺寸
1
汽车行驶时,路面的不平度会激起汽车的振动当这种振动达到一定程度时将使乘客感到不舒适和疲劳或使运载的货物损坏、振动引起的附加动载荷将加速有关零部件的磨损缩短汽车的使用寿命。车轮载荷的波动会影响车轮与 地面之间的附着性能。因而关系到汽车的操纵稳定性。

整车总布置硬点设计规范

整车总布置硬点设计规范

XXXXXX有限公司整车总布置硬点设计规范编制:日期:校对:日期:审核:日期:批准:日期:20100000000发布 20100000000实施XXXXXX有限公司发布目录一概述 (2)二整车设计基准 (2)1.1 整车坐标系 (2)1.2 整车设计状态 (2)三整车总体设计硬点 (3)3.1整车外部尺寸参数控制硬点 (3)3.2底盘系统布置主要控制硬点 (5)3.3人机工程布置设计硬点 (8)四结束语 (9)一概述整车的总布置设计过程是设计硬点(Hard Point)和设计控制规则逐步明确、不断确定的过程。

设计硬点是确定车身、底盘与零部件相互关系的基准点、线、面及控制结构的统称,主要分为安装装配硬点(简称ASH,包括尺寸与型式硬点)、运动硬点(简称MTH)、轮廓硬点及性能硬点等四类。

设计硬点的确定过程就是总布置设计逐步深化的过程,后续的设计工作必须以确定的设计硬点为基础展开。

但随着设计的深入和方案的修改完善,部分设计硬点还有进一步调整的可能。

所有硬点值都是在整车坐标系下的坐标值,长度值表示到小数点后一位,十分位为估计值(四舍五入)。

角度值表示到小数点后一位,十分位为估计值(四舍五入),用度分秒表示时书写到分。

长度单位未注明均为mm,角度单位未注明均为°。

所有未注明的安装硬点均指与车身配合面上车身孔的几何中心点的坐标,例如:配合圆孔的坐标指配合面车身圆孔圆心坐标,椭圆孔或长圆孔的坐标指配合面椭圆孔或长圆孔的几何中心点的坐标,方形孔的坐标指配合面对角线交点的坐标。

二整车设计基准1.1 整车坐标系电动乘用车设计过程中,整车总布置在设计软件三维环境下进行。

整车坐标系采用右手坐标系,它是总布置设计和详细设计中的基准线。

整车坐标系与设计软件中整车文件的绝对坐标系重合。

整车坐标系的定义如下:高度方向,取汽车车架中间平直段的上平面为Z轴零线,上正下负;宽度方向,取汽车的纵向对称中心线为Y轴零线,以汽车前进方向左负右正;长度方向,取通过设计载荷时汽车前轮中心的垂线为X轴零线,前负后正;整车坐标系原点即为三个坐标轴的交点。

汽车总体设计

汽车总体设计

第一章汽车总体设计名词解释:乘用车:在设计和技术特性上主要用于载运乘客及其随身行李和/或临时物品的汽车,包括驾驶员座位在内最多不超过9个座位。

1、汽车总体设计的基本要求P21. 汽车的各项性能、成本等,要求达到企业在商品计划中所确定的指标。

2. 严格遵守和贯彻有关法规、标准中的规定,注意不要侵犯专利。

3. 尽最大可能地去贯彻三化,即标准化、通用化和系列化。

4. 进行有关运动学方面的校核,保证汽车有正确的运动和避免运动干涉。

5. 拆装与维修方便2、影响选取轴数的因素有哪些?轴数的增加会有哪些影响?P8、9影响因素:汽车的总质量、道路法规对轴载质量的限制、轮胎的负荷能力、汽车的结构等汽车轴数增加以后,不仅轴,而且车轮、制动器、悬架等均相应增多,使整车结构变得复杂,整备质量以及制造成本增加。

若转向轴数不变,汽车的最小转弯直径又增大,后轴轮胎的磨损速度也加快,所以增加汽车轴数是不得已的选择。

影响选取驱动形式的因素:汽车的用途、总质量和对车辆通过性能的要求3、乘用车的布置形式有哪些?各自的优缺点?P9、10、11 发动机前置前轮驱动FF:优点:A、前桥轴荷大,有明显的不足转向性能;B、前轮是驱动轮,越过障碍的能力高;C、主减速器与变速器装在一个壳体内,故动力总成结构紧凑,不需要在变速器与主减速器之间设置传动轴,车内地版凸包高度降低,有利于提高乘坐舒适性;D、发动机布置在轴距外时,汽车的轴距可以缩短,因而有利于提高汽车的机动性;E、散热条件好,发动机可得到足够的冷却;F、有足够大的行李箱空间;G、容易改装为客货两用车或救护车;H、供暖机构简单,且管路短而供暖效率高;I、发动机、离合器、变速器与驾驶员位置近,所以故操纵机构简单;J、发动机横置时能缩短汽车的总长,整备质量减轻;K、发动机横置时,降低了齿轮的制造难度,同时在装配和使用时也不必进行齿轮调整工作,变速器和主减速器可以使用同一种润滑油。

缺点:A、前轮驱动并转向需要采用等速万向节,其结构和制造工艺均复杂;B、前桥负荷较后轴重,且前轮又是转向轮,故前轮工作条件恶劣,轮胎寿命短;C、上坡行驶时驱动轮上的附着力减少,汽车爬坡能力降低,特别是在爬泥泞的坡道时,驱动轮容易打滑并使汽车丧失操纵稳定性;D、后轴负荷小而且制动时轴荷要前移,故后轮容易抱死并引起汽车侧滑;E、发动机横置时受空间限制,总体布置工作困难,维修与保养时的接近性变差;F、一旦发生正面碰撞事故,因发动机及其附件损失较大,维修费用高。

汽车主要技术参数

汽车主要技术参数

分类:根据车型 不同,行李箱容 积分为小型车、 紧凑型车、中型 车、中大型车和 大型车等
实际应用:在购 买汽车时,可以 根据行李箱容积 大小来选择适合 自己需求的车型
发动机参数
排量
定义:发动机的排量是指发动机的气缸容积,通常以升(L)为单位
分类:根据排量大小,发动机可分为微型、小型、中型、大型和巨型等 不同类型
影响因素:排量大小直接影响汽车的动力性和燃油经济性
选择建议:在选择汽车时,需要根据自己的需求和预算来选择合适的排 量
马力
马力是汽车动力性的重要指标 不同排量、不同功率的发动机马力不同 马力越大,汽车加速性能越好 马力也影响汽车最高车速和爬坡能力
扭矩
定义:扭矩是发动机产生动力的能力,它反映了汽车在一定范围内的负载能力 单位:牛顿米(Nm) 影响因素:发动机的排量、气缸数、转速等 与汽车性能的关系:扭矩越大,汽车加速性能越好,爬坡能力越强,承载能力也越强
加速时间越短,车 辆动力性能越好
常见测试方法:0100km/h加速时 间、0-60km/h加 速时间等
最高车速
定义:指汽车在地面良好道路上行驶,所能达到的最高行驶速度 影响因素:发动机功率、变速器传动比、车重、空气阻力、地面摩擦力等 数值越高,汽车动力性能越好 常用单位:公里/小时
爬坡能力
定义:EBD电子制动力分配系统一种车辆电子稳定系统,用于优化前轮和后轮的制动分配
工作原理:根据车辆的重量和道路条件,EBD系统可以自动调整前轮和后轮的制动压力,以确保 车辆在制动时保持稳定
安全性:EBD系统可以减少制动距离,提高制动安全性,并减少车辆在制动时发生侧滑或翻滚的 风险
应用范围:EBD系统广泛应用于各种类型的车辆,包括轿车、SUV和商用车等

(试用版) 乘用车设计主要尺寸标注项清单

(试用版) 乘用车设计主要尺寸标注项清单


A42-2
臀角-后排

A44-1
膝角-前排

A44-2
膝角-后排

A46-1
踝角-前排

A46-2
踝角-后排

A47
踏板平面角度

A57-1
大腿角度-前排

A57-2
大腿角度-后排

TJI-L2
天窗的位置要求,相对 R点

TJI-L4
手制动极限状态,相对R点X

TJI-L5
选换档手柄的位置,极限状态,相对R点X
K
H11-1
入口高度-前排

H11-2
入口高度-后排

H17
加速踏板踵点至转向盘中心

H30-1
座椅高度-前排

H30-2
座椅高度-后排

H50-1
车身上部开口至地面-前排
K
H50-2
车身上部开口至地面-后排
K
H61-1
有效头部空间-前排
TJI-H20 TJI-W20
TJI-H21 TJI-W21
宽度尺寸
TJI-L1
TJI-H6
TJI-H7
TJI-L8
A44-2
膝角-后排
A46-1
踝角-前排
A46-2
踝角-后排
A47
踏板平面角度
A57-1
大腿角度-前排
A57-2
大腿角度-后排
代号
尺寸名称
内部空间尺寸后视图(尺寸控制图中前后排各一个图)
设计车型
H35-1
竖向头部空间-前排
H35-2 W3-1 W3-2 W5-1 W5-2 W9 W27-1 W27-2 W31-1 W31-2 W35-1 W35-2 PW1 PW2 PW3 PW7 PW8 PW9 PW11 PW12

