北师大版九年级中考数学模拟考试试题(含答案)
2024年中考数学模拟考试试卷-有答案(北师大版)
2024年中考数学模拟考试试卷-有答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下面几何体都是由5个棱长1dm的小正方体搭建的.从左面看,与其它三个不同的是( )2.水是生命之源,水以多种形态存在,固态的水即我们熟知的冰,气态的水即我们所说的水蒸气,水分子的半径约为0.0000000002m.将数据0.0000000002用科学记数法表示正确的是( )A.0.2x10-9B.2x10-10C.2x1010D.2x10-93.如图,已知AB∥CD,DE⊥AC,垂足为E,∠D=30°,则∠A的度数为()A.30°B.120°C.150° D .40°4.有理数a,b,c在数轴上的对应点如图所示,则化简代数式|a-b|-|a+b|+|b-c|的结果是()A.2a-b+cB.b-cC.b+cD.-b-c5.四幅作品分别代表"立春""立夏""芒种""大雪",其中既是轴对称图形,又是中心对称图形的是( )6.如果两点A(1,y1)和B(2,y2)都在反比例函数y=kx(k≠0)的图象上,有下列几种结论:①y2<y1<0;②y1<y2<0;③y1>y2>0;④y2>y1>0,其中可能正确的结论有()A.1种B.2种C.3种 D .4种7.象棋起源于中国,在中国有着悠久的历史.一个不透明的盒子里装有2个卒和1个兵(卒为黑色,兵为红色),每个棋子除颜色外都相同,从中随机摸出一个棋子(无法凭借触感得知棋子上的字),记下颜色后放回,再从中随机摸出一个棋子,则两次摸到相同颜色的棋子的概概率为()A.49B.12C.23D.598.某杠杆装置如图,杆的一端吊起一桶水,阻力臂保持不变.在使杠杆平衡的情况下,小康通过改变动力臂L,测量出相应的动力F数据如表.请根据表中数据规律探求,当动力臂L 长度为2.0m时,所需动力最接近( )A.302NB.300NC.150ND.120N 9.如图,在△ABC 中,AB=AC ,∠A=36°,如下作图:①以点B 为圆心,适当长为半径作弧,分别交BA ,BC 于点M 、N;②分别以点M ,N 为圆心,大于12MN 的长为半径作弧,两弧在△ABC 内部交于点P ; ③作射线BP 交AC 于点D.根据以上作图,判断下列结论正确的有( ) ①∠C=2∠A ;②AD=BC ;③BC 2=CD ·AB ;④CD=√5-12AD.A.①②B.①②③C.①②④D.①②③④ 10.对于二次函数y=ax 2+bx+c ,规定函数y={ax 2+bx +c (x ≥0)﹣ax 2-bx -c (x <0)是它的相关函数.已知点M 、N 的坐标分别为(﹣12,1)、(92,1),连接MN ,若线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象有两个公共点,则n 的取值范围是( ) A.﹣3<n ≤﹣1或1<n ≤54 B.-3<n<-1或1<n ≤54 C.n ≤-1或1<n ≤54 D.-3<n<-1或n ≥1二.填空题:本题共6小题,每小题4分,共24分. 11.因式分解:9+a 2-6a= 。
2024年中考数学模拟考试试卷-带答案(北师大版)
2024年中考数学模拟考试试卷-带答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图中六棱柱的左视图是()2.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种.3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为()A.14x107B.1.4x108C.0.14x109D.1.4x1093.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示的方式放置,其中∠A=30°,∠ACB=90°,若∠1=45°,则∠2的度数为()A.30°B.25°C.20°D.15°4.下列运算错误的是( )A.(a2)³=a6B.a7÷a³=a4C.a³·a6=a9D.a2+a3=a55.下列运动项目图标中,既是轴对称图形又是中心对称图形的是( )6.若点(-2,y1)、(-1,y2)、(3,y3)在反比例函数y=kx(k<0)上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.为了缓解中考备考压力,增加学习兴趣,李老师带领同学们玩转盘游戏.如图为两个转盘,转盘一被四等分,分别写有汉字"中""考""必""胜";转盘二被三等分,分别写有汉字"我""必""胜",将两个转盘转动一次(当指针指向区域分界线时,不作数,重新转动),若得到"必""胜"两字,则获得游戏一等奖,请求出获得游戏等奖的概率()A.12B.14C.16D.1129.如图,在半径为10的扇形AOB中,∠AOB=90°,C是AB上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π9.如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在△ABC的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠ADB的度数为( )A.36°B.54°C.72°D.108°10.定义:将平面直角坐标系中中横坐标与纵坐标均为整数的点叫作格点,如(-2,1),(2,0)等均为格点.如图,在平面直角坐标系xOy中,直线l:y=a(x+2)(a>0)与x轴交于点A,与抛物线E:y=ax2(a>0)交于B,C两点(B在C的左边).直线l与抛物线E所围成的封闭图形即阴影部分(不包含边界)中的格点数恰好是26个,则a的取值范围是()A.132<a≤7 B.193<a≤203C.132<a≤203或a=7 D.a=7二.填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:x2+6x+9= .12.一个不透明的盒子中装有若干个红球和6个白球,这些球除颜色外均相同.经多次摸球试验后发现,摸到白球的频率稳定在0.25左右,则盒子中红球的个数约为.13.若√7<a<√10,且a为整数,则a的值为.14.如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为(结果保留π).15.如图,已知在Rt△ABC中,∠C=90°,AC=3,BC=4,分别将Rt△ABC的三边分别沿箭头方向平移2个单位长度并适当延长,得到△A1B1C1,则△A1B1C1的面积为。
北师大版初三数学中考模拟试题及答案
初三数学综合测试题(1)(考试时间90分钟,满分100分)一、选择题:(本大题共10题,每小题3分,共30分)每小题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在下面的答题表一内,否则不给分.答题表一1、下列计算正确的是A. 236333=⨯B. -(-a +1)= a -1C. 3m 2-m 2=3D. (-3)2= -32、由几个小正方体所搭成的几何体的俯视图如下面左侧图形所示.(正方形中的数字表 示该位置叠放的小正方体的个数),那么这个几何体的正视图是3、根据右图提供的信息,可知一个热水瓶的价格是A .7元B .35元C .45元D .50元 4、如果分式1x 1x +-的值为零,那么x 的值为A. -1或1B. 1C. -1D. 1或0第3题共52元5、已知α为等腰直角三角形的一个锐角,则cosα等于A .21B .22C .23D .336、若一个正多边形的外角等于30°,则这个多边形的边数是A. 6B. 8C. 10D. 127、四张完全相同的卡片上,分别画有:线段、等边三角形、平行四边形、圆,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率是 A .43 B .21 C .41D .1 8、已知二次函数y = x 2的图象向右平移3个单位后,得到的二次函数解析式是A.2)3x (y -=B. 2)3x (y +=C. 3x y 2-=D. 3x y 2+= 9、如图,已知⊙O 的半径为5,弦AB=8,M 是AB 上任意一点,则线段OM 的长可以是A .1.5B .2.5C .4.5D .5.5第9题10、如图,圆锥底面直径为6cm ,母线长为12cm ,则其侧面展开为扇形的圆心角为A. 30ºB. 45ºC. 60ºD. 90º二、填空题:(本大题共5小题,每小题3分,共15分,请将答案填入答题表二内,否则不给分)答题表二第10题11、若一组数据“-2,x ,-1,0,2”的众数是2,则中位数是 。
2024年中考数学模拟考试试卷-附答案(北师大版)
2024年中考数学模拟考试试卷-附答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下列立体图形中,俯视图是三角形的是( )2."两岸猿声啼不住,轻舟已过万重山."2023年8月29日,某手机共售出约160万台,将数据1600000用科学记数法表示应为( )A.0.16x107B.1.6x106C.1.6x107D.16x1063.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35,则∠2的度数为( )A.35°B.55°C.65°D.70°4.如图,数轴上点A,B,C分别表示数x,x+y,y,且AB<BC,则下列结论正确的是()A.x+y>0B.xy>0C.|x|-y>0D.|x|<|y|5.下列图形中,既是轴对称图形又是中心对称图形的是( )6.下列计算正确的是( )A.3a+2b=5abB.-5y+3y=2yC.7a+a=8D.3x2y-2yx2=x2y7.我校举办的"强基计划五大学科展示汇"吸引了众多学生前来参观,如图所示的是该展览馆出入口的示意图,A,B是入口,C,D,E是出口.小颖从A入口进,从C出口出的概率为()A.15B.16C.12D.138.在同一平面直角坐标系中,函数y=-k(x-1)(k≠0)与y=kx(k≠0)的图象可能是( )9.如图,在△ABC中,∠A=36°,AB=AC,以点B为圆心任意长为半径画弧,分别交AB、BC于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点O ,连接BO ,并延长交AC 于点D .若AB=2,则CD 的长为( )A.√5-1B.3-√5C.√5+1D.3+√510.约定:若函数图象至少存在不同的两点关于原点对称,则把该函数称为"黄金函数",其图象上关于原点对称的两点叫做一对"黄金点".若点A(1,m),B(n ,-4)是关于x 的"黄金函数"y=ax 2+bx+c(a ≠0)上的一对"黄金点",且该函数的对称轴始终位于直线x=2的右侧,则有结论:①a+c=0;②b=4;③14a+12b+c<0:④-1<a<0.其中结论正确的是( )A.①②③B.①③④C.①②④D.②③④ 二.填空题:本题共6小题,每小题4分,共24分. 11.因式分解:4m 2-9= .12.江豚素有"水中大熊猫"之称,为了解洞庭湖现有江豚数量,考察队先从湖中捕捞10头江豚并做上标记,然后放归湖内.经过一段时间与群体充分混合后,再从中多次捕捞全部计数后放回,并算得平均每32头江豚中有2头有标记,则估计洞庭湖现有江豚数量约为 头.13.根据物理学规律,如果把一个物体从地面以10m/s 的速度竖直上抛(如图所示),那么物体经过x s 离地面的高度(单位:m )为10x -4.9x 2.根据上述规律,该物体落回地面所需要的时间x 约为 s.(结果保留整数)14.如图,已知正六边形ABCDEF,⊙O 是此正六边形的外接圆.若AB=2,则阴影部分的面积 为 .15.11月10日晚,"深爱万物"--2023深圳人才嘉年华活动正式启动,千余架无人机在深圳人才公园上空上演"天空之舞",为人才喝彩、向人才致敬.如图所示的平面直角坐标系中,线段OA ,BC 分别表示1号、2号无人机在队形变换中飞行高度y 1,y 2(米)与飞行时间x (秒)的函数关系,其中y 2=-4x+150,线段OA 与BC 相交于点P ,AB ⊥y 轴于点B ,点A 的横坐标为25,则在第 秒时1号和2号无人机在同一高度.16.如图所示,正方形ABCD 的边长为3,点E 在AD 上(不与点A ,D 重合),连接BE ,交对角线AC 于点H ,将△ABE 沿BE 折叠,点A 的对应点为F ,延长EF 交CD 于点G ,连接BG 和CH ,则以下结论中:①∠EBG=45°;②当AE=1时,DG=CG;③S △BED =12S 正方形ABCD ;④GH=BH. 所有正确结论的序号是 。
