2.1.1指数函数教案 (1)

合集下载

2.1 指数函数的概念 课时一等奖创新教学设计

2.1 指数函数的概念 课时一等奖创新教学设计

2.1 指数函数的概念课时一等奖创新教学设计第3课时指数函数概念课时教学设计(一)教学内容指数函数的概念.(二)教学目标通过具体实例,了解指数函数的实际意义,理解指数函数的概念,发展数学抽象素养.(三)教学重点与难点教学重点:指数函数的概念.教学难点:指数函数的概念.(四)教学过程设计引导语:对于幂( >0),我们已经把指数的范围拓展到了实数.上一章学习了函数的概念和基本性质,通过对幂函数的研究,进一步了解了研究一类函数的过程和方法.下面继续研究其他类型的基本初等函数.问题1:随着中国经济高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式.由于旅游人数不断增加,A,B两地景区自2001年起采取了不同的对应措施,A地提高了景区门票价格,而B地则取消了景区门票.表4.2-1给出了A,B两地景区2001年至2015年的游客人次以及逐年增加量.表4.2-1时间/年A地景区B地景区人次/万次年增加量/万次人次/万次年增加量/万次2001 600 2782002 609 9 309 312003 620 11 344 352004 631 11 383 392005 641 10 427 442006 650 9 475 482007 661 11 528 532008 671 10 588 602009 681 10 655 672010 691 10 729 742011 702 11 811 822012 711 9 903 922013 721 10 1005 1022014 732 11 1118 1132015 743 11 1244 126比较两地景区游客人次的变化情况,你发现了怎样的变化规律?师生活动:(1)追问①:能否作出A,B两地景区游客人次变化的图象,根据图象并结合年增长量,说明两地景区游客人次的变化情况?学生独立思考、讨论交流. 教师利用Excel作出A,B两地景区游客人次变化的图象,直观感受A,B两地景区游客增长的情况.(2)追问②:用“增加量”刻画B地景区人次的变化规律不直观. 能不能换一个量来刻画?教师指出,可以用“增长率”,即从2002年起,将B地景区每年的游客人次除以上一年的游客人次,看看能否发现什么规律?学生动手计算,教师利用Excel算出B地景区游客人次年增长率为常数.(3)追问③:能否求出两地景区游客人次随时间(经过的年数)变化的函数解析式,并根据解析式说明两地景区游客人次的变化情况.如果设经过x年后的游客人次为2001年的y倍,那么.设计意图:通过寻求A,B两地景区游客人次增加的规律,引出用函数刻画指数增长的问题,为抽象出指数函数作准备.问题2:当生物死亡后,其机体内原有的碳14含量会按确定的衰减比率(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.按照上述变化规律,生物体内碳14含量与死亡年数之间有怎样的关系?师生活动:追问①:生物死亡后体内碳14含量每年衰减的比例是多少?追问②:能否求出生物体内碳14含量随死亡年数变化的函数解析式?教师提出问题,并让学生类比问题1对提出的问题进行思考.通过对问题的分析,引导学生用函数刻画碳14衰减的规律.设计意图:通过描述碳14衰减的规律,引出用函数刻画指数衰减的问题,为抽象得到指数函数作准备.问题3:比较问题1,2中的两个实例:B地景区游客人次增长的函数解析式与碳14衰减的函数解析式有什么共同特征?师生活动:从解析式上来看,如果用字母代替底数1.11和,那么上述函数和就都可以表示为=的形式,其中指数是自变量,底数是一个大于0且不等于1的常数.从而引出指数函数的概念:一般地,函数=叫做指数函数,其中指数是自变量,定义域是R.设计意图:通过分析、比较两个实例,概括它们的共同本质特征,从而得到指数函数概念的本质属性,抽象出指数函数的概念,发展学生数学抽象的核心素养.例1:已知指数函数,且,求,,的值.师生活动:教师引导学生,要求出,,的值,应先求出的解析式,即先求出的值.而已知,可由此求出的值.设计意图:通过求函数解析式,并根据解析式求出不同的函数值,从指数函数的对应关系和变化规律的角度理解指数函数的概念.例2:(1)在问题1中,如果平均每位游客出游一次可给当地带来1000元门票之外的收入,A地景区的门票价格为150元,比较这15年间A,B两地旅游收入变化情况.(2)在问题2中,某生物死亡10000年后,它体内碳14的含量衰减为原来的百分之几?师生活动:(1)教师引导学生得出A、B两地旅游收入的函数,教师利用geogebra画出图象,得出交点坐标,进而得出两地收入的变化情况.(2)利用geogebra进行计算第(2)小问.(3)教师指出:在实际问题中,经常会遇到类似于例2(1)的指数增长模型:设原有量为N,每次的增长率为,经过x次增长,该量增长到y,则=,其中表示增长率;还可以表示为=,其中表示衰减率.形如的函数是刻画指数增长或指数衰减变化规律的函数模型.设计意图:在引入概念的两个实例基础上,利用指数函数概念进一步解决与两个实例有关的问题,从而巩固对概念的理解.问题6:回顾本节课的学习内容,并回答以下问题:(1)我们是怎样通过实例问题1,问题2得出指数函数的?(2)指数函数的定义是什么?设计意图:回顾本节课的主要知识和研究过程,巩固指数函数概念的理解.(五)目标检测设计1、课堂检测教科书第115页练习1,2,3设计意图:1 ,2题利用函数的三种表示形式,从不同角度推动学生对指数函数概念的理解,进一步明确概念,学会表示指数函数,体会指数增长或衰减;3题考查学生对指数函数概念的理解;三题均属于水平一题目.2. 课后作业教科书第118页习题4.2第1,2,4,7,8题设计意图:考查学生对指数函数概念的理解,1,2,4题属于水平一题目,7,8题属于水平二题目.(六)课后反思。

指数函数的图像和性质教案设计

指数函数的图像和性质教案设计

指数函数的图像和性质教案设计第一章:指数函数的引入1.1 生活中的实例引入通过生活中的实例,如细胞分裂、放射性衰变等,引入指数函数的概念。

引导学生观察实例中的规律,引发对指数函数的好奇心。

1.2 指数函数的定义给出指数函数的数学定义:形如f(x) = a^x 的函数,其中a 是正常数。

解释指数函数与幂函数的关系。

1.3 指数函数的图像利用数学软件或图形计算器,绘制几个简单的指数函数图像。

引导学生观察图像的形状和特点,如随着x 的增大,函数值增大或减小等。

第二章:指数函数的性质2.1 指数函数的单调性探讨指数函数的单调性,即随着x 的增大,函数值是增大还是减小。

引导学生通过观察图像或数学推理来得出结论。

2.2 指数函数的渐近行为分析指数函数在x 趋向于正无穷和负无穷时的渐近行为。

引导学生理解指数函数的快速增长和减趋行为。

2.3 指数函数的零点和极限探讨指数函数的零点,即函数值为零的x 值。

引导学生理解指数函数的极限概念,如x 趋向于某个值时函数的极限。

第三章:指数函数的应用3.1 人口增长模型利用指数函数模型描述人口增长,介绍人口增长的基本规律。

引导学生通过指数函数来分析和预测人口变化。

3.2 放射性衰变模型利用指数函数模型描述放射性物质的衰变过程,介绍放射性衰变的基本规律。

引导学生通过指数函数来分析和预测放射性物质的变化。

3.3 投资增长模型利用指数函数模型描述投资的复利增长,介绍投资增长的基本规律。

引导学生通过指数函数来分析和预测投资的变化。

第四章:指数函数的图像和性质的综合应用4.1 指数函数图像的变换探讨指数函数图像的平移、缩放等变换规律。

引导学生通过变换规律来理解和绘制更复杂的指数函数图像。

4.2 指数函数性质的综合应用结合前面的学习,解决一些综合性的问题,如求指数函数的零点、极值等。

引导学生运用指数函数的性质来解决实际问题。

第五章:复习和拓展5.1 复习指数函数的图像和性质通过复习题和小测验,巩固学生对指数函数图像和性质的理解。

指数函数(第一课时)教案

指数函数(第一课时)教案

指数函数教案(第一课时)教学目标培养学生自主探究的习惯和掌握研究函数的一般方法; 教学生从生活中提炼和学习数学,认识指数函数与生活的联系。

教学重难点重点:指数函数的概念、图像、性质及其运用。

难点:是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

教学流程一、 复习分数指数幂(作业题)1、a a a (a>0)a a a =212121))((a a a ⋅⋅讲评:不能出现21a a a ⋅,2121)(a a a ⋅⋅等,这些都是不规范的表示法。

一般情况下:(1)根式与分数指数不同时出现n mnm a a =(2)分母与负指数不同时出现 nm nmaa1=-因为根式与分数指数形式可以统一起来,要么用根式要么用分数指数一般不混用,分母与负指数情况类似。

2、)32)(32(41214121---+b a b a讲评:(1)乘法公式在分数指数幂中仍可放心使用,如思考运用题要用到完全平方公式和立方差公式;(2)注意系数:2124122419)(3)3(---=⋅=b b b3⎩⎨⎧==为偶数为奇数n a n a a annn )a (n 4、大家已经清楚对于)0(>a a x这个表达是,x 取有理数都有意义,P49阅读材料告诉我们x 取无理数也可以,也就是指数x 可以推广到实数范围。

(为后面讲指数函数定义域是R 做准备)二、新课引入(指数函数定义)问题1:请大家比较一下2xy =与xy 2=的差别(让学生注意到自变量的位置)问题2:生活中有没有哪两个变量,它们的关系像xy 2=中因变量与自变量的关系?S :细胞分裂(分裂个数与分裂次数)、拉面、叠纸(层数与折叠次数)……T 提示:能否举一些底数不是2,可以是其它常数的S :存款利息、元素衰变如)84.0(xy =、叠纸(每一张纸面积与折叠次数xy )21(=)……T总结:从上面许许多多的实例可以看出,像xy 2=,xy )21(=等是生活中很重要的一种模型,非常有研究的必要。

指数函数导学案

指数函数导学案

2.1指数函数导学案2.1.1 指数与指数幂的运算(第1课时)【教学目标】1. 掌握根式的概念以及根式的运算性质2. 让学生学会用联系的观点看待问题 【重点】有理指数幂的概念及运算. 【难点】根式的概念. 【学习探究】【预习提纲】根据以下提纲,预习教材第 48页~第50 页 1.根式(1)平方根与立方根如果a x =2,那么________;如果a x =3,那么____________. (2)n 次方根如果a x n =,那么___________,其中1>n ,且*N ∈n . 若n 是奇数,任意实数a 的n 次方根有 1个,正数的n 次方根是正数,负数的n 次方根是负数.若n 是偶数, 负数 没有偶次方根,而正数的n 次方根有 2 个,它们互为相反数.无论n 是奇数还是偶数,0的n 次方根为0 . 【感悟】结合初中所学知识,理解记忆,效果较好.2.根式式子n a 叫做____,n 叫做______,a 叫做_______.若n n a x =,则x 可以用根式表示为n n a .当n 为奇数时,=x a ;当n 为偶数时,=x a ±.【感悟】结合平方根,学习根式,理解根指数,被开方数等概念,会掌握的更快3.阅读例1,完成59页习题A 组1.2.1.1指数与指数幂的运算(第2课时)【教学目标】 有理指数幂;幂的运算.【重点】分数指数幂的概念和有理指数幂的运算性质. 【难点】1.实数指数幂的形成过程;2.利用有理指数幂的运算性质进行运算 【学习探究】【预习提纲】根据以下提纲,预习教材第50页~第53页 1. 分数指数幂(1)正数的正分数指数幂的意义212= ,312= ,232= ;nm a = )1,,.,0(>N ∈>*n n m a .(2)正数的负分数指数幂的意义12-= ,212-= ,342-= ;nm a -= )1,,,0(>N ∈>*n n m a .(3)0的分数指数幂0的正分数指数幂等于 ,0的负分数指数幂 .(4)分数指数幂的运算性质:①=∙s r a a Q).,0(∈>s r a ;②=s r a )( Q).,0(∈>s r a ; ③r b a )(∙= Q).,0(∈>s r a . 【感悟】2. 根式的运算,先把根式化成分数指数幂,然后利用 的运算性质进行运算.【感悟】【自学目标】1. 掌握指数函数的概念、图象和性质;2. 能借助于计算机画指数函数的图象;3. 能由指数函数图象归纳出指数函数的性质。

