江苏省东台市2017_2018七年级数学下学期期中试题苏科版
七年级下册数学期中考试卷及答案2017(苏科版)
七年级下册数学期中考试卷及答案2017(苏科版)一、选择题(本大题共10小题,每小题2分,共20分)1.如图所示,∠1和∠2是对顶角的是()2.计算的结果是( )A.2B.±2C.-2D.43.实数-2,0.3,,,-π中,无理数的个数有( )A.1个B.2个C.3个D.4个4.我们常用如图所示的方法过直线外一点画已知直线的平行线,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等5.估计的值( )A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间6.方程组的解为,则被遮盖的两个数分别为( )A.5,2B.1,3C.2,3D.4,27.把点(2,一3)先向右平移3个单位长度,再向下平移2个单位长度得到的点的坐标是( )A.(5,-1)B.(-1,-5)C.(5,-5)D.(-1,-1)8.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)9.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.10.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.如果用(7,1)表示七年级一班,那么八年级五班可表示成.12.计算:=.13.把命题“等角的补角相等”写成“如果……,那么……”形式为:.14.已知是方程的解,则的值为.15.一个正数的两个平方根分别为a+3和2a+3,则a= .16.已知2a+3b+4=0,则.17.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为.18.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.三、解答题(本大题共8小题,共56分)19.(本题满分8分)(1)解方程:(2)解方程组:20.(本题满分6分)如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD和∠EDC的度数.21.(本题满分6分)在y=中,当时,y=;时,y=;时,y=,求的值.22.(本题满分6分)如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,铺设管道向两个小区输气.有以下两个方案:方案一:只取一个连接点P,使得向两个小区铺设的支管道总长度最短;方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N到D小区铺设的管道最短.(1)在图中标出点P、M、N的位置,保留画图痕迹;(2)设方案一中铺设的支管道总长度为L1,方案二中铺设的支管道总长度为L2,则L1与L2的大小关系为:L1L2(填“>”、“<”或“=”).23.(本题满分6分)已知:如图AB⊥BC,BC⊥CD且∠1=∠2,试说明:BE∥CF.解:∵AB⊥BC,BC⊥CD(已知)∴==90°()∵∠1=∠2(已知)∴=(等式性质)∴BE∥CF()24.(本题满分8分)与在平面直角坐标系中的位置如图.⑴分别写出下列各点的坐标:;;;⑵说明由经过怎样的平移得到.⑶若点(,)是内部一点,则平移后内的对应点的坐标为;⑷求的面积.25.(本题满分7分)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并说明理由.26.(本题满分9分)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B 商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于72000元,则B种商品是打几折销售的【参考答案】一、选择题题号12345678910答案CABACDCCBD二、填空题11、(8,5)12、13、如果两个角相等,那么这两个角的补角相等.或(如果两个角是相等的两个角的补角,那么这两个角相等.)14、3 15、-216、1317、(4,6)或(4,0)18、三、解答题19、(1)解:x-1=±2…………………………………………………………(2分) ∴x=3或-1…………………………………………………………(4分)。
江苏省苏科版2017-2018学年七年级下期中考试数学试题含答案
2017~2018学年度第二学期期中考试七年级数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分)1.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是A .B .C .D .2.下列每组数分别是三根木棒的长度,能用它们搭成三角形的是 A .2cm ,2cm ,4cm B .3cm ,9cm ,5cm C .5cm ,12cm ,13cmD .6cm ,10cm ,4cm3.下列运算中,正确的是A .2224ab a b =() B .2242a a a += C .236•a a a =D .632a a a ÷=4.若a b <,则下列各式一定成立的是 A .+3+3a b > B .22ab>C .11a b --<D .33a b > 5.下列各式从左边到右边的变形中,是因式分解的是 A .a x y ax ay +=+()B .24444x x x x +=-+-() C .()()224x x x +-=-2D .2105521x x x x -=-()6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为A .⎩⎨⎧==21b aB .⎩⎨⎧=-=26b aC .⎩⎨⎧==214b a D .⎩⎨⎧-==614b a二、填空题(每空3分,共30分) 7.23-= ▲ .8.将0.00000034用科学记数法表示为 ▲ .9.一个多边形的内角和等于1080°,则这个多边形是 ▲ 边形. 10.若2,3m n a a ==,则m na -= ▲ .11.如果32x y =⎧⎨=⎩是方程632x by +=的解,则b = ▲ .12.若()()2153x mx x x n +-=++,则mn = ▲ . 13.计算:()20182017133⎛⎫-⨯= ⎪⎝⎭▲ .14.若3=+b a ,2=ab ,则=+22b a ▲ .15.已知关于x 的不等式()224m x m -->的解集为x <2,则m 的取值范围是 ▲ . 16.已知方程组1122a x y b a x y b +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,则关于x 、y 的方程组1112222222a x y a b a x y a b -=+⎧⎨-=+⎩的解是▲ .三、解答题(本大题共102分)17.(10分)(1)计算:()-201+232π⎛⎫---- ⎪⎝⎭;(2)先化简,再求值:()()()2333x y x y x y ++-﹣,其中3,2x y ==-.18.(10分)把下列各式因式分解:(1)29x - (2)32232a b a b ab +-19.(10分)解方程组:(1) 215x y x y +=⎧⎨-=-⎩ (2)22123x y x y +=⎧⎪⎨+=⎪⎩20.(10分)解下列不等式,并把它们的解集在数轴上表示出来................. (1)()2134x x +-> (2)63421---x x >3121. (10分)(1)求x 的值:x 2·x -34·3281=+x;(2)已知2310x x --=,求代数式()()()2131+2+5x x x -+-的值.22.(8分)如图,D 、E 、F 分别在△ABC 的三条边上,DE ∥AB ,∠1+∠2=180°. (1)试说明:DF ∥AC;(2)若∠1=110°,DF 平分∠BDE,求∠C 的度数.23.(8分)观察下列各式:21543⨯+=…………① 23745⨯+=…………② 25947⨯+=…………③……探索以上式子的规律: (1)试写出第6个等式;(2)试写出第n 个等式(用含n 的式子表示),并用你所学的知识说明第n 个等式成立.24. (10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25. (12分)仔细阅读下列解题过程: 若2222690a ab b b ++-+=,求a 、b 的值. 解:∵2222690a ab b b ++-+=∴2222690a ab b b b +++-+= ∴()()2230a b b ++-= ∴+0,30a b b =-= ∴3,3a b =-=根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a 、b 的值; (3)若=+4m n ,28200mn t t +-+=,求2m tn -的值.26.(14分)已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若()24+21yx =,直接写出k 的值;(4)若k ≤1,设23m x y =-,且m 为正整数,求m 的值.2017-2018学年度七年级下学期数学期中试卷答案一、选择题(每小题3分,共18分) 1.D 2.C 3.A 4.C 5.D 6.C 二、填空题(每小题3分,共30分)7. 19 8.73.410-⨯ 9.八 10. 2311.7 12.10 13.13- 14. 5 15.2m < 16.42x y =⎧⎨=-⎩三、解答题(本大题共102分)17.(本题满分10分,每小题5分)(1)2(2)2618xy y +,3618.(本题满分10分,每小题5分)(1)()()33x x +- (2)()2ab a b -19.(本题满分10分,每小题5分)(1) 32x y =-⎧⎨=⎩ (2)26x y =-⎧⎨=⎩ 20.(本题满分10分,每小题5分)(1)6x <,略 (2)x <-2,略 21.(本题满分10分,每小题5分)(1)2x =- (2)226x x -,2 22.(本题满分8分)(1) 略 (2)70°23.(本题满分8分,每小题4分)(1)21115413⨯+= (2)()()()22123421n n n -++=+理由:()()21234n n -++=246234n n n +--+=2441n n ++=()221n +24.(本题满分10分)设该商品每件的定价为x 元,进价为y 元,由题意得:()()3550.8820x y x y x y -=⎧⎪⎨-=--⎪⎩,解得5520x y =⎧⎨=⎩. 答:该商品每件的定价为55元,进价为20元.25.(本题满分12分,每小题4分)(1)2=3x y + (2)2,1a b == (3)126.(本题满分14分)(1)214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩ ……(3分)(2)52k<-……(3分)(3)34k=或……(4分)(4)12m=或……(4分)。
2017--2018学年度第二学期苏科版七年级期中考试数学试卷
………外………○…………装……学校:___________姓名:__内…………○…………装……○…………订…………绝密★启用前 2017--2018学年度第二学期 苏科版七年级期中考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分A. 623a a a ÷=B. 44a a a ⋅=C. ()437a a =D. ()22124a a --= 2.(本题3分)在下列实例中,不属于平移过程的有( ) ①时针运行的过程;②火箭升空的过程;③地球自转的过程;④飞机从起跑到离开地面的过程 A. 1个 B. 2个 C. 3个 D. 4个 3.(本题3分)(2017新疆乌鲁木齐第2题)如图,直线a ∥b ,∠1=72∘ ,则∠2的度数是 ( ) A. 118∘ B. 108∘ C. 98∘ D. 72∘ 4.(本题3分)若a m =5,a n =3,则a m+n 的值为( ) A. 15 B. 25 C. 35 D. 45 5.(本题3分)如图,直线AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于( )…………订…………○……订※※线※※内※※线………A. 30°B. 40°C. 60°D. 70°6.(本题3分)把多项式()()222m a m a-+-分解因式正确的是 ( )A. ()()22a m m-+ B. ()()21m a m--C. ()()21m a m-+ D. ()()21m a m--7.(本题3分)若9x2+kxy+16y2是完全平方式,则k的值为( )A. 12B. 24C. ±12D. ±248.(本题3分)(2017内蒙古呼和浩特第12题)如图,AB//CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为__________.9.(本题3分)当x=-712时,式子(x-2)2-2(2-2x)-(1+x)²(1-x)的值等于()A. -2372B.2372C. 1D.497210.(本题3分)若20.3a=,23b-=-,213c-⎛⎫=-⎪⎝⎭,13d⎛⎫=-⎪⎝⎭,则().A. a b c d<<< B. b a d c<<<C. a d c b<<< D. c a d b<<<二、填空题(计32分)0.25)5=________.12.(本题4分)已知27m-1÷32m=27,则m=___________.13.(本题4分)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线________ .(1)它的理由如下:(如图1)∵b⊥a,c⊥a,∴∠1=∠2=90°,∴b∥c________(2)如图2是木工师傅使用角尺画平行线,有什么道理?________ .…○…………订……○…………………○……___班级:__________________ ……线…………○………○…………内…○…………装…………○… 14.(本题4分)分解因式: 23269a b ab -=_______ 15.(本题4分)如图,a ∥b ,PA ⊥PB ,∠1=35°,则∠2的度数是______.16.(本题4分)已知a+1a =5,则a 2+21a 的结果是___________. 17.(本题4分)如图,直线AB ∥CD ,BC 平分∠ABD ,若∠1=54°, 则∠2=__________. 18.(本题4分)如果()()2a 2b 12a 2b-1+++=63,那么a+b 的值为___________. 三、解答题(计58分) 19.(本题8分)分解因式: 2212x 1815y xy xy -+- 20.(本题8分)若4m x =, 8n x =,求3m n x -的值。
2017-2018学年度第二学期苏科版七年级期中考试数学试卷
…………外…………订……_______考号:_…内…………○…………○……………绝密★启用前 2017-2018学年度第二学期 苏科版七年级期中考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷23题,答卷时间100分,满分120分一、单选题(计40分) 1.(本题4分)下列图形中,可以由其中一个图形通过平移得到的是( ) A. B. C. D. 2.(本题4分)一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示 为( ) A. 432× B. 4.32× C. 4.32× D. 0.432× 3.(本题4分)一个多边形的每个内角均为140°,则这个多边形是( ) A .七边形 B .八边形 C .九边形 D .十边形 4.(本题4分)若等腰三角形有两条边的长分别是3和1,则此等腰三角形的周长是( )A .5B .7C .5或7D .6 5.(本题4分)2017201823 的计算结果的末位数字是( ) A. 7 B. 5 C. 3 D. 1 6.(本题4分)已知一个二元一次方程组的解是 则这个二元一次方程组可能是( ) A. B. C. D. 7.(本题4分)如图,直线AB ,CD 相交于点O ,OE ⊥AB 于O ,若∠BOD=40°,则不正确的结论是( ) A. ∠AOC=40° B. ∠COE=130° C. ∠BOE=90° D. ∠EOD=40°……外………………订………………线……线※※内※※答※※……○………○…8.(本题4分)已知2{ 3x y ==-是二元一次方程4x+ay=7的一组解,则a 的值为( )A. 13B. 5C. ﹣5D. ﹣139.(本题4分)根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )A. 0.8元/支,2.6元/本B. 0.8元/支,3.6元/本C. 1.2元/支,2.6元/本D. 1.2元/支,3.6元/本10.(本题3分)如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则A ∠与1∠和2∠ 之间有一种数量关系始终保持不变,你发现的规律是( )A. 212A ∠=∠-∠B. ()3212A ∠=∠-∠C. 3212A ∠=∠-∠D. 12A ∠=∠-∠二、填空题(计40分)11.(本题5分)分解因式: =__________________.12.(本题5分)若x +y =3,则 的值为_________.13.(本题5分)比较大小: ________ .(填“>”“=”或“<”)14.(本题5分)若4x 2-kx +9(k 为常数)是完全平方式,则k =________.15.(本题5分)如上图,直角三角板内部三角形的一个顶点恰好在直线a 上(三角板内部三角形的三边分别与三角板的三边平行),若∠2=30°,∠3=50°,则∠1=_______°.16.(本题5分)16.(本题5分)如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是 ______________________.……线…………○………………○……装…………○… 17.(本题5分)17.(本题5分)将直角三角形ABC 沿CB 方向平移BE 的距离后,得到直角三角形DEF ,已知AG =4,BE =6,DE =12,求阴影部分的面积. 18.(本题5分)若方程组352{ 23x y k x y k +=++= 的解x 、y 的和为0,则k 的值为______. 三、解答题(计40分) 19.(本题8分)解方程组: (1)3{ 3814x y x y -=-= (2)()()231{ 34243217x y x y x y -=--+=………○………………○…………线………※※请※※不※题※※ ○…………○…20.(本题8分)如图,BE 是△ABC 的角平分线,点D 是AB 边上一点,且∠DEB =∠DBE . ⑴ DE 与BC 平行吗?为什么?⑵ 若∠A =40°,∠ADE =60°,求∠C 的度数.21.(本题8分)如图,EF ∥AD ,∠1=∠2,∠BAC=80°.将求∠AGD 的过程填写完整.解:因为EF ∥AD ,所以∠2= ( ).又因为∠1=∠2,所以∠1=∠3( ).所以AB ∥ ( ).所以∠BAC+ =180°( ).因为∠BAC=80°,所以∠AGD= .22.(本题8分)如图,MF ⊥NF 于F ,MF 交AB 于点E ,NF 交CD 于点G ,∠1=140°,线…………○………○…………装…………○…23.(本题8分)2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一。
2017_2018学年七年级数学下学期期中试题苏科版
江苏省徐州市部分学校2017-2018学年七年级数学下学期期中试题(全卷共140分,考试时间90分钟)一、选择题(本大题有8小题,每小题3分,共24分) 1.下列运算正确的是 A .B .C .D .2.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m ,将0.000 000 04 用科学计数法表示为 A.B.C.D.3.长度分别为2、7、的三条线段能组成一个三角形,的值可以是 A .4 B .5 C .6 D .94.下列各式由左边到右边的变形,是因式分解的是 A. B.C.D.5.如图,下列说法中,正确的是 A .因为,所以 B .因为,所以 C .因为,所以 D .因为,所以6.如图,直线a ∥b ,将一个直角三角板按如图所示的位置摆放, 若∠1=58°,则∠2的度数为A .58°B .48°C .42°D .32°7.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +3b ),宽为(2a +b )的大长方形,则需要A 类、B 类和C 类卡片的张数分别为: A .2,3,7B .3,7,2 C .2,5,3D .2,5,7 8.如果,,,那么、、三数的大小为A .>>B .>>C .>>D .>>二、填空题(本大题共有8小题,每小题4分,共32分) 9.在△ABC 中,∠A =40°,∠B =60°,则∠C =▲°.10.若一个正多边形的一个外角是40°,则这个正多边形的边数是▲. 11.若,则▲.12.若,则=▲.( 第5题 )( 第13题 )( 第6题 )13.将一副三角板如图放置,使点A 在DE 上,BC ∥DE ,则∠ACE 的度数为▲°.14.已知单项式与的积为,那么▲.15.若是一个完全平方式,则的值是▲.16.观察下列等式:;;;…,请用含正整数的等式表示你所发现的规律:▲.三、解答题(本大题共有9小题,共84分) 17.(本题16分)计算: (1);(2);(3);(4).18.(本题6分)先化简,再求值:,其中.19.(本题8分)把下列各式分解因式: (1);(2)20.(本题8分)如图,在方格纸中,每个小正方形的边长为1个单位长度,△ABC 的顶点都在格点上.(1)画出△ABC 先向右平移6格,再向上平移1格所得的△A ′B ′C ′; (2)画出△ABC 的AB 边上的中线CD 和高线CE ; (3)△ABC 的面积为___▲___.21.(本题8分)如图,点E 、F 分别在AB 、CD 上,AD 分别交BF 、CE 于点H 、G ,∠1=∠2,∠B =∠C .(1)探索BF 与CE 有怎样的位置关系?为什么? (2)探索∠A 与∠D 的数量关系,并说明理由. 22.(本题6分)已知:,,试求(1)的值; (2)的值.23.(本题10分) (1)填空:CBAA( 第21题 )…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算:.24. (本题10分)阅读材料:已知,求、的值.解:∵,∴∴,∴,,∴,.根据你的观察,探究下面的问题: (1),则=▲,=▲;(2)已知,求的值;(3)已知△ABC 的三边长、、都是正整数,且满足,求△ABC 的周长.25.(本题12分)(1)如图1,在△ABC 中,∠DBC 与∠ECB 分别为△ABC 的两个外角,若∠A =60°,∠DBC +∠ECB=▲°; (2)如图2,在△ABC 中,BP 、CP 分别平分外角∠DBC 、∠ECB ,∠P 与∠A 有怎样的数量关系?为什么? (3)如图3,在四边形ABCD 中,BP 、CP 分别平分外角∠EBC 、∠FCB ,∠P 与∠A +∠D 有怎样的数量关系?为什么?(4)如图4,在五边形ABCDE 中,BP 、CP 分别平分外角∠NBC 、∠MCB ,∠P 与∠A +∠D +∠E 有怎样的数量关系?直接写出答案▲.2017—2018学年度第二学期期中检测七年级数学试题参考答案及评分标准一、选择题二、填空题 2107( 第25题 )。
2017-2018学年苏科版初一下期中考试数学试题含答案
2017-2018学年下学期期中考试初一数学试题(考试时间:120分钟 满分:100 分)一、选择题(每题2分,共12分)1.下列图形中,可以由其中一个图形通过平移得到的是A. B. C. D.2.下列计算正确的是A. x 2•x 4=x 8B. a 10÷a 2=a 5C. m 3+m 2=m 5D. (−a 2)3=−a 6 3.某球形流感病毒的直径约为0.000 000 085m ,用科学记数法表示该数据为 A. 8.5−8 B. 85×10−9 C. 0.85×10−7 D. 8.5×10−8 4.若M =2(x −3)(x −5),N =(x −2)(x −14),则M 与N 的关系为A. M >NB. M <NC. M =ND. M 与N 的大小由x 的取值而定 5.实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是C. ab<cbD. ab 2<cb 2 6.已知⎩⎨⎧==1719y x 是方程组⎩⎨⎧-=+=+15ay bx by ax 的解,则9−3a +3b 的值是二、填空题(每题2分,共20分) 7.计算3x 2•2xy 2的结果是___________. 8.写出一个解为⎩⎨⎧=-=21y x 的二元一次方程组 ______________.9.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是________cm .10.某校男子100m 校运动会记录是12s ,在今年的校田径运动会上,小刚的100m 跑成绩是ts ,打破了该项记录,则t 与12的关系用不等式可表示为_________. 11.0.52017×(-2)2018=__________.12.若(a -2)x1a -+3y =1是二元一次方程,则a =________.13.若x 2+(m −2)x +9是一个完全平方式,则m 的值是________.14.已知a 、b 、c 为一个三角形的三条边长,则代数式(a −b )2−c 2的值一定为________(选填“正数”、“负数”、“零”) .15.如图,△ABC 的两条中线AM 、BN 相交于点O ,已知△ABO 的面积为6,则四边形MCNO 的面积为_________.16.设有n 个数a 1,a 2,…a n ,其中每个数都可能取0,1,−3这三个数中的一个,且满足下列等式:a 1+a 2+…+a n =0,a 21+a 22+…+a 2n =24,则a 31+a 32+…+a 3n 的值是______. 三、解答题(共68分) 17.(6分)计算:(1) −12018+π0-(-3)-2 (2)(a +b -2)(a −b +2)18.(6分)把下列各式分解因式:(1)2x 3y -18xy (2)(x 2+4)2−16x 219.(6分)解方程组:(1)⎩⎨⎧=-=-52302y x y x20.(6分)先化简,再求值:已知(x+a)(x -3)的结果中不含关于字母x 的一次项,求(a+2)2-(1+a)(a -1)的值.21.(6分)小明学习了“第八章 幂的运算”后做这样一道题:若(a−1)a +3=1,求a 的值.他解出来的结果为a =2,老师说小明考虑问题不全面,聪明的你能帮助小明解决这个问题吗?小明解答过程如下: 解:因为1的任何次幂为1,所以a−1=1,a =2.且2+3=5故(a−1)a +3=(2-1)2+3=15=1,所以a =2.你的解答是:22. (6分)观察下列式子: ①1×3+1=4, ②3×5+1=16, ③5×7+1=36,(2)写出第○n 个等式,并说明其正确性.23.(6分)请认真观察图形,解答下列问题:(1) 根据图中条件,试用两种不同方法表示两个阴影图形的面积的和.(3)利用(2)中结论解决下面的问题:如图,两个正方形边长分别为a 、b ,如果a +b =ab =7, 求阴影部分的面积.24.(8分)已知,关于x ,y 的方程组⎩⎨⎧-=+-=-a y x a y x 5234的解为x 、y 。
2017-2018学年江苏省盐城市东台市第一教育联盟七年级(下)期中数学试卷(解析版)
2017-2018学年江苏省盐城市东台市第一教育联盟七年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图形中,能将其中一个图形平移得到另一个图形的是()A. B.C. D.2.下列计算正确的是()A. B. C. D.3.下列长度的3条线段,能首尾依次相接组成三角形的是()A. 1cm,2cm,4cmB. 8cm,6cm,4cmC. 12cm,5cm,6cmD. 1cm,3cm,4cm4.下列各式能用平方差公式计算的是()A. B.C. D.5.若a m=2,a n=3,则a m+n的值为()A. 5B. 6C. 8D. 96.如图,4块安全相同的长方形围成一个正方形,图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的式子是()A.B.C.D.7.当x=-6,y=时,x2016y2017的值为()A. B. 6 C. D.8.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A. 6B. 7C. 8D. 910.肥皂泡的泡壁厚度大约是0.0007mm,将0.0007用科学记数法表示为______.11.如果x+y=-1,x-y=-3,那么x2-y2= ______ .12.如图,直线a∥b,c∥d,∠1=115°,则∠3= ______ .13.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为______.14.如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了______ 米.15.若x2+mx+4是完全平方式,则m=______.16.已知a+b=4,ab=1,则a2+b2的值是______ .17.把一副常用的三角尺按如图所示的方式拼在一起,则∠ABC=______ °.18.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F= ______ .三、计算题(本大题共1小题,共12.0分)19.把下列各式因式分解(1)ap-aq+am(2)a2-4(3)a2-2a+1(4)ax2+2axy+ay2.四、解答题(本大题共5小题,共44.0分)20.计算(1)()2-(-3)0(2)8a3-3a5÷a2(3)4ab(2a2b2-ab+3)(4)(x+y)2-(x-y)(x+y)21.先化简,再求值:(x+2)2+2(x+2)(x-4)-(x+3)(x-3),其中x=-1.22.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.23.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上,将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△ABC的高CD和中线AE;(3)能使S△PBC=S△ABC的格点Q的个数有______ 个(点Q异于点A)24.已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C,B重合),点E为射线CA上一点,∠ADE=∠AED,设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=42°,∠DAE=30°,则α=______,β=______.②若∠BAC=54°,∠DAE=36°,则α=______,β=______.③写出α与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.答案和解析1.【答案】A【解析】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到;C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D、图形的大小发生变化,不属于平移得到;故选A.根据平移的性质,结合图形对选项进行一一分析,选出正确答案.本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想.2.【答案】C【解析】解:A、a2+a2=2a2,故本选项错误;B、2a-a=a,故本选项错误;C、(ab)2=a2b2,故本选项正确;D、(a2)3=a6,故本选项错误;故选:C.根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.本题考查了同底数幂的乘法,合并同类项,一定要记准法则才能做题.3.【答案】B【解析】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.4.【答案】C【解析】解:∵(-a+b)(a-b)=-(a-b)(a-b),故选项A不符合题意,(a-b)(a-2b)不能用平方差公式计算,故选项B不符合题意,(x+1)(x-1)=x2-1,故选项C符合题意,(-m-n)(m+n)=-(m+n)(m+n),故选项D不符合题意,故选C.根据各个选项中的式子可以变形,然后看哪个式子符合平方差公式,即可解答本题.本题考查平方差公式,解答本题的关键是明确平方差公式的形式.5.【答案】B【解析】解:a m+n=a m•a n=2•3=6.故选B.由a m+n=a m•a n,根据同底数幂的乘法的运算法则求解即可.本题考查了同底数幂的乘法,解答本题的关键在于熟练掌握该知识点的运算6.【答案】C【解析】解:阴影的面积(a+b )2-(a-b )2=4ab ,故选C .根据大正方形的面积减小正方形的面积,可得阴影的面积,可得答案.本题考查了平方差公式的几何背景,大正方形的面积减小正方形的面积是解题关键.7.【答案】D【解析】解:当x=-6,y=时,x 2016y 2017=(-6)2016×()2017=[(-6)×]2016×=, 故选D .先代入,再根据积的乘方进行变形,最后求出即可.本题考查了求代数式的值和积的乘方,能正确根据积的乘方进行变形是解此题的关键.8.【答案】B【解析】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.9.【答案】180【解析】解:根据三角和定理可得:三角形的内角和是180度,故答案为:180.根据三角和定理即可得出答案.本题考查了三角形内角和定理,属于基础题,关键是掌握三角形内角和为180度.10.【答案】7×10-4【解析】解:0.0007=7×10-4. 故答案为:7×10-4. 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【答案】3【解析】解:根据平方差公式得,x 2-y 2=(x+y )(x-y ),把x+y=-1,x-y=-3代入得,原式=(-1)×(-3),=3;故答案为3.利用平方差公式,对x 2-y 2分解因式,然后,再把x+y=-1,x-y=-3代入,即可解本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a-b)=a2-b2.12.【答案】65°【解析】解:∵a∥b,∴∠2+∠1=180°,∵∠1=115°,∴∠2=180°-115°=65°,∵c∥d,∴∠3=∠2=65°.故答案为65°.根据两直线平行,同旁内角互补,求出∠2的度数,再利用另一组平行线,求出∠3的度数.此题考查平行线的性质,正确根据平行关系找准所涉及的同位角、内错角是解题的关键.13.【答案】-1【解析】解:(x+1)(x+m)=x2+(1+m)x+m,∵结果不含x的一次项,∴1+m=0,解得:m=-1.故答案为:-1.把式子展开,找到所有x项的所有系数,令其和为0,可求出m的值.本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.14.【答案】90【解析】解:由题意可知,小明第一次回到出发地A点时,他一共转了360°,且每次都是向左转40°,所以共转了9次,一次沿直线前进10米,9次就前进90米.利用多边形的外角和即可解决问题.本题考查根据多边形的外角和解决实际问题,多边形的外角和是360°.15.【答案】±4【解析】解:中间一项为加上或减去x和2积的2倍,故m=±4,故填±4.这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16.【答案】14【解析】解:∵a+b=4,ab=1,∴a2+b2=(a+b)2-2ab=16-2=14;即a2+b2=14.故答案是:14.利用完全平方和公式(a+b)2=a2+b2+2ab解答.此题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.17.【答案】75【解析】解:∵∠BAC=45°,∠C=60°,∴∠ABC=180°-45°-60°=75°.故答案为:75.直接根据三角形的内角和定理即可得出结论.本题主要考查三角形的内角和定理和三角板的度数,知道三角板各角的度数是解题的关键.18.【答案】15°【解析】解:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分别平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案为15°.先由BD、CD分别平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根据三角形内角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,则根据平角定理得到∠MBC+∠NCB=300°;再由BE、CE分别平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,两式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根据三角形内角和定理可计算出∠E=30°;再由BF、CF分别平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根据三角形外角性质得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代换得到∠2=∠5+∠F,2∠2=2∠5+∠E,再进行等量代换可得到∠F=∠E.本题考查了三角形内角和定理:三角形内角和是180°.也考查了三角形外角性质.19.【答案】解:(1)原式=a(p-q+m);(2)原式=(a+2)(a-2);(3)原式=(a-1)2;(4)原式=a(x2+2xy+y2)=a(x+y)2.【解析】(1)原式提取公因式即可得到结果;(2)原式利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式提取a,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.【答案】解:(1)原式=-1=-,(2)原式=8a3-3a3=5a3,(3)原式=8a3b3-4a2b2+12ab(4)原式=(x2+2xy+y2)-(x2-y2)=2xy+2y2【解析】(1)根据零指数幂的意义即可求出答案.(2)根据同底数幂的除法即可求出答案.(3)根据单项式乘以多项式的法则即可求出答案.(4)根据完全平方公式以及平方差公式即可求出答案.本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.21.【答案】解:(x+2)2+2(x+2)(x-4)-(x+3)(x-3)=x2+4x+4+2x2-4x-16-x2+9=2x2-3,当x=-1时,原式=-1.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.22.【答案】解:(1)CD平行于EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴BC∥DG,∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°.【解析】(1)根据垂直定义求出∠CDF=∠EFB=90°,根据平行线的判定推出即可;(2)根据平行线的性质得出∠2=∠DCB,求出∠1=∠DCB,根据平行线的判定得出BC∥DG,根据平行线的性质得出∠3=∠ACB即可.本题考查了平行线的性质和判定的应用,能正确运用性质和判定进行推理是解此题的关键,难度适中.23.【答案】4【解析】解:(1)如图,△A′B′C′为所作;(2)如图,CD和AE为所作;(3)能使S△PBC=S△ABC的格点Q的个数有4个(点Q异于点A)故答案为4.(1)利用网格特点和平移的性质,分别画出点A、B、C的对应点A′、B′、C′即可;(2)利用网格特点,作CD⊥AB于D,找出BC的中点可得到AE.本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.24.【答案】(1)12°,6°;18°,9°;α=2β,理由是:如图(1),设∠BAC=x°,∠DAE=y°,则α=x°-y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β+∠ADE=α+∠ABC,β+=α+,∴α=2β;(2)α=2β-180°【解析】解:(1)①∵∠DAE=30°,∴∠ADE+∠AED=150°,∴∠ADE=∠AED=75°,∵∠BAC=42°,∴α=42°-30°=12°,∴∠ACB=∠B==69°,∵∠ADC=∠B+α,∴75°+β=69°+12°,β=6°;故答案为:12°,6°;②∵∠DAE=36°,∴∠ADE+∠AED=144°,∴∠ADE=∠AED=72°,∵∠BAC=54°,∴α=54°-36°=18°,∴∠ACB=∠B==63°,∵∠ADC=∠B+α,∴72°+β=63°+18°,β=9°;故答案为:18°,9°;③α=2β,理由是:如图(1),设∠BAC=x°,∠DAE=y°,则α=x°-y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β+∠ADE=α+∠ABC,β+=α+,∴α=2β;(2)α=2β-180°,理由是:如图(2),设∠E=x°,则∠DAC=2x°,∴∠BAC=∠BAD+∠DAC=α+2x°,∴∠B=∠ACB=,∵∠ADC=∠B+∠BAD,∴β-x°=+α,∴α=2β-180°.(1)①先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角为30°得:∠ADE=∠AED=75°,同理可得:∠ACB=∠B=69°,根据外角性质列式:75°+β=69°+12°,可得β的度数;②同理可求得:α=54°-36°=18°,β=9°;③设∠BAC=x°,∠DAE=y°,则α=x°-y°,分别求出∠ADE和∠B,根据∠ADC=∠B+α列式,可得结论;(2)α=2β-180°,理由是:如图(2),设∠E=x°,则∠DAC=2x°,根据∠ADC=∠B+∠BAD,列式可得结论.本题是三角形的综合题,难度适中,考查了等腰三角形的性质、三角形内角和定理、三角形外角的性质,熟练掌握等腰三角形的性质是关键,知道顶角的度数可以表示两个底角的度数,同时运用了类比的方法解决三个问题.。
2017-2018学年苏科版七年级数学下册期中试卷含答案解析
2017-2018学年七年级(下)期中数学试卷一、填空题:(每题2分,共24分)1.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为______.2.计算:﹣3x2•2x=______;(﹣0.25)12×411=______.3.多项式2ax2﹣12axy中,应提取的公因式是______.4.若a+b=2,a﹣b=﹣3,则a2﹣b2=______.5.一个多边形的内角和等于它的外角和的3倍,它是______边形.6.若(x+m)与(x+2)的乘积中,不含x的一次项,则常数m的值是______.7.若2x=3,4y=5,则2x﹣2y的值为______.8.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED=______.9.如图,将一副三角板的两个直角重合,使点B在EC上,点D在AC上,已知∠A=45°,∠E=30°,则∠BFD的度数是______.10.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B 方向移动,则经过______S,平移后的长方形与原来长方形重叠部分的面积为24.11.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为______.12.已知:(n=1,2,3,…),记b1=2(1﹣a1),b2=2(1﹣a1)(1﹣a2),…,b n=2(1﹣a1)(1﹣a2)…(1﹣a n),则通过计算推测出b n的表达式b n=______.(用含n的代数式表示)二、选择题:(每题3分,共15分)13.下列各组图形可以通过平移互相得到的是()A.B.C.D.14.已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.1315.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)16.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°17.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个三、解答题(本大题共8题,共计61分)18.计算:(1)(2)(a+2)(a﹣2)﹣a(a﹣1)(3)(﹣2a2b3)4+(﹣a8)•(2b4)3(4)(2x+y﹣3)(2x﹣y﹣3)19.因式分解:(1)ax2﹣4axy+4ay2(2)(3)(a2+b2)2﹣4a2b2(4)4x2﹣4x+1﹣y2.20.已知ab=3,求b(2a3b2﹣3a2b+4a)的值.21.已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.22.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为______.23.如图,已知∠1+∠2=180°,∠DAE=∠BCF.(1)试判断直线AE与CF有怎样的位置关系?并说明理由;(2)若∠BCF=70°,求∠ADF的度数.24.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S方法一:S=______方法二:S=______(2)求a,b,c之间的等量关系(需要化简)(3)请直接运用(2)中的结论,求当c=5,a=3,S的值.25.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C=______;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案______.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)七年级(下)期中数学试卷参考答案与试题解析一、填空题:(每题2分,共24分)1.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.2.计算:﹣3x2•2x=﹣6x3;(﹣0.25)12×411=.【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】根据单项式乘单项式的法则计算可得,由原式变形可得=×()11×411,再逆用积的乘方运算法则即可得.【解答】解:﹣3x2•2x=﹣6x3,(﹣0.25)12×411=(﹣)12×411=×()11×411=×(×4)11=;故答案为:﹣6x3,.3.多项式2ax2﹣12axy中,应提取的公因式是2ax.【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定出公因式.【解答】解:∵2ax2﹣12axy=2ax(x﹣6y),∴应提取的公因式是2ax.4.若a+b=2,a﹣b=﹣3,则a2﹣b2=﹣6.【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解后,将已知等式代入计算即可求出值.【解答】解:∵a+b=2,a﹣b=﹣3,∴a2﹣b2=(a+b)(a﹣b)=﹣6.故答案为:﹣6.5.一个多边形的内角和等于它的外角和的3倍,它是八边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.6.若(x+m)与(x+2)的乘积中,不含x的一次项,则常数m的值是﹣2.【考点】多项式乘多项式.【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,求解即可.【解答】解:∵x+m与x+2的乘积中不含x的一次项,∴(x+m)(x+2)=x2+(2+m)x+2m,中2+m=0,∴m=﹣2.故答案为:﹣2.7.若2x=3,4y=5,则2x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】所求式子中有22y,根据所给条件可得22y的值,所求式子中的指数是相减的关系,那么可整理为同底数幂相除的形式.【解答】解:∵4y=5,∴22y=5,∴2x﹣2y=2x÷22y=.故答案为.8.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED=68°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等求出∠ABC,再根据角平分线的定义求出∠ABE,然后利用两直线平行,内错角相等求解即可.【解答】解:∵AB∥CD,∠C=34°,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠ABE=2∠ABC=2×34°=68°,∵AB∥CD,∴∠BED=∠ABE=68°.故答案为:68°.9.如图,将一副三角板的两个直角重合,使点B在EC上,点D在AC上,已知∠A=45°,∠E=30°,则∠BFD的度数是165°.【考点】三角形的外角性质.