(完整word版)北师大版中考数学模拟试题及答案,推荐文档
1、2、 3、 4、 5、 6、 九年级中考模拟测试题(一)、填空题(每题 3分,共24 分) 3 y 26 2的解是 若对任意实数X 不等式 设1 x 2,则x 两个反比例函数 y例函数y 6上, x ax b 都成立,那么a 、b 的取值范围为 1 x x 2的最大值与最小值之差为y 6在第一象限内的图象点 P 、P 2、P 3、…、“007在反比 x 它们的横坐标分别为 X 2007,纵坐标分别是1、3、5…共2007个连续奇数,过P 1、P 2、P 3、…、P 2007分别作y 轴的平行线,与y 3的图象交点依次为 Q 1(x 1', y 1')、Q 2(x 2',y 2')、…、Q 2007(X 贝y P 2007Q 2007I ____________________________ 如右图,圆锥的母线长是 3,底面半径是1, A 是底面圆周上一点,从 A 点出 发绕侧面一周,再回到 A 点的最短的路线长是 _________________ 有一张矩形纸片ABCD , AD 9, AB 合,那么折痕长是 _______________ 2007,y2007 ),12,将纸片折叠使 A 、C 两点重 2a 、b 是方程x 3x 2 0的两个根,则 已知3、a 、4、b 、5这五个数据,其中 这五个数据的标准差是 ___________ 若抛物线y 2x px 4p 1中不管p 取何值时都通过定点,则定点坐标为 二、选择题(每题 3分,共24 分)9、 如图,ABC 中,M 在AC 边上, BH:HG:GM A 、 3:2:1 D 、E 是 BC 边上的点,BD:DE:EC 3: 2:1 ,CM : MA 1:2 , BM 交 AD 、AE 于 H 、G ,贝U ( ) D 、51: 24:10 等于 B 、5:3:1 10、 若一直角三角形的斜边长为 c , ( ) C 、 25:12:5 内切圆半径是r , 则内切圆的面积与三角形面积之比是 r c 2r 11、 抛物线y ax 2与直线 的取值范围是(1a 14 12、 有铅笔、练习本、 r 1, r 2c r y 1, r 2 2c r 2围成的正方形有公共点,则实数a 1 2 圆珠笔三种学习用品, 1 2若购铅笔3支,练习本7本,圆珠笔1支共需3.15 元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元,那么,购铅笔、练习本、圆 珠笔各1件共需( )A 、1.2元B 、1.05 元C 、0.95 元 D 、X 1 1 X 2,那么实数a 的取值范围是14、如图,正方形 ABCD 的边AB两部分的面积之差是(1 315、已知锐角三角形的边长是A 、1 x . 5,5 x .151,,和I F ;T 都是以1为半径的圆弧,213、设关于x 的方程ax (a 2)x 9a有两个不相等的实数根X i 、x 2,且211 C 、 a16、某工厂第二季度的产值比第一季度的产值增长了 产值增长了 A 、2x% 三、解答题 17. 18. x%,第三季度的产值又比第二季度的 x%,则第三季度的产值比第一季度增长了( B 、1 2x% C 、(1 x%)?x% ) D 、(2 x%)?x% (6分)化简: x 2 2x 1 x 12 x (6 分) 解分式方程: 如图,在梯形纸片 ABCD 中,AD//BC , 使点C 落在AD 上的点 19. 的直线折叠, 证:四边形CDCE 是菱形. (10 分) AD>CD ,将纸片沿过点DC 处,折痕DE 交BC 于点E ,连结CE .求8ax 12a 与x 轴交于A 、OBC , (1)求OC 的长及20、(10 分)如图,开口向下的抛物线 线上另有一点C 在第一象限,且使 2「 axOCA s C、 62、3、x ,那么第三边x 的取值范围是(,5 x .13C 、 ,13 x 5则无阴影部分的)的值;(2)设直线BC与y轴交于P点,点C是BP的中点时,求直线BP和抛物AC线的解析式。
(完整)北师大版中考数学模拟试题及答案,推荐文档
九年级中考模拟测试题(一)一、填空题(每题3分,共24分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,xy 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q ,则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为 二、选择题(每题3分,共24分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r2+π B 、r c r +π C 、r c r +2π D 、22rc r+π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a的取值范围是( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需( )A 、2.1元B 、05.1元C 、95.0元D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是( )A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a 14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A 、12-πB 、41π- C 、13-π D 、61π-15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是( )A 、51<<x B 、135<<x C 、513<<xD 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( ) A 、%2x B 、%21x + C 、%%)1(x x •+ D 、%%)2(x x •+ 三、解答题17.(6分)化简:2222111x x x x x x-+-÷-+18. (6分)解分式方程:2412-=+-x x x19.(10分)如图,在梯形纸片ABCD 中,AD//BC ,AD >CD ,将纸片沿过点D的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C ′E .求证:四边形CDC ′E 是菱形.20、(10分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及A DEB C C ′ACBC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。
北师大版九年级下学期数学中考模拟试卷(含答案)
九年级数学中考模拟试卷(满分150分时间:120分钟)一.单选题。
(共40分)1.﹣2023的相反数是()A.﹣12023B.12023C.﹣2023D.20232.如图所示,该几何体的左视图是()A. B. C. D.3.一个数是1290,这个数用科学记数法表示为()A.1.29×104B.12.9×102C.1.29×103D.0.129×1044.如图所示,AE∥CD,EF⊥ED,垂足为E,∠1=28°,则∠2的度数为()A.30°B.40°C.62°D.50°(第4题图)(第7题图)(第9题图)5.下列图形中,是中心对称但不是轴对称图形的是()A.B. C. D.6.下列运算正确的是()A.2a2+3a3=5a5B.(-2a)3=-6a3C.(m+n)2=m2+n2D.(3m+2)(2-3m)=4-9m27.△ABC的顶点分别位于正方形网格的格点上,建立如图所示的平面直角坐标系,已知点C(﹣1,1),将△ABC先沿x轴方向向右平移3个单位长度,再沿y轴方向向下平移2个单位长度,得到△A’B’C’,则点A 的对应点的坐标是()A.(﹣6,6)B.(0,2)C.(0,6)D.(﹣6,2)8.若k>1,则一次函数y=(k-1)x+1-k的图象是()A. B. C. D.9.如图,在菱形ABCD中,分别以C,D为圆心,大于12CD长为半径作弧两弧,分别交于点E、F,连接EF,若直线EF恰好经过点A,与边CD交于点M,连接BM.则下列结论中错误的是()A.∠ABC=60°B.如果AB=2,那么BM=4C.BC=2CMD.S ADM=1S△ABM10.二次函数y=ax2+2ax+3(a≠0),当a-1≤x≤2时二次函数的函数值y恒小于4,则a的取值范围为()A.a<18B.a>-1 C.0<a<18或a<0 D.0<a<18或-1<a<0二.填空题。
北师大版九年级中考数学模拟考试试题(含答案)
九年级中考数学二模考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。
北师大版九年级数学“中考模拟试卷”以及答案
九年级中考数学模拟试卷时间:120分钟 满分150分一、单选题。
(每小题4分,共48分) 1、9的相反数是( )A 、19 B 、﹣19 C 、9 D 、﹣9 2、如图所示三棱柱的主视图是( )。
3、一个数是5575 0000,这个数用科学记数法表示为( )。
A 、5.575×107B 、55.75×105C 、5575×104D 、0.5575×108 4、将一副三角板如图所示的位置放在直尺上,则∠1的度数是( ) A 、115° B 、105° C 、110° D 、95°(第4题图) (第6题图)5、下面数字符号中,既是轴对称图形又是中心对称图形的是( )。
A 、B 、C 、D 、6、实数a 、b 在数轴上的位置如图所示,下列式子正确的是( )。
A 、a >b B 、ab >0 C 、|a |>|b | D 、a+b >07、化简a 2a -b-b 2a -b的结果是( )。
A 、a -bB 、a+bC 、a+b a -bD 、a -ba+b8、同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上,一枚硬币反面向上的概率是( )A、12B、13C、14D、239、已知反比例函数y=kx,当x<0时,y随x的增大而减小,那么一次函数y=﹣kx+k的图象经过第()象限。
A、一、二、三B、一、二、四C、一、三、四D、二、三、四10、如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡,斜坡CD的坡度为i=1:2.4,坡顶D到BC的垂直距离DE=50米,(点A、B、C、D、E在同一面内),在点D处测得建筑物顶点A的仰角为50°,则建筑物AB的高度约()。