指数函数教学设计

指数函数教学设计

指数函数及其性质(第一课时)一、教材分析(一)教材的地位和作用人民教育出版社《普通高中课程标准实验教科书》$2.1.2“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的。

作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础.指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究.(二)课时划分指数函数的教学在《大纲》中共分两个课时完成。

“指数函数”的教学共分两个课时完成。

按照大纲的教学意图第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。

“指数函数”第一课时是在学习了指数与指数幂的运算基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

二、学情分析通过前一阶段的教学,学生对函数和图象的认识已有了一定的认知结构,主要体现在三个层面:知识层面:学生在已初步掌握了函数的基本性质和简单的指数运算技能。

能力层面:学生在初中已经掌握了用描点法描绘函数图象的方法,通过第一章集合与函数的概念后初步具备了数形结合的思想。

情感层面:学生对数学新内容的学习有相当的兴趣和积极性。

但探究问题的能力以及合作交流等方面发展不够均衡.三、教学目标:1、知识技能目标:使学生理解指数函数的定义,掌握指数函数的图象和性质,初步学会运用指数函数解决问题2、过程方法目标:引入,剖析、定义指数函数的过程,启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣.3、情感态度,价值观目标:通过本节课的学习,使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质,树立学科学,爱科学,用科学的精神.四、教学重点,难点1、重点:指数函数的定义、图象、性质.2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。

基本初等函数教案

基本初等函数教案

基本初等函数教案第二章基本初等函数(ⅰ)§2.1指数函数§2.1.1指数与指数幂的运算(1)[平静地说]指数是学习指数函数的预备知识,初中学生已经学习了整数指数幂的概念及运算性质。

为了讲解指数函数,需要把指数的概念扩充到有理数指数幂、实数指数幂;为了完成这个扩充,必须先学习分数指数幂的概念和运算性质,以及无理数指数幂的概念;为了学习分数指数幂的概念。

首先要介绍根式的概念,本课主要学习根式的概念以及n次方根的性质。

学生们已经学会了数字的平方根和立方根,而根形式的内容就是这些内容的推广。

因此,在介绍部首的概念时,我们应该结合这些学习内容,列出多个具体的例子供学生理解。

根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况中,都要分a?0,a?0,a?0三种情况介绍,并结合具体例子讲解,其中要强调na(a?0,n是偶数)表示一个正数,抓住这一点,理解次方根的性质就容易了。

当n为偶数时,Nan | A |(因为Nan总是一个非负数),这是本课的难点。

你可以在解释的时候先回顾一下a2?|a|这一性质,并结合具体例子加以讲解,有助于学生理解nan?|a|这一性质。

[学习目标]理解根式的概念,掌握n次方根的性质。

[教学重点]1.激进的概念。

2.n次方根的性质。

[教学困难]1、根式概念的理解;2.理解n次方根的性质。

【教学过程】一、课程介绍由p52面的考古例子中的p1??2?t5753,10000,100000时的数:这个式子,当t?6000?12?60005753?1?,???2?100005753?1?,???2?1000005753的意义究竟是什么?来导出下来要学习的内容。

数(自然数)的认知规律→ 整数→ 分数(有理数)→ 实数)可以比作对数字指数幂的认知:整数指数幂→ 分数指数幂(有理数指数幂)→ 无理数指数幂。

2、解释新课程(1)并探索n次平方根的概念。

22?4,32?9,42?16,52?25,?x2?a;其中“?”左右两边的关系是什么?另一个例子:2?8,3? 27,4? 64,5? 125,? 十、A.“在哪里?”左右之间的关系是什么?-1-33333,24?16,34? 81,44? 256,54? 625,? x4?A.“在哪里?”左右之间的关系是什么?等等:?,十、a、 X被称为a的n根。

2.1.1 指数函数的概念 课件 教案

2.1.1 指数函数的概念 课件 教案
y=1 x =1 ,是一个常函数 . 是一个常函数 y=0x ,
x
x ∉ (− ∞,0]
1 1 当a<0时:如a= -2, 则y= (-2) , x ≠ 2 , 4 ... 时
指数函数的定义: 指数函数的定义:
y=ax (a>0且a ≠ 1)
系数为1 系数为
其中x是自变量,函数的定义域是 其中 是自变量,函数的定义域是R 是自变量
09级 数学学院 09级2班
材料一
则1年后我国GDP为2000年的 1.073倍
2
2年后 3年后 …
1.073倍
3
据国务院发展研究中心 2000年发表的 未来20 年发表的《 20年我 2000年发表的《未来20年我 y 倍 国发展前景分析》判断, 国发展前景分析》判断,未 x年后 20年 我国GDP GDP( 来20年,我国GDP(国内生 产总值)年平均增长率可望 产总值)年平均增长率可望 x ∗ y 则有: =1.073 x ∈ N 达到7.3 7.3% 达到7.3%.
1.073倍
(
)
2005年日本爱知世博会把主题确定为“自然的睿智” 2005年日本爱知世博会把主题确定为“自然的睿智”,爱知世博会 年日本爱知世博会把主题确定为 最轰动的展品,是来自俄罗斯萨哈共和国的猛犸象尤卡吉尔的遗骸。 最轰动的展品,是来自俄罗斯萨哈共和国的猛犸象尤卡吉尔的遗骸。经 研究发现, 冰原巨兽”生活在18000年前, 18000年前 研究发现,这个 “冰原巨兽”生活在18000年前,由于西伯利亚永久冻 土带消融而得以重见天日。 土带消融而得以重见天日。
形如: = 形如:y=1 · a
x
自变量
常数
a > 0且a ≠ 1
辨 析 请看下面这些函数哪些是指数函数 指数函数: 指数函数 ① y = 2× 3 ④ y= Nhomakorabea1 2x

高中数学2_1指数与指数幂的运算教案版

高中数学2_1指数与指数幂的运算教案版

黑龙江省鸡西市高中数学 2.1.1 指数与指数幂的运算教案新人教版必修1课题:§2.1.1指数及指数幂的运算模式与方法启发式教学目的使学生理根式的概念,掌握n次方根的性质。

重点指数的运算难点指数的运算教学内容师生活动及时间分配一,引入课题为了讲解指数函数,需要把指数的概念扩充到实数指数幂,本小节主要学习分数指数幂的概念和运算性质,并给出了无理数指数幂的概念和性质。

2.为了学习分数指数的概念,首先要介绍根式的概念,学生在初中已学习了数的开平方、开立方和二次根式,根式的内容是这些已学内容的推广。

因此要结合这些已学内容引入根式的概念和n次方根的性质。

二、探索新知(一)引出根式的概念。

需要注意的是,当n 是奇数时,表示a的n次方根;当n是偶数时,a≥0,表示正的n次方根或0。

在两种情况下,根据n次方根的概念,都有。

也就是.教师引导学生复习初中所学的公式及相关知识引导讨论x的范围加深对于公式的理解及应用说,先开方,再乘方(同次),结果为被开方数,如果先乘方,再开方(同次),结果是什么呢?可让学生分别求出的结果,然后指出,一般地,当n 为奇数时,,当n为偶数时,。

可向学生说明,当n 是偶数时。

的结果为|a|,是因为≥0时,而则是根据绝对值的意义得出的。

课堂练习:1、填空: (1)25的平方根是 (2)27的立方根是(3)-32的五次方根为 (4)16的四次方根是2、若244(),a a a -=-则a 的取值范围是3、求下列各式的值(1)2(5) (2)33(2)- (3)44(2)- (4)2(3)π-.四,小结:教师引导学生总结并补充五、课后作业教科书P 59 4选做:练习册。

高中数学《第二章基本初等函数(Ⅰ)2.1指数函数习题2.1》430教案教学设计 一等奖名师公开课比赛优质课评比

高中数学《第二章基本初等函数(Ⅰ)2.1指数函数习题2.1》430教案教学设计 一等奖名师公开课比赛优质课评比

2.1.1(1)指数与指数幂的运算(教学设计)教学目标1、知识与技能:理解根式的概念及性质,能进行根式的运算,提高根式的运算能力。

2、过程与方法:通过由特殊到一般,由平方根、立方根,采用类比的方法过渡到n次方根;通过对“当n是偶数时,)0()0(aaaaaann”的理解,培养学生分类讨论的意识。

3、态度情感价值关:通过运算训练,培养学生严谨的思维,一丝不苟的学习习惯。

教学重点:对根式概念、性质的理解,运用根式的性质化简、运算。

教学难点:当n是偶数时,)0()0(aaaaaann的得出及运用教学过程一、创设情境,新课引入:问题(课本P58问题2):当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P与死亡年数t 之间的关系5730)21(tP.当生物死亡了5730,25730,35730,…年后,它体内碳14的含量P分别为21,2)21(,3)21(,….是正整数指数幂.它们的值分别为21,41,81,….当生物死亡6000年,10000年,100000年后,它体内碳14的含量P分别为57306000)21(,573010000)21(,5730100000)21(,这些式子的意义又是什么呢?这些正是本节课要学习的内容.二、师生互动,新课讲解:1、问题引入:(1)若ax2,则x叫a的.如:2是4的平方根一个正数的平方根有个,它们互为数;负数没有平方根;零的平方根是.(2)若ax3,则x叫a的.如:2是8的立方根,-2是-8的立方根。

一个正数的立方根是一个数,一个负数的立方根是一个数,0的立方根是.(3)类比平方根、立方根的定义,你认为,一个数的四次方等于a,则这个数叫a的;一个数的五次方等于a,则这个数叫a的;一个数的六次方等于a,则这个数叫a的;……;一个数的n次方等于a,则这个数叫a的;一般地,如果axn,则x叫a的n次方根,其中1n且*Nn. 问:(1)16的四次方根是.32的五次方根是.-32的五次方根是.(2)一个正数的n次方根有几个?一个负数的n次方根有几个?0的n次方根是多少?(给学生留点时间进行探究)得出结论:(1)一个正数的偶次方根有两个,这两个数互为相反数;负数没有偶次方根。

《指数函数》教学设计

《指数函数》教学设计

《指数函数》教学设计教学设计:指数函数一、教学目标:1.理解指数函数的概念和特点;2.掌握指数函数的概念;3.理解指数函数的性质和图像;4.能够应用指数函数解决实际问题。

二、教学重点和难点:1.理解指数函数的概念和特点;2.掌握指数函数的概念;3.理解指数函数的性质和图像。

三、教学内容及安排:1.前导活动(5分钟)教师通过提问和展示图片的方式引入指数函数的概念,让学生了解什么是指数函数,并了解指数函数在生活中的应用。

2.知识点讲解(20分钟)2.1指数函数的定义和概念教师通过讲解指数函数的定义和概念,引导学生了解指数函数与幂函数的关系和区别。

2.2指数函数的性质和图像教师通过讲解指数函数的性质和图像,引导学生了解指数函数的增减性、奇偶性、界值和图像特征。

3.计算练习(25分钟)教师通过练习题的形式,让学生巩固和应用所学知识,提高解题能力。

4.实例分析(20分钟)教师通过实例的分析,让学生了解指数函数在实际问题中的应用,培养学生的实际应用能力。

5.拓展延伸(15分钟)教师设计一些拓展问题,让学生进一步思考和拓展应用指数函数的能力。

四、教学方法:1.教师讲解法:通过讲解的方式引导学生理解指数函数的概念和特点;2.练习训练法:通过练习题的形式巩固学生对指数函数的理解和应用能力;3.实例分析法:通过实例的分析让学生了解指数函数在实际问题中的应用。

五、教学工具:1.教学课件:用于演示指数函数的概念、性质和图像;2.练习题集:用于巩固学生对指数函数的练习和应用能力。

1.学生实际操作能力评价:通过练习题的完成情况评价学生对指数函数的应用能力;2.学生思维能力评价:通过拓展问题的思考和回答情况评价学生的思维能力。

七、教学准备:1.准备教学课件和练习题集;2.整理好实例分析的案例。

八、教学过程:1.教师通过提问和展示图片的方式引入指数函数的概念,让学生了解什么是指数函数,并了解指数函数在生活中的应用。

2.教师讲解指数函数的定义和概念,并与幂函数进行对比,引导学生理解指数函数的特点。

高中数学必修一人教版教案:2.1 指数函数第一课时

高中数学必修一人教版教案:2.1 指数函数第一课时

4. (1)指数函数的定义
总结本节课解 2、抽签小组展 知 识 储 备
(2)指数函数的图象与性质

(3)应用: 比较大小
题方法及注意 示 讨 论 的 结 及 养 成 良 3

事项
果。
好的学习 分

3 、 提 出 的 问 习惯,加强 钟

题。a 1) x 是 1、 巡 视 学 生 1、 小 考 卷 上 检 查 学 生 6
2. 图象过定点_________

征 3. 自左向右图象逐渐
3. 自左向右图象逐渐________
________
4. y 2x 与y (1) x 的图象关于______轴对称 2
例:比较下列各题中两个值的大小:
(1) 1.7 2.5 , 1.73 (2) 0.80.1 , 0.80.2 (3)已知2a 2b ,比较a, b的大小
③y x
④y 2 3x
⑤y 3x1 ⑥y 3x 1 ⑦y 3x ⑧y 3x
小结:指数函数的特征__________________________________________________________
练 2.指数函数 f(x)的图像经过点(2,9),求解析式及 f(1) , f(-2)
习。

1
解决预习案中学生存在 展示学生正确 学生评价、挑 解 决 学 生 8
2. 的问题
答案及错误答 错
自主学习 分


中遇到的 钟

困惑,加深

学生对知

识的印象
导学案
1、巡视学生的 1、 学 生 先 独 在 具 体 问
3.