【分析】根据直角三角形的性质可得∠ABC=45°,根据邻补角互补可得∠EBF=135°,然后再利用三角形的外角的性质可得∠BFD=135°+30°=165°.【解答】解:∵∠A=45°,∴∠ABC=45°,∴∠EBF=135°,∴∠BFD=135°+30°=165°,故答案为:165°.10.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B 方向移动,则经过3S,平移后的长方形与原来长方形重叠部分的面积为24.【考点】平移的性质;矩形的性质.【分析】先用时间表示已知面积的矩形的长和宽,并以面积作为相等关系解关于时间x的方程即可.【解答】解:设x秒后,平移后的长方形与原来长方形重叠部分的面积为24cm2,则6(10﹣2x)=24,解得x=3,即3秒时平移后的长方形与原来长方形重叠部分的面积为24cm2.故答案为:3.11.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为18°或36°.【考点】三角形内角和定理.【分析】根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可.【解答】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.12.已知:(n=1,2,3,…),记b1=2(1﹣a1),b2=2(1﹣a1)(1﹣a2),…,b n=2(1﹣a1)(1﹣a2)…(1﹣a n),则通过计算推测出b n的表达式b n=.(用含n的代数式表示)【考点】规律型:数字的变化类.【分析】根据题意按规律求解:b1=2(1﹣a1)=2×(1﹣)==,b2=2(1﹣a1)(1﹣a2)=×(1﹣)==,….所以可得:b n的表达式b n=.【解答】解:根据以上分析b n=2(1﹣a1)(1﹣a2)…(1﹣a n)=.二、选择题:(每题3分,共15分)13.下列各组图形可以通过平移互相得到的是()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C.【解答】解:观察图形可知图案C通过平移后可以得到.故选:C.14.已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.13【考点】三角形三边关系.【分析】已知三角形的两边长分别为3和9,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【解答】解:设第三边长为x,则由三角形三边关系定理得9﹣4<x<9+4,即5<x<13.因此,本题的第三边应满足5<x<13,把各项代入不等式符合的即为答案.只有12符合不等式,故答案为12.故选C.15.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)【考点】平方差公式.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选B.16.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN 和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°;故选D.17.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】三角形的外角性质;平行线的判定与性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EAC=∠ABC+∠ACB=2∠ABC,根据角平分线的定义可得∠EAC=2∠EAD,然后求出∠EAD=∠ABC,再根据同位角相等,两直线平行可得AD∥BC,判断出①正确;根据两直线平行,内错角相等可得∠ADB=∠CBD,再根据角平分线的定义可得∠ABC=2∠CBD,从而得到∠ACB=2∠ADB,判断出②正确;根据两直线平行,内错角相等可得∠ADC=∠DCF,再根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义整理可得∠ADC=90°﹣∠ABD,判断出③正确;根据三角形的外角性质与角平分线的定义表示出∠DCF,然后整理得到∠BDC=∠BAC,判断出⑤正确,再根据两直线平行,内错角相等可得∠CBD=∠ADB,∠ABC与∠BAC不一定相等,所以∠ADB与∠BDC不一定相等,判断出④错误.【解答】解:由三角形的外角性质得,∠EAC=∠ABC+∠ACB=2∠ABC,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD,∴∠EAD=∠ABC,∴AD∥BC,故①正确,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABC=2∠CBD,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确;∵AD∥BC,∴∠ADC=∠DCF,∵CD是∠ACF的平分线,∴∠ADC=∠ACF=(∠ABC+∠BAC)===90°﹣∠ABD,故③正确;由三角形的外角性质得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,∵BD平分∠ABC,CD平分∠ACF,∴∠DBC=∠ABC,∠DCF=∠ACF,∴∠BDC+∠DBC=(∠ABC+∠BAC)=∠ABC+∠BAC=∠DBC+∠BAC,∴∠BDC=∠BAC,故⑤正确;∵AD∥BC,∴∠CBD=∠ADB,∵∠ABC与∠BAC不一定相等,∴∠ADB与∠BDC不一定相等,∴BD平分∠ADC不一定成立,故④错误;综上所述,结论正确的是①②③⑤共4个.故选C.三、解答题(本大题共8题,共计61分)18.计算:(1)(2)(a+2)(a﹣2)﹣a(a﹣1)(3)(﹣2a2b3)4+(﹣a8)•(2b4)3(4)(2x+y﹣3)(2x﹣y﹣3)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据幂的乘方、负整数指数幂、零指数幂可以解答本题;(2)根据平方差公式、单项式乘以多项式可以解答本题;(3)根据积的乘方,然后合并同类项即可解答本题;(4)根据平方差公式和完全平方公式可以解答本题.【解答】解:原式===﹣2+=﹣1;(2)原式=a2﹣4﹣a2+a=a﹣4;(3)原式=16a8b12+(﹣a8)•(8b12)=16a8b12﹣8a8b12=8a8b12;(4)原式=[(2x﹣3)+y][(2x﹣3)﹣y]=(2x﹣3)2﹣y2=4x2﹣12x+9﹣y2.19.因式分解:(1)ax2﹣4axy+4ay2(2)(3)(a2+b2)2﹣4a2b2(4)4x2﹣4x+1﹣y2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式a,再利用完全平方公式分解因式得出答案;(2)直接提取公因式,再利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式,再结合完全平方公式分解因式即可;(4)将前三项利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)原式=a(x2﹣4xy+4y2)=a(x﹣2y)2;(2)原式=(m2﹣6mn+9n2)=(m﹣3n)2;(3)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(4)原式=(2x﹣1)2﹣y2=(2x﹣1+y)(2x﹣1﹣y).20.已知ab=3,求b(2a3b2﹣3a2b+4a)的值.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式法则计算,将ab=3代入即可求出值.【解答】解:b(2a3b2﹣3a2b+4a)=2a3b3﹣3a2b2+4ab,当ab=3时,原式=2×(ab)3﹣3(ab)2+4ab=2﹣3×32+4×3=39.21.已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.【考点】完全平方公式.【分析】(1)原式提取5,利用完全平方公式变形,将x+y与xy的值代入计算即可求出值;(2)原式利用完全平方公式变形,将x+y与xy的值代入计算即可求出值.【解答】解:(1)∵x+y=2,xy=﹣1,∴5x2+5y2=5(x2+y2)=5[(x+y)2﹣2xy]=5×[22﹣2×(﹣1)]=30;(2)∵x+y=2,xy=﹣1,∴(x﹣y)2=(x+y)2﹣4xy=22﹣4×(﹣1)=4+4=8.22.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.【考点】作图—复杂作图.【分析】(1)连接BB′,过A、C分别做BB′的平行线,并且在平行线上截取AA′=CC′=BB′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高;(4)根据三角形面积公式即可求出△A′B′C′的面积.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD就是所求的中线;(3)如图所示:AE即为BC边上的高;(4)4×4÷2=16÷2=8.故△A′B′C′的面积为8.故答案为:8.23.如图,已知∠1+∠2=180°,∠DAE=∠BCF.(1)试判断直线AE与CF有怎样的位置关系?并说明理由;(2)若∠BCF=70°,求∠ADF的度数.【考点】平行线的判定与性质.【分析】(1)求出∠1=∠BDC,根据平行线的判定推出即可;(2)根据平行线的性质得出∠BCF=∠CBE,求出∠DAE=∠CBE,根据平行线的判定推出AD∥BC,根据平行线的性质得出即可.【解答】解:(1)AE∥CF,理由是:∵∠1+∠2=180°,∠BDC+∠2=180°,∴∠1=∠BDC,∴AE∥CF;(2)∵AE∥CF,∴∠BCF=∠CBE,又∵∠DAE=∠BCF,∴∠DAE=∠CBE,∴AD∥BC,∴∠ADF=∠BCF=70°.24.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S方法一:S=ab+b2方法二:S=ab+b2﹣a2+c2.(2)求a,b,c之间的等量关系(需要化简)(3)请直接运用(2)中的结论,求当c=5,a=3,S的值.【考点】整式的混合运算;整式的混合运算—化简求值.【分析】(1)方法一,根据矩形的面积公式就可以直接表示出S;方法二,根据矩形的面积等于四个三角形的面积之和求出结论即可;(2)根据方法一与方法二的S相等建立等式就可以表示出a,b,c之间的等量关系;(3)先由(2)的结论求出b的值,然后代入S的解析式就可以求出结论.【解答】解:(1)由题意,得方法一:S1=b(a+b)=ab+b2方法二:S2=ab+ab+(b﹣a)(b+a)+c2,=ab+b2﹣a2+c2.(2)∵S1=S2,∴ab+b2=ab+b2﹣a2+c2,∴2ab+2b2=2ab+b2﹣a2+c2,∴a2+b2=c2.(3)∵a2+b2=c2.且c=5,a=3,∴b=4,∴S=3×4+16=28.答:S的值为28.故答案为:ab+b2,ab+b2﹣a2+c2.25.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC +∠ECB ,再根据角平分线的定义求出∠PBC +∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC +∠ECB=180°﹣∠ABC +180°﹣∠ACB=360°﹣(∠ABC +∠ACB )=360°﹣=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC +∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC +∠PCB=(∠DBC +∠ECB )=,在△PBC 中,∠P=180°﹣=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA 、CD 于Q ,则∠P=90°﹣∠Q ,∴∠Q=180°﹣2∠P ,∴∠BAD +∠CDA=180°+∠Q ,=180°+180°﹣2∠P ,=360°﹣2∠P .2016年9月24日。
苏科版 2017-2018学年第二学期初一数学期中试卷及答案
2017-2018学年第二学期期中统一测试初一数学试卷注意事项:1.本试卷满分100分,考试时间100分钟;2.答卷前将密封线内的项目填写清楚,所有解答均须写在答题卷上,在试卷上答题无效.一、选择题(本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,把正确选项前的字母填在答题卷相应位置上.)1.观察下列图案,在A、B、C、D四幅图案中,能通过图案(1)平移得到的是2.水是生命之源,水是由氢原予和氧原子组成的,其中氢原子的直径为0.0000000001m,把这个数值用科学记数法表示为A.1×109 B.1×1010 C.1×10-9 D.1×10-103.已知∠1与∠2是同位角,则A.∠1 = ∠2 B.∠1 > ∠2 C.∠1 < ∠2 D.以上都有可能4.下列方程组中,属于二元一次方程组的是A .51156x y x y +=⎧⎪⎨+=⎪⎩,B .2102x y x y ⎧+=⎨+=-⎩,C .85x y x y +=⎧⎨=-⎩,D .13x x y =⎧⎨+=-⎩,5.如图,下列说法中,正确的是A .因为∠A +∠D =180°,所以AD ∥BCB .因为∠C +∠D =180°,所以AB ∥CDC .因为∠A +∠D =180°,所以AB ∥CDD .因为∠A +∠C =180°,所以AB ∥CD6.计算:()5a -·()()342a a ÷-的结果,正确的是 A .-7a B .-6a C . 7a D .6a 7.若一个多边形的每个内角都为135°,则它的边数为A .6B .8C .5D .108.下列各多项式中,能用公式法分解因式的是A .ab b a 222+-B .ab b a ++22C .91242++a aD .915252++n n 9.下列计算:①()1212232+-=+-x x x x x ;②()222b a b a-=-; ③()164422+-=-x x x;④()()12515152-=---a a a ; ⑤()2222b ab a b a ++=--.其中正确的有A . 1个B .2个C .3个D .4个10.算式(2+1) ×(22+1) ×(24+1) ×…×(232+1)+1计算结果的个位数字是A .4B .2C .8D .6二、填空题(本大题共8小题,每小题2分,共16分.把答案填在答题卷相应位置上.)11.计算:)(2ab a a -= ▲ .12.三角形的内角和是 ▲ °.13.因式分解:12-a= ▲ . 14.若把多项式26x m x +-分解因式后得(2x -)(3+x ),则m 的值为 ▲ .15.已知方程组32223x y m x y m +=-⎧⎨+=⎩的解适合2=+y x ,则m 的值为 ▲ .16.如图,在△ABC 中,∠ABC =∠ACB ,∠A =40°,P 是△ABC 内一点,且∠ACP =∠PBC ,则∠BPC = ▲ °.17.已知()121=-+x x ,则x 的值为 ▲ .18.如图,在△ABC 中,∠A=m °,∠ABC 和∠ACD 的平分线交于点A1,得∠A1;∠A1BC 和∠A1CD 的平分线交于点A2,得∠A2;…∠A2016 BC 和∠A20l6CD 的平分线交于点A2017,则∠A2017= ▲ °.三、解答题(本大题共9题,共64分.解答时应写出文字说明、证明过程或演算步骤.)19.计算:(每小题4分,共8分.)(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭; (2)()()()6233425a a a -∙-+.第16题 第18题20.先化简,再求值:(每小题4分,共8分.)(1)()()b a a b a 344)2(2---+ ,其中a =-2,b =21;(2)()()2232)2(b a b a b a ---+,其中a =-1,b =-3.21.把下列各式进行因式分解:(每小题3分,共9分.)(1)a a a 5623+-; (2)222()(1)x x x +-+; (3)2216164y xy x +-.22.解方程组:(每小题4分,共8分)(1)383516x yx y =-+=⎧⎨⎩; (2)13821325x y x y +=⎧⎨+=⎩.23.(本题满分5分)如图,∠1=65°∠3+∠4=180°,求∠2的度数.24.(本题满分5分)已知4=+y x ,3=xy ,求下列代数式的值: (1)22x y +; (2)22y x -.25.(本题满分5分)将一副三角板拼成如图所示的图形,过点C 作CF ∥AB 交DE 于点F(1) CF 平分∠DCE 吗?请说明理由(2) 求∠DFC 的度数.26.(本题满分8分)阅读下列材料: 第23题 第25题C D ME B 图1 NM Q E P O BA “2a ≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:()1214454222++=+++=++x x x x x , ∵()22+x≥0, ∴()122++x≥1, ∴542++x x ≥1. 试利用“配方法”解决下列问题:(1)填空:=+-542x x(x ▲ )2+ ▲ ; (2)已知052422=+++-y y x x ,求y x +的值;(3)比较代数式12-x 与32-x 的大小. 27.(本题满分8分)直线MN 与直线PQ 垂直相交于点O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小.(2)如图2,已知AB 不平行CD , AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分 别是∠ADC 和∠BCD 的角平分线,点A 、B图3F G N M Q E P O BA 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,请直接写出其值.(3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ的角平分线及延长线相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,试求∠ABO 的度数.。
2017-2018年苏科版七年级数学下册期中试卷含答案解析
2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共6小题,每题3分)1.下列计算正确的是()A.a2+a2=a4B.2a﹣a=2 C.(ab)2=a2b2D.(a2)3=a52.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6 B.2m﹣8 C.2m D.﹣2m3.已知三角形两边的长分别是4和10,则此三角形的周长可能是()A.19 B.20 C.25 D.304.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y)D.x2﹣x﹣6=(x+2)(x﹣3)5.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()个.A.1个B.2个C.3个D.4个6.如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有()个.A.1 B.2 C.3 D.4二、填空题(共10小题,每小题3分,满分30分)7.计算(﹣a4)2的结果为.8.若3m=5,3n=6,则3m﹣n的值是.9.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为.10.在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是.11.已知x+y=3,x2+y2﹣3xy=4,则x3y+xy3的值为.12.已知等腰三角形一边等于5,另一边等于9,它的周长是.13.一个n边形的所有内角与所有外角的和是900°,那么n=.14.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.15.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=.16.如图,它是由6个面积为1的小正方形组成的长方形,点A,B,C,D,E,F是小正方形的顶点,以这六个点中的任意三点为顶点,可以组成个面积是1的三角形.三、解答题(本大题共10小题,102分,写出必要的计算过程、推理步骤或文字说明)17.计算(1)(﹣)﹣1﹣1﹣2×(﹣22)﹣()﹣2(2)(﹣a2)3﹣(﹣a3)2+2a5•(﹣a)(3)(x﹣y)2﹣(x+2y)(x﹣2y)(4)(3﹣2x+y)(3+2x﹣y)18.因式分解(1)16﹣4x2(2)4ab2﹣4a2b﹣b3(3)(x2+4)2﹣16x2(4)49(m﹣n)2﹣9(m+n)2.19.先化简再求值(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=,b=.20.(1)已知2x=8y+2,9y=3x﹣9,求x+2y的值.(2)已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的位置如图所示,将△ABC先向右平移5个单位得△A1B1C1,再向上平移2个单位得△A2B2C2.(1)画出平移后的△A1B1C1及△A2B2C2;(2)平移过程中,线段AC扫过的面积是多少?22.(1)填空21﹣20=2(),22﹣21=2(),23﹣22=2()…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22014+22015.23.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.24.如图,DE⊥AB,垂足为D,EF∥AC,∠A=30°,(1)求∠DEF的度数;(2)连接BE,若BE同时平分∠ABC和∠DEF,问EF与BF垂直吗?为什么?25.(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试确定AB与CD的位置关系,并说明理由.(2)若图形变化为如图2、图3所示,且满足∠1+∠2=90°,那么AB与CD还满足上述关系吗?若满足,选择一个图形进行证明.26.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ 上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每题3分)1.下列计算正确的是()A.a2+a2=a4B.2a﹣a=2 C.(ab)2=a2b2D.(a2)3=a5【考点】幂的乘方与积的乘方;合并同类项.【分析】根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、2a﹣a=a,故本选项错误;C、(ab)2=a2b2,故本选项正确;D、(a2)3=a6,故本选项错误;故选:C.2.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6 B.2m﹣8 C.2m D.﹣2m【考点】整式的混合运算—化简求值.【分析】(a﹣2)(b﹣2)=ab﹣2(a+b)+4,然后代入求值即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4=﹣4﹣2m+4=﹣2m.故选D.3.已知三角形两边的长分别是4和10,则此三角形的周长可能是()A.19 B.20 C.25 D.30【考点】三角形三边关系.【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是4和10,∴10﹣4<x<10+4,即6<x<14.则三角形的周长:20<L<28,C选项25符合题意,故选C.4.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y)D.x2﹣x﹣6=(x+2)(x﹣3)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、没把一个多项式转化成几个整式积,故C错误;D、把一个多项式转化成几个整式积,故D正确;故选:D.5.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()个.A.1个B.2个C.3个D.4个【考点】平移的性质;同位角、内错角、同旁内角;平行线之间的距离.【分析】利用平移的性质、三线八角及平行线之间的距离的定义等知识逐一判断后即可确定正确的选项.【解答】解:①任何非0实数的零次方都等于1,故错误;②如果两条平行直线被第三条直线所截,那么同位角相等,故错误;③一个图形和它经过平移所得的图形中,两组对应点的连线平行或共线,故本小题错误;④平行线间的距离处处相等,正确,错误的有3个,故选C.6.