参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19A、69.2米B、73.1米C、85.7米D、80.0米(第10题图)(第11题图)11、如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB 的角平分线,CF交AD于点G,交BE于点H,下列说法中:①△ABE的面积=△BCE的面积;②∠FAG=∠FCB;③AF=AG;④BH=CH,其中正确是()。
2024年中考数学模拟考试试卷-有答案(北师大版)
2024年中考数学模拟考试试卷-有答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.三棱柱2.某软件是人工智能技术驱动的自然语言处理工具,它能够基于在预训练阶段所见的模式和统计规律,来生成回答,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写论文、邮件、脚本、文案、翻译、代码等任务,功能非常强大.有研究发现,该软件是20000000000参数量的模型,将数据20000000000用科学记数法表示为()A.0.2x1011B.20x109C.2x1010D.2x10113.如图,已知直线AB∥CD,EG平分∠BEF,∠1=40°,则∠2的度数为()A.70°B.50°C.40°D.140°4.实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(b﹣a)<0B.b(c﹣a)<0C.a(b﹣c)>0D.a(c+b)>05.如图书写的四个汉字中,既是轴对称图形又是中心对称图形的是()6.下列运算正确的是( )A.a2·a2=a6B.a4÷a2=a2C.(a³)2=a5D.2a2+3a2=5a47.某校在举办数学节活动中,需选拔讲题大赛环节的主持人,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是( )A.12B.13C.14D.168.在反比例函数y=4-kx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则k的取值范围是()A.k<0B.k>0C.k<4D.k>49.如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是()A.BE=DEB.DE垂直平分线段ACC.S△CDES△CBA =√33D.BD2=BC·BE10.已知抛物线P:y=x2+4ax-3(a>0).将抛物线P绕原点旋转180°得到抛物线P’,当1≤x≤3时,在抛物线P’上任取一点M,设点M的纵坐标为t,若t≤3,则a的取值范围是( )A.0<a≤14B.0<a≤34C.14≤a<34D.a≥34二.填空题:本题共6小题,每小题4分,共24分.11.因式分解:ax2-4ay2= .12.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中有个红球.13.若关于x的方程x2+mx-12=0的一个根是2,则此方程的另一个根是.14.如图,正五边形ABCDE内接于⊙O,其半径为1,作OF⊥BC交⊙O于点F,则图中阴影部分的面积为.15.一条笔直的路上依次有M,P,N 三地,其中M,N两地相距1000米.甲、乙两台机器人从M,N两地同时出发,匀速而行去目的地N,M.图中OA,BC分别表示甲、乙机器人离M的距离y(米)与行走时间x(分钟)的函数关系图象.当甲机器人到P地后,再经过1分钟机器人也到P地,求P,M两地间的距离为.16.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB'P,连接B'C,则在点P的运动过程中,线段B'C的最小值为.三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:(√3)0+2﹣1+√2cos45°-|﹣12|18.(6分)解不等式组{2x -1≤﹣x +2x -12x <13+2x,并写出它的非负整数解。
2024年中考数学模拟考试试卷-含答案(北师大版)
2024年中考数学模拟考试试卷-含答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求. 1.如图是由5个完全相同的小正方体搭成的几何体,这个几何体的左视图是( )2.2024年1月17日,搭载天舟七号货运飞船的长征七号遥八运载火箭,在我国文昌航天发射场点火发射,发射取得圆满成功,将与在轨运行的空间站组合体进行交会对接.空间站距离地球约为400000米,400000用科学记数法可表示为( ) A.400x103 B.40x104 C.4x105 D.4x1063.若a 与5互为相反数,则a+1的值为( ) A.6 B.4 C.-4 D.-64.实数a ,b 互为相反数,其在数轴上对应的点的位置如图所示,下列结论中,正确的是( )A.|a |<|b |B.a -b=0C.a<-1D.ab>05.简笔画通常利用对称构图,体现对称美.下面四个图案既是轴对称图形又是中心对称图形的是( )6.下列计算正确的是( )A.(a -b)(-a -b)=a 2-b 2B.2a ³+3a ³=5a 6C.6x 3y 2+3x=2x 2y 2D.(-2x 2)³=-6x 67.有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是2的倍数的概率为( )A.56 B.34 C.23 D.128.下列计算正确的是( )A.2m+n=2mnB.-a 2·(-a)4=-a 6 °C.(-2x ³)³=-6x 9D.(4x -3)2=16x 2-12x+99.把一条线段分割为两部分,使较长部分与全长的比值等于较短部分与较长部分的比值,则这个比值为黄金分割比,比值为√5-12,是公认的最能引起美感的比例,如图1为世界名画蒙娜丽莎.如图2,点E 是正方形ABCD 的边AB 上的黄金分割点,且AE>BE ,以AE 为边作正方形AEHF ,延长EH 交CD 于点I ,连接BF 交EI 于点G ,连接BI ,则S △BCI :S △FGH 为( )A.1:1B.√5+13C.√5-12D.√5+1210.若一个点的坐标满足(k ,2k),我们将这样的点定义为"倍值点".若关于x 的二次函数y=(t+1)x 2+(t+2)x+s(s ,t 为常数,t ≠-1)总有两个不同的倍值点,则s 的取值范围是( ) A.s<-1 B.s<0 C.0<s<1 D.-1<s<0二.填空题:本题共6小题,每小题4分,共24分.直接填写答案. 11.因式分解:2a 2-12a+18= .12.在一个不透明的口袋中装有3个红球和若干个白球,它们除颜色外完全相同.多次摸球试 验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有 个. 13.二次函数y=kx 2-4x+2的图象与x 轴有公共点,则k 的取值范围是 .14.如图,直线AB 交反比例函数y=kx 于A ,B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连接OA .若S △OAC =72,则k 的值为 .15.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为 .16.如图,在正方形ABCD 中,点E 是边CD 上一点,BF ⊥AE ,垂足为F ,将正方形沿AE 、BF 切割分成三块,再将△ABF 和△ADE 分别平移,拼成矩形BGHF .若BG=kBF ,则DECD = (用含k 的式子表示).三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算(﹣12)﹣2+(π-3.14)0+4cos45°-|1-√2|18.(6分)解不等式组{2(x +2)-x ≤5①4x+13>x -1②,并写出不等式组的非负整数解.19(6分)如图,在矩形ABCD 中,BE ⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:AF=CE.20.(8分)根据背景素材,探索解决问题. 如图所示,在坡顶A 处的同一水平面上有一座信号塔BC ,某数学兴趣小组的同学们想测量此信号塔的高度,经过小组讨论采取如下办法:同学们先在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为i=1:2.4的斜坡AP 攀行了26米到达点A ,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.请计算: (1)计算坡顶A 到地面PQ 的距离. (2)计算出信号塔BC 的高度.(结果精确到1米,参考数据:sin76≈0.97,cos76°≈0.24,tan76°≈4.01)21.(8分)某学校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A,B,C,D,E五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图.(1)请把图1补充完整;(2)请计算图2中研学活动地点C所在扇形的圆心角的度数;(3)若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.22.(8分)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,BC,过点C作⊙O的切线交AB 延长线于点D,OF⊥BC于点E,交CD于点F.(1)求证:∠BCD=∠BOE;,AB =10,求BD的长.(2)若sin∠BAC=3523.(10分)伴随"一盔一带"安全守护行动,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20个,乙种头盔30个,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元(1)甲、乙两种头盔的单价各为多少元?(2)商店决定再次购进甲、乙两种头盔共40个,正好赶上厂家进行促销活动,促销方式为甲种头盔按单价的八折出售,乙种头盔每个降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少个甲种头盔,使此次购买头盔的总费用最小?最小费用为多少元?24.(10分)如图,一次函数y=kx﹣3的图象与y轴交于点B,与反比例函数y=m(x>0)的图象交x于点A(8,1).(1)求出一次函数与反比例函数的表达式;(2)如图1,点C是线段AB上一点(不与点A,B重合),过点C作y轴的平行线与该反比例函数的图象交于点D,连接OC、OD、AD,当CD等于6时,求点C的坐标和△ACD的面积;(3)在(2)的前提下,将△OCD沿射线BA方向平移一定的距离后,得到△O'C'D',若点O的对应点O'恰好落在该反比例函数的图象上(如图2),求出点O',D'的坐标.25.(12分)如图1,抛物线与x轴交于A,B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的函数表达式;(2)若点P是对称轴上的一个动点,是否存在以P,C,M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;(3)如图2,D是OC的中点,一个动点G从点D出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E,F的位置,写出坐标,并求出最短路程.26.(12分)如图1,在正方形ABCD中,点E在线段BC上,连接AE,将△ABE沿着AE折叠得到△AFE,延长EF交CD于点G.(1)求证:DG=FG;(2)如图2,当点E是BC的中点时,求tan∠CGE的值;(3)如图3,当BEDG =23时,连接CF并延长交AB于点H,求CFCH的值.