指数与指数幂的运算(第一课时)教案

指数与指数幂的运算(第一课时)教案

2.1 指数函数2.1.1 指数与指数幂的运算(第一课时)一、教材分析:本节是高中数学新人教版必修1的第二章2.1指数函数的内容. 二、学习目标:①理解n 次方根与根式的概念;②正确运用根式运算性质化简、求值; ③了解分类讨论思想在解题中的应用.三、教学重点:理解有理数指数幂的含义及其运算性质.四、教学难点:理解方根和根式的概念,掌握根式的性质,会进行简单的求n 次方根的运算.五、课时安排:2课时 六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:①当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少?21,,...)21(,)21(32 ②当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?573010000057301000057306000)21(,)21(,)21(③由以上的实例来推断生物体内碳14含量P 与死亡年数t 之间的关系式应该是什么?573021tp ⎪⎭⎫ ⎝⎛=考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数21,,...)21(,)21(32,573010000057301000057306000)21(,)21(,)21(,573021t p ⎪⎭⎫ ⎝⎛=的意义究竟是什么呢?这正是我们将要学习的知识.2、学生探索,尝试解决问题1:什么是一个数的平方根?什么是一个数的立方根?一个数的平方根有几个,立方根呢?若x2=a,则x叫做a的平方根.同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数.问题2:如果x4=a,x5=a,又有什么样的结论呢?如果一个数的4次方等于a,那么这个数叫做a的4次方根;如果一个数的5次方等于a,那么这个数叫做a的5次方根.问题3:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?一般地,如果x n=a,那么x叫做a的n次方根.问题4:上述结论中的n的取值有没有什么限制呢?方根的定义:一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.3、信息交流,揭示规律试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,学生完成)(1)25的平方根是±5;(2)27的立方根是3;;(3)-32的5次方根是-2;(4)16的4次方根是±2;(5)a6的立方根是a2;(6)0的7次方根是0.问题5:观察并分析以上各数的方根,你能发现什么?①以上各数的对应方根都是整数;②第(1)(4)题的答案有两个,第(2)(3)(5)(6)题的答案只有一个;③第(1)(4)题的答案中的两个根互为相反数.问题6:请仔细分析上述各题,并结合问题5中同学们发现的结论,你能否得到一个一般性的结论?一个数的奇次方根只有一个;一个数的偶次方根有两个,且互为相反数.问题7:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?因为任何一个数的偶次方都是非负数,所以负数没有偶次方根;0的n次方等于0,所以0的n次方根等于0.问题8:同学们能否把所得到的结论再总结得具体一些呢?n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次,负的n.正的n次方根与负的na>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的. 另外,我们规定:式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 问题9:利用上面所学n 次方根的知识,能否求出下列各式的值? (1)(5)2;(2)38-;(3)416;(4)33)3(-a (a>0). (1)5;(2)-2;(3)2;(4)a-3.问题10:上面的计算涉及了哪几类问题? 主要涉及了(a)n 与n a 的问题.组织学生结合例题及其解答,进行分析讨论,归纳出以下结论: (1)(n a )n =a.例如,(3)3=27,(-2)5=-32. (2)当n 是奇数时,nn a =a ;当n 是偶数时,nna =|a|=⎩⎨⎧<-≥)0(,)0(,a a a a 例如,33)2(-=-2,442=2;553=3,()883-=|-3|=3.4、类比前面的学习,给出并讲解分数指数幂的定义和运算性质 分数指数幂 正数的分数指数幂的意义 规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.(1).有理指数幂的运算性质①r a ·s r r a a +=),,0(Q s r a ∈>;②rss r a a =)(),,0(Q s r a ∈>;③srra a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题 让学生先看并一起分析讲解例题.(教材例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 4. 无理指数幂结合教材实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(二) 、合作学习让学生合作做练习,教师巡视指导然后讲解例题.【例1】求下列各式的值:(1)33)8(-;(2)2)10(-; (3)44)3(π-;(4)2)(b a -(a>b ).解:(1)33)8(-=-8;(2)2)10(-=10-=10;(3)44)3(π-=;33-=-ππ(4)2)(b a -=.b a b a -=- 例2、 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈)(3)1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-;当n =3π-.(3)||x y -,当x y ≥时,x y -;当x y <时,y x -.【小结】(1)当n 为奇数时,a a nn =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子n na 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.(三)、当堂检测 1.课本.321,54题、、p2、(P 56,例2)求值:①238;②1225-;③51()2-;④3416()81-.学生思考,口答,教师板演、点评. 2、解:① 223338(2)=2323224⨯===; ② 1122225(5)--=12()121555⨯--===; ③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==3、用分数指数幂的形式表或下列各式(a >0)①3a 2a 分析:先把根式化为分数指数幂,再由运算性质来运算.解:①117333222a a a a a +=⋅==②2223a a a =⋅28233aa +==;③421332()a a ====.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)先让学生独自回忆,然后师生共同总结.本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. 以下是本节课重要知识点及需要理解的概念: 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3. 掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.1.复习课本P 48~50内容,熟悉巩固有关概念和性质;2.课本P 59习题2.1A 组第1、2、4题. 八、教学反思:。

高中数学第二章基本初等函数§2.1.1指数(第1—2课时)教案新人教A版必修1

高中数学第二章基本初等函数§2.1.1指数(第1—2课时)教案新人教A版必修1

第二课时
提问: 1.习初中时的整数指数幂,运算性质?
an a a a a, a0 1 (a 0) ,0 0无意义
an
1 an
(a 0)
a m a n a m n ; (a m )n a mn
(an )m a mn, (ab) n a nb n
什么叫实数?
有理数,无理数统称实数 . 2.观察以下式子,并总结出规律:
三.学法与教具 1 .学法:讲授法、讨论法、类比分析法及发现法 2.教具:多媒体
四、教学设想:
第一课时
一、复习提问:
什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
归纳:在初中的时候我们已经知道:若
x2 a ,则 x 叫做 a 的平方根 . 同理,若 x3 a ,则 x 叫做 a
的立方根 .
3、教材对反函数的学习要求仅限于初步知道概念, 目的在于强化指数函数与对数函数这两种函数模
型的学习,教学中不宜对其定义做更多的拓展
.
4. 教材对幂函数的内容做了削减, 仅限于学习五种学生易于掌握的幂函数, 并且安排的顺序向后调
整,教学中应防止增加这部分内容,以免增加学生学习的负担
.
5. 通过运用计算机绘制指数函数的动态图象
思考: a n n ( n a ) n 是否成立,举例说明 .
课堂练习: 1. 求出下列各式的值
(1) 7 ( 2)7
(2) 3 (3a 3)3 ( a 1)
4
(3) (3a
3)4
2.若 a2 2a 1 a 1,求 a的取值范围 .
3.计算 3 ( 8)3 4 (3 2)4 3 (2 3)3
三.归纳小结:
即: a n
1
m

指数函数与指数幂的运算(优秀经典导学案)

指数函数与指数幂的运算(优秀经典导学案)