如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有()个.A.1 B.2 C.3 D.4【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据角平分线的定义求得∠1=∠2.然后利用三角形内角和定理得到∠2=∠5,进而证得∠5=∠1.【解答】解:①根据角平分线的性质易求∠1=∠2;②∵△ABC的三条内角平分线相交于点I,∴∠BIC=180°﹣(∠3+∠2)=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠BAC;∵AI平分∠BAC,∴∠DAI=∠DAE.∵DE⊥AI于I,∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC.∴∠BIC=∠BDI.∴180°﹣(∠4+∠5)=180°﹣(∠2+∠3).又∵∠3=∠4,∴∠2=∠5,∴∠5=∠1,综上所述,图中与∠ICE一定相等的角(不包括它本身)有2个.故选:B.二、填空题(共10小题,每小题3分,满分30分)7.计算(﹣a4)2的结果为a8.【考点】幂的乘方与积的乘方.【分析】先根据积的乘方,把积中每一个因式分别乘方,再把所得的幂相乘;再根据幂的乘方,底数不变指数相乘,从而得出结果.【解答】解:原式=(﹣a4)2的=(﹣1)2(a4)2=a8,故答案为a8.8.若3m=5,3n=6,则3m﹣n的值是.【考点】同底数幂的除法.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:9.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为 4.32×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000432用科学记数法表示为4.32×10﹣6.故答案为:4.32×10﹣6.10.在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是8.【考点】多项式乘多项式.【分析】先运用多项式的乘法法则进行计算,再根据运算结果中x2的系数是﹣6,列出关于a的等式求解即可.【解答】解:(x+1)(2x2﹣ax+1)=2x3﹣ax2+x+2x2﹣ax+1=2x3+(﹣a+2)x2+(1﹣a)x+1;∵运算结果中x2的系数是﹣6,∴﹣a+2=﹣6,解得a=8,故答案为:8.11.已知x+y=3,x2+y2﹣3xy=4,则x3y+xy3的值为7.【考点】因式分解的应用.【分析】根据已知条件,运用完全平方公式求得xy的值,再进一步运用因式分解的方法整体代入求得代数式的值.【解答】解:∵x+y=3,∴(x+y)2=9,即x2+y2+2xy=9①,又x2+y2﹣3xy=4②,①﹣②,得5xy=5,xy=1.∴x2+y2=4+3xy=7.∴x3y+xy3=xy(x2+y2)=7.故答案为7.12.已知等腰三角形一边等于5,另一边等于9,它的周长是19或23.【考点】等腰三角形的性质;三角形三边关系.【分析】因为题中没有确定底和腰,故要分两种情况进行做题,即把边长为5的作为腰和把边长为9的作为腰,然后分别求出周长.【解答】解:分两种情况:①当边的长为5的为腰时,周长=5+5+9=19;②当边的长为9的为腰时,周长=9+9+5=23.经验证这两种情况都可组成三角形,都成立.故答案为:19或23.13.一个n边形的所有内角与所有外角的和是900°,那么n=5.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,即可求得多边形的内角和的度数,依据多边形的内角和公式即可求解.【解答】解:多边形的内角和是:900﹣360=540°,设多边形的边数是n,则(n﹣2)•180=540,解得:n=5.故答案为5.14.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=22.5°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE=2∠DCE=∠A+∠ABC,2∠DCE=2(∠D+∠DBC)=2∠D+∠ABC,推出∠A+∠ABC=2∠D+∠ABC,得出∠A=2∠D,即可求出答案.【解答】解:∵BD平分∠ABC,CD平分∠ACE,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠ACE=2∠DCE=∠A+∠ABC,2∠DCE=2(∠D+∠DBC)=2∠D+∠ABC,∴∠A+∠ABC=2∠D+∠ABC,∴∠A=2∠D,∵∠A=45°,∴∠D=22.5°,故答案为:22.5.15.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=80°.【考点】三角形内角和定理.【分析】根据三角形的内角和定理,及角平分线上的性质先计算∠ABC+∠ACB的度数,从而得出∠A的度数.【解答】解:如图,连接BC.∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABE=∠DBE=∠ABD,∠ACF=∠DCF=∠ACD,又∠BDC=140°,∠BGC=110°,∴∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,∴∠EBD+∠FCD=70°﹣40°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=70°+30°=100°,即∠ABC+∠ACB=100°,∴∠A=80°.故答案为:80°.16.如图,它是由6个面积为1的小正方形组成的长方形,点A,B,C,D,E,F是小正方形的顶点,以这六个点中的任意三点为顶点,可以组成10个面积是1的三角形.【考点】三角形的面积.【分析】根据三角形的面积公式,结合图形,则面积是1的三角形,即构造底1高2的三角形或底2高1的三角形或两条直角边是的等腰直角三角形.【解答】解:根据题意,得面积是1的三角形有:△ABD、△ABE、△ABF、△ACD、△FCD、△AEF、△BEF、△ADE、△BDE、△BCE 共10个.三、解答题(本大题共10小题,102分,写出必要的计算过程、推理步骤或文字说明)17.计算(1)(﹣)﹣1﹣1﹣2×(﹣22)﹣()﹣2(2)(﹣a2)3﹣(﹣a3)2+2a5•(﹣a)(3)(x﹣y)2﹣(x+2y)(x﹣2y)(4)(3﹣2x+y)(3+2x﹣y)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据负整数指数幂的意义计算;(2)先进行乘方运算,然后合并即可;(3)先利用完全平方公式和平方差公式展开,然后合并即可;(4)先变形得到原式=[3+(2x﹣y)][3﹣(2x﹣y)],然后利用平方差公式和完全平方公式计算.【解答】解:(1)原式=﹣4﹣1×(﹣4)﹣4=﹣4+4﹣4=﹣4;(2)原式=﹣a6﹣a6﹣2a6=﹣4a6;(3)原式=x2﹣xy+y2﹣(x2﹣4y2)=x2﹣xy+y2﹣x2+y2=2y2﹣xy;(4)原式=[3+(2x﹣y)][3﹣(2x﹣y)]=32﹣(2x﹣y)2=9﹣(4x2﹣4xy+y2)=9﹣4x2+4xy﹣y2.18.因式分解(1)16﹣4x2(2)4ab2﹣4a2b﹣b3(3)(x2+4)2﹣16x2(4)49(m﹣n)2﹣9(m+n)2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式4,进而利用平方差公式分解因式得出答案;(2)首先提取公因式﹣b,进而利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;(4)直接利用平方差公式分解因式得出答案.【解答】解:(1)16﹣4x2=4(4﹣x2)=4(2+x)(2﹣x);(2)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)49(m﹣n)2﹣9(m+n)2.=[7(m﹣n)+3(m+n)][7(m﹣n)﹣3(m+n)]=(10m﹣4n)(4m﹣10n)=4(5m﹣2n)(2m﹣5n).19.先化简再求值(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=,b=.【考点】整式的混合运算—化简求值.【分析】原式前两项利用完全平方公式展开,最后一项利用单项式乘多项式法则计算,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣9a2+6ab﹣b2+5a2﹣5ab=5ab,当a=,b=时,原式=5××=.20.(1)已知2x=8y+2,9y=3x﹣9,求x+2y的值.(2)已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.【考点】完全平方公式.【分析】(1)根据幂的乘方运算法则将原式变形,进而求出x,y的值,进而代入求出答案;(2)直接利用完全平方公式展开原式,进而计算得出答案.【解答】解:(1)∵2x=8y+2,9y=3x﹣9,∴2x=23y+6,32y=3x﹣9,∴,解得:∴x+2y=×15+2×3=11;(2)∵(a+b)2=6,(a﹣b)2=2,∴a2+2ab+b2=6,a2﹣2ab+b2=2,解得:a2+b2=4,ab=1,∴a2+b2>ab.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的位置如图所示,将△ABC先向右平移5个单位得△A1B1C1,再向上平移2个单位得△A2B2C2.(1)画出平移后的△A1B1C1及△A2B2C2;(2)平移过程中,线段AC扫过的面积是多少?【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1及△A2B2C2即可;(2)根据线段AC扫过的面积=S平行四边形ACC1A1+S平行四边形A1C1C2A2即可得出结论.【解答】解:(1)如图所示;(2)线段AC扫过的面积=S平行四边形ACC1A1+S平行四边形A1C1C2A2=5×4+2×4=20+8=28.答:平移过程中,线段AC扫过的面积是28.22.(1)填空21﹣20=2(),22﹣21=2(),23﹣22=2()…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22014+22015.【考点】规律型:数字的变化类.【分析】(1)根据幂的运算方法,可得21﹣20=2﹣1=1=20,22﹣21=4﹣2=2=21,23﹣22=8﹣4=4=22,据此解答即可.(2)根据(1)中式子的规律,可得2n﹣2n﹣1=2n﹣1;然后根据幂的运算方法,证明第n个等式成立即可.(3)根据2n﹣2n﹣1=2n﹣1,求出算式20﹣21﹣22﹣…﹣22014+22015的值是多少即可.【解答】解:(1)21﹣20=2﹣1=1=20,22﹣21=4﹣2=2=21,23﹣22=8﹣4=4=22.(2)∵21﹣20=20,22﹣21=21,23﹣22=22,∴2n﹣2n﹣1=2n﹣1;证明:∵2n﹣2n﹣1=2×2n﹣1﹣2n﹣1=2n﹣1×(2﹣1)=2n﹣1,∴2n﹣2n﹣1=2n﹣1成立.(3)20﹣21﹣22﹣…﹣22014+22015=22015﹣22014﹣22013﹣…﹣21+20=22014﹣22013﹣…﹣21+20=22013﹣22012﹣…﹣21+20=…=22﹣21+20=21+20=2+1=3故答案为:0、1、2.23.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.【考点】完全平方公式;非负数的性质:偶次方;三角形三边关系.【分析】(1)先利用完全平方公式整理成平方和的形式,然后根据非负数的性质列式求出x、y的值,然后代入代数式计算即可;(2)先利用完全平方公式整理成平方和的形式,再利用非负数的性质求出a、b的值,然后利用三角形的三边关系即可求解.【解答】解:(1)x2+2y2﹣2xy+4y+4=x2﹣2xy+y2+y2+4y+4=(x﹣y)2+(y+2)2=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴x y=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<9.24.如图,DE⊥AB,垂足为D,EF∥AC,∠A=30°,(1)求∠DEF的度数;(2)连接BE,若BE同时平分∠ABC和∠DEF,问EF与BF垂直吗?为什么?【考点】平行线的性质;垂线.【分析】(1)如图,利用直角三角形的性质求得∠AOD=60°,然后利用对顶角相等、平行线的性质求得∠DEF=120°;(2)EF与BF垂直.理由如下:根据角平分线的性质得到∠BEF=∠BED=DEF=60°.则根据直角三角形的性质易求∠DBE=30°.然后由三角形内角和定理求得∠F=90°,即EF与BF垂直.【解答】解:(1)如图,∵DE⊥AB,∠A=30°,∴∠AOD=60°.∵∠COE=∠AOD=60°,EF∥AC,∴∠DEF+∠COE=180°,∴∠DEF=120°;(2)EF与BF垂直.理由如下:由(1)知,∠DEF=120°.∵BE平分∠DEF,∴∠BEF=∠BED=DEF=60°.又∵DE⊥AB,∴∠DBE=30°.∵AE平分∠ABC,∴∠EBF=30°,∴∠F=180°﹣∠EBF﹣BEF=90°,即EF与BF垂直.25.(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试确定AB与CD的位置关系,并说明理由.(2)若图形变化为如图2、图3所示,且满足∠1+∠2=90°,那么AB与CD还满足上述关系吗?若满足,选择一个图形进行证明.【考点】平行线的判定与性质.【分析】(1)过点E作EN∥AB,根据平行线的性质得到∠BEN=∠B,等量代换得到∠BEN=∠1,推出∠D=∠DEN,根据平行线的判定即可得到结论;(2)如答图2,过点E作EN∥AB,根据平行线的性质得到∠B=∠1,量代换得到∠BEN=∠1,推出EN∥CD,于是得到结论.【解答】解:(1)过点E作EN∥AB,则∠BEN=∠B,∵∠1=∠B,∴∠BEN=∠1,∵∠BEN+∠DEN=∠BED=90°,∴∠1+∠2=90°,∴∠2=∠DEN,∵∠2=∠D,∴∠D=∠DEN,∴AB∥CD;(2)如答图2,过点E作EN∥AB,∴∠BEN=∠B,∵∠B=∠1,∴∠BEN=∠1,∵∠BED=90°=∠BEN+∠DEN,∠1+∠2=90°,∴∠DEN=∠2,∵∠2=∠D,∴EN∥CD,∴AB∥CD.26.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ 上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.【考点】坐标与图形性质;垂线;三角形的面积.=CD•OC,【分析】(1)因为△BCD的高为OC,所以S△BCD(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.=CD•OC=×3×2=3.【解答】解:(1)S△BCD(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°,∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°,∵BF是∠CBA的平分线,∴∠CBF=∠OBE,∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD,∵∠ADC=∠DAC∴∠CAP=2∠DAC,∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC,∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.2016年11月29日。
2017-2018学年苏科版七年级下册期中数学试卷含答案
(第7题)2017-2018学年度第二学期七年级数学期中试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在相应的位置上)1. 下列计算正确的是 ( ▲ )A .a +2a 2=3a 2B .a 8÷a 2=a 4C .a 3·a 2=a 6D .(a 3)2=a 62. 下列各式从左到右的变形,是因式分解的是: ( ▲ )A.x x x x x 6)3)(3(692+-+=+-B.()()103252-+=-+x x x x C.()224168-=+-x x x D.623ab a b =⋅ 3. 已知a=344,b=433,c=522,则有 ( ▲ )A .a <b <cB .c <b <aC .c <a <bD .a <c <b4. 已知三角形三边长分别为3,x ,14,若x 为正整数,则这样的三角形个数为()A .2B .3C .5D .7 5. 若2294b kab a ++是完全平方式,则常数k 的值为 ( ▲ ) A. 6 B. 12 C. 6± D. 12±6. 如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的式子是………………………………………………( ▲ ) A .(a +b )2-(a -b )2=4ab B .(a +b )2-(a 2+b 2)=2ab C .(a +b )(a -b )=a 2-b 2 D .(a -b )2+2ab =a 2+b 27. 如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有 ( ▲ )A .4个B .3个C . 2个D .1个8. 已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a 2+b 2+c 2﹣ab ﹣bc ﹣ac 的值 为(▲ ) A .1 B .2 C .3 D .4(第6题图)二、填空题 (本大题共12小题,每小题2分,共24分.)9. 十边形的内角和为 ▲ ,外角和为 ▲10. (-3xy)2= ▲ (a 2b)2÷a 4= ▲ . 11. 2(4)(7)x x x mx n -+=++,则m = ▲ ,n = ▲12. 把多项式y x x 234016+-提出一个公因式28x -后,另一个因式是 ▲ . 13. 生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为 ▲ .14. 在△ABC 中,三个内角∠A 、∠B 、∠C 满足2∠B=∠C+∠A ,则∠B= ▲ . 15.如图,在宽为20m ,长为30m 的矩形地块上修建两条同样宽为1m 的道路,余下部分作16.如图,将含有30°角的三角尺的直角顶点放在相互平行的两条直线的其中一条上,若∠ACF=40°,则∠DEA=___ ▲ __°.17. 如果a -2=-3b, 则3a×27b的值为 ▲ 。
2018年苏科版七年级数学下册期中试卷含答案解析
2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.计算x5•x,结果正确的是()A.x5B.2x5C.x6D.2x62.计算(﹣2x2y)3,结果正确的是()A.﹣8x6y B.﹣6x2y3C.﹣6x6y3D.﹣8x6y33.下列算式的计算结果等于x2﹣5x﹣6的是()A.(x﹣6)(x+1)B.(x+6)(x﹣1)C.(x﹣2)(x+3)D.(x+2)(x﹣3)4.下列从左到右的变形属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣9=(x+3)(x﹣3)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.(x+2)(x﹣2)=x2﹣45.在数轴上表示不等式﹣x+2≥1的解集,正确的是()A.B.C.D.6.甲、乙两个人关于年龄有如下对话,甲说:“我是你现在这个年龄时,你是10岁”.乙说:“我是你现在这个年龄时,你是25岁”.设现在甲x岁,乙y岁,下列方程组正确的是()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分)7.人体中红细胞的直径大约是0.0000077m,用科学记数法来表示红细胞的直径是m.8.计算:(x2)3•x=.9.计算:(﹣s)7÷=﹣s5.10.已知方程2x﹣y=3,用含x的代数式表示y是.11.已知a>b,则﹣3﹣2a﹣3﹣2b.(填>、=或<)12.若(x﹣1)与(2﹣kx)的乘积中,不含x的一次项,则常数k的值是.13.若m=3n﹣2,则m2﹣6mn+9n2的值是.14.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.15.若三项式4a2﹣2a+1加上一个单项式后是一个多项式的完全平方,请写出一个这样的单项式.16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个小袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.用适当的不等式表示下列数量关系:(1)x与﹣6的和大于2;(2)x的2倍与5的差是负数;(3)x的与﹣5的和是非负数;(4)y的3倍与9的差不大于﹣1.18.计算:(1)﹣2﹣2+20160+(﹣3)2;(2)(2x﹣3y)2﹣(y+3x)(3x﹣y).19.解不等式x﹣1≤x﹣,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.20.分解下列因式:(1)(x+y)2﹣4x2;(2)3m2n﹣12mn+12n.21.解方程组:(1)(2).22.先化简,再求值:(1)(﹣2x2y)2•(﹣xy3)﹣(﹣x3)3÷x4•y5,其中xy=﹣1.(2)(2a+3)(a﹣2)﹣a(2a﹣3),其中a=﹣2.23.已知A=x﹣y+1,B=x+y+1,C=(x+y)(x﹣y)+2x,两同学对x、y分别取了不同的值,求出的A、B、C的值不同,但A×B﹣C的值却总是一样的.因此两同学得出结论:无论x、y取何值,A×B﹣C的值都不发生变化.你认为这个结论正确吗?请你说明理由.24.某校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;返回时,汽车以40km/h的速度下坡,又以50km/h的速度走平路,共用了6h.学校距自然保护区有多远?(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.25.(1)观察下列各式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,…,探索以上式子的规律,试写出第n个等式;(2)运用所学的数学知识说明你所写式子的正确性;(3)请用文字语言表达这个规律,并用这个规律计算:20172﹣20152.26.某汽车制造厂开发了一种新式电动汽车,计划一年生成安装240辆.由于抽调不出足够的熟练工来完成这种新式电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和每名新工人每月分别可安装多少辆电动汽车?(2)设工厂招聘n(0<n<10)名新工人,为使招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪些招聘方案?(3)在(2)的条件下,工厂给每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,要求新工人的数量多于熟练工,为使工厂每月支出的工资总额W(元)尽可能少,工厂应招聘多少名新工人?七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分)1.计算x5•x,结果正确的是()A.x5B.2x5C.x6D.2x6【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,即可解答.【解答】解:x5•x=x6,故选:C.2.计算(﹣2x2y)3,结果正确的是()A.﹣8x6y B.﹣6x2y3C.﹣6x6y3D.﹣8x6y3【考点】幂的乘方与积的乘方.【分析】根据积的乘方等于乘方的积,可得答案.【解答】解:原式=﹣8x6y3,故选:A.3.下列算式的计算结果等于x2﹣5x﹣6的是()A.(x﹣6)(x+1)B.(x+6)(x﹣1)C.(x﹣2)(x+3)D.(x+2)(x﹣3)【考点】多项式乘多项式.【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.【解答】解:A、(x﹣6)(x+1)=x2﹣5x﹣6;B(x+6)(x﹣1)=x2+5x﹣6;C、(x﹣2)(x+3)=x2+x﹣6;D、(x+2)(x﹣3)=x2﹣x﹣6.故选A.4.下列从左到右的变形属于因式分解的是( )A .x 2+5x ﹣1=x (x +5)﹣1B .x 2﹣9=(x +3)(x ﹣3)C .x 2﹣4+3x=(x +2)(x ﹣2)+3xD .(x +2)(x ﹣2)=x 2﹣4【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A 、没把一个多项式转化成几个整式积的形式,故A 错误; B 、把一个多项式转化成几个整式积的形式,故B 正确;C 、没把一个多项式转化成几个整式积的形式,故C 错误;D 、是整式的乘法,故D 错误;故选:B .5.在数轴上表示不等式﹣x +2≥1的解集,正确的是( )A .B .C .D . 【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】移项后系数化为1求得不等式解集,根据大于向右、小于向左,包括该数用实心点、不包括该数用空心点表示其解集即可.【解答】解:移项,得:﹣x ≥﹣1,系数化为1,得:x ≤1,故选:D .6.甲、乙两个人关于年龄有如下对话,甲说:“我是你现在这个年龄时,你是10岁”.乙说:“我是你现在这个年龄时,你是25岁”.设现在甲x 岁,乙y 岁,下列方程组正确的是( )A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【分析】设现在甲x 岁,乙y 岁,那么现在甲、乙两人的年龄差为x ﹣y ;由甲说:“我是你现在这个年龄时,你是10岁”得出此时甲、乙两人的年龄差为y﹣10;由乙说:“我是你现在这个年龄时,你是25岁”得出此时甲、乙两人的年龄差为25﹣x;根据两人的年龄差不变列出方程组即可.【解答】解:设现在甲x岁,乙y岁,由题意得,.故选A.二、填空题(本大题共有10小题,每小题3分,共30分)7.人体中红细胞的直径大约是0.0000077m,用科学记数法来表示红细胞的直径是7.7×10﹣6m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:红细胞的直径大约是0.0000077m,用科学记数法来表示红细胞的直径是7.7×10﹣6m,故答案为:×10﹣6.8.计算:(x2)3•x=x7.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】首先根据幂的乘方的运算方法:(a m)n=a mn,求出(x2)3的值是多少;然后用(x2)3的值乘x,求出(x2)3•x的值是多少即可.【解答】解:(x2)3•x=x6•x=x7.故答案为:x7.9.计算:(﹣s)7÷s2=﹣s5.【考点】同底数幂的除法.【分析】依据除数=被除数÷商列出算式,然后再依据同底数幂的除法法则计算即可.【解答】解:(﹣s)7÷(﹣s)5=(﹣s)2=s2.故答案为:s2.10.已知方程2x﹣y=3,用含x的代数式表示y是y=2x﹣3.【考点】解二元一次方程.【分析】把x看作一个常数,解关于y的一元一次方程即可.【解答】解:移项得,﹣y=3﹣2x,系数化为1得,y=2x﹣3.故答案为:y=2x﹣3.11.已知a>b,则﹣3﹣2a<﹣3﹣2b.(填>、=或<)【考点】不等式的性质.【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:a>b,则﹣3﹣2a<﹣3﹣2b,故答案为:<.12.若(x﹣1)与(2﹣kx)的乘积中,不含x的一次项,则常数k的值是﹣2.【考点】多项式乘多项式.【分析】线依据多项式乘多项式法则展开,然后合并同类项,最后依据x的一次项系数为0求解即可.【解答】解:原式=﹣kx2+kx+2x﹣2═﹣kx2+(k+2)x﹣2.∵(x﹣1)与(2﹣kx)的乘积中,不含x的一次项,∴k+2=0.解得:k=﹣2.故答案为:﹣2.13.若m=3n﹣2,则m2﹣6mn+9n2的值是4.【考点】因式分解﹣运用公式法.【分析】原式利用完全平方公式分解后,将已知等式变形后代入计算即可求出值.【解答】解:∵m=3n﹣2,即m﹣3n=﹣2,∴原式=(m﹣3n)2=(﹣2)2=4,故答案为:414.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.15.若三项式4a2﹣2a+1加上一个单项式后是一个多项式的完全平方,请写出一个这样的单项式答案不唯一,如﹣3a2或﹣2a或6a或﹣.【考点】完全平方式.【分析】利用完全平方公式的结构特征判断即可.【解答】解:三项式4a2﹣2a+1加上一个单项式后是一个多项式的完全平方,这样的单项式可以为:答案不唯一,如﹣3a2或﹣2a或6a或﹣;故答案为:答案不唯一,如﹣3a2或﹣2a或6a或﹣16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个小袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.【考点】三元一次方程组的应用.【分析】可设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,根据等量关系:①一共210名工人;②小袖的个数:衣身的个数:衣领的个数=2:1:1;依此列出方程组求解即可.【解答】解:设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖,衣身、衣领正好配套,依题意有,解得.故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.故答案为:120.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.用适当的不等式表示下列数量关系:(1)x与﹣6的和大于2;(2)x的2倍与5的差是负数;(3)x的与﹣5的和是非负数;(4)y的3倍与9的差不大于﹣1.【考点】由实际问题抽象出一元一次不等式.【分析】(1)根据x与﹣6的和得出x﹣6,再根据x与﹣6的和大于2得出x﹣6>2;(2)先表示出x的2倍为2x,再表示出与5的差为2x﹣5,再根据关键词“是负数”,列出不等式即可;(3)先表示出x的是x,与﹣5的和为x﹣5,是非负数得出x﹣5≥0;(4)先表示出y的3倍是3y,再表示出与9的差3y﹣9,然后根据不大于﹣1即为小于等于,列出不等式即可.【解答】解:(1)根据题意得:x﹣6>2;(2)由题意得:2x﹣5<0;(3)根据题意得:x﹣5≥0;(4)根据题意得:3y﹣9≤﹣1.18.计算:(1)﹣2﹣2+20160+(﹣3)2;(2)(2x﹣3y)2﹣(y+3x)(3x﹣y).【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零指数幂和负整数指数幂的意义计算;(2)先利用完全平方公式和平方差公式计算,然后合并即可.【解答】解:(1)原式=﹣+1+9=;2)原式=(4x2﹣12xy+9y2)﹣(9x2﹣y2)=4x2﹣12xy+9y2﹣9x2+y2=﹣5x2﹣12xy+10y2.19.解不等式x﹣1≤x﹣,把它的解集在数轴上表示出来,并求出这个不等式的负整数解.【考点】一元一次不等式的整数解;在数轴上表示不等式的解集;解一元一次不等式.【分析】先去分母,再去括号,移项,合并同类项,把化系数为1即可求出x的取值范围,再在数轴上表示出不等式的解集,找出符合条件的x的负整数解即可.【解答】解:去分母,得3x﹣6≤4x﹣3,移项、合并同类项,得﹣x≤3,系数化为1,得x≥﹣3.解集在数轴上表示如图,其负整数解为﹣1,﹣2,﹣3.20.分解下列因式:(1)(x+y)2﹣4x2;(2)3m2n﹣12mn+12n.【考点】提公因式法与公式法的综合运用.【分析】(1)利用平方差公式分解因式,然后整理即可;(2)先提取公因式3n,再对余下的多项式利用完全平方公式继续分解.【解答】解:(1)(x+y)2﹣4x2,=(x+y)2﹣(2x)2,=[(x+y)+2x][(x+y)﹣2x],=﹣(3x+y)(x﹣y);(2)3m2n﹣12mn+12n,=3n(m2﹣4m+4),=3n(m﹣2)2.21.解方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)代入法求解:把①代入②求得x的值,再把x的值代入①求得y即可;(2)代入法求解:由方程②可得y=x+3,代入方程①求得x,再将x的值代回y=x+3求得y即可.【解答】解:(1)解方程组,①代入②有,3x+2(2x﹣3)=8,解得:x=2,把x=2代入①,得到y=1,∴;(2)解方程组,由②有:y=x+3,代入①有:3x﹣5(x+3)=﹣9,解得:x=﹣3,将x=﹣3代入yx+3得:y=0,∴.22.先化简,再求值:(1)(﹣2x2y)2•(﹣xy3)﹣(﹣x3)3÷x4•y5,其中xy=﹣1.(2)(2a+3)(a﹣2)﹣a(2a﹣3),其中a=﹣2.【考点】整式的混合运算—化简求值.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算得到最简结果,把xy的值代入计算即可求出值;(2)原式利用多项式乘多项式,单项式乘多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=4x4y2•(﹣xy3)﹣(﹣x9)÷x4•y5=﹣x5y5+x5y5=﹣x5y5,当xy=﹣1时,原式=;(2)原式=2a2﹣4a+3a﹣6﹣2a2+3a=2a﹣6,当a=﹣2时,原式=﹣10.23.已知A=x﹣y+1,B=x+y+1,C=(x+y)(x﹣y)+2x,两同学对x、y分别取了不同的值,求出的A、B、C的值不同,但A×B﹣C的值却总是一样的.因此两同学得出结论:无论x、y取何值,A×B﹣C的值都不发生变化.你认为这个结论正确吗?请你说明理由.【考点】整式的混合运算.【分析】先计算A×B﹣C,根据整式的运算法则,A×B﹣C的结果中不含x、y,故其值与x、y无关.【解答】解:正确.A×B﹣C=(x﹣y+1)(x+y+1)﹣[(x+y)(x﹣y)+2x]=(x+1﹣y)(x+1+y)﹣(x2﹣y2+2x)=(x+1)2﹣y2﹣x2+y2﹣2x=x2+2x+1﹣y2﹣x2+y2﹣2x,=1;所以x、y的取值与A×B﹣C的值无关.24.某校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;返回时,汽车以40km/h的速度下坡,又以50km/h的速度走平路,共用了6h.学校距自然保护区有多远?(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.【考点】二元一次方程组的应用.【分析】(1)根据题意可以写出题目中的两个等量关系;(2)根据(1)中等量关系可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:(1)由题意可得,第一个等量关系:以60km/h的速度走平路用的时间+以30km/h的速度爬坡用的时间=6.5h,第二个等量关系:以40km/h的速度下坡用的时间+以50km/h的速度走平路用的时间=6h;(2)设平路长为xkm,山坡长为ykm,,解得,,∴x+y=270,即学校距自然保护区270km.25.(1)观察下列各式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,…,探索以上式子的规律,试写出第n个等式;(2)运用所学的数学知识说明你所写式子的正确性;(3)请用文字语言表达这个规律,并用这个规律计算:20172﹣20152.【考点】因式分解的应用.【分析】(1)观察提供的等式,然后找到规律写出来即可;(2)将得到的规律用平方差公式展开计算即可进行验证;(3)利用平方差公式展开计算即可.【解答】解:(1)第n个等式为(2n+1)2﹣(2n﹣1)2=8n(n为正整数);(2)验证:(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)] =2×4n=8n;(3)两个连续奇数的平方差是8的整数倍;由20172﹣20152可知2n+1=2017,解得n=1008,∴20172﹣20152=8×1008=8064.26.某汽车制造厂开发了一种新式电动汽车,计划一年生成安装240辆.由于抽调不出足够的熟练工来完成这种新式电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和每名新工人每月分别可安装多少辆电动汽车?(2)设工厂招聘n(0<n<10)名新工人,为使招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪些招聘方案?(3)在(2)的条件下,工厂给每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,要求新工人的数量多于熟练工,为使工厂每月支出的工资总额W(元)尽可能少,工厂应招聘多少名新工人?【考点】一次函数的应用;二元一次方程的应用;二元一次方程组的应用.【分析】(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据“1名熟练工和2名新工人每月可安装8辆电动汽车”和“2名熟练工和3名新工人每月可安装14辆电动汽车”列方程组求解.(2)设工厂有a名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据a,n都是正整数和0<n<10,进行分析n的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少,两个条件进行分析.【解答】解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据题意,得,解得:.答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)设工厂有a名熟练工.根据题意,得12(4a+2n)=240,2a+n=10,n=10﹣2a,又a,n都是正整数,0<n<10,所以n=8,6,4,2.即工厂有4种新工人的招聘方案.①n=8,a=1,即新工人8人,熟练工1人;②n=6,a=2,即新工人6人,熟练工2人;③n=4,a=3,即新工人4人,熟练工3人;④n=2,a=4,即新工人2人,熟练工4人.(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.根据题意,得W=2000a+1200n=2000a+1200(10﹣2a)=12000﹣400a.要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.2017年3月4日。
2017-2018学年七年级下期中数学试题含答案苏科版
2017-2018学年第二学期期中考试试卷初一数学(2+4)(时间:90分钟,满分:110分)一、选择题:(每题3分,共24分)1.下列运算正确的是………………………………………………………………………………( ) A .a 3+a 3=2a 6B .a 6÷a 2=a 3C .(-a )3(-a 5) =-a 8D .(-2a 3) 2=4a 62.下列各式从左到右的变形,是因式分解的是…………………………………………………( ) A .a 2-5=(a +2)(a -2)-1 B .(x +2)(x -2)=x 2-4 C .x 2+8x +16=(x +4)2D .a 2+4=(a +2)2-4a3.下列图形中,是轴对称图形的为 …………………………………………………………… ( )4.等腰三角形有一个角为80°,顶角等于…………………………………………………… ( ) A.80°B.20°C.80°或20°D.80°或100°5. 如图,已知AB 、CD 交于点O ,AO =CO ,BO =DO ,则在以下结论中:①AD =BC ;②∠A =∠C ;③∠ADB =∠CBD ;④∠ABD =∠CDB ,正确结论的个数为………… ( ) A. 4个B. 3个C. 2个D.1个6.甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是……… ( ) A .a >bB .a=bC .a <bD .与a 、b 大小无关7. 如图,在△ABC 中,BC = 8 cm ,AB 的垂直平分线交AB 于点D,交边AC 于点E ,△BCE 的周长等于18 cm ,则AC 的长等于 …………………………………………………( ) A .6 cm B .8 cm C .10 cm D .12 cm8. 如图,△ABC 中,∠BAC=60°,∠ABC 、∠ACB 的平分线交于E ,D 是AE 延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DC ;③DB=DE;④∠BDE=∠BCA .其中正确结论的个数为…………………………………………………………………………( ) A .1B .2C .3D .4ABCD(第5题图)D OCBA二、填空:(每空2分,共16分)9. 科学家发现一种病毒的直径约为0.0000043米,用科学记数法表示为 米. 10.已知一个多边形的内角和等于外角和的4倍,则此多边形的边数为 . 11. 如图将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,∠3=______°. 12. 将边长相等的一个正方形与一个正五边形,按如图重叠放置,则∠1=________°. 13. 等腰三角形的两边长分别为3cm 和6cm,则它的周长为______________.14.一个三角形的三边长分别为2,5,x ,另一个三角形的三边长分别为y ,2,6,若这两个三角形全等,则x +y =_______.15. 如图,∠ABC ,∠ACB 的平分线相交于点O ,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N .△AMN的周长为18,则AB +AC = .16.在三角形纸片ABC 中,∠C=90°,∠B=30°,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为2,则△DEF 的周长为 .三、认真答一答:(共70分)17.计算:(本题满分9分,每小题3分)ABEDC(第8题图)EABCDADBCE (第7题图)(第11题图)(第12题图)(第16题图)(第15题图)(1) |1|2011125.0221032-++⨯-⎪⎭⎫ ⎝⎛- (2) ()()2271023422a a a a a÷-+-(3) 先化简,再求值:()()()1122+--+a a a ,其中a = 3218. 因式分解:(本题满分9分,每小题3分)(1) y xy y x 8822+- (2) ()()2222b a b a --- (3) 16)5(8)5(222+-+-x x19.计算:(本题满分6分,每小题3分) (1) 解下列方程组 ⎩⎨⎧=+=-18223y x y x(2) 解不等式组:3112(21)51x x x x -<+⎧⎨-≤+⎩20.(本题满分6分)尺规作图:如图,已知在两条公路OA ,OB 的附近有C ,D 两个超市,现准备在两条公路的交叉路口附近安装一个监控摄像头,要求摄像头P 的位置到两个超市的距离相等,且到两条公路的距离也相等,请你用直尺和圆规找出摄像头P 的位置.21.(本题满分6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF (顶点为网格线的交点),以及过格点的直线l .①将△ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形△A’B’C’; ②画出△DEF 关于直线l 对称的三角形△D’E’F’; ③填空:∠C+∠E= .22.(本题满分8分)已知关于x ,y 的方程组 的解满足x <0,y >0.(1)x =________, y = (用含a 的代数式表示); (2)求a 的取值范围;(3)若2x •8y =2m ,用含有a 的代数式表示m ,并求m 的取值范围.OABCD⎩⎨⎧-=---=-ay x a y x 32123.(本题满分8分)已知:如图, AD ∥BC ,EF 垂直平分BD ,与AD ,BC ,BD 分别交于点E ,F ,O .求证:(1)△BOF ≌△DOE ; (2)DE =DF .24.(本题满分8分)某地区为绿化环境,计划购买甲、乙两种树苗共计n 棵.有关甲、乙两种树苗的信息如图所示:(1)当n =400时,如果购买甲、乙两种树苗共用27000元,那么甲、乙两种树苗各买了多少棵?(2)实际购买这两种树苗的总费用恰好为27000元,其中甲种树苗买了m 棵.①写出m 与n 满足的关系式;②要使这批树苗的成活率不低于92%,求n 的最大值.25.(本题满分10分)如图,已知△ABC 中,AB =AC =12厘米,(即∠B =∠C ),BC =9厘米,点M 为AB 的中点,(1)如果点P 在线段BC 上以2厘米/秒的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C 向点A 运动.①若点Q 的运动速度与点P 的运动速度相等,经过1.5秒后,△BPM 与△CQP 是否全等?请说明理由.1.甲种树苗每棵60元;2.乙种树苗每棵90元;3.甲种树苗的成活率为90%; 4.乙种树苗的成活率为95%.信息FEO DACB②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPM 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?A BC··PQ ·M初一数学(2+4)第二学期期中测试卷答案2018.4 一、选择题:(每题3分,共24分)DCBC AACD二、填空:(每空2分,共16分)9.4.3×10-610.10 11.70 12. 1813. 15cm 14.11 15.18 16. 6三、认真答一答:(共70分)17.计算:(本题满分9分,每小题3分)(1) 5 (2)(3) 原式=4a+5 值:1118.因式分解:(本题满分9分,每小题3分)(1) (2) (3) 19.计算:(本题满分6分,每小题3分)(1) (2) -3≤x<120.(本题满分6分)略21.(本题满分6分)图见右.③填空:∠C+∠E=45°.22.(本题满分8分)(1)x=__-2a+1______, y=-a+2 (用含a的代数式表示);(2)(3)23.(本题满分8分)(1)用AAS或ASA证明全等(3分)(2)∵EF垂直平分BD ∴DF=BF……………………5分∵EF⊥BD∴∠2=∠3……………………6分∵∠1=∠2∴∠1=∠3……………………7分∴DE=DF……………………8分24.(本题满分8分)(1) 甲种树苗300棵,乙种树苗100棵.……………………3分(2)①60m+90(n-m)=27000,即m=3n-900……………………4分②90%m+95%(n-m)≥92%n……………………5分∴3n-5m≥0∴3n-5(3n-900)≥0……………………6分∴n≤375……………………7分∴n的最大值为375.…………………… 8分25.(本题满分10分)(1)∵t=1.5s∴BP=CQ=2×1.5=3∴CP=BC—BP=6∵BM = 21AB =6 ∴BM =CP 又∵BP =CQ ,∠B =∠C∴△MBP ≌△PCQ …………………… 3分 (2)能……………………………… 4分 ①∵v P ≠v Q ,∴BP ≠CQ∵∠B =∠C ,∴若△BMP ≌△CQP则CQ =BM =6,CP =BP = 21BC =4.5∴此时得时间t = 2BP = 49s …………………… 6分∴v Q = t CQ == 38cm/s…………………… 7分②设经过x 秒后两点第一次相遇. 由题意得: 38x = 2x + 2×12解得:x =36(s).…………………………………………8分 此时点P 共运动了 2×36=72 cm∵72=2×33+6,…………………………………………9分 ∴在BC 边相遇.答:经过36s 第一次相遇,相遇点在边BC 上.………… 10分。
苏科版2017-2018学年度第二学期七年级数学期中试卷及答案