答案一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图是由5个完全相同的小正方体搭成的几何体,这个几何体的左视图是( B )2.2024年1月17日,搭载天舟七号货运飞船的长征七号遥八运载火箭,在我国文昌航天发射场点火发射,发射取得圆满成功,将与在轨运行的空间站组合体进行交会对接.空间站距离地球约为400000米,400000用科学记数法可表示为( C )A.400x103B.40x104C.4x105D.4x1063.若a与5互为相反数,则a+1的值为( C )A.6B.4C.-4D.-64.实数a,b互为相反数,其在数轴上对应的点的位置如图所示,下列结论中,正确的是( C )A.|a|<|b|B.a-b=0C.a<-1D.ab>05.简笔画通常利用对称构图,体现对称美.下面四个图案既是轴对称图形又是中心对称图形的是( C )6.下列计算正确的是( C )A.(a-b)(-a-b)=a2-b2B.2a³+3a³=5a6C.6x3y2+3x=2x2y2D.(-2x2)³=-6x67.有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是2的倍数的概率为( C )A.56B.34C.23D.128.下列计算正确的是( B )A.2m+n=2mnB.-a2·(-a)4=-a6°C.(-2x³)³=-6x9D.(4x-3)2=16x2-12x+99.把一条线段分割为两部分,使较长部分与全长的比值等于较短部分与较长部分的比值,则这个比值为黄金分割比,比值为√5-12,是公认的最能引起美感的比例,如图1为世界名画蒙娜丽莎.如图2,点E是正方形ABCD的边AB上的黄金分割点,且AE>BE,以AE为边作正方形AEHF,延长EH交CD于点I,连接BF交EI于点G,连接BI,则S△BCI :S△FGH为( D )A.1:1B.√5+13C.√5-12D.√5+1210.若一个点的坐标满足(k,2k),我们将这样的点定义为"倍值点".若关于x的二次函数y=(t+1)x2+(t+2)x+s(s,t为常数,t≠-1)总有两个不同的倍值点,则s的取值范围是( D )A.s<-1 B.s<0 C.0<s<1 D.-1<s<0二.填空题:本题共6小题,每小题4分,共24分.直接填写答案. 11.因式分解:2a 2-12a+18= 2(a -3)2 .12.在一个不透明的口袋中装有3个红球和若干个白球,它们除颜色外完全相同.多次摸球试 验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有 12 个. 13.二次函数y=kx 2-4x+2的图象与x 轴有公共点,则k 的取值范围是 k ≤2且k ≠0 . 14.如图,直线AB 交反比例函数y=kx 于A ,B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连接OA .若S △OAC =72,则k 的值为 73 .15.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为293.16.如图,在正方形ABCD 中,点E 是边CD 上一点,BF ⊥AE ,垂足为F ,将正方形沿AE 、BF 切割分成三块,再将△ABF 和△ADE 分别平移,拼成矩形BGHF .若BG=kBF ,则DECD = √k -1 (用含k 的式子表示).三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算(﹣12)﹣2+(π-3.14)0+4cos45°-|1-√2| =4+1+4×√22+1-√2=6+√218.(6分)解不等式组{2(x +2)-x ≤5①4x+13>x -1②,并写出不等式组的非负整数解.解:解不等式①,得x≤1.解不等式②,得x>-4.∴原不等式组的解集为﹣4<x≤1. ∴非负整数解为0,1.19(6分)如图,在矩形ABCD 中,BE ⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:AF=CE.证明:四边形ABCD 是矩形 ∴AB=CD ,AB ∥CD ∴∠BAE=∠DCF又∵BE ⊥AC ,DF ⊥AC ∴∠AEB=∠CFD=90° 在△ABE 与△CDF 中 {∠AEB =∠CFD ∠BAE =∠DCF AB =CD∴△ABE ≌△CDF(AAS) ∴AE=CF∴AE+EF=CF+EF ,即AF=CE20.(8分)根据背景素材,探索解决问题. 如图所示,在坡顶A 处的同一水平面上有一座信号塔BC ,某数学兴趣小组的同学们想测量此信号塔的高度,经过小组讨论采取如下办法:同学们先在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为i=1:2.4的斜坡AP 攀行了26米到达点A ,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.请计算: (1)计算坡顶A 到地面PQ 的距离. (2)计算出信号塔BC 的高度.(结果精确到1米,参考数据:sin76≈0.97,cos76°≈0.24,tan76°≈4.01)解:(1)如图,过点A 作AH ⊥PQ 于点H∵斜坡AP 的坡度为1:2.4 ∴AHPH =512设AH=5k ,则PH=12k. ∴AP=13k∴13k=26,解得k=2 ∴AH=10∴坡顶A 到地面PQ 的距离为10米(2)如图,延长BC 交PQ 于点D ∵BC ⊥AC ,AC ∥PQ ∴BD ⊥PQ∴∠ACD=∠CDH=∠AHD=90°∴四边形AHDC 是矩形,CD=AH=10,AC=DH ∵∠BPD=45°∴△BPD 是等腰直角三角形 ∴PD=BD设BC=x ,则x+10=24+DH ∴AC=DH=x -14在Rt △ABC 中,tan76°=BCAC ,即x x -14≈4.01,解得x ≈19∴信号塔BC 的高度约19米.21.(8分)某学校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A ,B ,C ,D ,E 五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图. (1)请把图1补充完整;(2)请计算图2中研学活动地点C所在扇形的圆心角的度数;(3)若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.解:(1)本次调查的学生人数为20÷20%=100,最喜欢去A地的人数为100-20-40-25-5=10补全条形统计图如下.(2)研学活动地点C所在扇形的圆心角的度数为360°×40=144°100=300(名)(3)1200×25100答:估计最喜欢去D地研学的学生人数为30022.(8分)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,BC,过点C作⊙O的切线交AB 延长线于点D,OF⊥BC于点E,交CD于点F.(1)求证:∠BCD=∠BOE;,AB =10,求BD的长.(2)若sin∠BAC=35(1)证明:如图,连接OC∵CD 是⊙O 的切线∴∠OCD=90°∴∠OCB+∠BCD=90°∵OF ⊥BC∴∠BEO=90°∴∠BOE+∠OBE=90°∵OC=OB∴∠OCB=∠OBC∴∠BCD=∠BOE(2)解:如图,过点B 作BH ⊥CD 于点H∵AB 是⊙O 的直径∴∠ACB=90°∵sin ∠BAC=BC AB =35,AB=10 ∴BC=6∵OF ⊥BB∴AC ∥OF∴∠BOE=∠BAC∵∠BCD=∠BOE∴∠BAC=∠BCD∴sin ∠BAC=sin ∠BCD=35∴BH=185∵OC ⊥CD BH ⊥CD∴BH ∥OC∴△BDH ∽△ODC∴1855=BD BD+5解得BD=907故BD 的长为90723.(10分)伴随"一盔一带"安全守护行动,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20个,乙种头盔30个,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元(1)甲、乙两种头盔的单价各为多少元?(2)商店决定再次购进甲、乙两种头盔共40个,正好赶上厂家进行促销活动,促销方式为甲种头盔按单价的八折出售,乙种头盔每个降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少个甲种头盔,使此次购买头盔的总费用最小?最小费用为多少元?解:(1)设甲种头盔的单价为x 元,乙种头盔的单价为y 元根据题意,得{20x+30y=2920 x-y=11解得{x=65 y=54答:甲种头盔单价为65元,乙种头盔单价为54元.(2)设再次购进甲种头盔m只,总费用为w元根据题意,得m≥12(40-m)解得m≥403w=65×0.8m+(54-6)(40-m)=4m+1920.∵4>0∴w随着m增大而增大当m=14时,w取得最小值最小值为14×4+1920=1976.∴购买14个甲种头盔时,总费用最小,最小费用为1976元.24.(10分)如图,一次函数y=kx﹣3的图象与y轴交于点B,与反比例函数y=mx(x>0)的图象交于点A(8,1).(1)求出一次函数与反比例函数的表达式;(2)如图1,点C是线段AB上一点(不与点A,B重合),过点C作y轴的平行线与该反比例函数的图象交于点D,连接OC、OD、AD,当CD等于6时,求点C的坐标和△ACD的面积;(3)在(2)的前提下,将△OCD沿射线BA方向平移一定的距离后,得到△O'C'D',若点O的对应点O'恰好落在该反比例函数的图象上(如图2),求出点O',D'的坐标.解:(1)点A(8,1)在一次函数y=kx-3的图象上∴1=8k-3,解得k=12∴一次函数的表达式为y=12x-3∵点A(8,1)在反比例函数y=mx图象上解得m=8.∴反比例函数的表达式为y=8x(2)设C (a ,12a -3)(0<a <8),则D (a ,8a )∴CD=8a -(12a -3)=8a -12a+3∵CD=6∴8a -12a+3=6.解得a=-8(舍去)或a=2∴C(2,-2).如图1,过点A 作AE ⊥CD 于点E则AE=8-2=6∴S △ACD =6×6×12=18(3)D’(6,6)25.(12分)如图1,抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N.(1)求抛物线的函数表达式;(2)若点P 是对称轴上的一个动点,是否存在以P ,C ,M 为顶点的三角形与△MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由;(3)如图2,D 是OC 的中点,一个动点G 从点D 出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E ,F 的位置,写出坐标,并求出最短路程.解:(1):OA=2,OB=4,OC=8∴A(-2,0),B(4,0),C(0,8)设抛物线的函数表达式为y=a(x+2)(x -4)将点C 的坐标代入,得﹣8a=8.解得a=-1.抛物线的函数表达式为y=-x 2+2x+8.(2)存在以点P ,C ,M 为顶点的三角形与△MNB 相似理由如下:∵y=-x 2+2x+8=-(x -1)2+9∴对称轴为直线x=1.设直线BC 的函数表达式为y=kx+b将点B ,C 的坐标代人,得{4k +b =0b =8解得{k =﹣2b =8 ∴直线BC 的函数表达式为y=-2x+8.∴M(1,6),N(1,0).∴由两点距离公式可得BN=3,MN=6,BM=3√5,CM=√5若以点P ,C ,M 为顶点的三角形与△MNB 相似,则有∠BMN=∠CMP .①如图1,当∠CPM=∠BNM=90°时∴CP ∥x 轴∴点P 的坐标为(1,8)②图2,当∠PCM=∠BNM=90°时∴PM CM =BM MN =√52∴PM=52∴点P 的坐标为(1,172)综上所述,点P 的坐标为(1,8)或(1,172)(3)2√3726.(12分)如图1,在正方形ABCD 中,点E 在线段BC 上,连接AE ,将△ABE 沿着AE 折叠得 到△AFE ,延长EF 交CD 于点G.(1)求证:DG=FG;(2)如图2,当点E 是BC 的中点时,求tan ∠CGE 的值;(3)如图3,当BE DG =23时,连接CF 并延长交AB 于点H ,求CF CH 的值.(1)证明:四边形ABCD 是正方形 ∴AB=AD ,∠B=∠D=90°将△ABE 沿着AE 折叠得到△AFE ∴AB=AF ,∠B=∠AFE=∠AFG=90° ∴AD=AF∵AG=AG∴Rt △AFG ≌Rt △ADG(HL) ∴DG=FG(2)解:设BC=CD=2a∵点E 是BC 的中点∴BE=CE=a将△ABE 沿着AE 折叠得到△AFE ∴BE=EF=a∵EG 2=CE 2+CG 2即(a+DG)2=a 2+(2a -DG)2. DG=23a∴tan ∠CGE=a2a -23a =34(3)CF CH =25。