必修一 第二章基本初等函数(Ι) 2. 1指数函数 2. 1. 1 指数与指数幂的运算第1课时 根式一、课时目标:1. 理解n 次方根及根式的概念.(重点)2.正确运用根式的运算性质进行根式运算.(重点、难点)预习案阅读教材P 48~P 50例1的有关内容,完成下列问题: 1.如果 ()*∈>Nn n ,1,那么x 叫做a 的n 次方根.2.式子n a 叫做 ,这里n 叫做 ,a 叫做 . 3.根式的性质:(1)n 0= (n ∈N *,且n >1); (2) ()nnaN n 时,*∈= ; (3) n a n=⎪⎩⎪⎨⎧为偶数)(为奇数)(n a n a .自测练习1.(1)若x 3=8,则x =________; (2)若x 2=4,则x =________. 2. 判断正误 (正确的打“√”,错误的打“×”):(1)(-2)2=-2 ( ) (2)(3a 3)=a ( ) (3)(416)=±2 ( ) 3.化简()()33233--+x x 得()A .6B .x 2C .6或-x 2D .-x 2或6或x 24.化简下列各式: (1)()332-; (2)327-; (3)()()4433238-+-; (4)()44b a -.互动探究例1.求下列各式的值.(1)(5)2; (2)(3-3)3; (3)4(-2)4; (4)(3-π)2.[变式训练1] 已知4(a +1)4=-a -1,则实数a 的取值范围是________.例2 . 若代数式2x -1+2-x 有意义,化简4x 2-4x +1+24(x -2)4.[变式训练2] 设9612,3322++-+-<<-x x x x x 求的值.课堂检测1.481的运算结果是( )A .3B .-3C .±3D .以上都不对2.m 是实数,则下列式子中可能没有意义的是( )A .4m 2B .5mC .6m D .5-m3.下列说法:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,na 对任意a ∈R 有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中正确的是( ) A .①③④ B .②③④ C .②③ D .③④ 4.计算下列各式的值:(1)(3-5)3=________; (2)(-b )2=________. 5.当8< x <10时,化简:(x -8)2+(x -10)2.6.写出使下列各式成立的x 的取值范围. (1) 3⎝⎛⎭⎫1x -33=1x -3; (2) (x -5)(x 2-25)=(5-x )x +5.第2课时 指数幂及运算学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文审定教师:沈琼梅一、课时目标:1. 理解分数指数幂的含义.(难点)2.掌握根式与分数指数幂的互化.(重点、易错点)3.掌握有理数指数幂的运算性质.(重点) 分数指数幂的意义预习案阅读教材P 50~P 53“思考”的有关内容,完成下列问题:1.(1)规定正数的正分数指数幂的意义是:nm a = ()1,0>∈>*n N m n a ,且、;(2)规定正数的负分数指数幂的意义是:nm a -= = ()1,0>∈>*n N m n a ,且、; (3)0的正分数指数幂为 ,0的负分数指数幂 . 2.有理数指数幂的运算性质:(1)=s r a a ()Q s r a ∈>、,0; (2)()=s ra ()Q s r a ∈>、,0;(3)()=rab ()Q r b a ∈>>,0,0.3. 一般地,无理数指数幂a α (a >0,α是无理数) 是一个确定的 , 的运算性质同样适用于无理数指数幂.自测练习1.用根式表示下列各式 (式中a 均为正数):(1) 31a =________; (2) 54a =________; (3) 23-a =________.2. 化简: (1) 12743aa ⋅=________; (2)b 2b=________; (3) 331)(ab =________.互动探究例1.将下列根式化成分数指数幂的形式:(1)a a (a >0); (2) 3252)(1x x ( x >0 ); (3) 32432)(--b( b >0 ).[变式训练1] (1)用根式表示下列各式:53x ,53-x ;(2)用分数指数幂表示下列各式:a 2a ,a . (式中a 均为正数)例2. 化简下列各式 (其中字母均表示正数): (1) 2175.034303101.016])2[()87()064.0(-++-+-----; (2))3(6)(2(656131212132b a b a b a -÷-.[变式训练2] 化简:4xy yx x 3234461)3(-÷⋅-⋅.例3. 已知21a +21-a=3,求下列各式的值:(1)a +a -1; (2)a 2+a -2; (3) 21212323----aa a a .[变式训练3] 已知21a +21-a =3,在题设条件不变的情况下,求a 2 -a-2的值.课堂检测1.下列运算正确的是( )A .a ·a 2= a 2B .(ab )3=ab 3C .(a 2)3=a 6D .a 10÷a 2=a 5 2.233可化为( )A . 2B .33C .327D .273. 41)62581(-的值是________. 4.化简下列各式 (a >0,b >0):(1)3a ·4a ; (2)a a a ; (3)3a 2·a 3; (4)(3a )2·ab 3.5.已知x +y =12,x y =9,且x < y ,求21212121yx y x +-的值.2.1.2 指数函数及其性质 第1课时 指数函数的图象和性质学校:澜沧一中 学科:数学 年级:高一主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文 审定教师:沈琼梅一、课时目标:1. 理解指数函数的概念和意义.(重点)2.能借助计算器或计算机画出指数函数的图象.(难点) 3.初步掌握指数函数的有关性质.(重点、难点)预习案阅读教材P 54~P 56的有关内容,完成下列问题:1.一般地,函数 叫做指数函数,其中x 是自变量,函数的定义域为 . 2.完成下表:a >1 0<a <1自测练习1.下列以x 为自变量的函数中,是指数函数的是( )A .(4)xy =- B .xy π= C .4xy =- D .2x y a +=()10≠>a a ,且2. 判断正误(正确的打“√”,错误的打“×”)(1)函数x y 2=的定义域为(0,+∞).( ) (2)函数xy -=2在定义域内是增函数.( )(3)函数x y 3=y =3x 与x y )31(=的图象关于y 轴对称.( )互动探究当底数a 大小不定时,必须分“a >1”和“0< a < 1”两种情形讨论.指数函数y =a x 的图象如图所示,由指数函数y =a x 的图象与x =1相交于点(1,a )可知:图中的底数的大小关系为0 < a 4 < a 3 < 1 < a 2 < a 1 .①在y 轴右侧,图象从上到下相应的底数由大变小,即当a >1时,底越大,图象越靠近y 轴; ②在y 轴左侧,图象从下到上相应的底数由大变小,即当0< a < 1时,底越小,图象越靠近y 轴. 例1.若指数函数f (x )的图象经过点(2, 9),求f (x )及f (-1).[变式训练1] 若函数y =(a 2-3a +3)·a x 是指数函数,则实数a =________.例2. 若函数y =a x +b -1 (a >0,且a ≠1) 的图象经过第二、三、四象限,则一定有( )A .0< a < 1,且b >0B .a >1,且b >0C .0< a < 1,且b < 0D .a >1,且b <0[变式训练2] 函数y =a x +3+2 (a >0,且a ≠1) 的图象过定点________.例3. 求下列函数的定义域与值域:(1) 114.0-=x y ; (2) 153-=x y ; (3) y =2x +1.[变式训练3] 求下列函数的定义域和值域:(1) 4-12x y =; (2) 2)31(-=x y .课堂检测1.下列函数是指数函数的是( )A .y =(-2)xB .y =x 3C .y =-2xD .y =2x 2.指数函数y =a x 与y =b x 的图象如图所示,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =a x +1 (a >0且a ≠1) 恒过定点 ________.4.下列函数是指数函数吗?分别求函数的定义域、值域:(1)y =165+x ; (2)y =x 3)21(; (3)y =x 17.0; (4)y =π-x ; (5)y =xa )12(- ⎝⎛⎭⎫a >12且a ≠1.第2课时 指数函数及其性质的应用学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文审定教师:沈琼梅一、课时目标:1. 理解指数函数单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.(重点、难点) 2.会解指数函数型的应用题.(重点) 3.掌握指数函数的图象变换.(易错点)预习案 阅读教材P 57~P 58的有关内容,完成下列问题:1.a >10<a <1R2.如图是指数函数 ①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c自测练习1.画出函数115,3,(),()35x x x x y y y y ====的图象,说出底数与函数图象的位置关系.2. 指数函数增长模型:原有量N ,平均最长率P ,则经过时间x 后的总量y = .3. 形如 (01a a >≠且)的函数是一种 ,这是非常有用的函数模型.互动探究例1.比较下列各组数的大小:(1)1.52.5和1.53.2; (2)0.6-1.2和0.6-1.5; (3)1.70.2和0.92.1; (4)0.60.4和0.70.4.[变式训练1] 已知a =5-12,函数f (x )=a x ,若实数m ,n 满足f (m ) > f (n ),则m ,n 的大小关系为________.例2. 如果a -5x > a x +7(a > 0且a ≠1),求x 的取值范围.[变式训练2] 若a x +1> x a35)1(- (a >0,且a ≠1),求x 的取值范围.例3. 已知函数f (x )=a -12x +1(x ∈R ). (1)用定义证明:不论a 为何实数,f (x )在(-∞,+∞)上为增函数;(2)若f (x )为奇函数,求a 的值; (3)在(2)的条件下,求f (x )在区间 [1,5] 上的最小值.[变式训练3] 已知函数f (x )=3x -13x +1.(1)证明:f (x )为奇函数. (2)判断f (x )的单调性,并用定义加以证明. (3)求f (x )的值域.课堂检测1.若a =21)5.0(,b =31)5.0(,c =41)5.0(,则a ,b ,c 的大小关系是( )A .a >b >cB .a <b <cC .a >c >bD .b <c <a 2.若函数f (x )=x x -+33与g (x )=x x --33的定义域均为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数 3.函数f (x )=x )21(在区间 [-1,2] 上的最大值是________.4.画出函数y =12+x 的图象,并根据图象指出它的单调区间.2.2 对数函数 2.2.1 对数与对数运算第1课时 对数学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文 审定教师:沈琼梅一、课时目标:1. 理解对数的概念,能进行指数式与对数式的互化.(重点) 2.理解对数的底数和真数的范围.(易混点) 3.掌握对数的基本性质及对数恒等式.(难点)预习案阅读教材P 62~P 63的有关内容,完成下列问题:1.定义:一般地,如果 (0,1)a a >≠,那么x 叫做 ,记作 ,其中a 叫做对数的 ,N 叫做 .2. 定义: 我们通常将以10为底的对数叫做 , 并把常用对数 简记作 ;在科学技术中常使用以无理数e = 2.71828……为底的对数,以e 为底的对数叫 ,并把自然对数 简记作 .3.指数与对数间的关系: 当0,1a a >≠时, ⇔ .4.对数的性质: ⑴ 没有对数; ⑵ ; ⑶ =a a log .自测练习1.(1) 2x =3,则x =________; (2) 10x =5,则x =________; (3)4log 3=b a ,则 . 2. 判断正误 ( 正确的打“√”,错误的打“×”)(1)(-2)3=-8可化为log (-2)(-8)=3( ) (2)对数运算的实质是求幂指数( ) 3. (1)2713=x 的对数表达式为 ,x = ;(2) x =16log 2的指数表达式为 ,x = .4.计算:21log 16= , 2.5log 2.5= ,0.4log 1= . 互动探究例1.求下列各式中x 的值:(1) 2327log =x ; (2) 32log 2-=x ; (3) 91log 27=x ; (4) 16log 21=x .[变式训练1] 求下列各式中x 的值:(1) log x 81=2; (2) x =log 8 4; (3) lg x =-2; (4) 5 lg x =25.例2. 求下列各式中x 的值:(1) log 2 (log 5 x )=0; (2) log 3 (lg x )=1; (3) x =+-2231log )12(.[变式训练2] 若lg (ln x )=1,则x =________.课堂检测1.下列指数式与对数式互化不正确的一组是( )A .010=1与lg1=0 B .312731=-与3131log 27-= C .9log 3=2与219=3 D .5log 5=1与51=5 2.在b =log 3 (m -1) 中,实数m 的取值范围是( )A .RB .(0,+∞)C .(-∞,1)D .(1,+∞)3.ln e + lg 1=____ ____.4.若312log 19x-=,则x = .5.求下列各式的值:(1) log 3 27; (2) 1)3-2()32(log -+.第2课时 对数的运算学校:澜沧一中 学科:数学 年级:高一主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文 审定教师:沈琼梅一、课时目标:1. 理解并掌握对数的运算性质,并能运用运算性质进行对数的有关运算.(重点) 2.能用换底公式将一般对数化成自然对数或常用对数解题.(难点)预习案阅读教材P 64~P 67“思考”的有关内容,完成下列问题: 1.对数的运算性质:如果0,0,1,0>>≠>N M a a ,那么(1)a log (MN)= ; (2)aMlog =N; (3)n a log M = . 2. 换底公式: (1) = log c b log c a (a >0,且a ≠1;c >0,且c ≠1); (2)log log m n a a nb b m =;(3) log a b ·log b a = (a >0,且a ≠1;b >0,且b ≠1).自测练习1.判断正误 (正确的打“√”,错误的打“×”):(1)log a (-2)+log a (-4) =log a 8 ( ) (2)log a b 2 =2log a b ( )(3)log a (M +N ) =log a M +log a N ( ) (4)log a M N=log a M ÷log a N ( )2. 若lg 2=a ,lg 3=b ,则log 2 3=________.互动探究 例1.求下列各式的值:(1)2log 32-log 3329+log 38-5 log 53; (2)lg 25+23lg 8+lg 5·lg 20+(lg 2)2.[变式训练1] 计算:(1)2log 122+log 123; (2)lg 500-lg 5; (3)已知lg 2=0.301 0,lg 3=0.477 1,求lg 45.例2. 已知log 189=a ,18b =5,则a ,b 表示log 3645的值.[变式训练2] (1) (log 29)·(log 34)=( )A .14B .12C .2D .4(2) 已知2m =5n =10,则1m +1n=________.例3. 一种放射性物质不断变化为其他物质,每经过一年剩余的质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13(结果保留1个有效数字) (lg 2≈0.301 0,lg 3≈0.477 1)?[变式训练3] 抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0).课堂检测1.log 23·log 32的值为( )A .1B .-1C .2D .-2 2.设a >0,a ≠1,且x > y >0,n ≥2,n ∈N *,考虑下列等式:①(log a x )n =n log a x ; ②log a (xy )=(log a x )(log a y ); ③log a x y =log a x log a y ; ④log a nx =1nlog a x ; ⑤a log a x =x ;⑥log a (x +y )=log a x +log a y ; ⑦log a x -y x +y =-log a x +yx -y.其中正确等式的个数为( )A .2B .3C .4D .5 3.若3a =2,则2log 36-log 38=________.4.求下列各式的值:(1)lg 25+lg 2·lg 5+lg 2; (2)12lg 3249-43lg 8+lg 245; (3)log 535+2log 122-log 5150-log 514.2. 2. 2 对数函数及其性质 第1课时 对数函数的图象及性质学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文 审定教师:沈琼梅一、 课时目标:1. 理解对数函数的概念.(易错点)2. 掌握对数函数的图象及性质.(重点、难点)预习案阅读教材P 70~P 71的有关内容,完成下列问题:1. 一般地,函数 叫做对数函数,其中x 是自变量,函数的定义域为 . 2 a >1 0< a<1定义域为 ,值域为 .自测练习1.下列函数中,是对数函数的是________(1) y =log a x (a >0,且a ≠1); (2) y =log 2 x +2; (3) y =8log 2 (x +1); (4) y =log x 6 (x >0,且x ≠1); (5) y =log 6x .2. 判断正误 (正确的打“√”,错误的打“×”): (1)若f (x )是对数函数,则f (1)=0 ( ) (2)函数y =log 2 x 在R 上是增函数 ( )(3)函数y =log a x (a >0,且a ≠1) 的图象一定位于y 轴的右侧 ( )互动探究当底数a 大小不定时,必须分“a >1”和“0< a < 1”两种情形讨论.对数函数y =log a x 的图象如图所示,由对数函数y =log a x 的图象与y =1相交于点(a ,1)可知:图中的底数的大小关系为0 < c < d < 1 < a < b .① 在x 轴上侧,图象从右到左相应的底数由大变小,即当a >1时,底越大,图象越靠近x 轴;② 在x 轴下侧,图象从下左到右相应的底数由大变小,即当0< a < 1时,底越小,图象越靠近x 轴. 例1.求下列函数的定义域:(1) y =lg (2-x ); (2) y =1log 3(3x -2); (3) y =log (2x -1) (-4x +8).y=log b x y=log c x[变式训练1] 函数y =lg (x +1)x -1的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞) 例2. 画出下列函数的图象,并根据图象写出函数的定义域、值域以及单调区间:(1) y =log 3(x -2); (2) y =|x 21log |.[变式训练2] (1) 函数y =log 2|x |的图象大致是( )(2) 函数y=log a (2x -3)+1的图象恒过定点P ,则点P 的坐标是________.课堂检测1.下列函数是对数函数的是( )A .y =log a (2x ) (a >0,且a ≠1)B .y =log a (x 2+1) (a >0,且a ≠1)C .y =x a1log (a >0,且a ≠1) D .y =2lg x2.图中曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110,则相应于曲线C 1,C 2,C 3,C 4的a 值依次为( )A .3,43,35,110B .3,43,110,35C . 43,3,35,110D . 43,3,110,353.函数y =log a (x -2) (a >0,且a ≠1)的图象恒过定点________. 4.求下列函数的定义域:(1) f (x )=lg (4-x )x -3; (2) y =log 0.1(4x -3).第2课时 对数函数及其性质的应用学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文审定教师:沈琼梅一、课时目标:1. 了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(易混点) 2.理解并掌握对数函数的性质.(重点、难点)预习案 阅读教材P 72~P 73的有关内容,完成下列问题:1.对数函数log (0,1)a y x a a =>≠且和指数函数(0,1)x y a a a =>≠且互为 . 特点是: .2. 互为反函数的两个函数的图象关于直线 对称.3. 若函数y =f (x )图象上有一点 (a ,b ), 则 (b ,a ) 必在其反函数图象上.反之,若 (b ,a ) 在反函数图象上,则 (a ,b ) 必在原函数图象上.自测练习 1.(1)y =10x 的反函数是________; (2)y =x )54(的反函数是________; (3)y =x 31log 的反函数是________; (4)y =log 2 x 的反函数是________.2.若函数x y lg =与函数y =x a 的图象关于直线x y =对称,则a =______.互动探究例1.比较下列各组数的大小.(1)log 1245与log 1267; (2)log 123与log 153; (3)log a 2与log a 3; (4)log 120.4与log 40.6.[变式训练1] 设a =log 32,b =log 52,c =log 23,则( )A .a >c >bB .b >c >aC .c >b >aD .c >a >b例2. 解下列不等式:(1) log 2 (2x +3) > log 2 (5x -6); (2) log x 12 >1.[变式训练2] 若实数a 满足log a 23< 1,求a 的取值范围.例3. 已知函数f (x )=log a 1-mxx -1(a >0,且a ≠1,m ≠1) 是奇函数.(1)求实数m 的值; (2)探究函数f (x )在 (1,+∞) 上的单调性; (3)若a =2,试求函数f (x )在 [3,5] 上的值域.[变式训练3] 若函数f (x )=log a x (a >0,且a ≠1) 在区间 [a ,2a ] 上的最大值是最小值的3倍,求a 的值.课堂检测1.函数y =x 21log (x >0)的反函数是( )A .y =21x ,x >0 B .y =x )21(,x ∈R C .y =x 2,x ∈R D .y =2x ,x ∈R 2.函数y =log 3 x (1≤ x ≤ 9) 的值域为( )A .[0,+∞)B .RC .(-∞,2]D .[0,2]3.比较下列各组数的大小:(1)log 22________log 23; (2)log 32________1;(3)log 134________0;(4)log 43________log 34.4.若log a 25< 1 (a >0,且a ≠1),求a 的取值范围.2. 3 幂函数学校:澜沧一中 学科:数学 年级:高一 主备教师:沈琼梅 参与教师:刘英华、单祖培、尹继叶、王丝然、张露平、樊明文审定教师:沈琼梅一、课时目标:1. 了解幂函数的概念.(易错点)2.结合函数y =x ,y =x 2,y =x 3,y =x -1,y =21x 的图象,了解它们的变化情况.(重点)预习案阅读教材P 77~P 78的有关内容,完成下列问题:1.幂函数的概念:形如 的函数称为幂函数,其中 是自变量, 是常数.2321-1y =x3.(1)幂函数的图象不过第 象限,都过点 ; (2)当α>0时,幂函数在上是 ;当α< 0时,幂函数在上是 ;(3)当时,幂函数是 ;当时,幂函数是 .自测练习1.下列函数是幂函数的是________.①y =2x 2 ②y =2x ③y =x 3 ④y =x -1 2.如图所示是幂函数αx y =在第一象限的图象, 比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<αααα C .134210αααα<<<<< D .142310αααα<<<<< 互动探究例1.已知函数y =(m 2+2m -2) x m +2+2n -3是幂函数,求m ,n 的值.[变式训练1] 已知函数f (x )=(m 2+2m )xm 2+m -1,m 为何值时,f (x )是:(1)正比例函数? (2)反比例函数? (3)二次函数? (4)幂函数?例2. 已知幂函数的图象过点P ⎝⎛⎭⎫12,4. 讨论y =f (x )的定义域、值域、奇偶性、单调性,并画出草图.[0,)+∞(0,)+∞2,2α=-11,1,3,3α=-α[变式训练2] 已知函数y =32x .(1)求定义域; (2)判断奇偶性;(3)已知该函数在第一象限的图象如图所示,试补全图象,并由图象确定单调区间.例3. 比较下列各组数中两个数的大小.(1)5.0)52(与5.0)31(; (2) 1)32(--与1)53(--; (3) 43)32(与32)43(.[变式训练3] 比较大小:(1) 535.1________537.1; (2)0.71.5________0.61.5; (3) 32-2.2________32-8.1; (4)0.15-1.2________0.17-1.2;(5)0.20.6________0.30.4;(6) 87-9________76)98(.课堂检测1.下列函数中是幂函数的是( )A .y =x 2xB .y =2xC .y =x 2D .y =3x +22.函数y =35x 的图象大致是图中的( )3.下列结论中,正确的是( )A .幂函数的图象都通过点(0,0),(1,1)B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数4.比较下列各题中数值的大小:(1)1.33,1.43; (2)0.26-1,0.27-1; (3)(-5.2)2,(-5.3)2; (4)2,3,0.72.。