ABC P2017-2018学年度第二学期期中检测七年级数学试题(全卷共120分,考试时间90分钟)选择题(本题共8题,每题3分,共24分)(下列各题的四个选项中有且只有一个选 项是正确的.)1. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其 中一部分平移得到的是 ()2. 近期浙江大学的科学家们研制出迄今为止世界上最轻的材料,这种被称为 “全碳气凝胶”的固态材料,每立方厘米仅0.00016克,数据0.00016用科 学记数法表示应是 ( ) A .1.6×104 B .0.16×10﹣3 C .1.6×10﹣4 D .16×10﹣53. 下列运算正确的是 ( )A .326a aa⋅= B.()3263a b a b= C.824aaa÷= D.2aa a+=4. 下列分解因式23x y y-结果正确的是( )A .()2y x y + B .()2y x y - C .()22y x y- D .()()y x y x y +-5. 如图,给出下列条件:①∠1=∠2;②∠3=∠4; ③AD ∥BE ,且∠D=∠B ;其中,能推出AB ∥DC 的条 件为 ( ) A .①② B .①③C .②③D .以上都错 第5题图 如图所示,小华从A 点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,…,照这样走下去,他第一次回到出发地A 点时,一 共走的路程是 ( ) A .200米 B .180米 C .160米 D .140米第6题 第7题 第8题7. 如图,△ABC 的角平分线相交于点P ,∠BPC=125°,则∠A 的度数为( )2431E D C BAA.60°B. 65°C. 70°D. 75°8. 如图直线AB ∥CD ,∠A=115°, ∠E=80°,则∠CDE 的度数为( ) A. 15° B. 20° C. 25° D. 30°二、填空题(每空3分,共24分) 9. 七边形的内角和为 度.10. 一个等腰三角形一边长为2,另一边长为5,那么这个等腰三角形的周长是_________11. 计算:()22y x-=12. 分解因式:4a2-25b2=13. 多项式2x +mx+25能用完全平方公式分解因式,则m=_________ 14. 如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1= °.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°, 则∠1= °.第14题 第15题 16. 已知36x=,39y=,则23x y -= .三、解答题(共72分)17.计算(每题4分,共16分)(1)(1)32)2(31)2(-+⎪⎭⎫ ⎝⎛+--π (2)()20220025.0-⨯(3)()()()322322x x x ⎡⎤-⋅-÷-⎣⎦(4)()()311x x -+18.因式分解(每题4分,共8分) (1)()()36x a b y b a --- (2)322a aa-+-19. (本题5分)先化简,再求值. ()()()()23335ab a b a b ba b+--+--,其中1,2ab ==-.(本题8分) 如图,在方格纸内将△ABC 经过一次平移后得到△A ′B ′C ′, 图中标出了点C 的对应点C ′.(利用网格点和三角板画图) (1)画出平移后的△A ′B ′C ′. (2)画出AB 边上的高线CD ; (3)画出BC 边上的中线AE ;(4)若连接BB ′、CC ′,则这两条 线段之间的关系是 .21. (本题6分)看图填空:已知如图,AD ⊥BC 于D ,EG ⊥BC 于G , ∠E=∠3,求证:AD 平分∠BAC .证明:∵AD ⊥BC 于D ,EG ⊥BC 于G ( 已知 ) ∴∠ADC=90°,∠EGC=90°( ) ∴∠ADC=∠EGC (等量代换)∴AD ∥EG ( ) ∴∠1=∠3( ) ∠2=∠E ( ) 又∵∠E=∠3( 已知)∴∠1=∠2( ) ∴AD 平分∠BAC ( ).(本题6分) 四边形ABCD 中,∠A=∠C=90°,BE 、DF 分别是∠ABC 、∠ADC 的平分线.求证:(1)∠1+∠2=90°;(2)BE ∥DF .C'B C A23. (本题6分)探索题:2(1)(11x x x )-+=-23(1)(1)1x x x x -++=-()()324111x x x x x-+++=-()()4325111x x x x x x -++++=-根据前面的规律,回答下列问题: (1)()()123211nn n x xxxx x x ---+++++++=(2)当x=3时, ()()2016201520143231333...3331-++++++=(3)求: ()20152014201332222 (2221)+++++++ 的值.(请写出解题过程)(本题8分)如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀 平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如 图2).(1) 图②中的阴影部分的面积为 ; (2)观察图②请你写出()()22,,ab a b a b+-之间的等量关系是 ;(3)根据(2)中的结论,若94,4x y xy +==,则()2xy -= ;(4)实际上通过计算图形的面积可以探求相应的等式.如图③,你发现的等式是 .(本题9分)如图1,∠MON =90°,点A 、B 分别在OM 、ON 上运动(不与 点O 重合).(1) 若BC 是∠ABN 的平分线,BC 的反方向延长线与∠BAO 的平分线交与点D. ①若∠BAO=60°,则∠D= °.②猜想:∠D 的度数是否随A,B 的移动发生变化?并说明理由.O NMDCBAO N MDCBA图1 图2(2)若∠ABC=13∠ABN ,∠BAD=13∠BAO ,则∠D= °.(3)若将 “∠MON=90°”改为“∠MON =α(0°<α<180°)”, ∠ABC=1n ∠ABN ,∠BAD=1n ∠BAO ,其余条件不变,则∠D= °(用含α、n 的代数式 表示)2017-2018学年度第二学期期中检测 七年级数学试题参考答案和评分标准一、选择题题号 1 2 3 4 5 6 7 8 答案DCBDCBCA二、填空题9. 900°; 10. 12 ;11.2244yxy x+- ; 12. (2a+5b)(2a-5b); 13. ±10 ;14. 80; 15. 110; 16. 4 . 三、解答题17(1)原式=1+9-8 ………………………3分=2 …………………………4分(2)原式=()[]()2200225.0-⨯-⨯……2分=1⨯4=4 ……………………4分(3)原式=4x6.(-x2)÷x6………………2分=-4x2………………4分(4)原式=32x+3x-x-1……………………2分=32x+2x-1 ……………………4分18.(1)原式=3x(a-b)+6y(a-b)………2分=3(a-b)(x+2y)…………………4分(2) 原式=-a(a2-2a+1) …………………2分=-a(a-1)2………………………2分19. 原式=9a2+6ab+b2-9a2+b2-5ab+5b2……………3分=ab+7b2……………4分当a=1,b=-2时,原式=1×(-2)+7×(-2)2=26………5 分20.图略(1)(2)(3)(4)平行且相等,每空2分.21. 垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;等量代换;角平分线的定义(每空1分)22. (1)∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF…1分∵∠A=∠C=90°,∴∠ABC+∠A DC=180°……………………2分∴2(∠1+∠2)=180°,∴∠1+∠2=90°……………………3分(2)在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,…………………5分∴BE∥DF.………………………6分23. ①xn+1 -1 …………………………2分②32017-1 ………………………………4分③(2-1)(22015+22014+…+22+2+1) ……5分=22016-1………………………………6分24.①(b-a)2 (或(a-b)2)…………………………2分②(a+b)2 =(a-b)2+4ab ……………4分③7 …………………………………6分④(a+b)(3a+b)=3a2+4ab+b2…………8分25.(1)①45°…………………2分②∠D的度数不变. 理由是:法1:∵∠ABN、∠ABC分别是△ABO、△ABD的一个外角∴∠AOB=∠ABN-∠BAO∠D=∠ABC-∠BAD…………3分∵∠AOB =90°,BC、AD平分∠ABN、∠BAO∴∠D=∠ABC-∠BAD,=12∠ABN–12∠BAO=12(∠ABN–∠BAO)=12∠AOB=45°………………………5分法2:设∠BAD=α,∵AD平分∠BAO∴∠BAO=2α∵∠AOB =90°∴∠ABN=∠AOB+∠BAO=90°+2α…………3分∵BC平分∠ABN∴∠ABC=45°+α∴∠D=∠ABC-∠BAD=45°+α-α=45°…………………5分其它做法酌情按步给分(2)30°;(3)a n(每空2分)………………9分。
2017-2018学年江苏省盐城市东台市第二联盟七年级(下)期中数学试卷含答案
2017-2018学年江苏省盐城市东台市第二联盟七年级(下)期中数学试卷一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.如图:直线a、b被直线c所截,则∠1,∠2,∠3,∠4中,∠1的同位角是()A.∠3B.∠2C.∠4D.不确定2.如图:若∠1=∠2,则()A.AD∥BC B.AB∥CD C.∠A=∠C D.AB⊥BC3.如图:a∥b,若∠1=∠2,则∠2的度数为()A.30°B.90°C.120°D.150°4.已知:等腰三角形有两条边分别为2,4,则等腰三角形的周长为()A.6B.8C.10D.8或105.已知:等腰△ABC中,∠B=∠C,若该三角形有一个内角80°,则顶角为()A.80°B.20°C.80°或20°D.100°6.已知:x m=3,则x2m=()A.6B.9C.12D.187.把0.00091科学记数表示为()A.91×10﹣5B.0.91×10﹣3C.9.1×104D.9.1×10﹣48.下列多项式因式分解能用平方差公式的是()A.﹣x2+1B.﹣x2﹣1C.49﹣x3D.49+x9.在二元一次方程x+3y=10中,若x、y均为正数,则该方程的正整数解的个数为()A.1个B.2个C.3个D.4个10.从长度分别为3cm、4cm、5cm、6cm、9cm的小木棒中任取三根,能搭成三角形的组数有()A.4B.5C.6D.7二、填空题(共8小题,每小题3分,满分24分)11.已知:∠α的两条边分别平行∠β的两条边,若∠α=40°,则∠β=.12.如图AB∥CD,AE,CE分别平分∠BAC,∠ACD,那么∠AEC=度.13.已知多边形的内角和为540°,则该多边形的边数为.14.已知:a m=10,a n=2,则a2m﹣n=.15.若关于x的代数式x2+(m﹣3)x+16 是一个完全平方式,则m=.16.已知:实数a、b满足a2+b2+2a+4b+5=0,则b=.17.若是二元一次方程3x+by=5的一个解,则b=.18.已知:a2+b2+c2﹣ab﹣ac﹣ca=0,则a、b、c的大小关系为.三、解答题(56分)19.(8分)如图:点D、E在AB上,点F在BC上,点G在AC上,若∠1=∠B,∠2=∠3,∠4=70°.(1)请说明EF∥DC(2)求∠ADC的度数(要求书写完整步骤)20.(8分)已知:△ABC中,AB<AC,AH是高,AD是∠BAC的平分线.(1)若∠B=60°,∠C=40°,求∠HAD的度数;(2)若∠B=m°,∠C=n°,(m>n).求∠HAD(用mn的代数式表示)21.(8分)计算:22.(8分)先化简,后求值:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2,其中x=,y=﹣123.(8分)把下列各式因式分解:(1)4x2﹣64(2)4(m+n)2﹣9(m﹣n)224.(8分)解下列方程组(1)(代入法)(2)25.(8分)观察并计算(1)①1×2×3×4+1=2②3×4×5×6+1=2限填正整数(2)猜想:写出一个反应上述等量关系的等式.(3)说明你猜想的理由.(4)应用:计算:10×11×12×13+1参考答案一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.B.2.B.3.C.4.C.5.C.6.B.7.D.8.A.9.C.10.C.二、填空题(共8小题,每小题3分,满分24分)11.【分析】根据当两角的两边分别平行时,两角的关系可能可能相等也可能互补,即可得出答案.【解答】解:∵∠α=40°,∠α的两边分别和∠β的两边平行,∴∠β和∠α可能相等也可能互补,即∠β的度数是40°或140°,故答案为:40°或140°.【点评】本题考查了对平行线的性质的应用,注意:运用了分类思想.12.【分析】根据平行线的性质得∠BAC+∠DCA=180°,再根据角平分线的定义得∠EAC=∠BAC,∠ECA=∠DCA,则∠EAC+∠ECA=90°,然后根据三角形内角和定理可计算出∠AEC.【解答】解:∵AB∥CD,∴∠BAC+∠DCA=180°,∵AE,CE分别平分∠BAC,∠ACD,∴∠EAC=∠BAC,∠ECA=∠DCA,∴∠EAC+∠ECA=(∠BAC+∠DCA)=90°,∴∠AEC=90°.故答案为90.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.也考查了角平分线的定义.13.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为已知多边形的内角和为540°,所以可列方程求解.【解答】解:设所求多边形边数为n,则(n﹣2)•180°=540°,解得n=5.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.14.【分析】根据同底数幂的除法法则和幂的乘方与积的乘方法则解答.【解答】解:∵a m=10,a n=2,∴a2m﹣n===50.故答案是:50.【点评】考查了同底数幂的除法和幂的乘方与积的乘方,属于基础计算题.15.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+(m﹣3)x+16 是一个完全平方式,∴m﹣3=±8,解得:m=11或﹣5,故答案为:11或﹣5【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.【分析】将已知等式左边的5变为1+4,利用加法运算律变形后,再利用完全平方公式变形,根据两非负数之和为0,两非负数分别为0,即可求出a与b的值.【解答】解:∵a2+b2+2a+4b+5=0,∴a2+2a+1+b2+4b+4=0,即(a+1)2+(b+2)2=0,∴a+1=0且b+2=0,解得:a=﹣1,b=﹣2.故答案为:﹣2.【点评】此题考查了配方法的应用,以及非负数的性质:偶次方,灵活运用完全平方公式是解本题的关键.17.【分析】将x=3、y=4代入方程3x+by=5得到关于b的方程,解之可得.【解答】解:根据题意将x=3、y=4代入方程3x+by=5,得:9+4b=5,解得:b=﹣1,故答案为:﹣1.【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握方程的解的定义.18.【分析】对a2+b2+c2﹣ab﹣bc﹣ca=0进行因式分解可得(a﹣b)2+(b﹣c)2+(c﹣a)2=0,进而解答即可.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故答案为a=b=c【点评】本题主要考查因式分解的应用,解题的关键是把所给式子进行因式分解.三、解答题(56分)19.【分析】(1)根据平行线的判定和性质得出DG∥BC,进而得出∠2=∠DCB,利用等量代换得出∠3=∠DCB,进而证明平行即可;(2)利用平行线的性质解答即可.【解答】解:(1)∵∠1=∠B,∴DG∥BC,∴∠2=∠DCB,∵∠2=∠3,∴∠3=∠DCB,∴EF∥DC;(2)∵EF∥DC,∴∠4=∠ADC═70°.【点评】此题考查平行线的判定和性质,关键是根据平行线的判定和性质得出DG∥BC.20.【分析】(1)先利用△ABC的内角和为180°,求出∠BAC的度数,再根据AD是∠BAC的平分线,求出∠BAD的度数,在△ABH中,求出∠BAH=180°﹣∠B﹣∠AHB=30°,根据∠HAD=∠BAD﹣∠BAH,即可解答;(2)根据(1)的解题过程,即可解答.【解答】解:(1)∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=40°,∵△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=60°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=30°,∴∠HAD=∠BAD﹣∠BAH=40°﹣30°=10°,(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣∠B﹣∠C═(180﹣m﹣n)°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=(180﹣m﹣n)°,∵:△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=m°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=(90﹣m)°,∴∠HAD=∠BAD﹣∠BAH=(180﹣m﹣n)°﹣(90﹣m)°=(m﹣n)°,【点评】本题考查了三角形的内角和定理和角平分线的性质,解决本题的关键是熟记三角形内角和定理.21.【分析】首先进行积的乘方运算,再利用单项式乘以多项式得出答案.【解答】解:原式=a2b2(﹣a2b﹣12ab+b2)=﹣8a4b3﹣a3b3+a2b4.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.22.【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2=25y2﹣x2﹣x2+10xy﹣25y2=﹣2x2+10xy,当x=,y=﹣1,原式==﹣﹣5=﹣5.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.23.【分析】(1)首先提取公因式4,再利用平方差公式分解因式得出答案;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+8)(x﹣8);(2)4(m+n)2﹣9(m﹣n)2=[2(m+n)+3(m﹣n)][2(m+n)﹣3(m﹣n)]=(5m﹣n)(﹣m+5n).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.24.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),由②得:y=﹣2x+8③,把③代入①得:3x+8x﹣32=1,解得:x=3,把x=3代入②得:y=2,则方程组的解为;(2)方程组整理得:,①+②得:4x=32,解得:x=8,把x=8代入②得:y=﹣6,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.【分析】(1)各式计算得到结果即可;(2)归纳总结得到一般性结论,写出即可;(3)验证得到的等式即可;(4)利用得出的规律计算即可求出值.【解答】解:(1)①1×2×3×4+1=52;②3×4×5×6+1=192;故答案为:①5;②19;(2)猜想得到:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2;(3)等式左边=(n2+n)(n2+5n+6)+1=n4+6n3+11n2+6n+1,等式右边=(n2+3n)2+2(n2+3n)+1=n4+6n3+11n2+6n+1,左边=右边,等式成立;(4)根据题意得:原式=1312=17161.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.。
江苏省东台市七年级数学下学期期中试题 苏科版
(第6题图)江苏省东台市2017-2018学年七年级数学下学期期中试题(友情提醒:全卷满分100分,答题时间100分钟,请掌握好时间.)一、选择题(共8小题,每小题3分,共24分,将正确答案填写在下列表格中)1.下列图形中,能将其中一个图形平移得到另一个图形的是( ▲ )A . B. C .D.2.下列计算正确的是( ▲ )A .422a a a =+B .22=-a aC .222)(b a ab =D .532)(a a = 3.下列长度的3条线段,能首尾依次相接组成三角形的是( ▲ )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .15cm ,5cm ,6cmD .1cm ,3cm ,4cm4.下列各式能用平方差公式计算的是( ▲ )A .))((b a b a -+-B .)2)((b a b a -+C .)1)(1(-+x xD .))((n m n m +--5.若2=m a ,3=n a ,则n m a +的值为( ▲ )A .5B .6C .8D .96.如图,4块完全相同的长方形围成一个正方形. 用不同的代数式进行表示,由此能验证的等式是( ▲ )A .()()22b a b a b a -=-+B .()()ab b a b a 222=--+C .()()ab b a b a 422=--+D .()2222b a ab b a +=+- 7.当x=﹣6,y=61时,20172016y x 的值为( ▲ ) A .﹣6 B .6 C .61- D .61 8.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( ▲ )A . 6B .7C .8D .9二、填空题(共10小题,每小题2分,共20分)9.三角形的内角和为__________度.10. 肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为 .11.如果1-=+y x ,3-=-y x ,那么=-22y x __________.12.如图,直线a∥b,c∥d,∠1=115°,则∠3= °.13.如果(x+1)(x+m )的乘积中不含x 的一次项,则m 的值为 .14.如图,小明在操场上从A 点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A 点时,一共走了______米.15.若42++mx x 是一个完全平方式,则m = .16.已知4=+b a ,1=ab ,则22b a +的值是______.17.把一副常用的三角尺按如图所示的方式拼在一起,则ABC ∠= °.18.如图,在△ABC 中,∠A=60°,BD 、CD 分别平分∠ABC、∠ACB,M 、N 、P 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分∠MBC、∠BCN,BF 、CF 分别平分∠EBC、∠ECP,则∠F= °.(第12题图) (第14题图) (第17题图) (第18题图)三、解答题(共6题,合计56分)19.计算(每小题3分,共12分)(1)02)3(21--⎪⎭⎫ ⎝⎛- (2) 25338a a a ÷-(3))(3ab b a 2ab 422+- (4)()()()y x y x y x +--+220.把下列各式因式分解(每小题3分,共12分)(1)m p a aq a +- (2)42-a(3)122+-a a (4)222ay axy ax ++21.(本题6分)先化简,再求值:)3)(3()4)(2(2)2(2-+--+++x x x x x ,其中x=﹣1.22.(本题6分)如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.23.(本题8分)如右图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A´B´C´;(2)请在图中画出△ABC的高CD和中线AE;(3)能使S△ABC=S△QBC的格点Q,共有个.(点Q异于点A).24.(本题12分)已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C、B重合),点E为射线CA上一点,∠ADE=∠AED.设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=42°,∠DAE=30°,则α= ,β= .②若∠BAC=54°,∠DAE=36°,则α= ,β= .③写出α与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.七年级数学答案一、选择题1二、填空题9、180 10、7×10-4 11、3 12、65 13、 -114、90 15、±4 16、14 17、75 18、15三、19、(1)3 (2)5a3 (3)8a3b3-4a2b2+12ab (4) 2xy+2y220、(1)a(p-q+m) (2)(a+2)(a-2) (3)(a-1)2 (4)a(x+y)221、原式=2x2-3 (4分) 当x=-1时,原式=-1(6分)22、解:(1)CD平行于EF, (1)理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF; (3)(2)∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴BC∥DG,∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°. (6)23、(1)略(2分)(2)略(4分)(4)4(2分)24、解:(1)如图(1)①α=12°,..................1 β=6°, (3)②α=18°,..................4 β=9°, (6)③α=2β, (8)理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=180-(∠CED+∠ACB)=180-(180-∠AED +∠ACB)=∠AED﹣∠ACB=﹣==,∴α=2β; (10)(2)如图(2)α=2β-180° (12)。