2024年中考数学模拟考试试卷-附答案(北师大版)
2024年中考数学模拟考试试卷-附答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图所示的几何体是由5个大小相同的小立方块搭成,此几何体的俯视图是( )2.万里长城是世界文化遗产之一,其总长大约为21 200 000 m ,将21 200 000用科学记数法表示为( )A.2.12x106B.2.12x107C.0.212x108D.212x1073.如图,AB∥CD,直线l与AB,CD分别交于点E和F,CD上有一点G且GE=GF,∠1=122°,则∠2的度数为( )A.54°B.64°C.58°D.68°4.实数a,b在数轴上的位置如图所示,则下列结论不正确的是( )A.ab<0B.a+b>0-bl=a-bD.√a2=-a5.下列图形中,既是轴对称图形又是中心对称图形的是()6.下列运算正确的是()A.(m﹣1)2=m2﹣1B.(2m)³=6m³C.m7-m3=m4D.m2+m5=m77.用如图所示的两个可自由转动的转盘进行"配紫色"游戏(红色和蓝色配成紫色),两个转盘分别被分成面积相等的几个扇形,同时转动两个转盘一次,转盘停止时指针所指扇形的颜色即为转出的颜色(若指针停在分界线上,则重转),则配得紫色的概率为( )A.16B.14C.13D.128.已知点A(x1,y1),B(x2,y2)在反比例函数y=-2x的图象上,且x1<0<x2,则下列结论一定正确的是( )A.y1+y2<0B.y1+y2>0C.y1﹣y2<0D.y1-y2>09.如图,在矩形ABCD 中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E和F,大于12EF为半径画弧,两弧交于点P,作射线BP,过点C作BP的垂线分别交BP,AD于点M和N,则CN的长为()A.√10B.√11C.2√3D.410.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点,已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(32,32),且当0≤x≤m时,函数y’=ax2+4x+c-34(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是( )A.-1≤m≤0B.2≤m≤4C.2≤m<72D.2-<m≤72二.填空题:本题共6小题,每小题4分,共24分..11.因式分解:xy2-4x= .12.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为.13.若关于x的一元二次方程x2+2x+h=0无实数根,则k的取值范围是.14.如图,正方形的边AB=2,弧BD和弧AC都是以2为半径的圆弧,则图中空白两部分的面之差为.15.为了增强学生身体素质,学校要求学生练习跑步.开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s,当到达终点时男、女均停止跑步,男、女生从开始匀速跑步到停止跑步分别用时100s,120s.已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则当男、女相遇时,此时男、女同学距离终点的距离为.16.如图,在矩形ABCD 中,AB=8,AD=10,点M 是BC 的中点,E 是BM 上的一点,连接AE ,作点B 关于直线AE 的对称点B',连接DB'并延长交BC 于点F .当BF 最大时,点B'到BC 的距离为 .三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:|﹣12|+(-1)2024﹣sin30°﹣(√3-√2)018.(6分)解不等式组{2(x -1)+1>﹣3①x -1≤1+x3②,并把它的解集在数轴上表示出来.19.(6分)如图,四边形ABCD 是平行四边形,点E ,F ,G ,H 分别在边AD 、AB 、BC 、CD 上,且DE=BG ,AF=CH .求证:EF=GH.20.(8分)植物园是当地人民喜爱的休闲场所之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最小和最大高度分别为多少?(结果精确到0.1m,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)21.(8分)"小手拉大手,共创文明城".某校为了解学生对所在城市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示.单位:分):94,83,90,86,94,88,96,100,89,82,94,82,84,89,88,93,98,94,93,92.整理上面的数据,得到频数分布表和扇形统计图.根据以上信息,解答下列问题:(1)填空:a= ,b= .(2)若成绩不低于90分为优秀,请估计该校1600名学生中,达到优秀等级的人数;(3)已知A等级中有2名男生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.22.(8分)如图,AB是⊙O的直径,点E,C在⊙O上,点C是弧BE的中点,AE垂直于过点C 的直线CD,垂足为D,AB的延长线交直线CD于点F.(1)求证:CD是⊙O的切线;(2)若AE=2,sin∠AFD=13①求⊙O的半径;②求线段DE的长.23.(10分)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A 粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:(1)该商场节后每千克A粽子的进价为多少元?(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润为多少?24.(10分)当k 值相同时,我们把正比例函数y=1k x 和反比例函数y=kx 叫做"关联函数".小亮根 据学习函数的经验,以函数y=﹣12x 和y=﹣2x 为例对"关联函数"进行了探究,下面是小亮的探 究过程,请你将它补充完整(1)如图,在同一平面直角坐系中画出这两个函数的图象,两个函数图象在第二、四象限分别 交于点A 、B ,则点A 、B 的坐标分别是A 、B .(2)点P 是函数y=﹣12x 在第二象限内的图象上的一个动点(不与点A 重合),作直线PA 、PB ,分别与x 轴交于点C 、D .设点P 的横坐标为t .小亮通过分析得到:在点P 运动的过程中,总有PC=PD.证明PC=PD 的过程如下(不完整): 易知点P 的坐标为(t ,﹣2t ) 设直线AP 的表达式为y=ax+b -2a+ b =1将点A 、P 的坐标分别代人,得{﹣2a +b =1ta +b =﹣2t解得{a =﹣1tb =﹣2-tt∴直线AP 的表达式为y=﹣1t x -2-t t令y=0,得x=t -2,则点C 的坐标为(t -2,0) 同理可得直线BP 的表达式为y=1t x -2+t t.....请你补充剩余的证明过程;(3)当△PCD 是等边三角形时,t= .(4)随着点P 的运动,△ABP 的面积S 与点P 的横坐标t 之间存在一定的函数关系,当t>﹣2时,请你求出S 关于t 的函数表达式.25.(12分)如图,抛物线y=ax2+bx+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,点Q是x轴上方抛物线上一点,射线QM⊥x轴于点N,若QM=BM,且tan∠MBN=43,请直接写出点Q的坐标;(3)如图2,点E是第一象限内一点,连接AE交y轴于点D,AE的延长线交抛物线于点P点F在线段CD上,且CF=OD,连接AF,EF,BE,BP,若S△AFE =S△ABE,求△PAB的面积.26.(12分)原题再现:小强特别喜欢探究数学问题,一天李老师给他这样一个几何问题:△ABC 和△BDE都是等边三角形,将△BDE绕着点B旋转到图1位置,求证:AE=CD.小强很快就通过△ABE△CBD,论证了AE=CD.(1)请你写出小强的证明过程;迁移应用:小强想,把等边△ABC和等边△BDE都换成等腰直角三角形,将△BDE绕着点B 旋转到图2位置,其中∠ACB=∠EDB=90°,那么AE和CD有什么数量关系呢?(2)请你帮助小强写出结论,并给出证明;(3)如图3,如果把等腰直角三角形换成正方形,将正方形AFEG绕点A旋转α°,若AB=6√2,AG=4,在旋转过程中,当C,G,E三点共线时,请求出DG的长度.答案一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图所示的几何体是由5个大小相同的小立方块搭成,此几何体的俯视图是( C )2.万里长城是世界文化遗产之一,其总长大约为21 200 000 m ,将21 200 000用科学记数法表示为( B )A.2.12x106B.2.12x107C.0.212x108D.212x1073.如图,AB∥CD,直线l与AB,CD分别交于点E和F,CD上有一点G且GE=GF,∠1=122°,则∠2的度数为( B )A.54°B.64°C.58°D.68°4.实数a,b在数轴上的位置如图所示,则下列结论不正确的是( C )A.ab<0B.a+b>0-bl=a-bD.√a2=-a5.下列图形中,既是轴对称图形又是中心对称图形的是( D )6.下列运算正确的是( C )A.(m﹣1)2=m2﹣1B.(2m)³=6m³C.m7-m3=m4D.m2+m5=m77.用如图所示的两个可自由转动的转盘进行"配紫色"游戏(红色和蓝色配成紫色),两个转盘分别被分成面积相等的几个扇形,同时转动两个转盘一次,转盘停止时指针所指扇形的颜色即为转出的颜色(若指针停在分界线上,则重转),则配得紫色的概率为( B )A.16B.14C.13D.128.已知点A(x1,y1),B(x2,y2)在反比例函数y=-2x的图象上,且x1<0<x2,则下列结论一定正确的是( D )A.y1+y2<0B.y1+y2>0C.y1﹣y2<0D.y1-y2>09.如图,在矩形ABCD 中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E和F,大于12EF为半径画弧,两弧交于点P,作射线BP,过点C作BP的垂线分别交BP,AD于点M和N,则CN的长为( A )A.√10B.√11C.2√3D.410.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点,已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(32,32),且当0≤x≤m时,函数y’=ax2+4x+c-34(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是( B )A.-1≤m≤0B.2≤m≤4C.2≤m<72D.2-<m≤72二.填空题:本题共6小题,每小题4分,共24分..11.因式分解:xy2-4x= x(y+2)(y-2) .12.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为1350.13.若关于x的一元二次方程x2+2x+h=0无实数根,则k的取值范围是k>1 .14.如图,正方形的边AB=2,弧BD和弧AC都是以2为半径的圆弧,则图中空白两部分的面之差为2π-4 .15.为了增强学生身体素质,学校要求学生练习跑步.开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s,当到达终点时男、女均停止跑步,男、女生从开始匀速跑步到停止跑步分别用时100s,120s.已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则当男、女相遇时,此时男、女同学距离终点的距离为315m .16.如图,在矩形ABCD 中,AB=8,AD=10,点M 是BC 的中点,E 是BM 上的一点,连接AE ,作点B 关于直线AE 的对称点B',连接DB'并延长交BC 于点F .当BF 最大时,点B'到BC 的距离为165.三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:|﹣12|+(-1)2024﹣sin30°﹣(√3-√2)0 =12+1-12-1 =018.(6分)解不等式组{2(x -1)+1>﹣3①x -1≤1+x3②,并把它的解集在数轴上表示出来. 解不等式①,得x>-1 解不等式②,得x ≤2原不等式组的解集为﹣1<x ≤219.(6分)如图,四边形ABCD 是平行四边形,点E ,F ,G ,H 分别在边AD 、AB 、BC 、CD 上,且DE=BG ,AF=CH .求证:EF=GH.证明:四边形ABCD 是平行四边形 ∴AD=BC ,∠A=∠C又∵DE=BG∴AE=CG在△EAF和△GCH中,{AE=CG ∠A=∠C AF=CH∴△EAF≌△GCH(SAS)∴EF=GH20.(8分)植物园是当地人民喜爱的休闲场所之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最小和最大高度分别为多少?(结果精确到0.1m,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)解:如图过点B作BT⊥ON于点T,过点A作AK⊥ON于点K在Rt△OBT中,OT=OB·cos26°=3x0.90=2.7(m)∵∠BMN=∠MNT=∠BTN=90°∴四边形BMNT是矩形∴TN=BM=0.9m∴ON=OT+TN=3.6(m)∴CN=ON﹣OC=3.6-3=0.6(m)在Rt△AOK中,OK=OA·cos50°=3x0.64=1.92(m)∴KN=ON﹣OK=3.6-1.92=1.7(m)答:座板距地面的最小高度约为0.6m,最大高度约为1.7m.21.(8分)"小手拉大手,共创文明城".某校为了解学生对所在城市创建全国文明城市相关知 识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x 表示.单位:分):94,83,90,86,94,88,96,100,89,82,94,82,84,89,88,93,98,94,93,92.整理上面的数据,得到频数分布表和扇形统计图.根据以上信息,解答下列问题:(1)填空:a= ,b= .(2)若成绩不低于90分为优秀,请估计该校1600名学生中,达到优秀等级的人数;(3)已知A 等级中有2名男生,现从A 等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.解:(1)a=20-8-5-4=3.∵b%=8+20x100%=40%∴b=40故答案为3,40(2)1600×1120=880(名)即估计该校1600名学生中,达到优秀等级的人数为880.(3)A 等级中有2名男生,则有1名女生.画树状图如下:共有6种等可能的结果,恰好抽到一男一女的结果∴恰好抽到一男一女的概率为46=2322.(8分)如图,AB 是⊙O 的直径,点E ,C 在⊙O 上,点C 是弧BE 的中点,AE 垂直于过点C 的直线CD ,垂足为D ,AB 的延长线交直线CD 于点F.(1)求证:CD 是⊙O 的切线;(2)若AE=2,sin ∠AFD=13①求⊙O的半径;②求线段DE的长.22.(1)证明:如图,连接OC∵AD⊥DF∴∠D=90°∵点C是弧BE的中点∴弧CE=弧CB∴∠DAC=∠CAB∵OA = OC∴∠CAB=∠OCA∴∠DAC=∠OCA∴AD∥OC∴∠OCF=∠D=90°∵OC是⊙O的半径∴DC是⊙O的切线.(2)解:①如图,过点O作OG⊥AE,垂足为GAE=1∴AG=EG=12∵OG⊥AD∴∠AGO=∠DGO=90°∵∠D=∠AGO=90°∴OG∥DF∴∠AFD=∠AOG∵sin∠AFD=13∴sin∠AOG=sin∠AFD=13在Rt △AGO 中,AO=1÷13=3∴⊙0的半径为3②∵∠OCF=90°∴∠OCD=180°∠OCF=90°∵∠OGE=∠D=90°∴四边形OGDC 是矩形∴OC=DG=3∵GE=1∴DE=DG -GE=3-1=2∴线段DE 的长为223.(10分)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A 粽子能够畅销.根据预测,每千克A 粽子节前的进价比节后多2元,节前用240元购进A 粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:(1)该商场节后每千克A 粽子的进价为多少元?(2)如果该商场在节前和节后共购进A 粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A 粽子获得利润最大?最大利润为多少?解:(1)设该商场节后每千克A 粽子的进价为x 元240x -4=240x+2 解得x=10或x=﹣12(舍去)经检验,x=10是原分式方程的根,且符合题意.答:该商场节后每千克A 粽子的进价为10元.(2)设该商场节前购进m 千克A 粽子,总利润为w 元根据题意,得(10+2)m+10(400-m)≤4600解得m ≤300w=(20-12)m+(16-10)(400-m)=2m+2400.∵2>0∴w 随着m 增大而增大当m=300时,w 取得最大值,最大利润为2x300+2400=3000(元)答:该商场节前购进300千克A 粽子获得利润最大24.(10分)当k 值相同时,我们把正比例函数y=1k x 和反比例函数y=k x 叫做"关联函数".小亮根 据学习函数的经验,以函数y=﹣12x 和y=﹣2x 为例对"关联函数"进行了探究,下面是小亮的探 究过程,请你将它补充完整(1)如图,在同一平面直角坐系中画出这两个函数的图象,两个函数图象在第二、四象限分别 交于点A 、B ,则点A 、B 的坐标分别是A 、B .(2)点P 是函数y=﹣12x 在第二象限内的图象上的一个动点(不与点A 重合),作直线PA 、PB ,分别与x 轴交于点C 、D .设点P 的横坐标为t .小亮通过分析得到:在点P 运动的过程中,总有PC=PD.证明PC=PD 的过程如下(不完整):易知点P 的坐标为(t ,﹣2t )设直线AP 的表达式为y=ax+b-2a+ b =1将点A 、P 的坐标分别代人,得{﹣2a +b =1ta +b =﹣2t 解得{a =﹣1t b =﹣2-t t∴直线AP 的表达式为y=﹣1t x -2-t t令y=0,得x=t -2,则点C 的坐标为(t -2,0) 同理可得直线BP 的表达式为y=1t x -2+t t.....请你补充剩余的证明过程;(3)当△PCD 是等边三角形时,t= .(4)随着点P 的运动,△ABP 的面积S 与点P 的横坐标t 之间存在一定的函数关系,当t>﹣2时,请你求出S 关于t 的函数表达式.解:(1)令﹣12x=﹣2x ,则x 2=4 ∴x 1=-2,x 2=2分别代入关系式,得y 1=1,y 2=-1.∴A(-2,1),B(2,-1)(2)令1t x -t+2t =0,得x=1+2则点D 的坐标为(t+2,0)如图,过点P 作PH ⊥x 轴于点H ,则H(t ,0).又:C(t -2,0),D(t+2,0)∴CH=DH∴PH是线段CD的中垂线∴PC=PD(3)﹣√33(4)S=t﹣4t25.(12分)如图,抛物线y=ax2+bx+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,点Q是x轴上方抛物线上一点,射线QM⊥x轴于点N,若QM=BM,且tan∠MBN=43,请直接写出点Q的坐标;(3)如图2,点E是第一象限内一点,连接AE交y轴于点D,AE的延长线交抛物线于点P点F在线段CD上,且CF=OD,连接AF,EF,BE,BP,若S△AFE =S△ABE,求△PAB的面积.(1)设抛物线的表达式为y=a(x+1)(x-3)=a(x2-2x-3),当x=0时,y=3∴-3a=3,解得a=-1.故抛物线的表达式为y=-x2+2x+3(2)Q(2,3)(3)面积=3.526.(12分)原题再现:小强特别喜欢探究数学问题,一天李老师给他这样一个几何问题:△ABC 和△BDE都是等边三角形,将△BDE绕着点B旋转到图1位置,求证:AE=CD.小强很快就通过△ABE△CBD,论证了AE=CD.(1)请你写出小强的证明过程;迁移应用:小强想,把等边△ABC和等边△BDE都换成等腰直角三角形,将△BDE绕着点B 旋转到图2位置,其中∠ACB=∠EDB=90°,那么AE和CD有什么数量关系呢?(2)请你帮助小强写出结论,并给出证明;(3)如图3,如果把等腰直角三角形换成正方形,将正方形AFEG绕点A旋转α°,若AB=6√2,AG=4,在旋转过程中,当C,G,E三点共线时,请求出DG的长度.(1)证明:△ABC 和△BDE 分别是等边三角形 ∴AB=CB ,BE=BD∴∠ABC=∠DBE=60°∴∠DBE ﹣∠DBA=∠ABC ﹣∠DBA ,即∠ABE=∠CBD 在△ABE 和△CBD 中{AB =CB ∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS )∴AE=CD(2)解:AE=√2CD .理由如下∵△ABC ,△BDE 都是等腰直角三角形∴BA=√2BC ,BE=√2BD∴AB CB =BE BD =√2∵∠ABC=∠DBE=45°∴∠ABE=∠CBD∴△ABE ∽△CBD∴AE CD =AB CB =√2∴AE=√2CD(3)解:①如图1,连接AE. 由(2)知△ADG ∽△ACE∴DG CE =AD AC =√22∴DG=√22CE∵四边形ABCD是正方形∴AD=AB=6√2,AC=√2AB=12∵四边形AFEG是正方形∴∠AGE=90°,GE=AG=4∵C,G,E三点共线∴CG=8√2∴CE=CG﹣EG=8√2-4∴DG=8-2√2②如图2,连接AE由(2)知△ADG∽△ACE∴DGCE =ADAC=√22∴DG=√22CE∵四边形ABCD是正方形∴AD=AB=6√2,AC=√2AB=12∵四边形AFEG是正方形∴∠AGE=90°,GE=AG=4∵C,G,E三点共线∴CG==8√2∴CE=CG+EG=8√2+4.∴DG=√22CE=8+2√2综上,当C,G,E三点共线时,DG的长度为8-2√2或8+2√2.。