最新人教版高一数学《指数函数》教案15篇

最新人教版高一数学《指数函数》教案15篇

人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案15篇人教版高一数学《指数函数》教案(1)课题:§2.1.2指数函数及其性质教学任务:(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.教学重点:指数函数的的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.教学过程:一、引入课题(备选引例)1.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?到2050年我国的人口将达到多少?你认为人口的过快增长会给社会的发展带来什么样的影响?2.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?3.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?4.上面的几个函数有什么共同特征?二、新课教学(一)指数函数的概念一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.注意:指数函数的定义是一个形式定义,要引导学生辨析;注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.巩固练习:利用指数函数的定义解决(教材P68例2、3)(二)指数函数的图象和性质问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.探索研究:1.在同一坐标系中画出下列函数的图象:(1)(2)(3)(4)(5)2.从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?3.从画出的图象(、和)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?5.利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;(三)典型例题例1.(教材P56例6).解:(略)例2.(教材P57例7)解:(略)巩固练习:(教材P59习题A组第7题)三、归纳小结,强化思想本节主要学习了指数函数的图象,及利用图象研究函数性质的方法.四、作业布置1.必做题:教材P59习题2.1(A组)第5、6、8、12题.2.选做题:教材P60习题2.1(B组)第1题.人教版高一数学《指数函数》教案(2)3.1.2指数函数的概念教学设计一、教学目标:知识与技能:理解指数函数的概念,能够判断指数函数。

人教版高中数学必修一第二章教案和练习

人教版高中数学必修一第二章教案和练习

高中数学必修一第二章教案和练习§2.1.1 指数与指数幂的运算(1)学习目标1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质.学习过程一、课前准备(预习教材P 48~ P 50,找出疑惑之处)复习1:正方形面积公式为 ;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a ,那么这个数叫做a 的 ,记作 ; 如果一个数的立方等于a ,那么这个数叫做a 的 ,记作 .二、新课导学※ 学习探究探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1. 某市人口平均年增长率为1.25℅,1990年人口数为a 万,则x 年后人口数为多少万?实例2. 给一张报纸,先实验最多可折多少次?你能超过8次吗?计算:若报纸长50cm ,宽34cm ,厚0.01mm ,进行对折x 次后,求对折后的面积与厚度?问题1:国务院发展研究中心在2000年分析,我国未来20年GDP (国内生产总值)年平均增长率达7.3℅, 则x 年后GDP 为2000年的多少倍?问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t 年后体内碳14的含量P 与死亡时碳14关系为57301()2t P . 探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察: 2(2)4±=,那么2±就叫4的 ;3327=,那么3就叫27的 ;4(3)81±=,那么3±就叫做81的 .依此类推,若n x a =,,那么x 叫做a 的 .新知:一般地,若n x a =,那么x 叫做a 的n 次方根 ( n th root ),其中1n >,n *∈N .例如:328=2=.反思:当n 为奇数时, n 次方根情况如何?33=-, 记:x =当n 为偶数时,正数的n 次方根情况?例如:81的4次方根就是 ,记:.强调:负数没有偶次方根;0的任何次方根都是00=.试试:4b a =,则a 的4次方根为 ;3b a =,则a 的3次方根为 .新知:根式(radical ),这里n 叫做根指数(radical exponent ),a 叫做被开方数(radicand ).试试:计算2.反思:从特殊到一般,n结论:n a =. 当n a =;当n (0)||(0)a a a a a ≥⎧=⎨-<⎩.※ 典型例题例1求下类各式的值:(1) ; (2) ;(3; (4)a b <).变式:计算或化简下列各式.(1 (2推广:=(a ≥0).※ 动手试试练1.练2. 化简三、总结提升※ 学习小结1. n 次方根,根式的概念;2. 根式运算性质.※ 知识拓展1. 整数指数幂满足不等性质:若0a >,则0n a >.2. 正整数指数幂满足不等性质:① 若1a >,则;② 若01a <<,则01n a <<. 其中n ∈N *.1. ).A. 3B. -3C. ±3D. 812. 625的4次方根是( ).A. 5B. -5C. ±5D. 253. 化简2是( ).A. b -B. bC. b ±D. 1b4. = .5. 计算:31. 计算:(1(2)2. 计算34a a-⨯和3(8)a+-,它们之间有什么关系?你能得到什么结论?3. 对比()n n nab a b=与()n nna ab b=,你能把后者归入前者吗?§2.1.1 指数与指数幂的运算(2)1. 理解分数指数幂的概念;2. 掌握根式与分数指数幂的互化;3. 掌握有理数指数幂的运算.一、课前准备(预习教材P50~ P53,找出疑惑之处)复习1:一般地,若n x a=,则x叫做a的,其中1n>,n*∈N. 简记为:.像的式子就叫做,具有如下运算性质:n= ;= ;= .(1)m n a a = ;(2)()m n a = ;(3)()n ab = .二、新课导学※ 学习探究探究任务:分数指数幂引例:a >01025a a ==,则类似可得= ;23a = = .新知:规定分数指数幂如下*(0,,,1)mna a m n N n =>∈>; *1(0,,,1)mnmn a a m n N n a -==>∈>.试试:(1)将下列根式写成分数指数幂形式:= ; = ;= (0,)a m N *>∈.(2)求值:238; 255; 436-; 52a -.反思:① 0的正分数指数幂为 ;0的负分数指数幂为 .② 分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质: (0,0,,a b r s Q >>∈)r a ·r r s a a +=; ()r s rs a a =; ()r r s ab a a =.※ 典型例题例1 求值:2327;4316-; 33()5-;2325()49-.变式:化为根式.例2 用分数指数幂的形式表示下列各式(0)b >:(1)2b b ; (2)533b b ; (3例3 计算(式中字母均正): (1)211511336622(3)(8)(6)a b a b a b -÷-; (2)311684()m n .小结:例2,运算性质的运用;例3,单项式运算.例4 计算:(1334a a(0)a >; (2)312103652(2)()m n m n --÷- (,)m n N *∈;(3)÷小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思:①② 无理数指数幂(0,)a a αα>是无理数是一个确定的实数.实数指数幂的运算性质如何?练1. 把851323x --⎫⎪⎪⎝⎭化成分数指数幂.练2. 计算:(1443327; (2三、总结提升 学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.知识拓展放射性元素衰变的数学模型为:0t m m e λ-=,其中t 表示经过的时间,0m 表示初始质量,衰减后的质量为m ,λ为正的常数.1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. m m n na a a ÷= B. m n mn a a a ⋅= C. ()nm m n a a += D. 01n n a a -÷= 2. 化简3225的结果是( ).A. 5B. 15C. 25D. 1253. 计算(122--⎡⎤⎢⎥⎣⎦的结果是( ).A B . C.2 D .2- 4. 化简2327-= .5. 若102,104m n ==,则3210m n -= .1. 化简下列各式:(1)3236()49; (2.2.1⎛-⎝.§2.1.1 指数与指数幂的运算(练习)1. 掌握n次方根的求解;2. 会用分数指数幂表示根式;3. 掌握根式与分数指数幂的运算.一、课前准备(复习教材P48~ P53,找出疑惑之处)复习1:什么叫做根式? 运算性质?像的式子就叫做,具有性质:n=;=;= .复习2:分数指数幂如何定义?运算性质?①mna=;mna-=. 其中*0,,,1a m n N n>∈>②r sa a =;()r sa=;()sab=.复习3:填空.①n为时,(0)||...........(0)xxx≥⎧==⎨<⎩.②求下列各式的值:= ;=;= ;= ;= ;=;= .二、新课导学典型例题例1 已知1122a a-+=3,求下列各式的值:(1)1a a-+;(2)22a a-+;(3)33221122a aa a----.小结:①平方法;②乘法公式;③根式的基本性质=(a≥0)等.注意,a≥0十分重要,无此条件则公式不成立. .变式:已知11223a a--=,求:(1)1122a a-+;(2)3322a a--.例2从盛满1升纯酒精的容器中倒出13升,然后用水填满,再倒出13升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?变式:n次后?小结:① 方法:摘要→审题;探究 → 结论; ② 解应用问题四步曲:审题→建模→解答→作答. ※ 动手试试练1. 化简:11112244()()x y x y -÷-.练2. 已知x +x -1=3,求下列各式的值.(1)1122x x -+; (2)3322x x -+.练3. 已知12(),0x f x x x π=⋅>.三、总结提升 学习小结1. 根式与分数指数幂的运算;2. 乘法公式的运用.知识拓展1. 立方和差公式:3322()()a b a b a ab b +=+-+;3322()()a b a b a ab b -=-++.2. 完全立方公式:33223()33a b a a b ab b +=+++;33223()33a b a a b ab b -=-+-.1.).A. B. C. 3 D. 729 2. 354a a (a >0)的值是( ).A. 1B. aC. 15a D. 1710a3. 下列各式中成立的是( ).A .1777()n n m m= B .C 34()x y =+D .4. 化简3225()4-= . 5. 化简2115113366221()(3)()3a b a b a b -÷= .课后作业1. 已知32x a b --=+, .2. 2n a =时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)学习目标1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点).学习过程一、课前准备(预习教材P 54~ P 57,找出疑惑之处)复习1:零指数、负指数、分数指数幂怎样定义的?(1)0a = ;(2)n a -= ;(3)m n a = ;m na -= .其中*0,,,1a m n N n >∈>复习2:有理指数幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = .二、新课导学 学习探究探究任务一:指数函数模型思想及指数函数概念实例:A .细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么?B .一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x 年为自变量,残留量y 的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .反思:为什么规定a >0且a ≠1呢?否则会出现什么情况呢?试试:举出几个生活中有关指数模型的例子?探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y =讨论:(1)函数2x y =与1()2x y =的图象有什么关系?如何由2x y =的图象画出1()2x y =的图象?(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或13后呢?a >1 0<a <1图象性 质 (1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x =0时,y =1(4)在 R 上是增函数 (4)在R 上是减函数典型例题例1函数()x f x a =(0,1a a >≠且)的图象过点(2,)π,求(0)f ,(1)f -,(1)f 的值.小结:①确定指数函数重要要素是 ;② 待定系数法.例2比较下列各组中两个值的大小:(1)0.60.52,2; (2)2 1.50.9,0.9-- ;(3)0.5 2.12.1,0.5 ; (4)231-与.小结:利用单调性比大小;或间接利用中间数.练1. 已知下列不等式,试比较m 、n 的大小:(1)22()()33m n >; (2) 1.1 1.1m n <.练2. 比较大小:(1)0.70.90.80.8,0.8, 1.2a b c ===;(2)01, 2.50.4,-0.22-, 1.62.5.三、总结提升学习小结①指数函数模型应用思想;②指数函数概念;③指数函数的图象与性质;③单调法.知识拓展因为(01)x y a a a =>≠,且的定义域是R , 所以()(01)f x y a a a =>≠,且的定义域与()f x 的定义域相同. 而()(01)x y a a a ϕ=>≠,且的定义域,由()y t ϕ=的定义域确定.学习评价自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差当堂检测(时量:5分钟 满分:10分)计分:1. 函数2(33)x y a a a =-+是指数函数,则a 的值为( ).A. 1B. 2C. 1或2D. 任意值2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1)B. (0,2)C. (2,1)D. (2,2)3. 指数函数①()x f x m =,②()x g x n =满足不等式 01m n <<<,则它们的图象是( ).4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数1()19x y =-的定义域为 . 课后作业1. 求函数y =1151x x --的定义域.2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?§2.1.2 指数函数及其性质(2)学习目标1. 熟练掌握指数函数概念、图象、性质;2. 掌握指数型函数的定义域、值域,会判断其单调性;3. 培养数学应用意识.学习过程一、课前准备(预习教材P 57~ P 60,找出疑惑之处)复习1:指数函数的形式是 ,复习2:在同一坐标系中,作出函数图象的草图:2x y =,1()2x y =,5x y =,1()5x y =, 10x y =,1()10x y =.思考:指数函数的图象具有怎样的分布规律?二、新课导学典型例题例1我国人口问题非常突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.(1)按照上述材料中的1%的增长率,从2000年起,x 年后我国的人口将达到2000年的多少倍?(2)从2000年起到2020年我国人口将达到多少?小结:学会读题摘要;掌握从特殊到一般的归纳法.试试:2007年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x 年后的总产值为原来的多少倍?多少年后产值能达到120亿?小结:指数函数增长模型.设原有量N ,每次的增长率为p ,则经过x 次增长后的总量y = . 我们把形如x y ka = (,0,1)k R a a ∈>≠且的函数称为指数型函数.例2 求下列函数的定义域、值域:(1)21x y =+; (2)y = (3)110.4x y -=.变式:单调性如何?小结:单调法、基本函数法、图象法、观察法.试试:求函数y =.练1. 求指数函数212x y +=的定义域和值域,并讨论其单调性.练2. 已知下列不等式,比较,m n 的大小.(1)33m n <; (2)0.60.6m n >;(3)(1)m n a a a >> ;(4) (01)m n a a a <<<.练3. 一片树林中现有木材30000 m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 3.三、总结提升学习小结1. 指数函数应用模型(,01)x y ka k R a a =∈>≠且;2. 定义域与值域;知识拓展形如()(01)f x y a a a =>≠,且的函数值域的研究,先求得()f x 的值域,再根据t a 的单调性,列出简单的指数不等式,得出所求值域,注意不能忽视()0f x y a =>. 而形如()(01)x y a a a ϕ=>≠,且的函数值域的研究,易知0x a >,再结合函数()t ϕ进行研究. 在求值域的过程中,配合一些常用求值域的方法,例如观察法、单调性法、图象法等.1. 如果函数y =a x (a >0,a ≠1)的图象与函数y =b x (b >0,b ≠1)的图象关于y 轴对称,则有( ).A. a >bB. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x -1的定义域、值域分别是( ).A. R , RB. R , (0,)+∞C. R ,(1,)-+∞D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x 的图象关于y 轴对称B. 函数f (x )=a 1-x (a >1)在R 上递减C. 若a 2>a 21-,则a >1D. 若2x >1,则1x >4. 比较下列各组数的大小:122()5- 320.4-(); 0.763() 0.753-(). 5. 在同一坐标系下,函数y =a x ,y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 .课后作业1. 已知函数f (x )=a -221x +(a ∈R ),求证:对任何a R ∈, f (x )为增函数.2. 求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)学习目标1. 理解对数的概念;3. 掌握对数式与指数式的相互转化.学习过程一、课前准备(预习教材P 62~ P 64,找出疑惑之处)复习1:庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?复习2:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产 是2002年的2倍? (只列式)二、新课导学学习探究探究任务:对数的概念问题:截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在1%,那么多少年后人口数可达到18亿,20亿,30亿?讨论:(1)问题具有怎样的共性?(2)已知底数和幂的值,求指数怎样求呢?例如:由1.01x m =,求x .新知:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数试试:将复习2及问题中的指数式化为对数式.新知:我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数log N 简记为lg Nlog e N 简记作ln N试试:分别说说lg5 、lg3.5、ln10、ln3的意义.反思:(1)指数与对数间的关系?0,1a a >≠时,x a N =⇔ .(2)负数与零是否有对数?为什么?(3)log 1a = , log a a = .典型例题例1下列指数式化为对数式,对数式化为指数式.(1)35125= ;(2)712128-=;(3)327a =; (4) 2100.01-=; (5)12log 325=-;(6)lg0.001=3-; (7)ln100=4.606.变式:12log 32?= lg0.001=?小结:注意对数符号的书写,与真数才能构成整体. 例2求下列各式中x 的值:(1)642log 3x =; (2)log 86x =-; (3)lg 4x =; (4)3ln e x =.练1. 求下列各式的值.(1)5log 25 ; (2)21log 16; (3)lg 10000.练2. 探究log ?n a a = log ?a N a =三、总结提升①对数概念;②lg N 与ln N ;③指对互化;④如何求对数值知识拓展对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier ,1550-1617年)男爵. 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科. 可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间. 纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.:1. 若2log 3x =,则x =( ).A. 4B. 6C. 8D. 92.log = ( ).A. 1B. -1C. 2D. -23. 对数式2log (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5)4. 计算:1(3+= .5. 若log 1)1x =-,则x =________,若y =,则y =___________.课后作业1. 将下列指数式化成对数式,对数式化成指数式.(1)53243=; (2)51232-=; (3)430a = (4)1() 1.032m =; (5)12log 164=-; (6)2log 1287=; (7)3log 27a =.2. 计算:(1)9log 27; (2)3log 243; (3);(3)(2log (2; (4).§§2.2.1 对数与对数运算(2)学习目标1. 掌握对数的运算性质,并能理解推导这些法则的依据和过程;2. 能较熟练地运用对数运算法则解决问题..学习过程一、课前准备(预习教材P 64~ P 66,找出疑惑之处)复习1:(1)对数定义:如果x a N =(0,1)a a >≠,那么数 x 叫做 ,记作 .(2)指数式与对数式的互化:x a N =⇔ .复习2:幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = .复习3:根据对数的定义及对数与指数的关系解答:(1)设log 2a m =,log 3a n =,求m n a +;(2)设log a M m =,log a N n =,试利用m 、n 表示log (a M ·)N .二、新课导学学习探究探究任务:对数运算性质及推导问题:由p q p q a a a +=,如何探讨log a MN 和log a M 、log a N 之间的关系?问题:设log a M p =, log a N q =,由对数的定义可得:M =p a ,N =a∴MN =p a q a =p q a +,∴log a MN =p +q ,即得log a MN =log a M + log a N根据上面的证明,能否得出以下式子?如果 a > 0,a ≠ 1,M > 0, N > 0 ,则(1)log ()log log a a a MN M N =+;(2)log log log a a a M M N N=-; (3) log log ()n a a M n M n R =∈.反思:自然语言如何叙述三条性质? 性质的证明思路?(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式)典型例题例1用log a x , log a y , log a z 表示下列各式:(1)2log a xy z ; (2) log a .例2计算:(1)5log 25; (2)0.4log 1;(3)852log (42)⨯; (4)探究:根据对数的定义推导换底公式log log log c a c b b a=(0a >,且1a ≠;0c >,且1c ≠;0b >).试试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?动手试试练1. 设lg2a =,lg3b =,试用a 、b 表示5log 12.变式:已知lg2=0.3010,lg3=0.4771,求lg6、.练2. 运用换底公式推导下列结论.(1)log log m n a a n b b m=;(2)1log log a b b a =.练3. 计算:(1)7lg142lg lg7lg183-+-;(2)lg 243lg9.三、总结提升学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※ 知识拓展① 对数的换底公式log log log b a b N N a=; ② 对数的倒数公式1log log a b b a=. ③ 对数恒等式:log log n n a a N N =,log log m n a a n N N=,log log log 1a b c b c a =. ※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=-B .222log (10)2log (10)-=-C .222log (35)log 3log 5+=D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ).A .x =a +3b -cB .35ab x c= C .35ab x c= D .x =a +b 3-c 3 3. 若()2lg 2lg lg y x x y -=+,那么( ).A .y x =B .2y x =C .3y x =D .4y x =4. 计算:(1)99log 3log 27+=;(2)2121log log 22+= . 5. 计算:15lg 23=.1. 计算:(1; (2)2lg 2lg 2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证:1112c a b-=.§2.2.1 对数与对数运算(3)1. 能较熟练地运用对数运算性质解决实践问题;2. 加强数学应用意识的训练,提高解决应用问题的能力.一、课前准备(预习教材P 66~ P 69,找出疑惑之处)复习1:对数的运算性质及换底公式.如果 a > 0,a ≠ 1,M > 0, N > 0 ,则(1)log ()a MN = ;(2)log a M N= ; (3) log n a M = .换底公式log a b = .复习2:已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.复习3:1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿? (用式子表示)二、新课导学※ 典型例题例1 20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1);(2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)小结:读题摘要→寻找数量关系→利用对数计算.例2当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P 与生物死亡年数t 之间的关系.回答下列问题:(1)求生物死亡t 年后它机体内的碳14的含量P ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(2)已知一生物体内碳14的残留量为P ,试求该生物死亡的年数t ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(3)长沙马王墓女尸出土时碳14的余含量约占原始量的76.7%,试推算古墓的年代?反思:① P 和t 之间的对应关系是一一对应;② P 关于t 的指数函数(x P =,则t 关于P 的函数为 . ※ 动手试试练1. 计算:(1)0.21log 35-; (2)4912log 3log 2log ⋅-练2. 我国的GDP 年平均增长率保持为7.3%,约多少年后我国的GDP 在2007年的基础上翻两番?三、总结提升※ 学习小结1. 应用建模思想(审题→设未知数→建立x 与y 之间的关系→求解→验证);2. 用数学结果解释现象.※ 知识拓展在给定区间内,若函数()f x 的图象向上凸出,则函数()f x 在该区间上为凸函数,结合图象易得到1212()()()22x x f x f x f ++≥; 在给定区间内,若函数()f x 的图象向下凹进,则函数()f x 在该区间上为凹函数,结合图象易得到1212()()()x x f x f x f ++≤.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 25()a -(a ≠0)化简得结果是( ).A .-aB .a 2C .|a |D .a2. 若 log 7[log 3(log 2x )]=0,则12x =( ).A. 3B.C.D.3. 已知35a b m ==,且112a b+=,则m 之值为( ).A .15BC .D .2254. 若3a =2,则log 38-2log 36用a 表示为 .5. 已知lg20.3010=,lg1.07180.0301=,则lg2.5= ;1102= .1. 化简:(1)222lg5lg8lg5lg20(lg2)3+++; (2)()()24525log 5+log 0.2log 2+log 0.5.2. 若()()lg lg 2lg 2lg lg x y x y x y -++=++,求x y的值.§2.2.2 对数函数及其性质(1)1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.一、课前准备(预习教材P 70~ P 72,找出疑惑之处)复习1:画出2x y =、1 ()2x y =的图象,并以这两个函数为例,说说指数函数的性质.复习2:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.(列式)二、新课导学※ 学习探究探究任务一:对数函数的概念讨论:t 与P 的关系?(对每一个碳14的含量P 的取值,通过对应关系logt P =,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数)新知:一般地,当a >0且a ≠1时,函数log a y x =叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞).反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 (0a >,且1)a ≠.探究任务二:对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.试试:同一坐标系中画出下列对数函数的图象.2log y x =;0.5log y x =.反思:((2)图象具有怎样的分布规律?※ 典型例题例1求下列函数的定义域: (1)2log a y x =;(2)log (3)a yx =-;变式:求函数y =的定义域.例2比较大小:(1)ln3.4,ln8.5; (2)0.30.3log 2.8,log 2.7; (3)log 5.1,log 5.9a a .小结:利用单调性比大小;注意格式规范.※ 动手试试练1. 求下列函数的定义域.(1)0.2log (6)y x =--; (2)y .练2. 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.2log 4log 0.7和; (3)0.70.7log 1.6log 1.8和; (4)23log 3log 2和.三、总结提升※ 学习小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.※ 知识拓展对数函数凹凸性:函数()log ,(0,1)a f x x a a =>≠,12,x x 是任意两个正实数.当1a >时,1212()()()22f x f x x xf ++≤;当01a <<时,1212()()()22f x f x x xf ++≥.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2)B. 1(,)2+∞ D. 1(0,)24. 比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8. 5. 函数(-1)log (3-)x y x =的定义域是 .1. 已知下列不等式,比较正数m 、n 的大小:(1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域:(1)y =(2)y =§2.2.2 对数函数及其性质(2)1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.一、课前准备(预习教材P 72~ P 73,找出疑惑之处)复习1:对数函数log (0,1)a y x a a =>≠且图象和性质.复习2:比较两个对数的大小.(1)10log 7与10log 12 ; (2)0.5log 0.7与0.5log 0.8.复习3:求函数的定义域.(1)311log 2y x=- ; (2)log (28)a y x =+.二、新课导学※ 学习探究探究任务:反函数问题:如何由2x y =求出x ?反思:函数2log x y =由2x y =解出,是把指数函数2x y =中的自变量与因变量对调位置而得出的. 习惯上我们通常用x 表示自变量,y 表示函数,即写为2log y x =.新知:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ) 例如:指数函数2x y =与对数函数2log y x =互为反函数.试试:在同一平面直角坐标系中,画出指数函数2x y =及其反函数2log y x =图象,发现什么性质?反思: (1)如果000(,)P x y 在函数2x y =的图象上,那么P 0关于直线y x =的对称点在函数2log y x =的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称.※ 典型例题例1求下列函数的反函数:(1) 3x y =; (2)log (1)a y x =-.小结:求反函数的步骤(解x →习惯表示→定义域)变式:点(2,3)在函数log (1)a y x =-的反函数图象上,求实数a 的值.例2溶液酸碱度的测量问题:溶液酸碱度pH 的计算公式lg[]pH H +=-,其中[]H +表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系? (2)纯净水7[]10H +-=摩尔/升,计算其酸碱度.小结:抽象出对数函数模型,然后应用对数函数模型解决问题,这就是数学应用建模思想.※ 动手试试练1. 己知函数()x f x a k =-的图象过点(1,3)其反函数的图象过点(2,0),求()f x 的表达式.练2. 求下列函数的反函数.(1) y =x (x ∈R );(2)y =log a 2x(a >0,a ≠1,x >0)三、总结提升※ 学习小结① 函数模型应用思想;② 反函数概念.※ 知识拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x 的值,y 都有唯一的值和它对应. 对于一个单调函数,反之对应任意y 值,x 也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域 学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 函数0.5log y x =的反函数是( ). A. 0.5log y x =- B. 2log y x =C. 2x y =D. 1()2x y =2. 函数2xy =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减3. 函数2(0)y x x =<的反函数是( ). A. (0)y x x =±> B. (0)y x x => C. (0)y x x =-> D. y x =±4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log a y x =,2log a y x =3log a y x =, 4log a y x =的图象,则底数之间的关系为 .课后作业有占总数12的细胞每小时分裂一次,即由1个细1. 现有某种细胞100个,其中胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg20.301==).。

指数函数的图像和性质教案设计

指数函数的图像和性质教案设计

指数函数的图像和性质教案设计第一章:指数函数的定义与性质1.1 指数函数的定义引导学生回顾函数的概念,引入指数函数的定义。

通过实际例子,让学生理解指数函数的形式和特点。

1.2 指数函数的性质分析指数函数的单调性,奇偶性,周期性等基本性质。

通过图表和实际例子,让学生直观地理解指数函数的性质。

第二章:指数函数的图像2.1 指数函数图像的特点引导学生绘制简单的指数函数图像,观察其特点。

分析指数函数图像的渐近线和拐点等特殊点。

2.2 指数函数图像的应用通过实际例子,让学生了解指数函数图像在实际问题中的应用,如人口增长、放射性衰变等。

第三章:指数函数的导数3.1 指数函数的导数公式引导学生回顾导数的基本概念,引入指数函数的导数公式。

通过例题和练习,让学生掌握指数函数的导数计算方法。

3.2 指数函数的单调性分析指数函数的单调性,引导学生理解导数与单调性的关系。

通过实际例子,让学生了解如何利用导数判断指数函数的单调性。

第四章:指数函数的极限4.1 指数函数的极限定义引导学生回顾极限的概念,引入指数函数的极限定义。

通过实际例子,让学生理解指数函数在趋近于无穷大或无穷小时的极限值。

4.2 指数函数的极限性质分析指数函数的极限性质,如单调性和连续性。

通过练习题,让学生掌握指数函数极限的计算方法。

第五章:指数函数的应用5.1 指数函数在实际问题中的应用通过实际例子,让学生了解指数函数在实际问题中的应用,如人口增长、放射性衰变等。

引导学生运用指数函数解决实际问题,培养学生的应用能力。

5.2 指数函数在其他学科中的应用引导学生了解指数函数在其他学科中的应用,如物理学中的放射性衰变、生物学中的种群增长等。

培养学生的跨学科思维和综合运用能力。

第六章:指数函数与对数函数的关系6.1 对数函数的定义引导学生回顾对数函数的概念,引入对数函数的定义。

通过实际例子,让学生理解对数函数的形式和特点。

6.2 指数函数与对数函数的关系分析指数函数与对数函数的互为反函数关系。

必修1教案2.1.2指数函数及其性质(一)

必修1教案2.1.2指数函数及其性质(一)

2.1.2 指数函数及其性质(一)(一)教学目标1.知识与技能了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象.2.过程与方法能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.(二)教学重点、难点1.教学重点:指数函数的概念和图象.2.教学难点:指数函数的概念和图象.(三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性.(四)教学过程教学环节教学内容师生互动设计意图复习引入1. 在本章的开头,问题(1)中时间x与GDP值中的 1.073(20)xy x x=∈≤与问题(2)中时间t和C-14含量P的对应关系]t51301P=[()2,请问这两个函数有什么共同特征.2. 这两个函数有什么共同特征157301][()]2tP=t57301把P=[()变成2,从而得出这学生思考回答函数的特征.由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力.两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).形成概念理解概念指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .回答:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y +=(2)(2)xy =- (3)2xy =-(4)xy π=(5)2y x = (6)24y x=(7)xy x =(8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足学生独立思考,交流讨论,教师巡视,并注意个别指导,学生探讨分析,教师点拨指导.由特殊到一般,培养学生的观察、归纳、概括的能力.使学生进一步理解指数函数的概念.(0,1)x y a a a =>≠且的形式才能称为指数函数,a 为常数,如:,,xy x =1xxy=2-3,y=253,31x x y y +==+等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数 .深化概念我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究xy a =(a >1)的图象, 用计算机完成以下表格,并且用计算机画出函数2xy =的图象x3.00- 2.50- 2.00- 1.50-2x y =18-141.00- 0.00 0.50 1.00 1.502.00 121 2 4再研究先来研究xy a =(0<a <1)的图象,用计算机完成以下表格并绘出函数1()2xy =的图象.x2.50- 2.00- 1.50- 1.00- 0.001()2x y =141211.00 1.502.00 2.50学生列表计算,描点、作图.教师动画演示.学生观察、归纳、总结,教师诱导、点评. 通过列表、计算使学生体会、感受指数函数图象的化趋势,通过描点,作图培养学生的动手实践能力.不同情况进行对照,使学生再次经历从特殊到一般,由具体到抽象的思维过程.培养学生的归纳概括能力.从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x x x x y y y y ====的函数图象.2 4所以0(0)1f π==,133(0)f ππ==,11(3)f ππ--==.归纳 总结1、理解指数函数(0),xy a a =>101a a ><<注意与两种情况2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .学生先自回顾反思,教师点评完善. 通过师生的合作总结,使学生对本节课所学知识的结构有一个明晰的认识,形成知识体系.课后 作业作业:2.1 第四课时 习案 学生独立完成 巩固新知 提升能力备选例题例1 指出下列函数哪些是指数函数: (1)x y 4=; (2)4x y =; (3)x y 4-=; (4)xy )4(-=; (5)xy π=; (6)24x y =;(7)x x y =; (8),21()12(>-=a a y x且)1≠a . 【分析】 根据指数函数定义进行判断. 【解析】 (1)、(5)、(8)为指数函数; (2)是幂函数(后面2.3节中将会学习); (3)是1-与指数函数x 4的乘积;(4)底数04<-,∴不是指数函数; (6)指数不是自变量x ,而底数是x 的函数; (7)底数x 不是常数. 它们都不符合指数函数的定义.【小结】准确理解指数函数的定义是解好本问题的关键.例 2 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系,⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .解:⑴作出图像,显示出函数数据表比较函数y =12+x 、y =22+x 与y =x2的关系:将指数函数y =x2的图象向左平行移动1个单位长度,就得到函数y =12+x 的图象,将指数函数y =x2的图象向左平行移动2个单位长度,就得到函数y =22+x 的图象⑵作出图像,显示出函数数据表比较函数y =12-x 、y =22-x 与y =x 2的关系:将指数函数y =x 2的图象向右平行移动1个单位长度,就得到函数y =12-x 的图象,将指数函数y =x 2的图象向右平行移动2个单位长度,就得到函数y =22-x 的图象小结:⑴当m >0时,将指数函数y =x 2的图象向右平行移动m 个单位长度,就得到函数y =m x -2的图象;当m >0时,将指数函数y =x 2的图象向左平行移动m 个单位长度,就得到函数y =2x m +的图象。