汽车设计计算

汽车设计计算

1.若轻型汽车的有关参数如下:总重G a =26000N ,轴距L=2700mm ,重心高h g =905mm ,重心到前轴的距离L 1=1428mm ,车轮的工作半径r r =350mm ,若该车在φ=0.7的道路上行驶,试计算:1. 若采用车轮制动器作为应急制动,试确定应急制动所需的制动力矩?2. 该车可能停驻的极限上坡路倾角α1和极限下坡路倾角α2(要求进行任一工况受力分析)?3. 驻车的上极限制动力矩? 解:1) 应急制动时,后桥制动力矩为122a B e e gm gL F r F r L h ϕϕϕ==+将m a g = G a =26000N 、L =2.7m 、h g =0.905m 、L 1=1.428m 、r e =0.350m 、φ=0.7代入计算式,得应急制动力矩为2728.77 N·m。

2) 该车可能停驻的极限上坡路倾角为gh L L ϕϕα-=11arctan该车可能停驻的极限下坡路倾角为12arctangL L h ϕαϕ=+将L 、h g 、L 1和φ值代入计算式,得α1=25.8°;α2=16.69°。

3) 根据后桥上的附着力与制动力相等的条件,驻车的上极限制动力矩为21sin e a e F r m gr a ϕ=将m a g 、r e 和α1值代入计算式,得驻车的上极限制动力矩为3960.6 N·m。

答:应急制动力矩为2728.77 N·m;可能停驻的极限上坡路倾角α1=25.8°和极限下坡路倾角α2=16.69°;驻车的上极限制动力矩为3960.6N·m。

2.验算一长途客车前钢板弹簧总成在制动时的应力。

已知:单个前轮上的垂直载荷静负荷G=17500N ,制动时前轮质量分配系数m 1=1.2 ,不考虑骑马螺栓的作用,l 1=l 2=650mm ,c=570mm ,ψ=0.7,弹簧片数n=12,片厚h=7mm ,片宽b=65mm ,许用应力[σ]=1000N/mm 2。

汽车总体设计说明书

汽车总体设计说明书

中北大学课程设计说明书学生姓名:学号:学院(系):机械工程系专业:车辆工程题目:一汽大众宝来乘用车总体设计及各总成选型综合成绩:指导教师:职称: 教授2013年 12 月 30 日中北大学课程设计任务书2013/2014 学年第 1 学期学院(系):机械工程专业:车辆工程学生姓名:学号:课程设计题目:一汽大众宝来乘用车整体设计及各总成选型起迄日期:12 月20 日~ 1 月 3 日课程设计地点:指导教师系主任:下达任务书日期: 2013 年12月20日课程设计任务书1.课程设计教学目的:(1)培养学生专业思想。

使学生了解以前所学理论知识和参加过得金工实习、工艺实习及专业生产实习等环节,都是为今后的专业设计、生产做准备,每一个环节都是为了培养一名合格的车辆工程专业人才而设置,车辆工程专业需要有扎实的专业基础知识和实践能力。

(2)提高结构设计能力。

通过课程设计,使学生学习和掌握汽车驱动桥的主减速器设计的程序和方法,树立正确的工程设计思想,培养独立的、全面的、科学的工程设计的能力。

(3)在课程设计实践中学会查找、翻阅和使用标准、规范、手册、图册和相关技术资料等。

2.课程设计的内容和要求:1、内容:一汽大众宝来乘用车整体设计及各总成选型2、具体参数:车型7 长宽高/mm前悬/后悬/mm前轮距/后轮距 / mm轴距/mm总质量/kg整备质量/kg一汽大众宝来437617351446873/990 1513/1494 2513 1830 1280额定承载人数发动机型号排量/mL发动机功率/kW轴数最高车速/(km/h)轮胎规格5 BJH 1595 74 2 182 195/65R153、要求:为给定基本设计参数的汽车进行总体设计,计算并匹配合适功率的发动机,轴荷分配和轴数,选择并匹配各总成部件的结构型式,计算确定各总成部件的主要参数,详细计算指定总成的设计参数,绘出指定总布置草图和乘员舱布置草图。

(1)驱动形式及主要参数的选择:驱动形式,布置形式,汽车主要参数的选择(2)发动机的选择(3)外形设计及总体布置:整车布置的基准线(面)—零线的确定,各部件的布置3.课程设计成果形式及要求:完成内容:(1)总布置草图1张(1号图)(2)驾驶舱布置草图1张(3号图)(3)零件图1张(3号图)(4)设计计算说明书1份4.主要参考文献:【1】王望予主编.汽车设计. 北京.机械工业出版社.2006【2】余志生主编.汽车理论. 北京.机械工业出版社.2007【3】龚微寒主编.汽车现代设计制造.北京.人民交通出版社.1995【4】刘维信主编.汽车设计.北京.清华大学出版社.2001【5】中国汽车工业经济技术信息研究所编.中国汽车零配件大全.机械工业出版社.2000【6】陈家瑞主编.汽车构造.北京.机械工业出版社.20055.工作计划及进度:2013 年 12 月20日~ 12 月 23日:设计与计算12 月 24 日~ 12 月 27日:编写设计说明书12 月28 日~ 12 月 31日:绘制CAD图2014 年 1 月 1 日~ 1 月 3日:设计答辩系主任审查意见:签字:年月日目录目录 (1)摘要 (3)1 汽车简介 (1)1.1前汽车时代 (1)1.2汽车登上历史舞台 (4)1.3西方的汽车发展 (4)1.4日本汽车发展 (4)2 汽车主要技术参数的确定 (5)2.1 汽车设计参数 (5)2.2汽车主要尺寸的确定 (5)2.2.1汽车的主要尺寸 (5)2.2.2 汽车的外廓尺寸 (6)2.3汽车主要性能参数的确定 (6)2.3.1 汽车动力性参数的确定 (6)2.3.2 汽车燃油经济性参数的确定 (6)2.3.3 汽车通过性性参数的确定 (6)3 汽车主要部件的选择及布置 (7)3.1 发动机的选择与布置 (7)3.1.1 发动机型式的选择 (7)3.1.2 发动机主要性能指标的选择 (7)3.2轮胎的选择 (10)3.3离合器的选择 (10)3.4万向传动轴的选择 (10)3.5主减速器的选择 (10)4 总体布置的计算 (11)4.1 轴荷分配及质心位置计算 (11)4.1.1平静时的轴荷分配及质心位置 (11)4.1.2 水平路面上汽车满载行驶时各轴的最大负荷计算 (13)4.1.3 制动时各轴的最大负荷计算 (14)4.2 驱动桥主减速器传动比的选择 (15)4.3 变速器传动比的选择 (15)4.3.1 变速器一档传动比的选择 (15)4.3.2 变速器档数和各档传动比的选择 (15)5 汽车动力性及燃油经济性计算 (17)5.1 汽车动力性能的计算 (17)5.1.1驱动平衡的计算 (17)5.1.2动力特性的计算 (19)5.2功率平衡计算 (22)5.3汽车燃油经济性的计算 (24)5.4 汽车不翻倒的条件计算 (25)5.4.1汽车不纵向翻倒的条件计算 (25)5.4.2 汽车不横向翻倒的条件计算 (25)5.5 汽车的最小转弯半径 (25)总结 (27)参考文献 (28)摘要本次课程设计的主要内容有:汽车的总体设计,主要包括设计顺序,轴数、驱动形式、布置形式的选择等;汽车主要技术参数的确定,包括汽车主要尺寸的确定(外廓尺寸、轴距等),汽车质量参数的确定(质量系数、总质量等);发动机的选择;轴荷分配及质心位置的计算和轮胎的选择;主减速器传动比和变速器传动比的计算及变速器的选择;动力性能的计算,包括驱动平衡技算,动力特性计算,功率平衡计算;燃油经济性的计算;汽车稳定性的计算等。

汽车总体设计要求

汽车总体设计要求

汽车总体设计要求一、整车主要参数的确定:1、前悬、后悬、轴距的确定:根据设计任务书提供的车身型号、货厢内部尺寸确定前悬、后悬、轴距的尺寸。

1.1前悬长:主要依据车身前悬及车身布置位置,前翻车身还要考虑车身前翻时与保险杠的间隙。

1.2后悬长:也是确定轴距长度,后悬除要符合法规要求之外,要充分考虑对离去角、质心位置的合理性,车身与货厢的合理间隙,应该保证高位进气在车身翻转时有至少30mm间隙。

2、整车高度的确定:2.1车身高度的确定:车身高度的确定主要受发动机高低位置的影响,发动机高低位置确定之后,应该保证车身地板与发动机最小间隙在30mm以上。

2.2整车高度确定:(既货厢帽檐或护栏高度的确定)2.2.1货厢带前帽檐:应保证车身前翻时,车身及附件与货厢帽檐最小间隙大于60mm。

2.2.2货厢为护栏结构:安全架与车身顶盖高度差:(GB7258规定:载质量为1吨及1吨以上的货车、农用车为70-100mm)3、整车宽度的确定:一般来言,车辆的最宽决定于货厢的宽度。