北师大版九年级中考数学一模考试试题(含答案)
九年级中考数学模拟试卷(满分150分时间120分钟)一.单选题。
(共40分)1.2023的相反数是()A.2023B.12023C.﹣12023D.﹣20232.如图所示的几何体由5个大小相同的立方块搭成,则该几何体的左视图是()3.根据国家统计局调查显示,2022年我国全年出生人口956万人,9 560 000用科学记数法可以表示为()A.0.956×107B.956×104C.9.56×107D.95.6×1054.将一副三角板(∠EDF=30°,∠C=45°)按如图所示方式摆放,使得点D在三角板的一边AC上,且DE∥AB,则∠DMC等于()A.60°B.75°C.90°D.105°(第4题图)(第6题图)5.下列图形中,既是轴对称图形,但不是中心对称图形的是()6.实数M,N在数轴上对应点的位置如图所示,下列结论正确的是()A.mn>0B.m>﹣nC.|m|>|n|D.m+1>n+17.将分别标有“最”、“美”、“济”、“南”四个汉字的小球装在一个不透明的口袋中,这些球除汉字不同外其余完全相同,每次摸球前先搅匀,随机摸出一球,放回摸出的球后再随机摸出一球,两次摸出的球的汉字可以组成济南概率是( ) A.516 B.16 C.18 D.148.如图,PA 、PB 分别是弧AMB 所在圆⨀O 相切于点A ,B ,若该圆半径是3cm ,∠P=60°,则弧AMB 的长是( )A.6πB.4πC.3πD.2π(第8题图) (第10题图)9.如图,在平行四边形ABCD 中,分别以点B ,D 为圆心,大于12BD 的长半径画弧,两弧交于M ,N ,直线MN 分别交AD ,BC 于点E ,F ,连接BD ,EF ,若∠BAD=120°,AE=1,AB=2,则线段BF 的长是( )A.√7+1B.√3+√2C.3D.√710.在平面直角坐标系中,点(1,m )和(2,n )在抛物线y=ax 2+bx+c (a >0)上,抛物线的对称轴为直线x=t ,若m <c <n ,则t 的取值范围( ) A.t <1 B.0<t <1 C.12<t <1 D.12<t <32 二.填空题。
北师大版九年级中考数学模拟试题含答案
中考数学模拟测试题一、选择题(本大题共15个小题,每小题3分,共45分.)1.- 13的相反数是( )A. 13B.3C.-3D.- 132.下列运算正确的是( )A.(-3)2=-9B.(-1)2 015×1=-1C.-5+3=8D.-|-2|=23.人体血液中每个成熟红细胞的平均直径为0.000 007 7米,用科学记数法表示为( )A.7.7×10- 5B.77×10-6C.77×10-5D.7.7×10-64.如图,直线l 1和直线l 2被直线l 所截,已知l 1∥l 2,∠1=70°,则∠2=( )A.110°B.90°C.70°D.50°5.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )6.计算a 3·(-1a )2的结果是( )A.aB.a 5C.a 6D.a 47.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )8.下列命题中是真命题的是( )A .随机事件发生的概率为1 B.平分弦的直径垂直于弦C.正多边形都是轴对称图形D.两边及其一边的对角对应相等的两个三角形全等9.不等式2x-6>0的解集是( )A.x >1B.x <-3C.x >3D.x <310.某市6月某周内每天的最高气温(单位:°C )数据如下:24,26,29,26,29,32,29则这组数据的众数和中位数分别是( )A.29,29B.26,26C.26,29D.29,3211.函数y 1=x+1与y 2=ax+b (a ≠0)的图象如图所示,这两个函数图象的交点在y 轴上,那么使y 1,y 2的值都大于零的x 的取值范围是( )A.x >-1B.x >2C.x <2D.-1<x <212.某公司承担了制作500套校服的任务,原计划每天制作x 套,实际平均每天比原计划多制作了12套,因此提前4天完成任务,根据题意,下列方程正确的是( )A. 50050012x x 4-=+B.50050012x 5x -=- C.5005004x x 12-=+ D.50050012x-4x += 13.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,D 是AB上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连接EF ,则线段EF 的最小值是( )A.2.5B.2.4C.2.2D.214.如图,动点P 在直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(1,1),第二次运动到点(2,0),第三次接着运动到点(3,2),…按这样的运动规律,经过第2 016次运动后,动点P 的纵坐标是( )A.2B.1C.0D.2 01515.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:则下列判断中正确的是( )A.抛物线开口向上B.抛物线于y 轴交于负半轴C.当x=3时,y >0D.方程ax 2+bx+c=0的正根在2与3之间 二、填空题(本大题共6个小题,每小题3分,满分18分.)16.分解因式:(a-b )2-4b 2=________.17.当x=________时,代数式2x+1与5x-8的值相等.18.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠AOC=40°,D 是BC 弧的中点,则∠ACD=________.19.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6个点,得到的点数为偶数的概率是_______.20.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形ABCD的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=k x的图象上,若点A 的坐标为(4,-2),则k 的值为________.21.如图,以△ABC 的三边为边分别作等边△ACD ,△ABE ,△BCF.则下列结论:①△EBF ≌△DFC ;②四边形AEFD 为平行四边形;③当AB=AC ,∠BAC=120°时,四边形AEFD 是正方形.其中正确的结论是________.三、解答题(本大题共7个小题,满分57分,)22.(本小题满分7分)(1)化简:22m11m2m1m1⎛⎫÷-⎪+++⎝⎭.(2)解方程组:2x y4, x y1.+=⎧⎨-=-⎩23.(本小题满分7分)(1)如图,AB∥CD,AB=CD,AE=CF.求证:△ABF≌△CDE.(2)如图,ABCD是⊙O的内接四边形,DP∥AC,交BA的延长线于点P.求证:AD·DC=PA·BC.24.(本小题满分8分)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元.问A,B两件服装的成本各是多少元?中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3 000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=________,b=________; (2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)的为“优等”,则该校参加这次比赛的3 000 名学生中成绩“优等”约有多少人?26.(本小题满分9分)已知反比例函数y=m 1x(m 为常数)的图象在第一、三象限内. (1)求m 的取值范围.(2)如图,若该反比例函数的图象经过平行四边形ABOD 的顶点D ,点A ,B 的坐标分别为(0,3),(-2,0).①求出该反比例函数的解析式;②设点P 是该反比例函数图象上的一点,且在△DOP 中,OD=OP ,求点P 的坐标.在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°.(1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG (如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N (如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其他条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.28.(本小题满分9分)如图,⊙E 的圆心E (3,0),半径为5,⊙E 与y 轴相交于A ,B 两点(点A 在点B 的上方),与x 轴的正半轴交于点C ,直线l 的解析式为y=34x+4,与x 轴相交于点D ,以点C 为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l 与⊙E 的位置关系,并说明理由;(3)动点P 在抛物线上,当点P 到直线l 的距离最小时,求出点P 的坐标及最小距离.。
北师大版初三数学模拟试卷附答案
北师大版初三数学模拟试卷附答案第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的).1.如果+30 m表示向东走30 m,那么向西走40 m表示为( )A.+40 mB.-40 mC.+30 mD.-30 m2.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.503.图中几何体的主视图是( )4.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( ) A.0.34×10-9 B.3.4×10-9C.3.4×10-10D.3.4×10-115.已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10 cmC.8 cmD.6 cm6.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )7.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案( )A.5种B.4种C.3种D.2种8.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票.根据题意,下列方程组正确的是( )9.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )A.18°B.24°C.30°D.36°10.如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为( )A.4B.C.1D.211.如图,数轴上a,b两点表示的数分别为和-1,点a关于点b的对称点为c,则点c所表示的数为( )12.如图,A、B、C是反比例函数(x北师大版初三数学模拟试卷附答案.。
北师大版九年级数学中考模拟试卷及答案