2017-2018学年江苏省盐城市东台市七年级(下)期中数学试卷(解析版)
2017-2018学年江苏省盐城市东台市七年级(下)期中数学试卷一、选择题(本大题共6小题,共12.0分)1.∠1与∠2是内错角,∠1=30°,则∠2的度数为()A. B. C. 或 D. 不能确定2.下列运算中,正确的是()A. B. C. D.3.如图,四边形ABCD中,点E在BC延长线上,则下列条件中不能判断AB∥CD的是()A. B.C. D.4.如图,AB∥CD,∠DCE=80°,则∠BEF=()A.B.C.D.5.下列从左边到右边的变形,属于因式分解的是()A. B.C. D.6.已知:a n=(n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,b n=2(1-a1)(1-a2)…(1-a n),则b n用含n的代数式表示为()A. B. C. D.二、填空题(本大题共10小题,共20.0分)7.一个十边形所有内角都相等,它的每一个外角等于______度.8.计算:2a2•a6=______.9.科学家在实验中检测处某微生物约为0.0000025米长,用科学记数法表示0.0000025为______.10.若(x+m)(x+3)中不含x的一次项,则m的值为______.11.已知a x=3,a y=5,则a x+y=______.12.已知a+b=3,ab=-2,则a2+b2的值是______.13.若x2+2x+m是一个完全平方式,则m=______.14.如图,边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为______cm2.15.已知2m+5n-3=0,则4m÷32-n的值为______.16.如图,在△ABC中,点D、E、F分别为BC、AD、CE的中点.若S△BFC=1,则S△ABC=______.三、计算题(本大题共3小题,共26.0分)17.计算(1)|-|+(π-3)0+(-)3-()-2(2)(-2a2b3)4+(-a)8•(2b4)3(3)(a+2)(a-2)-a(a-1)(4)20172-2015×2019.18.因式分解:(1)12-3x2(2)4ab2-4a2b-b2.19.如图1是一个长为4a、宽为b的长方体,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为______;(2)观察图2请你写出(a+b)2、(a-b)2、ab之间的等量关系是______;(3)实际上通过计算图形的面积可以整式进行因式分解.如图3,因式分解:3a2+4ab+b2=______.四、解答题(本大题共6小题,共42.0分)20.先化简,再求值:(2x+2)(2-2x)+5x(x+1)-(x-1)2,其中x=2.21.如图,OC是∠AOB的平分线,且∠1=∠2,探索EF与OB的位置关系,并说明理由.22.如图,在方格纸内将三角形ABC经过平移后得到三角形A′B′C′,图中标出了点B的对应点B′,解答下列问题.(1)在给定方格纸中画出平移后的三角形A′B′C′;(2)线段AA′,BB′的关系是______;(3)如果每个方格的边长是1,那么△A′B′C′的面积是______.23.如图,在△ABC中,∠1=∠2,点E、F、G分别在BC、AB、AC上.(1)若在△BCD中,BC=5,BD=4,设CD的长为奇数,则CD的取值是______;(2)若EF⊥AB,DG∥BC,请判断CD与AB的位置关系,并说明理由.24.观察下列关于自然数的等式:(1)32-4×12=5(1)(2)52-4×22=9(2)(3)72-4×32=13 (3)…根据上述规律解决下列问题:(1)完成第五个等式:112-4×______2=______;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.25.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB 之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2-∠C=______;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案______.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)答案和解析1.【答案】D【解析】解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等.故选D.两直线平行时内错角相等,不平行时无法确定内错角的大小关系.此题主要考查了内错角,特别注意,内错角相等的条件是两直线平行.2.【答案】D【解析】解:A、a3•a2=a5,所以A选项不正确;B、b5•b5=b10,所有B选项不正确;C、x4+x4=2x4,所以C选项不正确;D、y•y5=y6,所以D选项正确.故选D.根据同底数幂的乘法法则得到a3•a2=a5,b5•b5=b10,y•y5=y6,而x4+x4合并得到2x4.本题考查了同底数幂的乘法:a m•a n=a m+n(其中a≠0,m、n为整数).3.【答案】B【解析】解:∵∠3=∠4,∴AB∥CD,故A能判定;∵∠1=∠2,∴AD∥BC,故B不能判定AB∥CD;∵∠5=∠ABC,∴AB∥CD,故C能判定;∵∠1+∠3+∠D=180°,∴AB∥CD,故D能判定;故选:B.根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.4.【答案】A【解析】解:∵AB∥CD,∴∠DCE+∠BEF=180°,∵∠DCE=80°,∴∠BEF=180°-80°=100°.故选:A.根据平行线的性质推出∠DCE+∠BEF=180°,代入求出即可.本题主要考查对平行线的性质,邻补角的定义等知识点的理解和掌握,根据平行线的性质推出∠DCE+∠BEF=180°是解此题的关键.5.【答案】D【解析】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、没把一个多项式转化成几个整式积,故C错误;D、把一个多项式转化成几个整式积,故D正确;故选:D.根据因式分解是把一个多项式转化成几个整式积,可得答案.本题考查了因式分解的意义,把一个多项式转化成几个整式积.6.【答案】C【解析】解:根据题意按规律求解:b1=2(1-a1)=2×(1-)==,b2=2(1-a1)(1-a2)=×(1-)==,….所以可得:b n的表达式b n=,故答案为:C.根据公式分别求出b1、b2,即可得出规律,从而得出答案.本题主要考查数字的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b值时要先算出a的值,要注意a中n的取值.7.【答案】36【解析】解:外角的度数是:360°÷10=36°,故答案为:36.根据多边形的外角和是360度,再用360°除以边数可得外角度数.本题主要考查了多边形的多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.8.【答案】2a8【解析】解:原式=2a8,故答案为:2a8.根据单项式乘单项式系数乘系数,同底数的幂相乘,可得答案.本题考查了单项式乘单项式,单项式乘单项式系数乘系数,同底数的幂相乘是解题关键.9.【答案】2.5×10-6【解析】解:用科学记数法表示0.0000025为2.5×10-6,故答案为:2.5×10-6.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【答案】-3【解析】解:∵(x+m)(x+3)=x2+(m+3)x+3m,又∵结果中不含x的一次项,∴m+3=0,解得m=-3.把式子展开,找到x的一次项的所有系数,令其为0,可求出m的值.本题主要考查了多项式乘多项式的运算,注意当多项式中不含有哪一项时,即这一项的系数为0.11.【答案】15【解析】解:∵a x=3,a y=5,∴a x+y=a x•a y=3×5=15,故答案为:15.先根据同底数幂的乘法法则变形,再代入求出即可.本题考查了同底数幂的乘法法则的应用,能熟记同底数幂的乘法法则是解此题的关键,注意:a m•a n=a m+n,用了整体代入思想.12.【答案】13【解析】解:∵a+b=3,ab=-2,∴a2+b2=(a+b)2-2ab,=32-2×(-2),=9+4,=13.故答案为:13.首先根据完全平方公式将a2+b2用(a+b)与ab的代数式表示,然后把a+b,ab 的值整体代入求值.本题考查了完全平方公式,关键是要熟练掌握完全平方公式的变形,做到灵活运用.13.【答案】1【解析】解:∵x2+2x+m是一个完全平方式,∴x2+2x+m=x2-2x•1+12,∴m=1,故答案为:1.根据完全平方式得出x2+2x+m=x2-2x•1+12,即可求出答案.本题考查了对完全平方公式的应用,注意:完全平方式有两个,是a2+2ab+b2和a2-2ab+b2.14.【答案】6【解析】解:∵边长为4cm的正方形ABCD先向上平移2cm,∴阴影部分的宽为4-2=2cm,∵向右平移1cm,∴阴影部分的长为4-1=3cm,∴阴影部分的面积为3×2=6cm2.故答案为:6.阴影部分为长方形,根据平移的性质可得阴影部分是长为3,宽为2,让长乘宽即为阴影部分的面积.解决本题的关键是利用平移的性质得到阴影部分的边长.15.【答案】8【解析】解:4m÷32-n=22m÷2-5n=22m+5n=23=8,故答案为:8.将原式变形为原式═22m÷2-5n=22m+5n=23可得答案.本题主要考查幂的运算,熟练掌握幂的运算法则是解题的关键.16.【答案】4【解析】解:如图,连接BE.∵点D、E分别为BC、AD的中点,∴S△ABD=S△ACD=S△ABC,S△BDE=S△ABD=S△ABC,S△CDE=S△ACD=S△ABC,∴S△BCE=S△BDE+S△CDE=S△ABC+S△ABC=S△ABC,∵F是CE的中点,∴S△BEF=S△BFC=S△BCE=×S△ABC=S△ABC,∴S△BFC:S△ABC=1:4.∵S△BFC=1,∴S△ABC=4.故答案为:4.根据三角形的中线把三角形分成面积相等的两个三角形用S△ABC表示出△ABD、△ACD、△BDE,△CDE的面积,然后表示出△BCE的面积,再表示出△BEF的面积,即可得解.本题考查了三角形的面积,主要利用了三角形的中线把三角形分成面积相等的两个三角形,是此类题目常用的方法,要熟练掌握并灵活运用.17.【答案】解:(1)原式=+1--9=-8;(2)原式=16a8b12+8a8b12=24a8b12;(3)原式=a2-4-a2+a=a-4;(4)原式=20172-(2017-2)×(2017+2)=20172-20172+1=1.【解析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及单项式乘以多项式法则计算即可得到结果;(4)原式变形后,利用平方差公式计算即可得到结果.此题考查了整式的混合运算,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.【答案】解:(1)原式=-3(x2-4)=-3(x+2)(x-2);(2)原式=b(4ab-4a2-b);【解析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.【答案】(b-a)2(a+b)2=(a-b)2+4ab(3a+b)(a+b)【解析】解:(1)图2中的阴影部分的面积为(b-a)2;(2)观察图2请你写出(a+b)2、(a-b)2、ab之间的等量关系是(a+b)2=(a-b)2+4ab;(3)实际上通过计算图形的面积可以整式进行因式分解.如图3,因式分解:3a2+4ab+b2=(3a+b)(a+b),故答案为:(1)(b-a)2;(2)(a+b)2=(a-b)2+4ab;(3)(3a+b)(a+b)(1)根据题意求出阴影部分边长,进而表示出面积;(2)找出三式之间的关系即可;(3)根据题意将原式分解即可.此题考查了因式分解的应用,以及完全平方公式的几何背景,熟练掌握因式分解的方法是解本题的关键.20.【答案】解:(2x+2)(2-2x)+5x(x+1)-(x-1)2=4-4x2+5x2+5x-x2+2x-1=7x+3,当x=2时,原式=7×2+3=17.【解析】根据平方差公式、单项式乘多项式、完全平方公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.21.【答案】解:EF∥OB;理由:∵OC平分∠AOB(已知),∴∠1=∠BOC(角平分线定义).∵∠1=∠2 (已知),∴∠2=∠BOC(等量代换),∴EF∥OB(内错角相等,两直线平行).【解析】先根据角平分线的定义得出∠1=∠BOC,再由等量代换得出∠2=∠BOC,进而可得出结论.本题考查的是平行线的判定与角平分线的性质,熟知内错角相等,两直线平行是解答此题的关键.22.【答案】AA′∥BB′,AA′=BB′8【解析】解:(1)如图,△A′B′C′即为所求;(2)由图形平移的性质可知,AA′∥BB′,AA′=BB′.故答案为:AA′∥BB′,AA′=BB′;(3)S△ABC=×4×4=8.故答案为:8.(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)根据图形平移的性质即可得出结论;(3)直接利用三角形的面积公式即可得出结论.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【答案】3,5,7【解析】解:(1)∵在△BCD中,BC=5,BD=4,∴1<CD<9,∵CD的长为奇数,∴CD的取值是3,5,7.故答案为3,5,7;(2)CD⊥AB.理由如下:∴DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴CD∥EF,∴∠CDB=∠EFB,∵EF⊥AB,∴∠EFB=90°,∴∠CDB=90°,∴CD⊥AB.(1)根据三角形三边关系定理求出CD取值范围,再根据CD的长为奇数即可得出CD的取值;(2)由平行线的性质和已知条件可证明CD∥EF,可求得∠CDB=90°,可判断CD⊥AB.本题考查了三角形三边关系定理,平行线的性质和判定,掌握定理与性质是解题的关键.24.【答案】5 21【解析】解:(1)112-4×52=21,故答案为:5;21;(2)第n个等式为:(2n+1)2-4n2=4n+1,证明:(2n+1)2-4n2=4n2+4n+1-4n2=4n+1.(1)根据前三个找出规律,写出第五个等式;(2)用字母表示变化规律,根据完全平方公式计算,即可证明.本题考查的是整式的混合运算、数字的变化,掌握整式的混合运算法则、正确找出数字的变化规律是解题的关键.25.【答案】50°∠P=90°-∠A【解析】解:(1)∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-(180°-∠A)=180°+∠A;(2)∵∠1+∠2=∠180°+∠C,∴130°+∠2=180°+∠C,∴∠2-∠C=50°;(3)∠DBC+∠ECB=180°+∠A,∵BP、CP分别平分外角∠DBC、∠ECB,∴∠PBC+∠PCB=(∠DBC+∠ECB)=(180°+∠A),在△PBC中,∠P=180°-(180°+∠A)=90°-∠A;即∠P=90°-∠A;故答案为:50°,∠P=90°-∠A;(4)延长BA、CD于Q,则∠P=90°-∠Q,∴∠Q=180°-2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°-2∠P,=360°-2∠P.(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形内角和定理列式整理即可得解;(4)延长BA、CD相交于点Q,先用∠Q表示出∠P,再用(1)的结论整理即可得解.本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。
江苏省盐城市东台市七年级(下)期中数学试卷
七年级(下)期中数学试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.下列计算正确的是( )A. a3-a2=aB. a3•a2=a6C. a3÷a2=aD. (a3)2=a52.有下列长度的三条线段,其中能组成三角形的是( )A. 3、5、10B. 10、4、6C. 3、1、1D. 4、6、93.甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为( )A. 0.8×10-7米B. 8×10-8米C. 8×10-9米D. 8×10-7米4.下图中,由AB∥CD,能得到∠1=∠2的是( )A. B.C. D.5.若a=-0.32,b=-3-2,c=,d=(-)0,则它们的大小关系是( )A. a<b<c<dB. a<d<c<bC. b<a<d<cD. c<a<d<b6.下列各式不能用平方差公式计算的是( )A. (3a+2b)(3a-2b)B. (3a+2b)(2b-3a)C. (3a-2b)(2b-3a)D. (3a-2b)(-3a-2b)7.如图所示,分别以n边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为( )A. πcm2B. 2πcm2C. 4πcm2D. nπcm28.813-81不能被( )整除.A. 80B. 81C. 82D. 83二、填空题(本大题共10小题,共30.0分)9.计算2x(x-3y)=______.10.x2+kx+9是完全平方式,则k=______.11.等腰三角形的两边长分别为3cm,6cm,则它的周长是______cm.12.若3x=6,9y=18,则3x-2y=______.13.已知a、b、c为△ABC的三边,化简:|a+b-c|-|a-b-c|+|a-b+c|=______.14.如图,△ABC中,DE∥BC,将△ADE沿DE翻折,使得点A落在平面内的A′处,若∠B=40°,则∠BDA′的度数是______.15.已知在△ABC中,点D、E、F分别为BC、AD、CE的中点,且S△ABC=6cm2,则S△BEF的值为______cm2.16.若m+n=3,mn=,则m-n=______.17.我们规定一种运算:=ad-bc,例如=3×6-4×5=-2.按照这种运算规定,已知=0,则x=______.18.如图,AF平分∠BAD,CF平分∠BCD的邻补角∠BCE,且AF与CF相交于点F,∠B=40°,∠D=20°,则∠F=______°.三、计算题(本大题共2小题,共18.0分)19.先化简,再求值:x(x-4y)+(2x+y)(2x-y)-(2x-y)2,其中x=-2,y=-1.20.因式分解:(1)4a2b-6ab2.(2)9a2-4b4.(3)2x5y4-16x3y2+32x.(4)(x-2)(x-8)+9.四、解答题(本大题共6小题,共48.0分)21.计算:(1)(-2)0+(-2)2-(-2)-2.(2)a3•a2•a-a7÷a+(-2a2)3.(3)10.(4)(a-b+2)(a+b-2).22.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移1格,再向上平移4格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)若连接BB',CC',则这两条线段的关系是______;(3)△ABC在整个平移过程中线段AB扫过的面积为______.23.如图,AB∥DC,AD∥BC,E为AB延长线上一点,连结DE与BC相交于点F,若∠BFE=∠E.试说明DE平分∠ADC.24.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B的度数.25.阅读理解:若m2-2mn+2n2-8n+16=0,求m、n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.方法应用:(1)a2+b2-4a+4=0,则a=______,b=______.(2)已知x+y=6,xy-z2-4z=13,求(x+y)z的值.26.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.答案和解析1.【答案】C【解析】解:A、a3÷a2=a,故错误;B、a3•a2=a5,故错误;C、正确;D、(a3)2=a6,故错误;故选:C.根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.2.【答案】D【解析】解:A、3+5<10,不能组成三角形;B、4+6=10,不能组成三角形;C、1+1<3,不能组成三角形;D、4+6>9,能组成三角形.故选:D.根据三角形的三边满足任意两边之和大于第三边进行判断.此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.【答案】B【解析】解:0.00000008=8×10-8,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】B【解析】解:A、∵AB∥CD,又∵∠1=∠2是同旁内角,∴不能判断∠1=∠2,故本选项错误;B、如图,∵AB∥CD,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2,故本选项正确;C、不能得到∠1=∠2,故本选项错误;D、不能得到∠1=∠2,故本选项错误.故选:B.根据平行线的性质对各选项进行逐一分析即可.本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.【解析】解:∵a=-0.32=-0.09,b=-3-2=-,c==4,d=(-)0=1,∴b<a<d<c.故选:C.直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.6.【答案】C【解析】解:(3a+2b)(3a-2b)能用平方差公式计算;(3a+2b)(2b-3a)能用平方差公式计算;(3a-2b)(2b-3a)不能用平方差公式计算;(3a-2b)(-3a-2b)能用平方差公式计算.故选:C.根据平方差公式对各选项进行判断.本题考查了平方差公式:(a+b)(a-b)=a2-b2.熟练掌握公式是解题的关键.7.【答案】A【解析】解:∵多边形的外角和为360°,∴S A1+S A2+…+S An=S圆=π×12=π(cm2).故选:A.由于多边形的外角和为360°,则所有阴影的扇形的圆心角的和为360度,故阴影部分的面积=π×12=π.本题考查了圆的面积公式的应用,多边形的外角和定理,比较简单.8.【答案】D【解析】解:∵813-81=81(812-1)=81×(81+1)(81-1)=81×82×80,∴813-81不能被83整除;故选:D.此题应先把813-81因式分解得出81×82×80,即可得出答案.此题考查了因式分解的应用;熟练掌握因式分解的方法是解题的关键.9.【答案】2x2-6xy【解析】解:2x(x-3y)=2x•x+2x•(-3y)=2x2-6xy,故答案为:2x2-6xy.利用单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,可得结果.此题主要考查了单项式乘多项式的运算法则,熟练掌握运算法则是解答此题的关键.10.【答案】±6【解析】解:中间一项为加上或减去x和3的积的2倍,故k=±6.这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3的积的2倍,故k=±6.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【解析】解:①6cm为腰,3cm为底,此时周长为6+6+3=15cm;②6cm为底,3cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是15cm.故答案是:15.根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3,只能为6,然后即可求得等腰三角形的周长此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.【答案】【解析】解:∵3x=6,9y=18,∴32y=18,则3x-2y=3x÷32y=6÷18=.故答案为:.直接利用幂的乘方运算法则化简,进而利用同底数幂的乘除运算法则计算得出答案.此题主要考查了同底数幂的除法运算以及幂的乘方运算,正确将原式变形是解题关键.13.【答案】3a-b-c【解析】解:∵a、b、c为△ABC的三边,|a+b-c|-|a-b-c|+|a-b+c|=a+b-c+a-b-c+a-b+c=3a-b-c.故答案为:3a-b-c.