4、轮距确定:4.1前轮距:前轮距的确定实际上就是前桥的选取,前桥的选取主要决定于设计载质量,前轮距主要受车身轮罩的宽度、车轮的偏距影响,并且受到法规(整车外宽不超过2.5m)的限制,同时要考虑前轮的最大转角。

4.2后轮距:后轮距的确定实际上就是后桥的选取,后桥的选取主要决定于设计载质量,同时再根据货厢的宽度来选取合适的轮距。

二、驾驶室内人机工程总布置:1、R点至顶棚的距离:≥9102、R点至地板的距离:370±1303、R点至仪表板的水平距离:≥5004、R点至离合器和制动踏板中心在座椅纵向中心面上的距离:750~850(气制动或带有助力器的离合器和制动器,此尺寸的增加不大于100)5、背角:5~28°6、足角:87~95°7、转向盘外缘至侧面障碍物的距离:≥100(轻型货车≥80)8、转向盘中心对座椅中心面的偏移量:≤409、转向盘平面与汽车对称平面间夹角:90±510、转向盘外缘至前面及下面障碍物的距离:≥8011、转向盘下缘至离合和制动踏板中心在转向柱纵向中心面上的距离:≥60012、转向盘后缘至靠背距离:≥35013、转向盘下缘至座垫上表面距离:≥16014、离合、制动踏板行程:≤20015、离合踏板中心至侧壁的距离:≥8016、离合踏板中心至制动踏板中心的纵向中心面的距离:≥11017、制动踏板纵向中心面至通过加速踏板中心的纵向中心面的距离:≥10018、制动踏板纵向中心面距转向管住纵向中心面的距离:50~15019、加速踏板纵向中心面至最近障碍物的距离:≥6020、变速杆和手制动手柄在任意位置时,距驾驶室内其他零件或操纵杆的距离:≥50三、底盘总布置:1、车架宽度的确定:1.1发动机安装部位的车架外宽的确定a.发动机宽度尺寸:特别是在车架纵梁附近的发动机宽度。

乘用车总体设计计算参数

乘用车总体设计计算参数
比功率
(Pe/ma)
/kW.t-1
比转矩
(T/ma)
/N.m.t-1
中级轿车
1.6~2.5
0.11~0.13
0.30~0.50
160~200
43~68
90~110
中高级轿车
2.5~4.0
0.13~0.15
0.30~0.50
180~220
50~72
95~125
表二 动力性计算需要的数据
发动机使用外特性的Tq—n曲线的拟和公式以及发动机最低转速nmin和最高转速nmax
总体设计初,可对同类型同级别且结构相似的样车及部件的质量进行测定分析,并以此为基础初步估算出新设计车个部件的质量及整车整备质量。
(亦可按照人均汽车整备质量的统计值来估算(人均整备质量/t))
普通轿车
0.18~0.24
中级轿车
0.21~0.29
中高级轿车
0.29~0.34
3、汽车的总质量ma
整备质量、载客量、行李质量mB、附加设备mF
2)车身侧倾角
汽车以0.4g的向心加速度坐定圆等速行驶时,车身倾角在3o内最好,最大不得超过7o。
3)制动点头角
汽车以0.4g减速度制动时的车身点头角应不大于1.5o,否则将影响乘坐舒适性。
GB 6323-86 汽车操纵稳定性试验方法。
GB/T6323.6-94
表四 粗略操纵稳定性计算需要数据
总质量
装载质量(乘客数)
整车整备质量
总质量
车轮(滚动)半径
传动系机械效率
滚动阻力系数
空气阻力系数X迎风面积
主减速器传动比
飞轮转动惯量
二前轮转动惯量
二后轮转动惯量
轴距

整车设计计算

整车设计计算

整车计算说明书格式第一部分:常用力学分析1.理论力学常用原理二力平衡必须共线三力平衡共点多力平衡各力首尾相接力矩平衡(杠杆)原理2.受力图、弯矩图根据受力作出受力图,根据受力图做出弯矩图,一般一个点的弯矩等于力乘上距离3.抗弯应力δδ=M/WM=在某点的弯矩W=该点横截面的抗弯截面系数第二部分:整车计算说明书1.整车动力匹配计算1.1整车性能参数1.1.1 最高车速(Km/h )1.1.2 整车满载质量(Kg)1.1.3 机械系的传动效率1.1.4 最大爬坡度1.1.5 汽车加速性能1.1.6 标定功率及相应转速1.1.7 电机的额定扭距(N*m )1.1.8速比1.1.9 车轮半径:(mm)1.1.10 通过手册可以查得在沥青路面上的滚动摩擦因数1.2校核计算汽车动力性指标:1.汽车的最高车速度;2.汽车的加速度时间;3.汽车的最大爬颇度;电车要能够行驶,必须满足汽车的行驶方程式。

行驶方程式为:+Fw+Fi+FjFt=FfFt: 电动车的驱动力,由电机提供Fw:电动车的空气阻力,由于速度慢(≤10m/s),所以可以忽略不计Fi:电动车坡度阻力Fj:电动车加速度阻力1.汽车的行驶滚动阻力:F=G*f*cosαf其中G:汽车的自重;f:汽车在沥青路面上的滚动摩擦因数;α:汽车在行驶时的上坡的坡度,在平直路面上行驶时α=0。

2. Fw:电动车的空气阻力,计算公式为:Fw=C*A*u^2/21.15其中:C:电车的空气阻力系数;A:电车的迎风面积;u:电车的速度:3. Fi:电动车坡度阻力,计算公式为:Fi=G*Sinα4. Fj:电动车加速度阻力,计算公式为:Fj=m*aa:电车的加速度;5. Ft: 电动车的驱动力,计算公式为:Ft=Tt/rTt:作用在驱动轮上面的转矩;r :车轮的半径Tt=T* i*ηT:电机的扭矩;i:汽车的速比;η:系统的传动效率;1.2.1最高车速的计算因此在汽车的最高车速下,电机需要提供驱动扭矩:T= Ff*r/i*η其中:Ff:行驶滚动阻力r:汽车车轮半径i:汽车的速比电机需提供的转速:n=V*i/2*π*r其中:V:汽车的速度电机需提供的功率:P= Ff*s/η其中s:汽车在1s里面行驶的距离η:汽车传动系的效率1.2.2最大爬坡度的计算忽略汽车的空气阻力,因此汽车上坡时,必须克服汽车的滚动阻力(Ff)和坡度阻力(Fi)。

汽车整车参数设计完整

汽车整车参数设计完整

城市微型轿车设计说明书首先我要说明的是我确定的汽车形式:这款轿车,它是微型家用轿车,它的布置形式是发动机前置前轮驱动,车身形式为舱背式。

1 发动机选择(1)发动机布置方式:前置(2)发动机类型和排量:汽油机;排量为1.0L(3)发动机的最大功率P e max 和相应转速n p 的选择和计算过给定范围,先确定转速min /5000r np=再据公式:)761403600(13maxmax max V cV f m P a Da raTe Ag +=η计算P e max其中已知:h km Va /120max= h km V a /80=35.0=cD132.0)50(01.01[165.0=-⨯+⨯=V fa ri 接下来先确定m a)(940410465640650kg n n m m a=⨯+⨯+=⨯+⨯+=αii 确定整车轮廓,以求A定轴距L=2100mm 轮距B=1250mm 总长mm CLLa338262.02100≈==总宽mm L B a a 138260195)3(=±+= 总高mm Ha1500=以上数据主要根据书中提供的公式进行计算后得到,通过查询相关微型轿车的尺寸资料后,再进一步做调整,最终得到以下数据:mm La3300=mm Ba1520=mm Ha1500=28.25.152.1=⨯=A由上述得到的所有数据再带入到已知的计算公式中计算Pe max=65.1kw(4)计算最大转矩T e max 根据公式:m N nP T pe e ⋅=⨯⨯=⨯=2.14950001.652.195499549maxmax α发动机的主要参数已经得到,汽车的外型尺寸也已经大体知道,对于发动机的位置和尺寸能够在图上大概体现。

详情请见所交的总体布置图。

发动机参数如下:2 汽车尺寸参数 (1)外廓尺寸经过调整取整 总长mm L a 3500=总宽mm Ba1600=总高 mm Ha1500=(2)轴距L 和轮距BL=2100mm B=1250mm3 汽车质量参数整车整备质量kg m 6400= 汽车总质量kg m a 940=轴荷分配 满载时,前轴为52%,后轴为48% 空载时,前轴为60%,后轴为40%4 各类性能参数选择 (1)动力性参数h km V a /120max =比功率)(9.507.61.341max kw m P P ae b ===比转矩m N mT T ae b ⋅===7.1167.67.781max(2)燃油经济性参数百公里燃油消耗量为5.5L(3)汽车最小转弯直径D min该参数用来描述汽车转向机动性,m D 0.8min =(4)通过性几何参数最小离地间隙mm h 240min = 接近角451=γ 离去角352=γ纵向通过半径m 2.21=ρ(5)操纵稳定性参数转向特性参数:前后轮侧偏角之差为2车身侧倾角为3制动前俯角为1(6)制动性参数制动初车速为50km/h 时满载时,制动距离m s t 15=,制动减速度j=6.5s m 2⋅,制动踏板力为450N;空载时,制动距离m s t 12=,制动减速度j=7.0s m 2⋅,制动踏板力为350N 。

整车参数合集

整车参数合集

一、整车布置参数的确定1 汽车的外廓尺寸(总长、总宽、总高)2 汽车的轴距和轮距1) 轴距轴距是影响专用汽车基本性能的主要尺寸参数。

轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。

2) 轮距轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。

3 汽车车轮的半径车轮处于无载时的半径称为自由半径。

汽车静止时,车轮中心至轮胎与道路接触面间的距离称为静力半径r s 。

对汽车做动力学分析时,应该用静力半径r s ;而作动力学分析时,应该用滚动半径r r 。

但是一般常不计它们的差别,统称车轮半径r ,即认为r r r r s ≈≈4 汽车的质心位置计算汽车的质心位置影响整车的轴荷分配、行驶稳定性和操纵性等,在总体设计时必须要慎重全面考虑计算或验算,特别是质心高度是愈低愈好。

4.1 水平质心位置计算(力矩方程式) A. 已知条件a ) 底盘轴距)(21l l l +b ) 整车整备质量G 空与满载总质量G 满c ) 空载前轴质量g 空与后轴轴载质量Z 空d )满载前轴质量g 满与后轴轴载质量Z 满B. 空载整车水平质心位置计算(力矩方程式)L 空=)())(2/1(11离质心至后桥中心水平距或或空空G l l l l l g ++⨯C. 满载水平质心位置计算L 满(至后桥水平距离)=满满或或G l l l l l g ))(2/1(11++⨯4.2 垂直质心高度位置计算 A. 已知条件 a) 整车各总成的质量为g ib)整车各总成的质心至地面的距离为YiB. 整车质心高度h g =)(专用车总质量--∑a aii G G xy g C. 空载整车质心高度计算h g 空=)()()(整车整备质量空载时各总成质心高度空载时各总成质量空空空a i i G y g ⨯∑D. 满载整车质心高度计算 h g 满=)()()(整车满载总质量满载时各总成质心高度满载时各总成质量满满满a i i G y g ⨯∑5 汽车行驶稳定性计算5.1 汽车横向稳定性计算 A. 已知条件a ) 专用汽车轮距Bb ) 专用汽车空载质心高度h g 空c ) 专用汽车满载质心高度h g 满d )专用汽车行驶路面附着系数φ(一般取φ = 0.7~0.8)B. 计算公式保证汽车行驶不发生侧翻的条件:)(2专用汽车质心高度--hg hg Bϕ C. 保证空车行驶不发生侧翻的条件:ϕ 空hg B2 D. 保证满载行驶不发生侧翻的条件:ϕ 满hg B2 5.2 汽车纵向稳定性计算 A. 已知条件 a ) 专用汽车质心到后轴中心距离L b ) 专用汽车质心高度h gc )专用汽车行驶路面附着系数φ(一般取φ = 0.7~0.8)B. 计算公式保证汽车行驶不发生纵翻的条件:ϕ hgLC. 保证空车行驶不发生纵翻的条件:ϕ 空hg LD. 保证满载行驶不发生纵翻的条件:ϕ 满hg L6 汽车有关限值标准与计算载质量利用系数计算A 栏板类载货汽车与自卸汽车限值标准B 载质量利用系数计算公式 载质量利用系数=)()(千克整车整备质量含额定乘员质量最大允许装载质量 )(千克二、汽车性能参数选择与计算1 汽车发动机功率的选择1) 从保证汽车预期的最高车速来初步选择发动机应有的功率汽车在平路行驶时发动机功率计算公式(发动机功率一般为选定值)P emax = kw A C f G a D D a a T )(76140u 3600u 13maxmax +η 式中:G a —— 专用汽车总质量(t )ηT —— 传动系机械效率(0.85~0.9) f —— 滚动阻力系数(0.02~0.03)CD —— 空气阻力系数(0.8~1.0)A D —— 汽车正面投影面积 =B D ×H D (B D 前轮距、H D 汽车总高)m 2 P e —— 发动机最大功率(kw ) u amax —— 汽车最高车速(km/h )2) 利用现有汽车统计数据来估计汽车比功率,再确定发动机应有的功率汽车比功率:是单位汽车总质量具有的发动机功率,比功率的常用单位为kw/t汽车比功率 =mP 1000em ax =kw A C f G m a D D a a T )(14.76u 6.3u 13maxmax +η 2 汽车运动平衡方程式F t = F f + F i + F w + F j式中:F t —— 汽车驱动力(作用在汽车驱动轮上的圆周力,N ) F f —— 滚动阻力(N )F i —— 坡道阻力(N ) F w —— 空气阻力(N ) F j —— 加速阻力(N ) 2.1 汽车驱动力计算公式 F t =)(T 0tq N r i i dg η式中: T tq ——发动机扭矩(N.m )r d —— 驱动轮动力半径(m ) i g —— 变速器挡位传动比 i 0 —— 主减速比η —— 传动系的机械效率(0.75~0.9)2.2 汽车滚动阻力计算公式F f =gfcos αm a (N ) (g 重力加速度9.8m/s 2) 式中:m a ——汽车总质量(kg )α ——道路坡度角f —— 滚动阻力系数(一般取f = 0.010~0.020)2.3 汽车坡道阻力计算公式F i = gfsin αm a (N ) 2.4 汽车空气阻力计算公式F w = 15.21u 2aD D A C (N )式中:A D ——汽车的迎风面积(m 2)(AD 可按A D =B D H D 估算,B D —轮距,H D汽车高度m ) u a —— 车速(km/h )C D —— 空气阻力系数N ·h 2/(km 2·m 2)2.5 加速阻力计算公式F j = dtduδm a(N ) 式中: δ ——汽车旋转质量换算系数dtdu——汽车加速度(m/s 2) δ的计算公式为:δ= 222021rm i i I r m I a g f a w η+∑+ 式中:I w ——车轮的转动惯量(kg·m 2)I f ——飞轮的转动惯量(kg·m 2)r —— 车轮滚动半径(m )3 汽车动力性参数计算3.1 汽车车速计算公式u a =)/(i i nr 377.00g h km ⋅⋅ 式中:n 为发动机转速(r/min )r 为车轮半径(m ) i g 为变速器传动比 i 0为主减速器传动比3.2 汽车爬坡度计算公式:一般所谓汽车的爬坡能力,是指汽车在良好路面上克服F f +F w 后的余力全部用来(即等速)克服坡度阻力时能爬上的坡度,加速度a=0 α= GF F F W f t )(arcsin+-3.3 加速度a (m/s 2)计算公式a =mF F -F w f t ⋅+δ)(3.4 汽车加速时间计算公式汽车的加速能力可以用它在良好路面上行驶时能产生的加速度来评价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘用车总体设计计算参数
乘用车总体设计计算参数是在设计一款乘用车时需要考虑的一些关键参数。