指数函数教案

指数函数教案

2.1.2指数函数及其性质一. 三维目标:1.知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质. ③体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力. 3.过程与方法展示函数图象,让学生通过观察,进而研究指数函数的性质.二.重、难点重点:指数函数的概念和性质及其应用. 难点:指数函数性质的归纳,概括及其应用. 三、学法与教具:①学法:观察法、讲授法及讨论法. ②教具:多媒体. 四、教学设想:一、 情境设置①通过折纸问题和截绳问题及在本章的开头,问题(2)的t 1中时间t和C-14含量P的对应关系P=[(2,请问这三个函数有什么共同特征.②这三个函数有什么共同特征:关系式中的底数是一个正数,自变量为指数,即都可以用x y a =(a >0且a ≠1来表示). 二、讲授新课(一)指数函数的定义:一般地,函数x y a =(a >0且a ≠1)叫做指数函数, 其中x 是自变量,函数的定义域为R .练一练:在下列的关系式中,哪些不是指数函数,为什么?(1)4x y = (2)x y π= (3)xy 2432⎪⎪⎭⎫ ⎝⎛∙= (4)23.0x y = (5)415+=x y 小结:指数函数的判断依据:一看底数是否是一个大于0且不为1的常数;二看自变量是否是一个x 且在指数位置上。

想一想:为什么要规定底数a 要大于0且不等于1呢?(引导学生发现)000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,x y == 是一个常量,没有研究的意义,故在规定了a 的范围后,函数x y a =对于任意的实数均有意义,即它的定义域为R 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.1.2 指数函数一、教材研究(另辟蹊径)前面已经学习过了集合和函数的概念,还有函数的一些基本性质。

而基本初等函数分为幂函数,指数函数,对数函数,三角函数,而要学好指数函数,就要先打好指数与指数幂运算的基础,指数函数和对数函数算是一种互逆运算,在高考当中也占着很大的比例。

二、学情研究(学生基础)踏实2班的学生基本比较弱,这节课要上得认真,细致,速度放慢,让学生理解才可以继续往下学习指数函数。

志存5班学生基础比较扎实,强调书本知识还可以做一些提升。

从学生思维特点和认知结构看,通过学习本章第一节,学生已经了解了指数以及指数幂的运算,掌握了集合的基本性质,知道了集合的关系和运算,这三者形成了学生思维的“最近发展区”。

另外,部分学生基础很差,因此上课进度要慢,分两课时上。

虽然部分学生学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯。

通过对子、小组交流,联系生活中实例可以帮助学生突破难点。

三、目标点击(简洁明确)学习目标:①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质;③体会从具体到一般的数学讨论方式及数形结合的思想.四、重点筛选(知识点、训练点)学习重点:(1)指数函数的定义(2)指数的运算;学习难点:指数函数与图形相结合五、拓展链接(主题化、生活化)情境1:我们来考虑一个与医学有关的例子:大家对“水痘”应该并不陌生,它与其他的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种.我们来看一种球菌的分裂过程: 某种球菌分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个,…一个这样的球菌分裂x次后,得到的球菌的个数f(x)与x的关系式是f(x)=2x.情景2:某种机器设备每年按6%的折旧率折旧,设机器的原来价值为1,经过x年后,机器的价值为原来的f(x)y倍,则f(x)与x的关系为f(x)=0.94x.六、心灵随笔(真实触感)只有了解学生的学习基本,成绩,学生的学习方法,并且吃透教材,才能因材施教,才能更好地帮助每一位学生,让每一位学生都能有进步。

七、 学法研究 学习过程:教师:课前下发自学单;学生:阅读教材,深入思考,先自主研究再小组交流自学单:【自学提纲】知识链接:一、新情境、新问题:情境1:我们来考虑一个与医学有关的例子:大家对“水痘”应该并不陌生,它与其他的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种.我们来看一种球菌的分裂过程:某种球菌分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个,…一个这样的球菌分裂x 次后,得到的球菌的个数f (x )与x 的关系式是f (x )=2x .情景2:某种机器设备每年按6%的折旧率折旧,设机器的原来价值为1,经过x 年后,机器的价值为原来的f (x )y 倍,则f (x )与x 的关系为f (x )=0.94x . 二、复习回顾:1、整数指数幂的概念。

① 33= ② 03= ③ 33-= ④ 3n =2、运算性质:① 3233⨯= ②323=() ③ 3(3)x = ④ m n a a ÷= ⑤ n a b=() 三、新知探究:二、自主探索,尝试解决 指数函数的概念:一般地,函数y=a x (a>0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .问题2:为什么指数函数对底数有“a>0,且a ≠1”的要求呢?【设计意图】学生先阅读教材相当于预习,预习是为了使学生通过自主学习形成知识的初步印象,预习中产生的问题能激发学生的求知欲.自学单中设置的问题体现了新旧知识的联系,使学生明确应有的知识储备.并且通过对几个生活中函数模型实例的分析,让学生充分回忆初中所学函数知识,在体会函数应用的同时深刻理解函数的本质是刻画两个变量之间相互“依赖”关系。

还体现了由特殊到一般的思维发展过程,引领学生思考这之间的区别和联系.同时培养了学生自主学习的能力.教师:让学生完成自学单中并交流。

学生:研究、合作、分享,提出疑问。

自学单:三、信息交流,揭示规律问题3:你能类比以前研究函数性质的思路,提出研究指数函数性质的方法和内容吗?研究方法:.研究内容:定义域、值域、、、.问题4:如何来画指数函数的图象呢?画函数图象通常采用:、、.有时,也可以利用函数的有关性质画图.问题5:选取底数a的若干不同的值,在同一平面直角坐标系内作出相应的指数函数的图象.观察图象,问题6:从特殊到一般,指数函数y=a x(a>1)有哪些性质?并类比得出y=a x(0<a<1)的性质.指数函数y=a x(a>0且a≠1)的图象和性质如下表所示:a>1 0<a<1图象性质(1)定义域:(2)值域:(3)过定点,即x=0时,y=1(4)在上是增函数(4)在上是减函数强调:利用函数图象研究函数性质是一种直观而形象的方法,记忆指数函数性质时可以联想它的图象,记住性质的关键在于要脑中有图.四、运用规律,解决问题【例1】已知指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,π),求f(0),f(1),f(-3)的值.【例2】指出下列函数哪些是指数函数.(1)y=4x;(2)y=x4;(3)y=-4x;(4)y=(-4)x;(5)y=πx;(6)y=4x2;(7)y=x x;(8)y=(2a-1)x(a>,且a≠1).五、变式演练,深化提高1.若函数y=(a2-3a+3)·a x是指数函数,则a=.2.函数f(x)=(a2-1)x在R上是减函数,则a的取值范围是( )A.|a|>1B.|a|<2C.a<D.1<|a|<3.函数f(x)=a x(a>0,且a≠1)对于任意的实数x,y都有( )A.f(xy)=f(x)f(y)B.f(xy)=f(x)+f(y)C.f(x+y)=f(x)f(y)D.f(x+y)=f(x)+f(y)4.函数f(x)=a x与g(x)=ax-a的图象大致是( )5.若a>1,-1<b<0,则函数y=a x+b的图象一定在( )A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限D.第一、二、四象限八、自学单2.1 指数函数2.1.2指数函数及其性质(第一课时)山高实验中学执笔人王小雯学习目标①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质;③体会从具体到一般的数学讨论方式及数形结合的思想.合作学习一、设计问题,创设情境情境1:我们来考虑一个与医学有关的例子:大家对“水痘”应该并不陌生,它与其他的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种.我们来看一种球菌的分裂过程: 某种球菌分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个,…一个这样的球菌分裂x次后,得到的球菌的个数f(x)与x的关系式是f(x)=2x.情景2:某种机器设备每年按6%的折旧率折旧,设机器的原来价值为1,经过x年后,机器的价值为原来的f(x)y倍,则f(x)与x的关系为f(x)=0.94x.问题1:你能从上面的两个例子中得到的关系式里找到什么异同点吗?共同点:;不同点:.二、自主探索,尝试解决指数函数的概念:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域为R.问题2:为什么指数函数对底数有“a>0,且a≠1”的要求呢?三、信息交流,揭示规律问题3:你能类比以前研究函数性质的思路,提出研究指数函数性质的方法和内容吗?研究方法:.研究内容:定义域、值域、、、.问题4:如何来画指数函数的图象呢?画函数图象通常采用:、、.有时,也可以利用函数的有关性质画图.问题5:选取底数a的若干不同的值,在同一平面直角坐标系内作出相应的指数函数的图象.观察图象,问题6:从特殊到一般,指数函数y=a x(a>1)有哪些性质?并类比得出y=a x(0<a<1)的性质.指数函数y=a x(a>0且a≠1)的图象和性质如下表所示:a>1 0<a<1图象性质(1)定义域: (2)值域: (3)过定点 ,即x=0时,y=1 (4)在 上是增函数 (4)在 上是减函数强调:利用函数图象研究函数性质是一种直观而形象的方法,记忆指数函数性质时可以联想它的图象,记住性质的关键在于要脑中有图.四、运用规律,解决问题【例1】已知指数函数f (x )=a x (a>0,且a ≠1)的图象经过点(3,π),求f (0),f (1),f (-3)的值.【例2】指出下列函数哪些是指数函数. (1)y=4x ;(2)y=x 4; (3)y=-4x ;(4)y=(-4)x ; (5)y=πx ;(6)y=4x 2;(7)y=x x ;(8)y=(2a-1)x (a>,且a ≠1).五、变式演练,深化提高1.若函数y=(a 2-3a+3)·a x 是指数函数,则a= .2.函数f (x )=(a 2-1)x 在R 上是减函数,则a 的取值范围是( ) A.|a|>1 B.|a|<2 C.a< D.1<|a|<3.函数f (x )=a x (a>0,且a ≠1)对于任意的实数x ,y 都有( ) A.f (xy )=f (x )f (y ) B.f (xy )=f (x )+f (y )C.f (x+y )=f (x )f (y )D.f (x+y )=f (x )+f (y ) 4.函数f (x )=a x 与g (x )=ax-a 的图象大致是( )5.若a>1,-1<b<0,则函数y=a x +b 的图象一定在( )A.第一、二、三象限B.第一、三、四象限C.第二、三、四象限D.第一、二、四象限九、课后反思(弥补提升)只有完全了解了学生的特性,水平,才能更好地帮助到学生。

相关文档
最新文档