根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.14.【答案】100°【解析】解:DE∥BC,∴∠ADE=∠B=40°.△ADE沿DE翻折,使得点A落在平面内的A′处,∴∠A′DE=∠ADE=40°.由角的和差,得∠BDA′=180°-∠A′DE-∠ADE=180°-40°-40°=100°.故答案为:100°.根据平行线的性质,可得∠ADE与∠B的关系,根据折叠的性质,可得△ADE与△A′DE 的关系,根据角的和差,可得答案.本题考查了平行线的性质,折叠问题,折叠得到的图形与原图形全等是解题关键.15.【答案】1.5【解析】解:∵由于D、E、F分别为BC、AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,S△BEC=S△ABC=3(cm2).S△BEF=S△BEC=×3=1.5(cm2).故答案为:1.5.由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD 、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.此题考查了三角形的面积,根据三角形中线将三角形的面积分成相等的两部分解答.16.【答案】±2【解析】解:∵m+n=3,mn=,∴m-n=±==±2.故答案是:±2.利用m-n=±解答.此题主要考查了完全平方公式,正确将原式变形是解题关键.17.【答案】【解析】解:由题意可知:(x-2)(x+2)-(x+1)2=0,∴x2-4-(x2+2x+1)=0∴-2x-5=0,∴x=,故答案为:.根据题意给出的运算法则,然后将其原式进行化简即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则以及一元一次方程的解法,本题属于基础题型.18.【答案】120【解析】解:延长AF与BC相交于点G,则∠AFC=∠AGC+∠FCG=∠B+∠BAG+∠BCE=40°+∠BAD+(∠D+∠CHD)=40°+∠BAD+(20°+∠AHB)=40°+∠BAD+10°+∠AHB=50°+(∠BAH+∠BHA)=50°+(180°-40°)=120°.故答案为:120.延长AF与BC相交于点G,由三角形的外角定理得∠BCE=∠D+∠CHD,∠AGC=∠B+∠BAG,∠AFC=∠CGF+∠FCG,再通过三角形内角,角平分线的性质和与对顶角性质便可求得结果.本题是三角形的内角和与外角和的综合计算题,主要考查了三角形的内角和定理,三角形的外角定理,角平分线的定义,对顶角的性质,关键是延长AF,构造内外的联系.19.【答案】解:原式=x2-4xy+4x2-y2-4x2+4xy-y2=x2-2y2,当x=-2,y=-1时,原式=4-2=2.【解析】原式利用单项式乘以多项式,平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)原式=2ab(2a-3b);(2)原式=(3a+2b2)(3a-2b2);(3)原式=2x(x4y4-8x2y2+16)2=2x(x2y2-4)2=2x(xy+2)2(xy-2)2;(4)原式=x2-10x+25=(x-5)2.【解析】(1)原式提取公因式即可;(2)原式利用平方差公式分解即可;(3)原式提取公因式,再利用完全平方公式及平方差公式分解即可;(4)原式整理后,利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.【答案】解:(1)原式=1+4-=4(2)原式=a6-a6-8a6=-8a6;(3)原式=(10+)×(10-)+32017××=100-+=100;(4)原式=[a-(b-2)][a+(b-2)]=a2-(b-2)2=a2-b2+4b-4;【解析】(1)根据零指数幂的意义以及负整数指数幂的意义即可求出答案.(2)根据整式的运算法则即可求出答案.(3)根据实数的运算法则即可求出答案.(4)根据平方差公式以及完全平方公式即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.22.【答案】BB'∥CC'且BB'=CC' 16【解析】解:(1)如图,△A′B′C′为所作;(2)BB′∥CC′,BB′=CC′;(3)△ABC在整个平移过程中线段AB扫过的面积=4×4=16;故答案为:BB'∥CC'且BB'=CC';16.(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)根据平移的性质求解;(3)利用平移的性质和平行四边形的面积公式求解.本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.【答案】证明:∵AB∥DC,∴∠E=∠CDE,∵AD∥BC,∴∠ADE=∠BFE,∵∠BFE=∠E,∴∠ADE=∠EDC,∴DE平分∠ADC.【解析】根据AB∥DC可得∠E=∠CDE,根据AD∥BC可得∠ADE=∠BFE,再由条件∠BFE=∠E利用等量代换可得∠ADE=∠EDC,从而可得结论.此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等,同位角相等.24.【答案】解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【解析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=105°,根据三角形的内角和即可得到结论.本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.25.【答案】2 0【解析】解:(1)∵a2+b2-4a+4=0,∴(a-2)2+b2=0,∴a-2=0,b=0,∴a=2,b=0.(2)∵x+y=6,∴x=6-y,∵xy-z2-4z=13,∴-xy+z2+4z+13=0,∴(y-6)y+z2+4z+13=0,∴(y-3)2+(z+2)2=0,∴z+2=0,解得z=-2,∴(x+y)z=6-2=.故答案为:2、0.(1)根据a2+b2-4a+4=0,应用配方法,求出a、b的值各是多少即可.(2)根据x+y=6,可得:x=6-y,把x=6-y代入xy-z2-4z=13,应用配方法,求出z的值是多少,进而求出(x+y)z的值是多少即可.此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.26.【答案】解:(1)∵∠ABC+∠ADC=360°-(α+β)=240°,∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=α+β=120°.(2)β-α=60°理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°-∠BCD=180°-β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°-β+30°=180°,∴β-α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD-∠DHB=β-∠DHB,∴∠CBE+β-∠DHB=(α+β),∵α=β,∴∠CBE+β-∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.【解析】(1)∠ABC+∠ADC=360°-(α+β)=240°,则∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=α+β=120°.(2)连接BD,由(1)有,∠MBC+∠NDC=α+β,BE、DF分别平分四边形的外角∠MBC和∠NDC,则∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD 中,∠BDC+∠CBD=180°-∠BCD=180°-β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,则(α+β)+180°-β+30°=180°,即β-α=60°,(3)由(1)有,∠MBC+∠NDC=α+β,BE、DF分别平分四边形的外角∠MBC和∠NDC ,则∠CBE+∠CDH=(α+β),∠CBE+β-∠DHB=(α+β),根据α=β,则有∠CBE+β-∠DHB=(β+β)=β,∠CBE=∠DHB,则BE∥DF.此题考查了平行线的性质及其判定,多边形的内角和公式,利用多边形的内角和公式倒角为解题关键.。
江苏省东台市2017-2018学年七年级数学下学期第二次月考试题 苏科版
江苏省东台市2017-2018学年七年级数学下学期第二次月考试题一、选择题(本大题共8小题,共24分) 1.计算()32a 的结果是 ( ) A.32a B.36aC.38aD.a 8 2.如图, a ∥b 被直线l 所截,且o 1301=∠,则2∠的度数为 ( )A.o 130 B .o 05 C .o 60 D.o 120(第2题图) (第6题图)式03>-x 的解集在数轴上表示正确的是3.不等( )A. B .C . D.4.下面计算中,正确的是 ( )A .632a a a =⋅B .326a a a =÷C .6332a a a =+D .632)(a a = 5.如果关于x 的不等式 (a+2016)x >a+2016的解集为x <1,那么a 的取值范围是( )A .a >﹣2016B .a <﹣2016C .a >2016D .a <2016方向平移4cm 得到△D EF ,若△ABC 的周长为15cm ,则四边形ABFD 的周长为 23cm C .24cm D .25cm20132014x y 的值为 ( ) A .6 B .6 C . 16- D .一6 8.如果方程组⎩⎨⎧-=+-=-153732y x y x 的解为⎩⎨⎧=-=12y x ,则方程组⎩⎨⎧-=-++-=--+1)1(5)2(37)1(3)2(2y x y x 的解为 ( )A.⎩⎨⎧=-=24y xB.⎩⎨⎧=-=12y x C.⎩⎨⎧==00y x D.⎩⎨⎧-==12y x二、填空题(本大题共10小题,每小题2分,共20分)9.最小的开花植物的质量为0.00000076克,用科学记数法表示为__________克.10.若b a >,则4_____4--b a (用“>”或“<”填空) .11.分解因式:822-x =________________.12.若 (x+2)(x 2+mx+4)的展开式中不含有x 的二次项,则m 的值为 .13.如果⎩⎨⎧==21y x 是方程72=+y ax 的一个解,则a 的值__________.14.若一个多边形的每一个外角都等于36°,则这个多边形的边数是_______.15.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 度.(第15题图)16.若1=+b a ,2-=ab ,则代数式()()11--b a =__________.17.若关于x 、y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +﹥1,则k 的取值范围是 . 18.已知D 是△ABC 的边BC 所在直线上的一点,与B ,C 不重合,过D 分别作DF ∥AC 交AB 所在直线于F ,分,解答要求写出文字说明,证明过程或计算步骤)19.(本题满分6分)因式分解:(1)3222y xy y x +-; (2)()()x y y x x -+-220. (本题满分6分)先化简,再求值:()()532---x x x ,其中1=x .21. (本题满分8分)解不等式并把解集在数轴上表示出来(1)3(1)4(2)3x x +<-- (2)215132x x-+-≤122.(本题满分6分)若关于x 、y 的二元一次方程租3522718x y x y m +=⎧⎨+=-⎩的解x 、y 互为相反数,求m的值。
【配套K12】江苏省东台市2017-2018学年七年级数学下学期期中试题 苏科版
(第6题图)江苏省东台市2017-2018学年七年级数学下学期期中试题(友情提醒:全卷满分100分,答题时间100分钟,请掌握好时间.)一、选择题(共8小题,每小题3分,共24分,将正确答案填写在下列表格中) 1.下列图形中,能将其中一个图形平移得到另一个图形的是( ▲ ) A .B.C .D.2.下列计算正确的是( ▲ )A .422a a a =+B .22=-a aC .222)(b a ab =D .532)(a a =3.下列长度的3条线段,能首尾依次相接组成三角形的是( ▲ )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .15cm ,5cm ,6cmD .1cm ,3cm ,4cm 4.下列各式能用平方差公式计算的是( ▲ ) A .))((b a b a -+- B .)2)((b a b a -+C .)1)(1(-+x xD .))((n m n m +--5.若2=m a ,3=n a ,则n m a +的值为( ▲ ) A .5 B .6 C .8 D .96.如图,4块完全相同的长方形围成一个正方形. 用不同的代数式进行表示,由此能验证的等式是( ▲ )A .()()22b a b a b a -=-+ B .()()ab b a b a 222=--+C .()()ab b a b a 422=--+ D .()2222b a ab b a +=+-7.当x=﹣6,y=61时,20172016y x 的值为( ▲ )A .﹣6B .6C .61- D .618.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点, 若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( ▲ )A . 6B .7C .8D .9二、填空题(共10小题,每小题2分,共20分) 9.三角形的内角和为__________度.10. 肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为 .11.如果1-=+y x ,3-=-y x ,那么=-22y x __________.12.如图,直线a∥b,c∥d,∠1=115°,则∠3= °. 13.如果(x+1)(x+m )的乘积中不含x 的一次项,则m 的值为 .14.如图,小明在操场上从A 点出发,沿直线前进10米后向左转40°,再沿直线前进10米 后,又向左转40°,照这样走下去,他第一次回到出发地A 点时,一共走了______米. 15.若42++mx x 是一个完全平方式,则m = . 16.已知4=+b a ,1=ab ,则22b a +的值是______.17.把一副常用的三角尺按如图所示的方式拼在一起,则ABC ∠= °.18.如图,在△ABC 中,∠A=60°,BD 、CD 分别平分∠ABC、∠ACB,M 、N 、P 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分∠MBC、∠BCN,BF 、CF 分别平分∠EBC、∠ECP,则∠F= °. (第12题图) (第14题图) (第17题图) (第18题图) 三、解答题(共6题,合计56分) 19.计算(每小题3分,共12分)(1)02)3(21--⎪⎭⎫⎝⎛- (2) 25338a a a ÷-(3))(3ab b a 2ab 422+-(4)()()()y x y x y x +--+220.把下列各式因式分解(每小题3分,共12分)(1)m p a aq a +- (2)42-a(3)122+-a a (4)222ay axy ax ++21.(本题6分)先化简,再求值:)3)(3()4)(2(2)2(2-+--+++x x x x x ,其中x=﹣1.22.(本题6分)如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.23.(本题8分)如右图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A´B´C´;(2)请在图中画出△ABC的高CD和中线AE;(3)能使S△ABC=S△QBC的格点Q,共有个.(点Q异于点A).24.(本题12分)已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C、B重合),点E为射线CA上一点,∠ADE=∠AED.设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=42°,∠DAE=30°,则α= ,β= .②若∠BAC=54°,∠DAE=36°,则α= ,β= .③写出α与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.七年级数学答案一、选择题1二、填空题9、180 10、7×10-4 11、3 12、65 13、 -114、90 15、±4 16、14 17、75 18、15三、19、(1)3 (2)5a3 (3)8a3b3-4a2b2+12ab (4) 2xy+2y220、(1)a(p-q+m) (2)(a+2)(a-2) (3)(a-1)2 (4)a(x+y)221、原式=2x2-3 (4分) 当x=-1时,原式=-1(6分)22、解:(1)CD平行于EF, (1)理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF; (3)(2)∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴BC∥DG,∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°. (6)23、(1)略(2分)(2)略(4分)(4)4(2分)24、解:(1)如图(1)①α=12°,..................1 β=6°, (3)②α=18°,..................4 β=9°, (6)③α=2β, (8)理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=180-(∠CED+∠ACB)=180-(180-∠AED +∠ACB)=∠AED﹣∠ACB=﹣==,∴α=2β; (10)(2)如图(2)α=2β-180° (12)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第6题图)
江苏省东台市2017-2018学年七年级数学下学期期中试题
(友情提醒:全卷满分100分,答题时间100分钟,请掌握好时间.)
一、选择题(共8小题,每小题3分,共24分,将正确答案填写在下列表格中)
1.下列图形中,能将其中一个图形平移得到另一个图形的是( ▲ )
A . B
. C .
D
.
2.下列计算正确的是( ▲ )
A .422a a a =+
B .22=-a a
C .222)(b a ab =
D .532)(a a =
3.下列长度的3条线段,能首尾依次相接组成三角形的是( ▲ )
A .1cm ,2cm ,4cm
B .8cm ,6cm ,4cm
C .15cm ,5cm ,6cm
D .1cm ,3cm ,4cm
4.下列各式能用平方差公式计算的是( ▲ )
A .))((b a b a -+-
B .)2)((b a b a -+
C .)1)(1(-+x x
D .))((n m n m +--
5.若2=m a ,3=n a ,则n m a +的值为( ▲ )
A .5
B .6
C .8
D .9
6.如图,4块完全相同的长方形围成一个正方形. 用不同的代数式进行表示,由此能验证的等式是( ▲ )
A .()()22b a b a b a -=-+
B .()()ab b a b a 22
2=--+ C .()()ab b a b a 422=--+ D .()2
222b a ab b a +=+- 7.当x=﹣6,y=6
1时,20172016y x 的值为( ▲ ) A .﹣6 B .6 C .61- D .6
1 8.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,
若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,
四边形DHOG 面积为( ▲ )
A . 6
B .7
C .8
D .9
二、填空题(共10小题,每小题2分,共20分)
9.三角形的内角和为__________度.
10. 肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为 .
11.如果1-=+y x ,3-=-y x ,那么=-22y x __________.
12.如图,直线a∥b,c∥d,∠1=115°,则∠3= °.
13.如果(x+1)(x+m )的乘积中不含x 的一次项,则m 的值为 .
14.如图,小明在操场上从A 点出发,沿直线前进10米后向左转40°,再沿直线前进10米
后,又向左转40°,照这样走下去,他第一次回到出发地A 点时,一共走了______米.
15.若42++mx x 是一个完全平方式,则m = .
16.已知4=+b a ,1=ab ,则22b a +的值是______.17.把一副常用的三角尺按如图所示的方式拼在一起,则ABC ∠= °.
18.如图,在△ABC 中,∠A=60°,BD 、CD 分别平分∠ABC、∠ACB,M 、N 、P 分别在DB 、DC 、
BC 的延长线上,BE 、CE 分别平分∠MBC、∠BCN,BF 、CF 分别平分∠EBC、∠ECP,则∠F= °.
(第12题图) (第14题图) (第17题图) (第18题图)
三、解答题(共6题,合计56分)
19.计算(每小题3分,共12分)
(1)02)3(21--⎪⎭
⎫ ⎝⎛- (2) 25338a a a ÷-
(3))(3ab b a 2ab 422+- (4)()()()y x y x y x +--+2
20.把下列各式因式分解(每小题3分,共12分)
(1)m p a aq a +- (2)42-a
(3)122+-a a (4)222ay axy ax ++
21.(本题6分)先化简,再求值:)3)(3()4)(2(2)2(2-+--+++x x x x x ,其中x=﹣1.
22.(本题6分)如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.
23.(本题8分)如右图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将
△ABC向左平移2格,再向上平移4格.
(1)请在图中画出平移后的△A´B´C´;
(2)请在图中画出△ABC的高CD和中线AE;
(3)能使S△ABC=S△QBC的格点Q,共有个.(点Q异于点A).
24.(本题12分)已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C、B重合),点E为射
线CA上一点,∠ADE=∠AED.设∠BAD=α,∠CDE=β.
(1)如图(1),
①若∠BAC=42°,∠DAE=30°,则α= ,β= .
②若∠BAC=54°,∠DAE=36°,则α= ,β= .
③写出α与β的数量关系,并说明理由;
(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的
数量关系.
七年级数学答案
一、选择题
1
二、填空题
9、180 10、7×10-4 11、3 12、65 13、 -1
14、90 15、±4 16、14 17、75 18、15
三、
19、(1)3 (2)5a3 (3)8a3b3-4a2b2+12ab (4) 2xy+2y2
20、(1)a(p-q+m) (2)(a+2)(a-2) (3)(a-1)2 (4)a(x+y)2
21、原式=2x2-3 (4分) 当x=-1时,原式=-1(6分)
22、解:(1)CD平行于EF, (1)
理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF; (3)
(2)∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴BC∥DG,
∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°. (6)
23、(1)略(2分)(2)略(4分)(4)4(2分)
24、解:(1)如图(1)
①α=12°,..................1 β=6°, (3)
②α=18°,..................4 β=9°, (6)
③α=2β, (8)
理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,
∵∠ACB=∠ABC,∴∠ACB=,
∵∠ADE=∠AED,∴∠AED=,
∴β=180-(∠CED+∠ACB)=180-(180-∠AED +∠ACB)
=∠AED﹣∠ACB=﹣==,
∴α=2β; (10)
(2)如图(2)
α=2β-180° (12)。