这些参数涵盖了车身结构、发动机性能、车辆动力学性能、悬挂系统、制动系统、安全性能等方面。

下面将详细介绍一些常见的乘用车总体设计计算参数。

1.车身结构参数
乘用车的车身结构参数是指车身的长度、宽度、高度和轴距等。

这些参数决定了乘用车的外观和空间。

根据不同类型的乘用车,车身结构参数也会有所不同。

2.发动机性能参数
乘用车的发动机性能参数主要包括功率、扭矩和燃油消耗量等。

发动机的功率和扭矩决定了车辆的加速性能和爬坡能力,而燃油消耗量则决定了车辆的经济性能。

3.车辆动力学性能参数
车辆动力学性能参数主要包括最高车速、0至100公里/小时加速时间和悬挂系统刚度等。

最高车速决定了车辆的行驶速度,而加速时间则反映了车辆的动力性能。

悬挂系统刚度则决定了车辆的悬挂舒适性和操控性能。

4.悬挂系统参数
悬挂系统参数主要包括弹簧刚度、减震器刚度和悬挂系统类型等。

弹簧刚度和减震器刚度决定了车辆的悬挂舒适性和路感反馈,而悬挂系统类型则决定了车辆的行驶稳定性和操控性能。

5.制动系统参数
制动系统参数主要包括制动盘直径、制动盘和刹车片材料等。

制动盘
直径决定了车辆的制动力量,而制动盘和刹车片材料则决定了车辆的制动
性能和寿命。

6.安全性能参数
安全性能参数主要包括碰撞安全性能和被动安全性能等。

碰撞安全性
能涉及到车辆的车身刚度和安全气囊等,而被动安全性能涉及到车辆的座椅、安全带和头枕等。

乘用车总体设计计算参数是设计一款乘用车时需要考虑的一些关键参数。

这些参数涵盖了车身结构、发动机性能、车辆动力学性能、悬挂系统、制动系统、安全性能等方面。

通过合理地确定这些参数,可以使乘用车具
有更好的性能和安全性,提升用户体验。

相关文档
最新文档