北师大版九年级数学中考模拟试卷及答案一、选择题:1.如图中几何体的俯视图是()2.平行四边形一边的短就是10cm,那么这个平行四边形的两条对角线短可以就是()a.4cm,6cmb.6cm,8cmc.8cm,12cmd.20cm,30cm3.例如图,de就是△abc的中位线,若bc的短为3cm,则de的短就是()a.2cmb.1.5cmc.1.2cmd.1cm4.已知图中的两个三角形全等,则∠?的度数是()a.72°b.60°c.58°d.50°5.如图,将边长为8m的正方形abcd折叠,使点d落在bc边的中点e处,折痕为mn,则线段cn的长是()a.3cmb.4cmc.5cmd.6cm6.例如图,梯形abcd中,ab∥cd,ac、bd处设e,若s△dce∶s△dcb=1∶3,则cd∶ab=()a.1s3b.1s2c.2s3d.1s47.例如图,在rt△abc中,ab=ac,ad⊥bc,像距为d,e、f分别就是cd、ad上的点,且ce=af.如果∠aed=62o,那么∠dbf=()a.62ob.38oc.28od.26o8.如图,ab∥cd,且?1?115°,?a?75°,则?e的度数是()a.30°b.50°c.40°d.60°9.如图,菱形abcd中,∠b=60°,ab=5,则ac=().a.3b.4c.5d.610.下列函数:①y??x;②y?2x;③y??12;④y?x.当x?0时,y随x的增大而减小的函数有()x个a.1b.2c.3d.4二、填空题:11.水解因式a?ab?.12.一次函数y??x?1的图像经过点p(m,m-1),则m=.13.若a?1?b?2?0,点m(a,b)在反比例函数y?的图像上,则反比例函数的解析式为__________x14.一个等腰三角形的两边长分别是4cm和5cm,则它的周长为_______________cm.15.如图一副三角板叠放在一起,则图中∠?的度数是.16.例如图,在△abc中,p就是ab上一点,联结cp,当满足条件时△acp∽△abc17.如图,菱形abcd的对角线交于平面直角坐标系的原点,顶点a坐标为(-2,3),现将菱形绕点o顺时针方向转动180°后,a点座标变成____________.18.如图,已知零件的外径为25mm,现用一个交叉卡钳(两条尺长ac和bd相等,oc=od)量零件的内孔直径ab.若oc∶oa=1∶2,量得cd=10mm,则零件的厚度x?_____mm.19.如图,等腰梯形abcd中,ad∥bc,且ad?1bc,e为ad上一点,ac与be交于点f,若2ae:de?2:1,则△aef的面积?△cbf的面积20.如图,小明同学在东西方向的环海路a处,测得海中灯塔p在北偏东60°方向上,在a处东500米的b处,测出海中灯塔p在北偏东30°方向上,则灯塔p至环海路的距离pc=米(用根号则表示)三、计算题1?1?21.排序(5?3)°?2sin45°?2?1?2?22.求解分式方程:113x2x23.谋不等式组??x?1≥1?x,的整数解.x?8?4x?1.?3x2?4x2?x??x,其中x?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级中考数学模拟试卷(满分150分 时间120分钟)一.单选题。
(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx-1的图象向上平移2个单位长度后经过点(2,3),则k的值是()A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为()A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。
(共24分)11.因式分解:m2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式.(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。
17.(6分)计算:(﹣2023)0-3tan30°-(12)﹣1+√12.18.(6分)不等式组{2x+33>1x≥5x-4的整数解。
19.(6分)如图,在菱形ABCD中,点M、N分别在AB,CB上,且BM=BN,证明:DM=DN。
20.(8分),某校为了解同学们的阅读情况,随机抽查了部分学生在某一周的主题阅读文章的篇数,并制成了如图所示的统计图.(1)被抽查的学生人数是人,m= .(2)本次抽查的学生阅读篇数点的中位数是,众数是.(3)求本次抽查的学生平均每人阅读的篇数.(4)若该校共有学生1000人,请估计该校学生在本周内阅读篇数为4篇的人数.21.(8分)要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜面AD的坡度为1:3,一口到地下停车场地面的垂直高度CD为3.2米,一楼到地平线的距离BC为1米.(1)求斜面AD的长度.(结果保留整数)(2)如果送货的货车高度为2.8米,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:√10≈3.2)22.(8分)如图,AD是⨀O的直径,AB为⨀O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C。
(1)证明:∠CBP=∠ADB.(2)若OA=4,AB=2,求线段BP的长.23.(10分)某中学购买一批足球和排球,其中每个排球的价格比每个足球的价格贵15元,用3000元购买足球的数量与用3600元购买排球的数量相同.(1)分别求出足球和排球的单价.(2)若学校计划用不超过8000元的经费购进足球、排球共100个,那么最多可以购进排球多少个?24.(10分)如图,点A (1,a )和B (b ,2)是一次函数y 1=﹣2x+8的图象与反比例函数y 2=mx(x >0)的图象的两个交点. (1)求反比例函数的表达式:(2)设点P 是y 轴上的一个动点,当△PAB 的周长最小时,求点P 的坐标.(3)在(2)的条件下,设点D 是坐标平面内一个动点,当以点A 、B 、P 、D 为顶点的四边形是平行四边形,请直接写出符合条件的所有点D 的坐标.25. (12分)在Rt △ABC 中,∠BAC=90°,AB=AC ,在Rt △ADE 中,∠DAE=90°,2AD=AB ,2AE=AC ,连接DE ,AN ⊥BC ,垂足为N ,AM ⊥DE ,垂足为M 。
(1)观察猜想.图①中,点D ,E 分别在AB ,AC 上时,BDCE 的值为 ,BDMN 的值为 .(2)探究证明:如图②,将△ADE 绕点A 顺时针旋转,旋转角为α(0°<α<360°),连接BD ,CE ,判断问题(1)中的数量关系是否仍然存在,并证明; (3)拓展延伸在△ADE 旋转过程中,设直线CE 与BD 相交于点F ,设∠CAE=90°,AB=6,请直接写出线段BF 的长.26.(12分)如图,抛物线y1=ax2+bx+3与x轴交于点A(﹣3,0)和B(1,0),点D是抛物线4y1的顶点,过点D作x轴的垂线,垂足为点C。
(1)求抛物线y1所对应的函数解析式.(2)如图1,点M是抛物线y1上一点,且位于x轴上方,横坐标为m,连MC,若∠MCB=∠DAC,求m的值.(3)如图2,将抛物线y1平移后得到顶点B的抛物线y2,点P为抛物线y1上一个动点,过点P作y轴的平行线,交抛物线y2于点Q,过点Q作x轴的平行线,交抛物线y2于点R,当以点P、Q、R为顶点的三角形与△ACD全等,请直接写出点P的坐标.答案解析一.单选题。
(共40分) 1.√25等于( A )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( C )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( A )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( B )5.如图,下列结论正确的是( A )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( A )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( C ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx -1的图象向上平移2个单位长度后经过点(2,3),则k的值是( A )A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为( B )A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是( A )A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。
(共24分)11.因式分解:m2-4= (m+2)(m-2).12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是47.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为2+√2.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= 2023 .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式y=2x+2 .(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是②③(填序号)三.解答题。
17.(6分)计算:(﹣2023)0-3tan30°-(12)﹣1+√12.=1-√3-2+2√3=√3-118.(6分)不等式组{2x+33>1x≥5x-4的整数解。
解不等式①得x>0解不等式②得x≤1不等式组的解集为0<x≤1整数解为119.(6分)如图,在菱形ABCD中,点M、N分别在AB,CB上,且BM=BN,证明:DM=DN。
20.(8分),某校为了解同学们的阅读情况,随机抽查了部分学生在某一周的主题阅读文章的篇数,并制成了如图所示的统计图.(1)被抽查的学生人数是人,m= .(2)本次抽查的学生阅读篇数点的中位数是,众数是.(3)求本次抽查的学生平均每人阅读的篇数.(4)若该校共有学生1000人,请估计该校学生在本周内阅读篇数为4篇的人数.21.(8分)要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜面AD的坡度为1:3,一口到地下停车场地面的垂直高度CD为3.2米,一楼到地平线的距离BC为1米.(1)求斜面AD的长度.(结果保留整数)(2)如果送货的货车高度为2.8米,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:√10≈3.2)22.(8分)如图,AD是⨀O的直径,AB为⨀O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C。
(1)证明:∠CBP=∠ADB.(2)若OA=4,AB=2,求线段BP的长.23.(10分)某中学购买一批足球和排球,其中每个排球的价格比每个足球的价格贵15元,用3000元购买足球的数量与用3600元购买排球的数量相同.(1)分别求出足球和排球的单价.(2)若学校计划用不超过8000元的经费购进足球、排球共100个,那么最多可以购进排球多少个?24.(10分)如图,点A(1,a)和B(b,2)是一次函数y1=﹣2x+8的图象与反比例函数y2=mx (x>0)的图象的两个交点.(1)求反比例函数的表达式:(2)设点P是y轴上的一个动点,当△PAB的周长最小时,求点P的坐标.(3)在(2)的条件下,设点D是坐标平面内一个动点,当以点A、B、P、D为顶点的四边形是平行四边形,请直接写出符合条件的所有点D的坐标.26. (12分)在Rt △ABC 中,∠BAC=90°,AB=AC ,在Rt △ADE 中,∠DAE=90°,2AD=AB ,2AE=AC ,连接DE ,AN ⊥BC ,垂足为N ,AM ⊥DE ,垂足为M 。