必修一指数函数及其性质 第1课时 教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1(1)指数函数及性质(教案)
邢蕾
一、教学目标
1. 理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用.
2. 通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.
3. 通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.
二、教学重点和难点
重点是理解指数函数的定义,把握图象和性质.
难点是认识底数对函数值影响的认识.
三、教学过程
一、新课引入
有一天,小明去公司应聘,试用期十天,老板说:一天给10元。小明说:要不这样吧,你第一天给我两角,第二天给我两角的二次方,第三天给我两角的三次方,以此类推,到第十天。老板犹豫了一下同意了。请同学们一次写出这十天内小明每天获得的报酬。
在以上实例中我们可以看到这个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数.
二、师生互动,新课讲解:
1.定义:形如的函数称为指数函数.
2.几点说明
(1) 关于对的规定:
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问
题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在.
若x a对于都无意义,若则无论取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定且.
(2)关于指数函数的定义域
教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为.扩充的另一个原因
是因为使它更具代表更有应用价值.
(3)关于是否是指数函数的判断
指数函数的定义是形式定义,就必须在形式上一模一样才行,三点:系数为一,底数为常数,指数是自变量
学生课堂练习1:根据指数函数的定义判断下面函数是否是指数函数.
(1), (2), (3)
32x
y=(4)3
2x
y•
=, (5).
解:指出只有(1)和(3)是指数函数,
然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.
3.归纳性质
(1)在同一坐标系中分别作出函数y=x2,y=
x
⎪
⎭
⎫
⎝
⎛
2
1
的图象.
列表如下: x … -3 -2 -1 -0. 5 0 0.5 1 2 3 … y=x 2
… 0.13 0.25 0.5
0.71 1 1.4
2
4
8
…
y=x
⎪⎭
⎫
⎝⎛21 … 8 4
2
1.4
1
0.71 0.5 0.25 0.13 …
(2)一般地,指数函数(0,1)x
y a a a =>≠且的图象和性质如下表所示.
1a > 01a <<
图 象
定义域 R
值域
(0)∞,+
性质
(1)过定点(0,1),即0x =时,1y =.
(2)在R 上是增函数
(2)在R 上是减函数
(3)指数函数的图象的特征与性质
例1 已知指数函数(0,1)x
y a a a =>≠且的图象经过点(3,π),求)0(f ,)1(f ,)3(-f 的值.
例2:比较下列各题中两个值的大小: (1)35
.27.1,7
.1 (2)2.01.08.0,8.0-- (3)1.70.3,0.93.1
解:利用函数单调性
①5.27.1与37.1的底数是1.7,它们可以看成函数 y=x 7.1,当x=1.7和3时的函数值;
因为1.7>1,所以函数y=x 7.1在R 是增函数,而2.5<3,所以,5.27.1<37.1;
②1.08.0-与2.08.0-的底数是0.8,它们可以看成函数 y=x 8.0,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=x 8.0在R 是减函数,而-0.1>-0.2,所以,1.08.0-<2.08.0-;
③在下面个数之间的横线上填上适当的不等号或等号:3.07.1>1;1.39.0<1;3.07.1>1.39.0 小结:对同底数幂大小的比较用的是指数函数的单调性,必须要明确所给的两个值是哪个指数函数的两个函数值;对不同底数是幂的大小的比较可以与中间值进行比较.
三、课堂小结,巩固反思:
1、理解并掌握指数函数的图像与性质。
2、会根据指数函数的单调性比较两个数(式)的大小。 四、布置作业: