2016年湖南省长沙市中考数学模拟试卷(二)(解析版)
2016年湖南省长沙市数学中考模拟试卷【答案】(二)
2016年湖南省长沙市中考数学模拟试卷(二)一、选择题(本题共12个小题,每小题3分,共36分)1.(3分)数轴上的点A到原点的距离是3,则点A表示的数为()A.3或﹣3 B.6 C.﹣6 D.6或﹣62.(3分)下列计算正确的是()A.a3+a4=a7 B.a3•a4=a7 C.(a3)4=a7D.a6÷a3=a23.(3分)2015年10月18日,TCL2015长沙国际马拉松赛正式开赛,来自国内外的1.5万余名选手在长沙这座美丽的城市中奔跑.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米,将数据42千米用科学记数法表示为()A.42×103米B.0.42×105米 C.4.2×104米D.4.2×105米4.(3分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°5.(3分)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是()A.y=3(x﹣2)2+2 B.y=3(x+2)2﹣2 C.y=3(x﹣2)2+2 D.y=3(x+2)2+2 6.(3分)要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠17.(3分)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150° D.180°8.(3分)下列说法正确的是()A.随机抛掷一枚硬币,反面一定朝上B.数据3,3,5,5,8的众数是8C.某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖D.想要了解长沙市民对“全面二孩”政策的看法,宜采用抽样调查9.(3分)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5) B.(2.5,5)C.(3,5) D.(3,6)10.(3分)如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为()A.x l=1,x2=2 B.x l=﹣2,x2=﹣1 C.x l=1,x2=﹣2 D.x l=2,x2=﹣111.(3分)为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元B.亏了12元C.赚了20元D.亏了20元12.(3分)若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有2016个,且具有“波动性质”,则这2016个数的和为()A.﹣64 B.0 C.18 D.64二、填空题(本题共6个小题,每小题3分,共18分)13.(3分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).14.(3分)有一组数据如下:2,a,4,6,8,已知它们的平均数是5,那么这组数据的方差为.15.(3分)已知x,y满足方程组,则x﹣y的值是.16.(3分)若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为.17.(3分)如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O 上一点,若∠CAB=55°,则∠ADC的大小为(度).18.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是.三、解答题(本题共8个小题,第19、20小题,每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.(6分)计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.20.(6分)先化简,再求值:﹣,其中a=﹣1.21.(8分)为了认真贯彻教育部关于与开展“阳光体育”活动的文件精神,实施全国亿万学生每天集体锻炼一小时活动,吸引同学们走向操场、走进大自然、走到阳光下,积极参加体育锻炼,掀起校园内体育锻炼热潮,我市各学校结合实际情况举办了“阳光体育”系列活动,为了解“阳光体育”活动的落实情况,我市教育部门在红旗中学2000名学生中,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)参加调查的人数共有人,在扇形统计图中,表示“C”的扇形的圆心角为度;(2)补全条形统计图,并计算扇形统计图中m的值;(3)若要从该校喜欢“D”项目的学生中随机选择8名进行节目排练,则喜欢该项目的小丽同学被选中的概率是多少?22.(8分)如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.23.(9分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2013年的绿色建筑面积约为950万平方米,2015年达到了1862万平方米.若2014年、2015年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2016年是“十三五”规划的开局之年,我市计划推行绿色建筑面积达到2400万平方米.如果2016年仍保持相同的年平均增长率,请你预测2016年我市能否完成计划目标?24.(9分)如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.25.(10分)已知抛物线y1=x2+bx+c的顶点坐标为(﹣1,1),直线1的解析式为y 2=2mx+3m2+4nm+4n2,且l与x轴、y轴分别交于A、B两点.(1)求b、c的值;(2)若函数y1+y2的图象与x轴始终有公共点,求直线l的解析式;(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB为等腰角形?若存在,直接写出点P的坐标;若不存在,请说明理由.26.(10分)在平面直角坐标系中,点C的坐标为(0,1.5),我们把以点C为圆心,半径为1.5的圆称为点C的朋友圈,圆周上的每一个点叫做点C的一个好友.(1)写出点C的两个好友坐标;(2)直线l的解析式是y=x﹣4,与x轴、y轴分别交于A、B两点,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当点C的朋友圈有好友落在直线上时,直线将受其影响,求在点C向下运动的过程中,直线受其影响的时间;(3)抛物线y=ax2+bx+c过原点O和点A,且顶点D恰好为点C的好友,连接OD.E为⊙C上一点,当△DOE面积最大时,求点E的坐标,此时△DOE的面积是多少?2016年湖南省长沙市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.(3分)数轴上的点A到原点的距离是3,则点A表示的数为()A.3或﹣3 B.6 C.﹣6 D.6或﹣6【解答】解:设这个数是x,则|x|=3,解得x=+3或﹣3.故选:A.2.(3分)下列计算正确的是()A.a3+a4=a7 B.a3•a4=a7 C.(a3)4=a7D.a6÷a3=a2【解答】解:A、a3与a4是相加,不是相乘,不能利用同底数幂的乘法计算,故本选项错误;B、a3•a4=a7,正确;C、应为(a3)4=a3×4=a12,故本选项错误;D、应为a6÷a3=a6﹣3=a3,故本选项错误.故选B.3.(3分)2015年10月18日,TCL2015长沙国际马拉松赛正式开赛,来自国内外的1.5万余名选手在长沙这座美丽的城市中奔跑.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米,将数据42千米用科学记数法表示为()A.42×103米B.0.42×105米 C.4.2×104米D.4.2×105米【解答】解:将42千米用科学记数法表示为4.2×104,故选C.4.(3分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°【解答】解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°﹣∠BAC=40°,故选:A.5.(3分)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是()A.y=3(x﹣2)2+2 B.y=3(x+2)2﹣2 C.y=3(x﹣2)2+2 D.y=3(x+2)2+2【解答】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向下、向左平移2个单位(﹣2,﹣2),所以在新坐标系中此抛物线的解析式为y=3(x+2)2﹣2.故选:B.6.(3分)要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠1【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:A.7.(3分)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150° D.180°【解答】解:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.8.(3分)下列说法正确的是()A.随机抛掷一枚硬币,反面一定朝上B.数据3,3,5,5,8的众数是8C.某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖D.想要了解长沙市民对“全面二孩”政策的看法,宜采用抽样调查【解答】解:A:抛硬币是一个随机事件,不能保证反面朝上,所以A错误;B:本组数据应该有两个众数,3、5都出现了两次,所以B错误;C:获奖概率为是一个随机事件,所以C错误;D:对长沙市民的调查涉及的人数众多,适合用抽样调查,所以D正确.故选:D.9.(3分)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5) B.(2.5,5)C.(3,5) D.(3,6)【解答】解:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选:B.10.(3分)如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为()A.x l=1,x2=2 B.x l=﹣2,x2=﹣1 C.x l=1,x2=﹣2 D.x l=2,x2=﹣1【解答】解:由图可知,两函数图象的交点坐标为(1,2),(﹣2,﹣1),故关于x的方程kx+b=的解为x l=1,x2=﹣2.故选C.11.(3分)为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元B.亏了12元C.赚了20元D.亏了20元【解答】解:设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,则x+20%x=240,解得x=200,y﹣20%y=240,解得y=300,∴240×2﹣(200+300)=﹣20(元).即:这个服装店卖出这两件服装亏本了,亏本20元.故选:D.12.(3分)若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有2016个,且具有“波动性质”,则这2016个数的和为()A.﹣64 B.0 C.18 D.64【解答】解:由题意得:a n+1=a n+a n+2,a n+2=a n+1+a n+3,a n+3=a n+2+a n+4,三式相加,得:a n+a n+2+a n+4=0,同理可得:a n+1+a n+3+a n+5=0,以上两式相加,可知:该数列连续六个数相加等于零,2016是6的倍数,所以结果为零.故选:B.二、填空题(本题共6个小题,每小题3分,共18分)13.(3分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件AF=CE,使四边形AECF是平行四边形(只填一个即可).【解答】解:添加的条件是AF=CE.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.故答案为:AF=CE.14.(3分)有一组数据如下:2,a,4,6,8,已知它们的平均数是5,那么这组数据的方差为4.【解答】解:a=5×5﹣2﹣4﹣6﹣8=5,s2=[(2﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(8﹣5)2]=4.故答案为:4.15.(3分)已知x,y满足方程组,则x﹣y的值是﹣1.【解答】解:,②﹣①得:x﹣y=﹣1.故答案为:﹣1.16.(3分)若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为0或﹣1.【解答】解:令y=0,则kx2+2x﹣1=0.∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,∴关于x的方程kx2+2x﹣1=0只有一个根.①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0,解得,k=﹣1.综上所述,k=0或﹣1.故答案为:0或﹣1.17.(3分)如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O 上一点,若∠CAB=55°,则∠ADC的大小为35(度).【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=55°,∴∠B=90°﹣∠CAB=35°,∴∠ADC=∠B=35°.故答案为:35°.18.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是6.【解答】解:Rt△ABC中,由勾股定理求AB==10,由旋转的性质,设AD=A′D=BE=x,则DE=10﹣2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=3,∴S=DE×A′D=×(10﹣2×3)×3=6,△A′DE故答案为:6.三、解答题(本题共8个小题,第19、20小题,每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.(6分)计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.【解答】解:原式=2﹣1+3﹣2×=4﹣.20.(6分)先化简,再求值:﹣,其中a=﹣1.【解答】解:原式=+===,当a=﹣1时,原式==1﹣.21.(8分)为了认真贯彻教育部关于与开展“阳光体育”活动的文件精神,实施全国亿万学生每天集体锻炼一小时活动,吸引同学们走向操场、走进大自然、走到阳光下,积极参加体育锻炼,掀起校园内体育锻炼热潮,我市各学校结合实际情况举办了“阳光体育”系列活动,为了解“阳光体育”活动的落实情况,我市教育部门在红旗中学2000名学生中,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)参加调查的人数共有300人,在扇形统计图中,表示“C”的扇形的圆心角为108度;(2)补全条形统计图,并计算扇形统计图中m的值;(3)若要从该校喜欢“D”项目的学生中随机选择8名进行节目排练,则喜欢该项目的小丽同学被选中的概率是多少?【解答】解:(1)参加调查的人数为69÷23%=300(人),∵“C”的人数为:300﹣60﹣69﹣36﹣45=90(人),∴表示“C”的扇形的圆心角为×360°=108°,故答案为:300,108.(2)补全条形图如下:∵m%=×100%=20%,∴m=20;(3)=,答:喜欢该项目的小丽同学被选中的概率是.22.(8分)如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.【解答】(1)证明:∵AB=AC,AD=DC,∴∠C=∠B,∠1=∠C,∴∠1=∠B,又∵∠E=∠B,∴∠1=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°,∴AE⊥AC,∴AC是⊙O的切线;(2)解:过点D作DF⊥AC于点F,如图,∵DA=DC,∴CF=AC=3,在Rt△CDF中,∵sinC==,设DF=4x,DC=5x,∴CF==3x,∴3x=3,解得x=1,∴DC=5,∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C,∴△ADE∽△DFC,∴=,即=,解得AE=,即⊙O的直径为.23.(9分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2013年的绿色建筑面积约为950万平方米,2015年达到了1862万平方米.若2014年、2015年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2016年是“十三五”规划的开局之年,我市计划推行绿色建筑面积达到2400万平方米.如果2016年仍保持相同的年平均增长率,请你预测2016年我市能否完成计划目标?【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率x,根据题意得:950(1+x)2=1862,解得:x1=0.4=40%,x2=﹣2.4(不合题意,舍去),答:这两年我市推行绿色建筑面积的年平均增长率是40%;(2)根据题意得:∵2016年绿色建筑面积是:1862×(1+0.4)=2606.8万平方米>2400万平方米,∴2016年我市能完成计划目标.24.(9分)如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)判断∠PED=45°.证明:∵四边形ABCD是正方形,∴∠BCD=90°,∵△PBC≌△PDC,∴∠PBC=∠PDC,∵PE=PB,∴∠PBC=∠PEB,∴∠PDC=∠PEB,∵∠PEB+∠PEC=180°,∴∠PDC+∠PEC=180°,在四边形PECD中,∠EPD=360°﹣(∠PDC+∠PEC)﹣∠BCD=360°﹣180°﹣90°=90°,又∵PE=PD,∴△PDE是等腰直角三角形,∴∠PED=45°.25.(10分)已知抛物线y1=x2+bx+c的顶点坐标为(﹣1,1),直线1的解析式为y2=2mx+3m2+4nm+4n2,且l与x轴、y轴分别交于A、B两点.(1)求b、c的值;(2)若函数y1+y2的图象与x轴始终有公共点,求直线l的解析式;(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB为等腰角形?若存在,直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y1=x2+bx+c的顶点坐标为(﹣1,1),∴,解得:,∴b的值为2,c的值为2.(2)y1+y2=x2+2x+2+2mx+3m2+4nm+4n2=x2+(2+2m)x+3m2+4nm+4n2+2,∵函数y1+y2的图象与x轴始终有公共点,∴△=(2+2m)2﹣4×1×(3m2+4nm+4n2+2)≥0,即﹣4(m﹣1)2﹣4(m+2n)2≥0.∵(m﹣1)2≥0,(m+2n)2≥0,∴m=1,n=﹣,∴直线l的解析式为y=2x+2.(3)如图,A(﹣1,0),B(0,2).AB==,对称轴x=﹣1,①当BA=BP时,可得P1(﹣1,4),②当AB=AP时,可得P2(﹣1,),P3(﹣1,﹣),③当PA=PB时,可得P4(﹣1,2).综上所述,当△PAB是等腰三角形时,点P坐标为(﹣1,4)或(﹣1,)或(﹣1,﹣)或(﹣1,2).26.(10分)在平面直角坐标系中,点C的坐标为(0,1.5),我们把以点C为圆心,半径为1.5的圆称为点C的朋友圈,圆周上的每一个点叫做点C的一个好友.(1)写出点C的两个好友坐标;(2)直线l的解析式是y=x﹣4,与x轴、y轴分别交于A、B两点,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当点C的朋友圈有好友落在直线上时,直线将受其影响,求在点C向下运动的过程中,直线受其影响的时间;(3)抛物线y=ax2+bx+c过原点O和点A,且顶点D恰好为点C的好友,连接OD.E为⊙C上一点,当△DOE面积最大时,求点E的坐标,此时△DOE的面积是多少?【解答】解:(1)1.5﹣1.5=0,1.5+1.5=3,∴点(0,0)、(0,3)到点C的距离为1.5,∴点(0,0)、(0,3)为点C的好友.(2)设圆心C往下运动了t秒,则点C的坐标为(0,1.5﹣0.5t),直线l:y=x﹣4可变形为4x﹣3y﹣12=0,点C到直线l的距离d==|0.3t﹣3.3|,当直线受圆C影响时,有d≤1.5,即|0.3t﹣3.3|≤1.5,解得:6≤t≤16.∴在点C向下运动的过程中,直线受其影响的时间为6≤t≤16.(3)令y=x﹣4中y=0,则x﹣4=0,解得:x=3,即点A的坐标为(3,0).依照题意画出图形,如图1所示.∵抛物线y=ax2+bx+c过原点O和点A,点O(0,0),点A(3,0),∴抛物线的对称轴为x==1.5,∵点D恰好为点C的好友,∴点D的坐标为(1.5,1.5).连接OD,过点C作CM⊥OD于点M,延长MC交圆C于点E,连接EO、ED,此最大,如图2所示.时S△DOE∵OD是圆C的弦,CM⊥OD,∴点M为线段OD的中点,∴点M的坐标为(,)、OM==,在Rt△CMO中,OM=,CO=1.5=,∴CM==.∵CE=1.5=,EM=EC+CM,∴EM=,=OD•EM=OM•EM=×=.此时S△DOE设直线CM的解析式为y=mx+n,∵点C的坐标为(0,1.5)、点M的坐标为(,)即(0.75,0.75),∴,解得:,∴直线CM的解析式为y=﹣x+1.5.设点E的坐标为(x,﹣x+1.5)(x<0),∵EC==1.5,∴x=﹣,或x=(舍去),∴点E的坐标为(﹣,).故当△DOE面积最大时,点E的坐标为(﹣,),此时△DOE的面积是.。
湖南长沙市中考模拟数学考试卷(二)(解析版)(初三)中考模拟.doc
湖南长沙市中考模拟数学考试卷(二)(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)【题文】数轴上的点A 到原点的距离是3,则点A 表示的数为( ) A .3或﹣3 B .6 C .﹣6 D .6或﹣6 【答案】A . 【解析】试题分析:设这个数是x ,则|x|=3,解得x=+3或﹣3.故选A . 考点:数轴.【题文】下列计算正确的是( )A .a3+a4=a7B .a3•a4=a7C .(a3)4=a7D .a6÷a3=a2 【答案】B . 【解析】试题分析:选项A ,a3与a4是相加,不是相乘,不能利用同底数幂的乘法计算,故本选项错误;选项B ,、a3•a4=a7,正确;选项C ,应为(a3)4=a3×4=a12,故本选项错误;选项D ,应为a6÷a3=a6﹣3=a3,故本选项错误.故选B .考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【题文】2015年10月18日,TCL2015长沙国际马拉松赛正式开赛,来自国内外的1.5万余名选手在长沙这座美丽的城市中奔跑.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米,将数据42千米用科学记数法表示为( )A .42×103米B .0.42×105米C .4.2×104米D .4.2×105米 【答案】C . 【解析】试题分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.将42千米用科学记数法表示为4.2×104,故选C . 考点:科学记数法.【题文】如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( )A.40° B.35° C.50° D.45°【答案】A.【解析】试题分析:已知AD平分∠BAC,∠BAD=70°,根据角平分线定义求出∠BAC=2∠BAD=140°,再由AB∥CD,所以∠ACD=180°﹣∠BAC=40°,故选A.考点:平行线的性质.【题文】在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是()A.y=3(x﹣2)2+2 B.y=3(x+2)2﹣2C.y=3(x﹣2)2+2 D.y=3(x+2)2+2【答案】B.【解析】试题分析:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向下、向左平移2个单位(﹣2,﹣2),根据“左加右减”的规律可得所以在新坐标系中此抛物线的解析式为y=3(x+2)2﹣2.故选B.考点:二次函数图象与几何变换.【题文】要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠1【答案】A.【解析】试题分析:根据被开方数大于等于0可得x﹣1≥0,解得x≥1.故选A.考点:二次根式有意义的条件.【题文】若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90° B.120° C.150° D.180°【答案】D.【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.考点:圆锥的计算.【题文】下列说法正确的是()A. 随机抛掷一枚硬币,反面一定朝上B. 数据3,3,5,5,8的众数是8C. 某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖D. 想要了解广安市民对“全面二孩”政策的看法,宜采用抽样调查【答案】D【解析】试题分析:选项A,抛硬币是一个随机事件,不能保证反面朝上,所以A错误;选项B,本组数据应该有两个众数,3、5都出现了两次,所以B错误;选项C,获奖概率为是一个随机事件,所以C错误;选项D,对长沙市民的调查涉及的人数众多,适合用抽样调查,所以D正确.故选D.考点:概率的意义;全面调查与抽样调查;众数.【题文】如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5) B.(2.5,5) C.(3,5) D.(3,6)【答案】B.【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.考点:位似变换;坐标与图形性质.【题文】如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为()A.xl=1,x2=2 B.xl=﹣2,x2=﹣1C.xl=1,x2=﹣2 D.xl=2,x2=﹣1【答案】C.试题分析:由图可知,两函数图象的交点坐标为(1,2),(﹣2,﹣1),即可得关于x的方程kx+b=的解为xl=1,x2=﹣2.故选C.考点:反比例函数的图象;一次函数的图象.【题文】为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元 B.亏了12元 C.赚了20元 D.亏了20元【答案】D.【解析】试题分析:设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,则x+20%x=240,解得x=200,y﹣20%y=240,解得y=300,∴240×2﹣=﹣20(元).即:这个服装店卖出这两件服装亏本了,亏本20元.故选D.考点:一元一次方程的应用.【题文】若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有2016个,且具有“波动性质”,则这2016个数的和为()A.﹣64 B.0 C.18 D.64【答案】C.【解析】试题分析:由题意得:an+1=an+an+2,an+2=an+1+an+3,an+3=an+2+an+4,三式相加,得:an+an+2+an+4=0,同理可得:an+1+an+3+an+5=0,以上两式相加,可知:该数列连续六个数相加等于零,2016是6的倍数,所以结果为零.故选C.考点:规律探究题.【题文】如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF 是平行四边形(只填一个即可).【答案】AF=CE.试题分析:添加的条件是AF=CE.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.考点:平行四边形的判定与性质.【题文】有一组数据如下:2,a,4,6,8,已知它们的平均数是5,那么这组数据的方差为.【答案】4.【解析】试题分析:由平均数的定义可得a=5×5﹣2﹣4﹣6﹣8=5,根据方差公式可得s2= [(2﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(8﹣5)2]=4.考点:方差;算术平均数.【题文】已知x,y满足方程组,则x﹣y的值是.【答案】﹣1.【解析】试题分析:,由②﹣①得:x﹣y=﹣1.考点:解二元一次方程组.【题文】若关x的函数y=kx2+2x-1的图像与x轴仅有一个交点,则实数k的值为__________。
2016年长沙中考数学试卷模拟(二)
2016年长沙市中考数学模拟试卷(2)姓名: 班级:一、选择题(本大题共12小题,每小题3分,满分36分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的( ). 1.在-4,2,-1,3这四个数中,比-2小的数是A .-4B .2C .-1D .3 2.下列运算中,结果正确的是( )A . x 3•x 3=x 6B . 3x 2+2x 2=5x 4C . (x 2)3=x 5D . (x+y )2=x 2+y 23.截止2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( ) A .1.62×104 B .1.62×106 C .1.62×108 D .0.162×109 4.下列几何体中,俯视图是矩形的是( )5.与1+5最接近的整数是( )A .4B .3C .2D .12且且12,7,这组数据的中位数和众数分别是( )A . 10,12B . 12,11C . 11,12D . 12,12 8.点P (-a-1,-)在第一象限,则a 的取值范围在数轴上表示为( )A .B .C .D .9.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A . ,, B . 1,, C . 6,7,8 D . 2,3,410.关于反比例函数y=﹣,下列说法正确的是( )A . 图象过(1,2)点B . 图象在第一、三象限C . 当x >0时,y 随x 的增大而减小D . 当x <0时,y 随x 的增大而增大 11.如图,AB 是直径,△ABD 的三个顶点在⊙O 上,点C 在⊙O 上,∠ABD=52°,则∠BCD=( ) A . 32° B . 38° C . 52° D . 66°12.如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B 、C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E .设BP=x ,BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B. C. D.二、填空题(本大题共6小题,每小题3分,满分18分)13.一个角的度数为20°,则它的补角的度数为 .14.若﹣2x m y 4与3xy 2m+n是同类项,则m= ,n= 。
湖南省中考数学提分专题:反比例函数(解析版)
中考数学提分训练: 反比例函数一、选择题1.若点A(﹣2,3)在反比例函数的图像上,则k的值是()。
A.﹣6B.﹣2C.2D.62.已知反比例函数的图象经过点(1,1),则k的值为().A. -1B. 0C. 1D. 23.如图,已知直线y=k1x(k1≠0)与反比例函数y= (k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A. (﹣1,﹣2)B. (﹣1,2)C. (1,﹣2)D. (﹣2,﹣1)4.若点A(3,-4)、B(-2,m)在同一个反比例函数的图像上,则m的值为()A. 6B. -6C. 12D. -125.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A. k>1B. k>0C. k≥1D. k<16.已知点A(x1,y1),B(x2,y2)是反比例函数y=图象上的点,若x1>0>x2,则一定成立的是( )A. y1>y2>0B. y1>0>y2C. 0>y1>y2D. y2>0>y17.一个反比例函数与一个一次函数在同一坐标平面内的图像如图示,如果其中的反比例函数解析式为,那么该一次函数可能的解析式是()A. B. C. D.8.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.9.已知一次函数y1=x﹣3和反比例函数y2= 的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x 的取值范围是()A. x<﹣1或x>4B. ﹣1<x<0或x>4C. ﹣1<x<0或0<x<4D. x<﹣1或0<x<410.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上,反比例函数y= (x>0)的图象经过顶点B,则k的值为()A. 12B. 20C. 24D. 3211.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数的图象上,则△OAB的面积等于()A. 2B. 3C. 4D. 6二、填空题12.已知点P(﹣1,4)满足反比例函数y= (k≠0)的表达式,则k=________.13.当-2≤x≤-1时,反比例函数y= 的最大值y=4.则k=________14.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y= 的图象上,若点A的坐标为(﹣2,﹣2),则k的值为________.15.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是12,则k的值为________.16.如图,正比例函数和反比例函数的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是________;17.如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为________.18.过双曲线的动点作轴于点,是直线上的点,且满足,过点作轴的平行线交此双曲线于点.如果的面积为8,则的值是________.19.如图,矩形OABC的边AB与x轴交于点D,与反比例函数(k>0)在第一象限的图像交于点E,∠AOD=30°,点E的纵坐标为1,ΔODE的面积是,则k的值是________三、解答题20.如果函数y=m 是一个经过二、四象限的反比例函数,则求m的值和反比例函数的解析式.21.已知y=y1+y2,y1与x成正比例,y2与x+2成反比例,且当x=﹣1时,y=3;当x=3时,y=7.求x=﹣3时,y的值.22.如图,OA⊥OB,AB⊥x轴于C,点A(,1)在反比例函数y= 的图象上.(1)求反比例函数y= 的表达式;(2)在x轴的负半轴上存在一点P,使S△AOP= S△AOB,求点P的坐标.23.如图,函数的图象与函数的图象相交于点.(1)求,的值;(2)直线与函数的图象相交于点,与函数的图象相交于点,求线段长.24.如图,已知函数的图象与一次函数的图象相交不同的点A、B,过点A作AD⊥轴于点D,连接AO,其中点A的横坐标为,△AOD的面积为2.(1)求的值及=4时的值;(2)记表示为不超过的最大整数,例如:,,设,若,求值25.如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2 ,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y= (k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.答案解析一、选择题1.【答案】A【解析】:∵A(﹣2,3)在反比例函数图像上,∴k=-2×3=-6,∴k的值是-6.故答案为:A.【分析】将A点坐标代入反比例函数解析式即可求出k值.2.【答案】D【解析】:根据题意得2k-3=1解之k=2故答案为:D【分析】将已知点的坐标代入函数解析式,建立关于k的方程,就可求出k的值。
湖南长沙2016中考试题数学卷(解析版)
2016年湖南省长沙市中考数学试卷一、(在下列各题的四个选项中,只有一个是符合题意的,请在答题卡中填涂符合题意的选项.本大题共12小题,每小题3分,满分36分)1.(3分)(2016•长沙)下列四个数中,最大的数是()A.﹣2 B.C.0 D.6【答案】D.【解析】试题分析:根据正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,可得6>13>0>﹣2,所以这四个数中,最大的数是6.故答案选D.考点:有理数的大小比较.2.(3分)(2016•长沙)大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路全长99500米,则数据99500用科学记数法表示为()A.0.995×105B.9.95×105C.9.95×104D.9.5×104【答案】C.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.n的值等于原数的整数位数减1,所以99500=9.95×104.故答案选C.考点:科学记数法.3.(3分)(2016•长沙)下列计算正确的是()A.×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a6【答案】A.考点:二次根式乘法运算;合同底数幂的乘除运算;积的乘方运算.4.(3分)(2016•长沙)六边形的内角和是()A.540°B.720°C.900°D.360°【答案】B.【解析】试题分析:根据多边形的内角和公式可得六边形的内角和是(6﹣2)×180°=720°,故答案选B.考点:多边形的内角和公式.6•长沙)不等式组的解集在数轴上表示为()A.B.C.D.【答案】C.考点:解一元一次不等式组.6.(3分)(2016•长沙)如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是()【答案】B.【解析】试题分析:观察可得,从正面看第一层是三个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,所以该几何体的主视图为,故答案选B.考点:几何体的三视图.7.(3分)(2016•长沙)若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.11【答案】A.【解析】试题分析:根据三角形三边关系,两边之和第三边,两边之差小于第三边可得4<第三边长<10,所以符合条件的整数为6,故答案选A.考点:三角形三边关系.8.(3分)(2016•长沙)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣1,﹣1)D.(﹣2,0)【答案】C.考点:坐标与图形变化﹣平移.9.(3分)(2016•长沙)下列各图中,∠1与∠2互为余角的是()A.B.C.D.【答案】B.【解析】试题分析:两个角的和等于90°(直角),则这两个角互为余角.由此可得只有选项B中,∠1+∠2=90°,即∠1与∠2互为余角,故答案选B.考点:余角的定义.10.(3分)(2016•长沙)已知一组数据75,80,80,85,90,则它的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,80【答案】D.【解析】试题分析:把这组数据按照从小到大的顺序排列为:75,80,80,85,90,最中间的数是80,所以中位数是80;在这组数据中出现次数最多的是80,所以众数是80;故答案选D.考点:中位数;众数.11.(3分)(2016•长沙)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300m D.160m【答案】A.考点:解直角三角形的应用.12.(3分)(2016•长沙)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【答案】D.考点:二次函数的图象与系数的关系.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2016•长沙)分解因式:x2y﹣4y= .【答案】y(x+2)(x﹣2).【解析】试题分析:提取公因式y,后再利用平方差公式分解,即x2y﹣4y=y(x2﹣4)=y(x+2)(x ﹣2).考点:分解因式.14.(3分)(2016•长沙)若关于x的一元二次方程x2﹣4x﹣m=0有两个不相等的实数根,则实数m的取值范围是.【答案】m>﹣4.【解析】试题分析:已知方程有两个不相等的实数根,可知△=b2﹣4ac=(﹣4)2﹣4×1×(﹣m)=16+4m >0,解得m>﹣4.考点:一元二次方程根的判别式.15.(3分)(2016•长沙)如图,扇形OAB的圆心角为120°,半径为3,则该扇形的弧长为.(结果保留π)【答案】2π. 【解析】试题分析:已知扇形OAB 的圆心角为120°,半径为3,根据弧长公式可得扇形的弧长为1203180π⨯=2π.考点:弧长公式.16.(3分)(2016•长沙)如图,在⊙O 中,弦AB=6,圆心O 到AB 的距离OC=2,则⊙O 的半径长为 .考点:垂径定理;勾股定理.17.(3分)(2016•长沙)如图,△ABC 中,AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为 .【答案】13. 【解析】试题分析:已知DE 是AB 的垂直平分线,根据线段的垂直平分线的性质得到EA=EB ,所以△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13, 考点:线段的垂直平分线的性质.18.(3分)(2016•长沙)若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是.【答案】56.【解析】试题分析:由题意作出树状图如下:一共有36种情况,“两枚骰子朝上的点数互不相同”有30种,所以,P=305 366.考点:列表法与树状图法.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分。
2016长沙市中考数学模拟试卷一答案
2016长沙市中考数学模拟试卷(一)参考答案及评分标准 题号 1 2 3 4 5 6 7 89 10 11 12 答案 B C A A A B B D D D C D13.)2)(2(2+-x x 14.2 15.12-x x 16.1411 17.6 18.21- 三、解答题(本题共8个小题,第19、20小题每小题6分,第21、22小题每小题8分,第23、24小题每小题9分,第25、26小题每小题10分,共66分)19.解:原式113232223-=+-+-⨯=.(6分) 20.解:原式=4a 2−4ab +b 2−b 2+2ab −a 2=3a 2−2ab =a (3a −2b ).(4分)∵3a =2b ,∴原式=0.(6分)21.(1)28或29或30或31次;(2分)(2)共抽取了50名学生.补全条形统计图略,其中良好20人,不合格5人;(6分)(3)160名.(8分)22.(1)证明:过点O 作OC ⊥PD 于点C .∵PO 是∠APD 的角平分线,且OA ⊥P A ,∴OC =OA =r .∴PD 为⊙O 的切线.(4分)(2)解:P A =PC =6,tan ∠PDA =43,∴AD =8,PD =10,CD =4. 设OA =OC =r .在Rt △OCD 中,(8−r )2=r 2+42,∴r =3.∵∠AOP =∠EOD ,∠P AO =∠DEO ,∴△APO ∽△EDO ,且PO =53,DO =5. ∴EOAO DO PO =,EO 3553=.∴EO =5.(8分) 23.解:(1)设每辆A 型车和B 型车的售价分别是x 万元、y 万元.由题意可得:⎩⎨⎧=+=+622963y x y x ,解得⎩⎨⎧==2618y x . 答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元;(4分)(2)设购买A 型车a 辆,则购买B 型车(6−a )辆.依题意得⎩⎨⎧≤-+≥-+140)6(2618130)6(2618a a a a ,解得 2≤a ≤413.∵a 是正整数,∴a =2或a =3. 当购买A 型车2辆、B 型车4辆时,购车费用为140万元;当购买A 型车3辆、B 型车3辆时,购车费用为132万元.两种方案中,显然购买A 型车3辆、B 型车3辆时购车费用最低.∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车;方案二:购买3辆A 型车和3辆B 型车,且方案二购车费用最低.(8分)24.(1)证明:∵△ABC 是等边三角形,DG //BC ,∴∠AGD =∠ABC =60°,∠ADG =∠ACB =60°,且∠BAC =60°.∴△AGD 是等边三角形,AG =GD =AD .∵DE =DC ,∴GE =GD +DE =AD +DC =AC =AB .∵∠AGD =∠BAD =60°,AG =DA ,∴△AGE ≌△DAB (SAS ).(4分)(2)解:由(1)知AE =BD ,∠ABD =∠AEG .∵EF //DB ,DG //BC ,∴四边形BFED 是平行四边形.∴EF =BD .∴EF =AE . ∵∠DBC =∠DEF ,∴∠ABD +∠DBC =∠AEG +∠DEF ,即∠AEF =∠ABC =60°. ∴△AFE 是等边三角形,∠AFE =60°.(9分)25.解:(1)∵a b x x -=+21,ac x x =⋅21,且a >0,b 2−4ac >0, ∴AB =|x 1−x 2|=a ac b a c a b x x x x 44)(4)(2221221-=--=-+.(3分) (2)当△ABC 为等腰直角三角形时,过点C 作CD ⊥AB ,垂足为D ,则AB =2CD .∵a >0,a ac b AB 42-=,又aac b CD 442-=, ∴24422ac b ac b -=-,4)4(4222ac b ac b -=-,4)4(4222ac b ac b -=-. ∴b 2−4ac =4.(6分) (3)∵∠ACB =90°,∴b 2−4ac =4,即k 2−4=4.∴k =22±.因为向左或向右平移时,∠ACB 的度数不变,所以只需要将抛物线1222+±=x x y 向上或向下平移使得∠ACB =60°,然后向左或向右平移任意个单位即可.设向上或向下平移后的抛物线解析式为:m x x y ++±=1222.∵平移后∠ACB =60°,∴△ABC 为等边三角形,m m AB -=+-=12)1(48,顶点)1 ,2(-±m C .∴m AB -=123,解得m =1(舍去)或m =−2. ∴抛物线y =x 2+kx +1向下平移2个单位后,向左或向右平移任意个单位都能使∠ACB 的度数由90°变为60°.(10分)26.解:(1)2t =3−t ,t =1.(2分)(2)经过t 秒时,NB =t ,OM =2t ,则CN =3−t ,AM =4−2t .∵∠BCA =∠MAQ =45°,∴QN =CN =3−t .∴PQ =1+t .∴S △AMQ =2)1)(24(2121t t t PQ AM -=+-=⋅+t +2. ∴22192()24S t t t =-++=--+. ∵02t ≤≤,∴当t =21时,S 的值最大,且最大值为49.(6分) (3)存在.∵∠QAM ≠90°,∴△AQM 为直角三角形只可能有两种情况.当∠AQM =90°时,△AQM ∽△AOC ,MQ =AQ ,即P 为AM 的中点.∴3−t −2t =1+t ,t =21.∴25=NQ . 当∠AMQ =90°时,即M 、P 重合,即t =1时,此时NQ =2.综上所述,25=NQ 或2.(10分)。
2024年湖南省长沙市中考数学试题(解析版)
2024年长沙市初中学业水平考试试卷数学注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共25个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查轴对称图形和中心对称图形的识别,熟知定义:轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.据此逐项判断即可.【详解】解:A 中图形轴对称图形,不是中心对称图形,故本选项不符合题意;B 中图形既是轴对称图形又是中心对称图形,故本选项符合题意;C 中图形是轴对称图形,不是中心对称图形,故本选项不符合题意;D 中图形不是轴对称图形,是中心对称图形,故本选项不符合题意,故选:B .2. 我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( )A. 81.2910×B. 812.910×C. 91.2910×D. 712910×【答案】C 是【解析】【分析】本题考查科学记数法,科学记数法的一般形式为10n a ×,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:用科学记数法将数据1290000000表示为91.2910×,故选:C .3. “玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是180−℃、最高温度是150℃,则它能够耐受的温差是( )A. 180−℃B. 150℃C. 30℃D. 330℃【答案】D【解析】【分析】本题考查了温差的概念和有理数的运算,解决本题的关键是气温最高值与最低值之差,计算解决即可. 【详解】解:能够耐受的温差是()150180330−−=℃, 故答案为:D .4. 下列计算正确的是( )A. 642x x x ÷=B.C. 325()x x =D. 222()x y x y +=+【答案】A【解析】【分析】此题主要考查同底数幂的除法、二次根式的加减、幂的乘方、完全平方公式的运算,解题的关键是熟知运算法则.【详解】解:A 、 642x x x ÷=,计算正确;BC 、326()x x =,原计算错误;D 、222()2x y x xy y +=++,原计算错误;故选A .5. 为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )A. 9.2B. 9.4C. 9.5D. 9.6【答案】B【解析】 【分析】本题考查了中位数的定义,中位数是一组数据从小到大排列后居于中间的一个数或中间两个数的平均数,根据中位数的定义解题即可.【详解】解:甲班演唱后七位评委给出的分数为:8.8,9.2,9.4,9.4,9.5,9.5,9.6,∴中位数为:9.4,故选B .6. 在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为( )A. ()1,5B. ()5,5C. ()3,3D. ()3,7【答案】D【解析】【分析】本题考查坐标与图形变换-平移变换,根据点的坐标平移规则:左减右加,上加下减求解即可.【详解】解:在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为()3,52+,即()3,7,故选:D . 7. 对于一次函数21y x =−,下列结论正确的是( ) A. 它的图象与y 轴交于点()0,1−B. y 随x 的增大而减小C. 当12x >时,0y <D. 它的图象经过第一、二、三象限【答案】A【解析】【分析】本题考查一次函数的性质,根据一次函数的性质逐个判断即可得到答案.【详解】解:A.当0x =时,1y =−,即一次函数21y x =−的图象与y 轴交于点()0,1−,说法正确; B.一次函数21y x =−图象y 随x 增大而增大,原说法错误; C.当12x >时,0y >,原说法错误; D.一次函数21y x =−图象经过第一、三、四象限,原说法错误; 故选A .的的8. 如图,在ABC 中,60BAC ∠=°,50B ∠=°,AD BC ∥.则1∠的度数为( )A. 50°B. 60°C. 70°D. 80°【答案】C【解析】 【分析】本题主要考查了三角形内角和定理、平行线的性质等知识点,掌握平行线的性质成为解题的关键. 由三角形内角和定理可得70C ∠=°,再根据平行线的性质即可解答.【详解】解:∵在ABC 中,60BAC ∠=°,50B ∠=°, ∴18070C BAC B ∠∠−∠−=°=°,∵AD BC ∥,∴170C ∠∠==°.故选:C .9. 如图,在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,则O 的半径长为( )A. 4B.C. 5D. 【答案】B【解析】 【分析】本题考查垂径定理、勾股定理,先根据垂径定理得到AE ,再根据勾股定理求解即可.【详解】解:∵在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,∴OE AB ⊥,142AE AB ==,在Rt AOE △中,OA, 故选:B .10. 如图,在菱形ABCD 中,6AB =,30B ∠=°,点E 是BC 边上的动点,连接AE ,DE ,过点A 作AF DE ⊥于点P .设DE x =,AF y =,则y 与x 之间的函数解析式为(不考虑自变量x 的取值范围)( )A. 9y x =B. 12y x =C. 18y x =D. 36y x= 【答案】C【解析】【分析】本题考查菱形的性质、含30度角的直角三角形的性质、相似三角形的判定与性质,利用相似三角形的性质求解x 、y 的关系式是解答的关键.过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,根据菱形的性质和平行线的性质得到6CD AD AB ===,ADF DEH ∠=∠,30DCH B ∠=∠=°,进而利用含30度角的直角三角形的性质132DH CD ==,证明AFD DHE ∽得到AF AD DH DE=,然后代值整理即可求解. 【详解】解:如图,过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,∵在菱形ABCD 中,6AB =,30B ∠=°,∴AB CD ∥,AD BC ∥,6CD AD AB ===,∴ADF DEH ∠=∠,30DCH B ∠=∠=°, 在Rt CDH △中,132DH CD ==, ∵AF DE ⊥, ∴90AFD DHE ∠=∠=°,又ADF DEH ∠=∠,∴AFD DHE ∽, ∴AF AD DH DE=, ∵DE x =,AF y =,∴63yx =,∴18yx =,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11. 为了比较甲、乙、丙三种水稻秋苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知____种秧苗长势更整齐(填“甲”、“乙”或“丙”).【答案】甲【解析】【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵3.610.815.8<<,∴甲种秧苗长势更整齐,故答案为:甲.12. 某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为______.【答案】15##0.2【解析】【分析】本题考查概率公式,掌握概率的意义是解题的关键.利用概率公式直接进行计算.【详解】解:小明家参与抽奖,获得一等奖的概率为21 2355=++,故答案为:15.13. 要使分式619x−有意义,则x需满足的条件是______.【答案】19x≠【解析】【分析】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.【详解】解:∵分式619x −有意义, ∴190x −≠,解得19x ≠,故答案为:19x ≠.14. 半径为4,圆心角为90°的扇形的面积为______(结果保留π).【答案】4π【解析】 【分析】本题考查扇形的面积公式,根据扇形的面积公式2π360n r S =(n 为圆心角的度数,r 为半径)求解即可.【详解】解:由题意,半径为4,圆心角为90°的扇形的面积为290π44π360×=, 故答案为:4π.15. 如图,在ABC 中,点D ,E 分别是AC BC ,的中点,连接DE .若12DE =,则AB 的长为______.【答案】24【解析】【分析】本题主要考查三角形中位线定理,熟知三角形的中位线平行于第三边且等于第三边的一半是解题的关键.【详解】解:∵D ,E 分别是AC ,BC 的中点,∴DE 是ABC 的中点,∴221224AB DE ==×=,故答案为:24.16. 为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是______.【答案】2009【解析】【分析】本题考查二元一次方程的解,理解题意是解答的关键.设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意列二元一次方程,整理得1001109x a =+,根据a 的取值得到x 的9种可能,结合实际即可求解.【详解】解:设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意,得()10 4.6101978915a x +×+−=, 整理,得100461978915a x ++−=∴1001109x a =+, ∵a 是从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,∴x 的值可能为1209,1309,1409,1509,1609,1709,1809,1909,2009,∵是为庆祝中国改革开放46周年,且参与者均为在校中学生,∴x 只能是2009,故答案为:2009.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第2425题每小题10分,共72分解答应写出必要的文字说明、证明过程或演算步骤)17. 计算:()011()π 6.84−−°−. 【答案】3【解析】【分析】本题考查了实数的混合运算,先根据绝对值、零指数幂、负整数指数幂的意义,特殊角的三角函值化简,再算加减即可.【详解】解:原式41=+3=.18. 先化简,再求值:()()()2233m m m m m −−++−,其中52m =. 【答案】49m −;1【解析】【分析】本题考查整式的混合运算及其求值,先根据整式的混合运算法则化简原式,再代值求解即可.【详解】解:()()()2233m m m m m −−++−22229m m m m =−++−49m =−. 当52m =时,原式54910912=×−=−=.19. 如图,在Rt ABC △中,90ACB ∠=°,AB =2AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点M 和N ,作直线MN 分别交AB BC ,于点D ,E ,连接CD AE ,.(1)求CD 的长;(2)求ACE 的周长.【答案】(1(2)6【解析】【分析】本题考查了线段垂直平分线的性质:线段垂直平分线的点到线段两个端点的距离相等,斜中半定理:直角三角形中,斜边上的中线等于斜边的一半,以及勾股定理等知识点,熟记相关结论是解题关键. (1)由题意得MN 是线段AB 的垂直平分线,故点D 是斜边AB 的中点.据此即可求解;(2)根据EA EB =、ACE 的周长AC CE EA AC CE EB AC BC =++=++=+即可求解;【小问1详解】解:由作图可知,MN 是线段AB 的垂直平分线,∴在Rt ABC △中,点D 是斜边AB 的中点.∴1122CD AB ==×. 【小问2详解】解:在Rt ABC △中,4BC =.∵MN 是线段AB 的垂直平分线,∴EA EB =.∴ACE 的周长246AC CE EA AC CE EB AC BC =++=++=+=+=.20. 中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势,2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图 类型人数 百分比 纯电m 54% 混动 n %a氢燃料 3%b 油车 5 %c请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了_____人;表中=a ______,b =______;(2)请补全条形统计图;(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?【答案】(1)50;30,6(2)见解析 (3)108°(4)3600人【解析】【分析】本题考查统计表、条形统计图和扇形统计图的综合,理解题意,能从统计图中获取有用信息是解答的关键.(1)用喜欢油车人数除以其所占的百分比可求得调查人数,用喜欢氢燃料人数除以调查人数可求得b ,进而用1减去喜欢其他车型所占的百分比可求解a ;(2)先求得n ,进而可补全条形统计图;(3)用360度乘以喜欢混动所占的百分比即可求解;(4)用总人数乘以样本中喜欢新能源汽车所占的百分比即可求解.【小问1详解】解:本次调查活动随机抽取人数为510%50÷=(人), %350100%6%b =÷×=,则6b =,%154%6%10%30%a =−−−=,则30a =,故答案为:50;30,6;【小问2详解】解:∵5030%15n =×=,∴补全条形统计图如图所示:【小问3详解】解:扇形统计图中“混动”36030%108°×=°;【小问4详解】解:()400054%30%6%3600×++=(人). 答:估计喜欢新能源(纯电、混动、氢燃料)汽车的有3600人.21. 如图,点C 在线段AD 上,AB AD =,B D ∠=∠,BC DE =.(1)求证:ABC ADE △≌△;(2)若60BAC ∠=°,求ACE ∠的度数. 【答案】(1)见解析 (2)60ACE ∠=°【解析】【分析】本题考查全等三角形的判定与性质、等边三角形的判定与性质,证明ACE △是等边三角形是解答的关键.(1)直接根据全等三角形的判定证明结论即可;(2)根据全等三角形的性质得到AC AE =,60CAE BAC ∠=∠=°,再证明ACE △是等边三角形,利用等边三角形的性质求解即可.【小问1详解】证明:在ABC 与ADE 中,AB AD B D BC DE = ∠=∠ =, 所以()SAS ABC ADE ≌;【小问2详解】解:因为ABC ADE △≌△,60BAC ∠=°, 所以AC AE =,60CAE BAC ∠=∠=°,所以ACE △是等边三角形.所以60ACE ∠=°.22. 刺绣是我国民间传统手工艺.湘绣作为中国四大刺绣之一,闻名中外,在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A 、B 两种奥运主题的湘绣作品作为纪念品.已知购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元. (1)求A 种湘绣作品和B 种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A 种湘绣作品和B 种湘绣作品共200件,总费用不超过50000元,那么最多能购买A 种湘绣作品多少件?【答案】(1)A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元(2)最多能购买100件A 种湘绣作品【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用.(1)设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元,根据“购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元”,即可得出关于x ,y 的二元一次方程组,解之即可解题;(2)设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件,总费用=单价×数量,结合总费用不超过50000元,即可得出关于a 的一元一次不等式,解之即可得出a 的值,再取其中的最大整数值即可得出该校最大可以购买湘绣的数量.【小问1详解】设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元.根据题意,得2700231200x y x y += +=, 解得300,200x y = = .答:A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元.【小问2详解】设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件.根据题意,得()30020020050000a a +−≤,解得100a ≤.答:最多能购买100件A 种湘绣作品.23. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,90ABC ∠=°.(1)求证:AC BD =;(2)点E 在BC 边上,满足CEO COE ∠=∠.若6AB =,8BC =,求CE 的长及tan CEO ∠的值.【答案】(1)见解析 (2)5CE =,tan 3CEO ∠=【解析】【分析】本题考查矩形的判定与性质、勾股定理、等腰三角形的判定与性质、锐角三角函数等知识,熟练掌握矩形的判定与性质是解答的关键.(1)直接根据矩形的判定证明即可;(2)先利用勾股定理结合矩形的性质求得10AC =,OB OC =.进而可得152CO AC ==,再根据等腰三角形的判定得到5CE CO ==,过点O 作OF BC ⊥于点F ,根据等腰三角形的性质,结合勾股定理分别求得4CF =,1EF =,3OF =,然后利用正切定义求解即可.【小问1详解】证明:因为四边形ABCD 是平行四边形,且90ABC ∠=°,所以四边形ABCD 是矩形.所以AC BD =;【小问2详解】解:在Rt ABC △中,6AB =,8BC =,所以10AC =,因为四边形ABCD 是矩形, 所以152CO AC ==,OB OC =. 因为CEO COE ∠=∠,所以5CE CO ==.过点O 作OF BC ⊥于点F ,则142==CF BC ,所以541EF CE CF =−=−=,在Rt COF △中,3OF, 所以tan 3OF CEO EF∠==. 24. 对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,①平行四边形一定不是“平凡型无圆”四边形; ( )②内角不等于90°的菱形一定是“内切型单圆”四边形; ( )③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R ,内切圆半径为r ,则有=R .( ) (2)如图1,已知四边形ABCD 内接于O ,四条边长满足:AB CD BC AD +≠+.①该四边形ABCD 是“______”四边形(从约定的四种类型中选一种填入); ②若BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,连接EF .求证:EF 是O 的直径.(3)已知四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H .①如图2.连接EG FH ,交于点P .求证:EG FH ⊥.②如图3,连接OA OB OC ,,,,若2OA =,6OB =,3OC =,求内切圆O 的半径r 及OD 的长.【答案】(1)①×;②√;③√(2)①外接型单圆;②见解析(3)r =OD = 【解析】【分析】(1)根据圆内接四边形和切线长定理可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,结合题中定义,根据对角不互补,对边之和也不相等的平行四边形无外接圆,也无内切圆,进而可判断①;根据菱形的性质可判断②;根据正方形的性质可判断③;(2)①根据已知结合题中定义可得结论; ②根据角平分线的定义和圆周角定理证明 EBF EDF=即可证得结论; (3)①连接OE 、OF 、OG 、OH 、HG ,根据四边形ABCD 是“完美型双圆”四边形,结合四边形的内角和定理可推导出180A EOH ∠+∠=°,180FOG C ∠+∠=°,180A C∠+∠=°,进而可得EOH C ∠=∠,180FOG EOH∠+∠=°,然后利用圆周角定理可推导出90HPG ∠=°,即可证得结论;②连接OE 、OF 、OG 、OH ,根据已知条件证明OAH COG ∠=∠,进而证明AOH OCG ∽得到32CG r =,再利用勾股定理求得r =,BE =BEO OHD ∽求解OD 即可. 【小问1详解】解:由题干条件可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,所以 ①当平行四边形对角不互补,对边之和也不相等时,该平行四边形无外接圆,也无内切圆, ∴该平行四边形是 “平凡型无圆”四边形,故①错误;②∵内角不等于90°的菱形的对角不互补,∴该菱形无外接圆,∵菱形的四条边都相等,∴该菱形的对边之和相等,∴该菱形有内切圆,∴内角不等于90°的菱形一定是“内切型单圆”四边形,故②正确;③由题意,外接圆圆心与内切圆圆心重合的“完美型双圆”四边形是正方形,如图,则OM r =,ON R =,OM MN ⊥,45ONM ∠=°,∴Rt OMN △为等腰直角三角形,∴ON =,即=R ;故③正确,故答案为:①×;②√;③√;【小问2详解】解:①∵四边形ABCD 中,AB CD BC AD +≠+,∴四边形ABCD 无内切圆,又该四边形有外接圆,∴该四边形ABCD 是“外接型单圆”四边形,故答案为:外接型单圆;的②∵BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,∴BAE DAE ∠=∠,BCF DCF ∠=∠, ∴ BEDE =, BF DF =, ∴ BEBF DE DF +=+, ∴ EBF EDF=,即 EBF 和 EDF 均为半圆, ∴EF 是O 的直径.【小问3详解】①证明:如图,连接OE 、OF 、OG 、OH 、HG ,∵O 是四边形ABCD 的内切圆,∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,∴90OEA OHA ∠=∠=°,在四边形AEOH 中,3609090180A ∠+∠°−°−°=°,同理可证,180FOG C ∠+∠=°,∵四边形ABCD 是“完美型双圆”四边形,∴该四边形有外接圆,则180A C ∠+∠=°,∴EOH C ∠=∠,则180FOG EOH∠+∠=°, ∵12FHG FOG ∠=∠,12EGH EOH ∠=∠, ∴()1902FHG EGH FOG EOH ∠+∠=∠+∠=°, ∴()18090HPGFHG EGH ∠=°−∠+∠=°, ∴EG FH ⊥;②如图,连接OE 、OF 、OG 、OH ,∵四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H ,∴∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,OE OF OG OH ===,∴180EAH FCG ∠+∠=°,OAH OAE ∠=∠,OCG OCF ∠=∠, ∴90OAH OCG ∠+∠=°,∵90COG OCG ∠+∠=°,∴OAH COG ∠=∠,又90AHO OGC ∠=∠=°,∴AOH OCG ∽, ∴OA OH OC CG=, ∵2OA =,3OC =, ∴23r CG =,则32CG r =, 在Rt OGC △中,由222OG CG OC +=得222332r r +=,解得r = 在Rt OBE 中,6OB =,∴BE 同理可证BEO OHD ∽, ∴BE OB OH OD=,6OD=,∴OD =【点睛】本题主要考查平行四边形的性质、正方形的性质、菱形的性质、圆周角定理、内切圆的定义与性质、外接圆的定义与性质、相似三角形的判定与性质、四边形的内角和定理、勾股定理、角平分线的判定等知识,理解题中定义,熟练掌握这些知识和灵活运用性质和判定是解题的关键.另外还要求学生具备扎实的数学基础和逻辑思维能力,备考时,重视四边形知识的学习,提高解题技巧和速度,以应对中考挑战.25. 已知四个不同的点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y 都在关于x 的函数2y ax bx c ++(a ,b ,c 是常数,0a ≠)的图象上.(1)当A ,B 两点的坐标分别为()1,4−−,()3,4时,求代数式3202410127a b ++的值; (2)当A ,B 两点的坐标满足212122()40a y y a y y +++=时,请你判断此函数图象与x 轴的公共点的个数,并说明理由;(3)当0a >时,该函数图象与x 轴交于E ,F 两点,且A ,B ,C ,D 四点的坐标满足:222121222()0a y y a y y ++++=,222343422()0a y y a y y −+++=.请问是否存在实数(1)m m >,使得AB ,CD ,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3?若存在,求出m 的值和此时函数的最小值;若不存在,请说明理由(注:m EF ⋅表示一条长度等于EP 的m 倍的线段).【答案】(1)3320241012202477a b ++= (2)此函数图象与x 轴的公共点个数为两个,理由见解析(3)存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =此时该函数的最小值为2a −【解析】【分析】本题主要考查了二次函数的性质、二次函数与一元二次方程的关系、二次函数与x 轴交点问题、直角三角形存在性问题等,熟练掌握相关知识和分类讨论是解题关键.(1)将A B 、代入得到关于a 、b 的关系式,再整体代入求解即可;(2)解方程212122()40a y y a y y +++=求解,再根据a 的正负分类讨论即可; (3)由内角之比可得出这是一个3060°°、的直角三角形,再将线段表示出来,利用特殊角的边角关系建立方程即可.【小问1详解】将()1,4A −−,()3,4B 代入2y ax bx c ++得4934a b c a b c −+=− ++=①②, ②-①得848a b +=,即22a b +=. 所以333202*********(2)2024777a ba b ++=++=. 【小问2详解】此函数图象与x 轴的公共点个数为两个. 方法1:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 当0a >时,<02a −,此抛物线开口向上,而A ,B 两点之中至少有一个点在x 轴的下方,此时该函数图象与x 轴有两个公共点;当0a <时,>02a −,此抛物线开口下,而A ,B 两点之中至少有一个点在x 轴的上方,此时该函数图象与x 轴也有两个公共点.综上所述,此函数图象与x 轴必有两个公共点.方法2:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 所以抛物线上存在纵坐标为2a −的点,即一元二次方程22a ax bx c ++=−有解. 所以该方程根的判别式24()02ab ac ∆=−+≥,即2242b ac a −≥. 因为0a ≠,所以240b ac −>.所以原函数图象与x 轴必有两个公共点.方法3:由()21212240a y y a y y +++=,可得12a y =−或22a y =−. 当12a y =−时,有2112a ax bx c ++=−,即2112a ax bx c ++=−, 所以2222211144()2(2)02ab ac b a ax bx a ax b ∆=−=+++=++>. 此时该函数图象与x 轴有两个公共点. 当22a y =−时,同理可得0∆>,此时该函数图象与x 轴也有两个公共点.综上所述,该函数图象与x 轴必有两个公共点.【小问3详解】因为0a >,所以该函数图象开口向上.由222121222()0a y y a y y ++++=,得()()22120a y a y +++=,可得12y y a ==−.由222343422()0a y y a y y −+++=,得2234()()0a y a y −+−=,可得34y y a ==. 所以直线AB CD ,均与x 轴平行.由(2)可知该函数图象与x 轴必有两个公共点,设()5,0E x ,()6,0F x . 由图象可知244ac b a a−−>,即2244b ac a −>. 所以2ax bx c a ++=−的两根为1x ,2x,可得12AB x x =−= 同理2ax bx c a ++=的两根为3x ,4x,可得34CD x x =−= 同理20ax bx c ++=的两根为5x ,6x,可得56m EF m x x m ⋅=⋅−= 由于1m >,结合图象与计算可得AB EF m EF <<⋅,<AB CD .若存在实数()1m m >,使得AB CD ,,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3,则此三角形必定为两锐角分别为30°,60°的直角三角形,所以线段AB 不可能是该直角三角形的斜边.①当以线段CD 为斜边,且两锐角分别为30°,60°时,因为m EF AB ⋅>,所以必须同时满足:222()AB m EF CD +⋅=,m EF ⋅. 将上述各式代入化简可得2222288244a a m b ac a =<=−,且22223(44)4b ac a m b ac −−=−, 联立解之得222043a b ac −=,22286245a m b ac ==<−,解得1m =>符合要求.所以m =,此时该函数最小值为2220453443a acb a a a −−==−. ②当以线段m EF ⋅为斜边时,必有222()AB CD m EF +=⋅,同理代入化简可得的2222(4)(4)b ac m b ac −−,解得m =为斜边,且有一个内角为60°,而CD AB >,所以tan 60CD AB =⋅°, 化简得222484b ac a a −=>符合要求.所以m =2824a a a −==−. 综上所述,存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =2a −.。
2012年湖南省长沙市中考数学模拟试题(含答案2)
2011年长沙市初中数学考试模拟试卷(一)一、选择题(每小题3分,共30分) 1.16的平方根是 A .2B .2C .±2D .22. -21的绝对值是 A .-21 B .21C .-2D .23.图3-1是由5个大小相同的正方体摆成的立方体图形,它的主视图是图3-2中的4.有30位同学参加数学竞赛,已知他们的分数互不相同,按分数从高到低选l5位同学进入下一轮比赛.小明同学知道自己的分数后,还需知道哪个统计量,才能判断自己能否进入下一轮比赛?A .中位数B .方差C .众数D .平均数 5.已知△ABC 如图2-1所示。
则与△ABC 相似的是图2-2中的6.已知⊙O 1的半径为3cm ,⊙O 2的半径为7cm ,若⊙O 1和⊙O 2的公共点不超过1个,则两圆的圆心距不可能为A .0 cmB .8 cmC .4 cmD .12 cm 7.下列计算正确的是A .2x+3y=5xyB .x·x 4=x 4C .x·x=2xD .(x 2y)3=x 6y 38. 如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为A.3B.4C.5D.69.已知梯形的两条对角线长分别为6cm 、8cm ,且对角线相互垂直,梯形的上底长为3cm,则梯形的下底长为A .7cm B. 10cm C. 13cm D. 16cm 10.如图2—5,⊙O 的直径AB 垂直于弦CD ,垂足为H ,点P 是弧AC 上的一点(点P 不与A ,C 重合),连结PC ,PD ,PA ,AD ,点E 在AP 的延长线上,PD 与AB 交于点F .给出下列四个结论:①CH 2=AH·BH;②弧AD=弧AC ;③AD 2=DF·DP;④∠EPC=∠APD .其中正确的个数有A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分) 11.函数y=ax 21,当x=2时没有意义,则a=__________.12.纳米(nm)是一种长度度量单位,lnm=0.000000001 m ,用科学记数法表示0.3011nm=___________m(保留两个有效数字).13.已知一组数据:-2,-2,3,-2,x ,-1,若这组数据的平均数是0.5.则这组数据的中位数是 .14.如图l —6,数轴上A ,B 两点所表示的有理数的和是__________. 15.已知直线y=2x+k 和双曲线y=xk的一个交点的纵坐标为-4,则k 的值为________.16.右图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如右图②所示的“数学风车”,则这个风车的外围周长是_________.17.如图3—7,在等腰直角三角形ABC 中,点D 为斜边AB 的中点,已知扇形GAD ,HBD 的圆心角∠DAG ,∠DBH 都等于90°,且AB=2,则图中阴影部分的面积为__________.18.如果从小华等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是_____.三、解答题(本题共2个小题,每小题6分,共12分) 19.计算:20)21()23(363298-+-++--20.先化简,再求值:2122444222--+-⨯+-+x x x x x x x ,其中x=23四、解答题(本题共2个小题,每小题8分,共16分)21.有A ,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字l 和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为(x ,y).(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y=x-3上的概率.22.如图4—10,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD 绕坐标原点O 按顺时针方向旋转180°后得到四边形A 1B 1C 1D 1. (1)写出点D 1的坐标_________,点D 旋转到点D 1所经过的路线长__________;(2)请你在△ACD 的三个内角中任选二个锐角,若你所选的锐角..是________,则它所对应的正弦函数值是_________;(3)将四边形A 1B 1C 1D 1平移,得到四边形A 2B 2C 2D 2,若点D 2 (4,5),画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)23.如图1-13,某堤坝的横截面是梯形AB—CD,背水坡AD的坡度i(即tana)为1:1.2,坝高为5m,为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽lm,形成新的背水坡EF,其坡度为1:1.4,已知堤坝总长度为4000m.(1)完成该工程需要多少土方?(2)该工程由甲、乙两个工程队同时合作完成,按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?24.如图2—10,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E。
2010年长沙市中考数学模拟试卷(二)
2010年长沙市中考数学模拟试卷(二)(总分:120 分考试时间: 120分钟)一、选择题(共8题,24分)1. 下列计算中正确的是( )A. B. C. D.2. 下面与是同类二次根式的是()A、B、C、D、3. 在如图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )4. 为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的期中考试数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量. 其中正确的判断有()A.1个B.2个C.3个D.4个5. 甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是()A.B.C.D.6. 如图,PA、PB是⊙O的两条切线,切点为A、B,如果OP=4,PA=,那么∠AOB 等于()A、90°B、100°C、110°D、120°7. 如图,是象棋盘的一部分,若帅位于(1,-2)上,相位于点(3,-2),则炮位于点。
()A、(-1,1)B、(-1,2)C、(-2,1)D、(-2,2)8. 某人从A地向B地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加1分钟加收1元(不足1分钟按1分钟收费),则表示电话费y(元)与通话时间x(分)之间的函数关系的图像如下图所示,正确的是()二、填空题(共8题,24分)9. 计算:= .10. 分解因式:=11. 化简:。
12. 如图,请你填写一个适当的条件:,使AD∥BC.13. 一射击运动员在一次射击比赛中打出的成绩如下表所示:这次成绩的众数是_______________.14. 如图,是反比例函数在第一象限内的图象,且过点A(3,1),l2与关于轴对称,那么图象的函数解析式为();15. 如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为米.16. 如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是度.三、计算题(共6题,36分)17. 在数轴上画出表示下列各数的点:,,.18. 如图,直线与直线在同一平面直角坐标系内交于点P.(1).写出不等式2x > kx+3的解集:;(2).设直线与x轴交于点A,求△OAP的面积.19. 已知关于x的一元二次方程.(1).若x=-2是这个方程的一个根,求m的值和方程的另一个根;(2).求证:对于任意实数m,这个方程都有两个不相等的实数根.20. 如图,在同一直线上,在与中,,。
教科所:2016年长沙中考模拟试卷数学答案6-8
22.(1)证明:∵∠ADE=∠BAD,∴AB//ED. ∵ BD 垂直平分 AC,垂足为 F,∴BD⊥AC,AF=FC. 又∵AE⊥AC,∴∠EAC=∠DFC=90°. ∴AE//BD.∴四边形 ABDE 是平行四边形.
根据题意得:2000x+2500(120−x)=275000.(2 分)
解得 x=50,则 120−x=70.
即招聘 A 种工人 50 人,招聘 B 种工人 70 人.(4 分)
(2)设每月所支付的工资为 y 元,招聘 A 种工人 a 人,则招聘 B 种工人(120−a)人,
根据题意得:y=2000a+2500(120−a)=−500a+300000.(6 分)
10a 10b 65000 a b 1500
,解得:
a b
4000, 2500
∵租甲乙两车需要的租金为:65000(元);
∴单独租甲车需要的租金为:15×4000=60000(元);
∴单独租乙车需要的租金为:30×2500=75000(元).(9 分)
综上可得,单独租甲车租金最少.
24.(1)证明:∵AB 是直径,∴∠D=90°.∴∠A +∠DBA=90°. 又∵∠DBC=∠A,∴∠CBA=90°.
可得:10( 1 1 ) 1,解得:x=15.经检验,x=15 是原方程的根.15+15= x x 15
30(天). 即甲车单独完成任务需要 15 天,乙车单独完成任务需要 30 天.(4 分)
(2)设甲车每天的租金为 a 元,乙车每天的租金为 b 元,则根据题意可得:
2016年湖南省长沙市中考数学试卷含答案
2016年湖南省长沙市中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)1.下列四个数,最大的数是( )A .-2B .31C .0D .62.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需 24分钟,从长沙到湘潭只需25分钟,这条铁路全长99 500米,则数据99 500用科学记数法表示为( )A .0.995×105B .9.95×105C .9.95×104D .9.5×1043.下列计算正确的是( ) A.2×5=10 B .x 8÷x 2=x 4 C .(2a )3=6a 3 D .3a 5 • 2a 3=6a 64.六边形的内角和是( )A .540°B .720°C .900°D .360°5.不等式组⎩⎨⎧<-≥-048512x x ,的解集在数轴上表示为( )A B C D6.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是( )(第6题图)A B C D7.若一个三角形的两边长分别为3和7,则第三边长可能是( )A .6B .3C .2D .118.若将点A (1,3)先向左平移2个单位长度,再向下平移4个单位长度得到点B ,则点B 的坐标为( )A.(-2,-1)B.(-1,0)C.(-1,-1)D.(-2,0)9.下列各图,∠1与∠2互为余角的是()A B C D10.若一组数据为75,80,80,85,90,则它的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,8011.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120 m,则这栋楼的高度为()(第10题图)A.1603m B.1203m C.300 m D.1602m12.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a-b+c≥0;④ab cb a-++的最小值为3.其中,正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(本题共6小题,每小题3分,满分18分)13.分解因式:x2y-4y=.14.若关于x的一元二次方程x2-4x-m=0有两个不相等的实数根,则实数m的取值范围是.15.如图,扇形OAB的圆心角为120°,半径为3,则该扇形的弧长为.(结果保留π)(第15题图)16.如图,在⊙O 中,弦AB =6,圆心O 到AB 的距离OC =2,则⊙O 的半径为 .(第16题图)17.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为 .(第17题图) 18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是 .三、解答题(本题共8小题,共66分)19.(6分)计算:4sin 60°-|-2|-12+(-1)2 016.20.(6分)先化简,再求值:b a a -(b 1-a 1)+b a 1-,其中a =2,b =31. 21.(8分)为了积极响应市委政府“加快建设天蓝•水碧•地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:(第21题图)请根据所给信息解答以下问题:(1)这次参与调查的居民人数为 .(2)请将条形统计图补充完整.(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数.(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人.22.(8分)如图,AC是ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC.(2)若AB=2,AC=23,求ABCD的面积.(第22题图)23.(9分)2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次分别运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?24.(9分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数.(2)求证:DF是⊙O的切线.(3)若AC=25DE,求tan∠ABD的值.(第24题图)25.(10分)若抛物线L :y =ax 2+bx +c (a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时,直线l 叫作抛物线L 的“带线”,抛物线L 叫作直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =x6的图像上,它的“带线”l 的表达式为y =2x -4,求此“路线”L 的表达式;(3)当常数k 满足21≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.26.(10分)如图,直线l :y =-x +1与x 轴,y 轴分别交于A ,B 两点,点P ,Q 是直线l 上的两个动点,且点P 在第二象限,点Q 在第四象限,∠POQ =135°.(1)求△AOB 的周长.(2)设AQ =t >0,试用含t 的代数式表示点P 的坐标.(3)当动点P ,Q 在直线l 上运动到使得△AOQ 与△BPO 的周长相等时,记tan ∠AOQ =m ,若过点A 的二次函数y =ax 2+bx +c 同时满足以下两个条件:①6a +3b +2c =0;②当m ≤x ≤m +2时,函数y 的最大值等于m2,求二次项系数a 的值.(第26题图)参考答案 一、1.D 【分析】根据有理数比较大小的方法知,6>31>0>-2,故在四个数中,最大的数是6.故选D .2.C 【分析】将99 500用科学记数法表示为9.95×104.故选C .3.A 【分析】A.2×5=10,正确;B.x 8÷x 2=x 6,错误;C.(2a )3=8a 3,错误;D.3a 5 • 2a 3=6a 8,错误.故选A .4.B 【分析】根据题意,得(6-2)×180°=720°.故选B .5.C 【分析】解不等式2x -1≥5,得x ≥3.解不等式8-4x <0,得x >2.故不等式组的解集为x ≥3.故选C .6.B 【分析】从正面看第一层是三个小正方形,第二层左边一个小正方形,第三层左边一个小正方形.故选B .7.A 【分析】设第三边长为x ,则7-3<x <7+3,即4<x <10,所以符合条件的整数为6.故选A .8.C 【分析】∵将点A (1,3)先向左平移2个单位长度,再向下平移4个单位长度得到点B ,∴点B 的横坐标为1-2=-1,纵坐标为3-4=-1,∴点B 的坐标为(-1,-1).故选C .9.B 【分析】∵三角形的内角和为180°,∴选项B 中,∠1+∠2=90°,即∠1与∠2互为余角.故选B .10.D 【分析】把这组数据按照从小到大的顺序排列为75,80,80,85,90,最中间的数是80,则中位数是80;在这组数据中出现次数最多的是80,则众数是80.故选D .11.A 【分析】如答图,过点A 作AD ⊥BC 于点D ,则∠BAD =30°,∠CAD =60°,AD = 120 m .在Rt △ABD 中,BD =AD • tan 30°=120×33=403(m ).在Rt △ACD 中,CD =AD • tan 60°=120×3=1203(m ).∴BC =BD +CD =1603(m ).故选A .(第11题答图)12.D 【分析】∵b >a >0,∴-ab 2<0,∴该抛物线的对称轴在y 轴左侧,故①正确;∵抛物线与x 轴最多有一个交点,∴b 2- 4ac ≤0,∴在关于x 的方程ax 2+bx +c +2=0中, =b 2-4a (c +2)=b 2-4ac -8a <0,∴关于x 的方程ax 2+bx +c +2=0无实数根,故②正确;∵a >0及抛物线与x 轴最多有一个交点,∴当x 取任何值时,y ≥0,∴当x =-1时,a -b +c ≥0,故③正确;当x =-2时,4a -2b +c ≥0,∴a +b +c ≥3b -3a ,∴a +b +c ≥3(b -a ),即a b c b a -++≥3,故④正确.故选D .二、13.y (x +2)(x -2) 【分析】x 2y -4y =y (x 2-4)=y (x +2)(x -2).14.m >-4 【分析】由题意,得∆=b 2-4ac =(-4)2-4×1×(-m )=16+4m >0,解得m >-4.15. 2π 【分析】∵扇形OAB 的圆心角为120°,半径为3,∴该扇形的弧长为1803π120⨯=2π. 16.13 【分析】∵弦AB =6,圆心O 到AB 的距离OC =2,∴AC =BC =3,∠ACO =90°. 由勾股定理,得OA =OC AC 22+=2322+=13.17.13 【分析】∵DE 是AB 的垂直平分线,∴EA =EB .∴△BCE 的周长为BC +EC + EB =BC +EC +EA =BC +AC =8+5=13.18.65 【分析】由题意作出树状图如答图,一共有36种情况,“两枚骰子朝上的点数互不相同”的情况有30种,所以P =3630=65.(第18题答图)三、19.解:4sin 60°-|-2|-12+(-1)2 016 =4×23-2-23+1 =23-2-23+1=-1.20.解:b a a -(b 1-a 1)+b a 1-=b a a - • ab b a -+b a 1-=b 1+b a 1-=ba . 当a =2,b =31时,原式=312=6. 21.解:(1)1 000. 分析:这次参与调查的居民人数为%5.37375=1 000.(2)选择“樟树”的有1 000-250-375-125-100=150(人).补全条形统计图如答图.(第21题答图)(3)360°×1000100=36°. 答:扇形统计图中“枫树”所在扇形的圆心角度数为36°.(4)8×1000250=2(万人). 答:估计这8万人中最喜欢玉兰树的有2万人.22.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAC =∠BCA .∵∠BAC =∠DAC ,∴∠BAC =∠BCA ,∴AB =BC .(2)解:如答图,连接BD 交AC 于点O .∵四边形ABCD 是平行四边形,AB =BC ,∴四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =21AC =3,OB =OD =21BD , ∴OB =OA AB 22-=)3(222-=1,∴BD =2OB =2. ∴ABCD 的面积为21AC • BD =21×23×2=23.(第22题答图) 23.解:(1)设一辆大型渣土运输车一次运输x 吨,一辆小型渣土运输车一次运输y 吨. 由题意,得⎩⎨⎧=+=+,,70653132y x y x 解得⎩⎨⎧==.58y x ,答:一辆大型渣土运输车一次运输8吨,一辆小型渣土运输车一次运输5吨.(2)设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为x 辆、y 辆.由题意,得⎪⎩⎪⎨⎧≥≥+=+,,,21485820y y x y x 解得⎩⎨⎧==218y x ,或⎩⎨⎧==317y x ,或⎩⎨⎧==.416y x , 故有三种派车方案,第一种方案:大型渣土运输车18辆,小型渣土运输车2辆;第二种方案:大型渣土运输车17辆,小型渣土运输车3辆;第三种方案:大型渣土运输车16辆,小型渣土运输车4辆.24.(1)解:∵对角线AC 为⊙O 的直径,∴∠ADC =90°,∴∠EDC =90°.(2)证明:如答图,连接DO .∵∠EDC =90°,F 是EC 的中点,∴DF =FC ,∴∠FDC =∠FCD .∵OD =OC ,∴∠OCD =∠ODC .∵∠OCF =90°,∴∠ODF =∠ODC +∠FDC =∠OCD +∠DCF =90°,∴DF 是⊙O 的切线.(第24题答图) (3)解:(方法一)设DE =1,则AC =25.由AC 2=AD •AE ,得20=AD (AD +1),解得AD =4(负值已舍去).∵DC 2=AC 2-AD 2,∴DC =2(负值已舍去).∴tan ∠ABD =tan ∠ACD =DCAD =2. (方法二)如答图,则∠ABD =∠ACD .∵∠E +∠DCE =90°,∠DCA +∠DCE =90°,∴∠DCA =∠E .又∵∠ADC =∠CDE =90°,∴△CDE ∽△ADC , ∴DCDE AD DC =,∴DC 2 = AD • DE . ∵AC =25DE ,∴设DE =x (x >0),则AC =25x ,∴AC 2-AD 2=AD • DE ,即(25x )2-AD 2=AD • x .整理,得AD 2+AD • x -20x 2=0.解得AD =4x 或AD =-5x (舍去).∴DC =)4()52(22x x -=2x .∴tan ∠ABD =tan ∠ACD =DC AD =x x 24=2. 25.解:(1)令直线y =mx +1中x =0,得y =1,即直线y =mx +1与y 轴的交点为(0,1).将(0,1)代入抛物线y =x 2-2x +n ,得n =1.∵抛物线的表达式为y =x 2-2x +1=(x -1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入直线y =mx +1,得0=m +1,解得m =-1.∴m 的值为-1,n 的值为1.(2)将y =2x -4代入y =x 6,得2x -4=x6, 即2x 2-4x -6=0,解得x 1=-1,x 2=3.∴该“路线”L 的顶点坐标为(-1,-6)或(3,2). 令“带线”l :y =2x -4中x =0,得y =-4,∴“路线”L 的图像过点(0,-4).设该“路线”L 的表达式为y =m (x +1)2-6或y =n (x -3)2+2. 由题意,得-4=m (0+1)2-6或-4=n (0-3)2+2,解得m =2,n =-32. ∴此“路线”L 的表达式为y =2(x +1)2-6或y =-32(x -3)2+2. (3)令抛物线L :y =ax 2+(3k 2-2k +1)x +k 中x =0,得y =k ,即该抛物线与y 轴的交点为(0,k ).抛物线L :y =ax 2+(3k 2-2k +1)x +k 的顶点坐标为(-a k k 21232+-,a k k ak 4)123(422+--). 设“带线”l 的表达式为y =px +k .∵点(-a k k 21232+-,a k k ak 4)123(422+--)在y =px +k 上, ∴a k k ak 4)123(422+--= -p 22132k k a -+∙+k , 解得p =21232+-k k . ∴“带线”l 的表达式为y =21232+-k k x +k . 令“带线”l :y =21232+-k kx +k 中y =0,得0=21232+-k k x +k , 解得x =-12322+-k k k . 即“带线”l 与x 轴的交点为(-12322+-k k k ,0),与y 轴的交点为(0,k ). ∴“带线”l 与x 轴,y 轴所围成的三角形面积S =21|-12322+-k k k |×|k |. ∵21≤k ≤2,∴21≤k1≤2, ∴S =12322+-k k k =)1(2312k k +-=2)11(12+-k , ∴当k 1=1时,S 有最大值,最大值为21; 当k 1=2时,S 有最小值,最小值为31. 故抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围为31≤S ≤21. 26.解:(1)在函数y =-x +1中,令x =0,得y=1,∴B (0,1),令y =0,得x =1,∴A (1,0).∴OA =OB =1,∴AB =2.∴△AOB 的周长为1+1+2=2+2.(2)∵OA =OB ,∴∠ABO =∠BAO =45°,∴∠PBO =∠QAO =135°.设∠POB =x ,则∠OPB =∠AOQ =135°-x -90°=45°-x ,∴△PBO ∽△OAQ ,∴AQOB OA PB =, ∴PB =AQ OB OA ∙=t 1. 如答图,过点P 作PH ⊥OB 于点H ,则△PHB 为等腰直角三角形.∵PB =t1,∴PH =HB =t 22,∴P (-t 22,1+t 22). (3)由(2)可知,△PBO ∽△OAQ ,若它们的周长相等,则相似比为1,即全等,∴PB =OA ,∴t1=1,解得t =1. 同理可知,Q (1+t 22,-t 22),∴m =t t 22122+=2-1.∵抛物线经过点A ,∴a +b +c =0.又∵6a +3b +2c =0,∴b =-4a ,c =3a .∴对称轴为直线x =2,取值范围为2-1≤x ≤2+1,①若a >0,则开口向上,由题意知,当x =2-1时,取得最大值,最大值为m 2=22+2, 即(2-1)2a +(2-1)b +c =22+2,解得a =72811+. ②若a <0,则开口向下,由题意x =2时取得最大值,最大值为22+2,即4a +2b +c =22+2,解得a =-22-2.综上所述,a 的值为72811+或-22-2.(第26题答图)。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2024年湖南省长沙市雅礼集团中考数学预测题(2)
2024年湖南省长沙市雅礼集团中考数学预测题(2)一、单选题1.《九章算术》记载的余和不足等概念体现了中国是最早采用正负数表示相反意义量的国家,若收入10元记作10+元,则支出136元记作( ) A .136+元B .136-元C .0元D .126-元2.小明同学从正面观察如图所示的几何体,得到的平面图形是( )A .B .C .D .3.计算2312x ⎛⎫⎪⎝⎭的结果正确的是( )A .6xB .614xC .514xD .9x4.如图,,AB CD AC ∥与BD 相交于点E .若40C ∠=︒,则A ∠的度数是( )A .39︒B .40︒C .41︒D .42︒5.据党中央2024年发布的中国共产党党内统计公报,截至2023年12月底,全国约共有党员9675万.数据9675万用科学记数法表示为( ) A .79.67510⨯B .39.67510⨯C .49.67510⨯D .69.67510⨯6.“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是( )A .中位数B .平均数C .众数D .方差7.《孙子算经》中记载了这样一道题:”今有百鹿进城,每家取一鹿,不尽,又三家合取一鹿,恰尽”.问:有多少户人家?大意为:有100头鹿,首先每户分一头鹿,发现还有剩余,将剩下的鹿给每3户共分一头,恰好分完,若设共有x 户,则下列方程正确的是( ) A .11003x +=B .31100x +=C .11003x x +=D .11003x += 8.如图,在四边形ABCD 中,AD BC ∥,添加下列条件后仍不能..判定四边形ABCD 是平行四边形的是( )A .AD BC =B .AB DC ∥ C .A C ∠=∠D .AB DC =9.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分别记为2S 甲和2S 乙,则2S 甲与2S 乙的大小关系是( )A .22S S >甲乙 B .22S S <甲乙C .22S S =甲乙D .无法确定10.已知0m n >>,若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是( )A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<二、填空题11.因式分解:24a -=.12.将直角坐标系中的点()4,3绕原点O 沿顺时针方向旋转90°,最终得到的点的坐标为 . 13.如图所示的卡槽中有一块三角形铁片OAB V ,点C ,D 分别是OA ,OB 的中点,若4cm CD =,则该铁片底边AB 的长为 cm .14.已知关于x 的一元二次方程2310kx x -+=有两个相等的实数根,则常数k 的值可能是 . 15.如图,点C 是半圆O 同侧的一点,AB 为直径,若6cm AB AC ==,50BAC ∠=︒,连接线段AC BC 、分别交圆于点D 、点E ,则弧DE 的长为 cm .16.图中分别为反比例函数ky x=与一次函数y ax b =+的图象,已知交点坐标(2,3)A ,(,2)B m -,直接写出不等式kax b x+>的解:.三、解答题17.计算:0(2024)2cos60|5|-︒+-. 18.请从下列2个题中任选1题作答:①已知5x =,求代数式2324416x x ---的值; ②已知13x =,求代数式(21)(12)4(3)x x x x +-++的值.19.2023年12月,21世纪经济研究院发布《国际消费中心城市建设年度报告(2023)》,长沙被列为发展型消费中心城市(Gamma 级).根据市场需求,长沙市某企业为加快生产速度,更新了部分生产设备,更新设备后生产效率比更新前提高了25%,若更新设备前每天生产产品x 件.据此解答下列问题:(1)更新设备后每天生产 件产品(用含x 的式子表示);(2)更新设备后生产6000件产品还比更新设备前的生产5000件产品少用2天,则更新设备后每天生产多少件产品?20.奇山秀水聚宝盆——湖南首届旅游大会在张家界召开.如图①为某景区山地剖面图,为给游客提供更好的游览体验,拟在山上修建观光索道.如图②所示为索道的设计示意图,以山顶D 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山脚A 处,中途观光平台BC 为50m ,且与AF 平行.索道AB 与水平线的夹角为15︒,CD 与水平线夹角为45︒,A 、B 两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈ 1.41≈)(1)求索道AB 的长(结果精确到0.1m ); (2)求水平距离AF 的长(结果精确到0.1m ).21.端午节,又称端阳节、龙舟节、重午节、重五节、天中节等,日期在每年农历五月初五,是集祈福辟邪、拜神祭祖、欢庆饮食和娱乐为一体的民俗大节.某校今年6月开设了以“端午”为主题的活动课程,每位学生可在“折纸龙”、“做香囊、“采艾叶””与“包粽子”四门课程中任意且只选择其中一门,学校统计调查了本校部分学生的选课情况,小明据此绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)补全条形统计图,并求本次被调查的学生人数.(2)该校共有2000名学生,若每间教室最多可安排40名学生,试估计开设“包粽子“课程的教室至少需要几间.22.图1为小明和妹妹小红每天的出行路线,某天兄妹俩从学校出发,到书吧看书后回家,哥哥小明步行先出发,途中速度保持不变:妹妹骑车从学校出发,到书吧前的速度为200米/分,两人离学校的路程s (米)与哥哥离开学校的时间t (分)的函数图像在图2中分别表示.(1)求小明步行的速度.(2)已知妹妹小红比哥哥小明迟2分钟到书吧. ①求图中a 的值;②若妹妹仅在书吧停留了11分钟后就准备回家,且速度是哥哥的1.6倍,求追上时兄妹俩离家还有多远.23.如图,已知O e 的内接ABC V 为等边三角形,连接顶点C 与圆心O ,并延长交AB 于点D ,交O e 于点E ,连接EA ,EB .(1)图中与ACD V 全等的三角形是 ,图中度数为30︒的角有 个 ; (2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由. 24.在ABC V 中,BC 为O e 的直径,AC 为过C 点的切线.(1)如图①,以点B 为圆心,BC 为半径作圆弧交AB 于点M ,连结CM ,若66ABC ∠=︒,求ACM ∠的大小;(2)如图②,过点D 作O e 的切线DE 交AC 于点E ,求证:AE EC =; (3)如图③,在(1)(2)的条件下,若3tan 4A =,求:ADE ACM S S △△的值. 25.若函数G 在()m x n m n ≤≤<上的最大值记为max y ,最小值记为min y ,且满足max min 1y y -=,则称函数G 是在m x n ≤≤的“美好函数”.(1)函数①1y x =+;②2y x =;③2y x =.其中函数___________是在12x ≤≤上的“美好函数”;(填序号)(2)已知函数G :()2230y ax ax a a =--≠.①函数G 是在12x ≤≤上的“美好函数”,求a 的值;②当1a =时,函数G 是在1t x t ≤≤+上的“美好函数”,请直接写出t 的值;(3)已知函数G :()2230y ax ax a a =-->,若函数G 是在221m x m +≤≤+(m 为整数)上的“美好函数”,且存在整数k ,使得maxminy k y =,求a 的值.。
【解析版】中考数学填空题专项练习经典练习卷(培优)(2)
一、选择题1.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°2.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540 D .(32﹣x )(20﹣x )+x 2=5404.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( )A .16(1+2x)=25B .25(1-2x)=16C .25(1-x)²=16D .16(1+x)²=25 5.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+ B .()2313y x =--- C .()2313y x =-++D .()2313y x =-+-6.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…当y2>y1时,自变量x的取值范围是A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>47.一元二次方程x2+x﹣14=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定8.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1129.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.43B.63C.23D.810.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.4511.如图,某中学计划靠墙围建一个面积为280m的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10m B.4m C.10m D.8m12.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x 1.1 1.2 1.3 1.4 1.5 1.6 y﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( ) A .1.2<x <1.3 B .1.3<x <1.4 C .1.4<x <1.5 D .1.5<x <1.6 13.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36°B .54°C .72°D .108°14.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( ) A .14B .12C .23D .3415.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89π C .8-49π D .8-89π 二、填空题16.已知:如图,在△AOB 中,∠AOB =90°,AO =3 cm ,BO =4 cm .将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D =__________cm .17.如图,已知抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a 1x 2+b 1x+c 1,则下列结论正确的是_________.(写出所有正确结论的序号)①b >0;②a ﹣b+c <0;③阴影部分的面积为4;④若c=﹣1,则b 2=4a .18.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.19.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.20.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.21.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.22.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB 连续作旋转变换,依次得到1234、、、,则2019的直角顶点的坐标为__________.23.抛物线21(2)43y x =++关于x 轴对称的抛物线的解析式为_______ 24.函数y =x 2﹣4x +3的图象与y 轴交点的坐标为_____.25.一个等边三角形边长的数值是方程x 2﹣3x ﹣10=0的根,那么这个三角形的周长为_____.三、解答题26.如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)27.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?28.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB 上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.29.2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率.30.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.C5.A6.D7.A8.C9.A10.C11.C12.C13.C14.B15.B二、填空题16.5【解析】试题解析:∵在△AOB中∠AOB=90°AO=3cmBO=4cm∴AB==5cm∵点D为AB 的中点∴OD=AB=25cm∵将△AOB绕顶点O按顺时针方向旋转到△A1OB1处∴OB1=OB=17.③④【解析】【分析】①首先根据抛物线开口向上可得a>0;然后根据对称轴为x=﹣>0可得b<0据此判断即可②根据抛物线y=ax2+bx+c的图象可得x=﹣1时y>0即a﹣b+c>0据此判断即可③首先判18.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B(4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点19.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离20.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长21.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次22.【解析】【分析】根据勾股定理列式求出AB的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第20123.【解析】【分析】由关于x轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x轴对称的抛物线解析式【详解】∵∴关于x轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何24.(03)【解析】【分析】令x=0求出y的值然后写出与y轴的交点坐标即可【详解】解:x=0时y=3所以图象与y轴交点的坐标是(03)故答案为(03)【点睛】本题考查了求抛物线与坐标轴交点的坐标掌握二次25.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数. 【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯= 因为BD 为直径,所以可得23818058COD ︒︒︒∠=-= 由于COP ∆为直角三角形 所以可得905832P ︒︒︒∠=-= 故选A. 【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.2.A解析:A 【解析】 【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数. 【详解】 ∵35C ∠=︒∴35BAD C =∠=︒∠ ∵AB 是圆O 的直径 ∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠ 故答案为:A . 【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.B解析:B 【解析】 【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x , 根据题意得:(32-x )(20-x )=540.故选B. 【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.4.C解析:C【解析】解:第一次降价后的价格为:25×(1﹣x ),第二次降价后的价格为:25×(1﹣x )2.∵两次降价后的价格为16元,∴25(1﹣x )2=16.故选C .5.A解析:A 【解析】【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.6.D解析:D 【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5; ∴直线与抛物线的交点为(-1,0)和(4,5), 而-1<x <4时,y 1>y 2,∴当y 2>y 1时,自变量x 的取值范围是x <-1或x >4. 故选D . 【点睛】本题考查了二次函数与不等式:对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.A解析:A 【解析】 【分析】根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根. 【详解】∵△=12﹣4×1×(﹣14)=2>0, ∴方程x 2+x ﹣14=0有两个不相等的实数根. 故选:A . 【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.8.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.9.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=323,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.10.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C11.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.12.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.13.C 解析:C 【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.14.B解析:B【解析】【分析】画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.【详解】解:画树状图如下:,一共12种可能,两人摸出的小球颜色相同的有6种情况,所以两人摸出的小球颜色相同的概率是612=12,故选:B.【点睛】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.B解析:B【解析】试题解析:连接AD,∵BC是切线,点D是切点,∴AD⊥BC,∴∠EAF=2∠EPF=80°,∴S扇形AEF=280?28 3609ππ=,S △ABC =12AD•BC=12×2×4=4, ∴S 阴影部分=S △ABC -S 扇形AEF =4-89π.二、填空题16.5【解析】试题解析:∵在△AOB 中∠AOB=90°AO=3cmBO=4cm ∴AB==5cm ∵点D 为AB 的中点∴OD=AB=25cm ∵将△AOB 绕顶点O 按顺时针方向旋转到△A1OB1处∴OB1=OB= 解析:5 【解析】试题解析:∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB cm ,∵点D 为AB 的中点,∴OD =12AB =2.5cm .∵将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,∴OB 1=OB =4cm ,∴B 1D =OB 1﹣OD =1.5cm . 故答案为1.5.17.③④【解析】【分析】①首先根据抛物线开口向上可得a >0;然后根据对称轴为x=﹣>0可得b <0据此判断即可②根据抛物线y=ax2+bx+c 的图象可得x=﹣1时y >0即a ﹣b+c >0据此判断即可③首先判解析:③④ 【解析】 【分析】①首先根据抛物线开口向上,可得a >0;然后根据对称轴为x=﹣2ba>0,可得b <0,据此判断即可.②根据抛物线y=ax 2+bx+c 的图象,可得x=﹣1时,y >0,即a ﹣b+c >0,据此判断即可. ③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是2424ac b a-=-,判断出c=﹣1时,a 、b 的关系即可.【详解】解:∵抛物线开口向上, ∴a >0,又∵对称轴为x=﹣2ba>0,∴b <0,∴结论①不正确; ∵x=﹣1时,y >0,∴a ﹣b+c >0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax 2+bx+c 的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确; ∵2424ac b a-=-,c=﹣1,∴b 2=4a ,∴结论④正确.故答案为:③④.【点睛】本题考查二次函数图象与几何变换;二次函数图象与系数的关系.18.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B (4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.19.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离20.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案. 【详解】 解:x 2﹣7x +10=0 (x ﹣2)(x ﹣5)=0, 解得:x 1=2,x 2=5,故等腰三角形的腰长只能为5,5,底边长为2, 则其周长为:5+5+2=12. 故答案为:12. 【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质.21.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2 【解析】 【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4xcm ,2004x-cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250,由于18>0,故其最小值为1250cm 2,故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.22.【解析】【分析】根据勾股定理列式求出AB 的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第201 解析:()8076,0【解析】【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可. 【详解】解:∵点A (-3,0)、B (0,4),∴,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, ∵2019÷3=673, ∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点, ∵673×12=8076, ∴△2019的直角顶点的坐标为(8076,0). 故答案为(8076,0). 【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.23.【解析】【分析】由关于x 轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x 轴对称的抛物线解析式【详解】∵∴关于x 轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何 解析:()21243y x =-+- 【解析】 【分析】由关于x 轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线21(2)43y x =++关于x 轴对称的抛物线解析式.【详解】∵21(2)43y x =++, ∴关于x 轴对称的抛物线解析式为-21(2)43y x =++,即()21243y x =-+-, 故答案为:()21243y x =-+-. 【点睛】此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴、y 轴对称点的特点.24.(03)【解析】【分析】令x=0求出y的值然后写出与y轴的交点坐标即可【详解】解:x=0时y=3所以图象与y轴交点的坐标是(03)故答案为(03)【点睛】本题考查了求抛物线与坐标轴交点的坐标掌握二次解析:(0,3).【解析】【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.25.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.三、解答题26.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形 【详解】 解:如图:27.(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元; (3)超市每天至少销售粽子440盒. 【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解. 试题解析:(1)由题意得,y =70020(45)x --=201600x -+;(2)P=(40)(201600)x x --+=220240064000x x -+-=220(60)8000x --+,∵x ≥45,a=﹣20<0,∴当x=60时,P 最大值=8000元,即当每盒售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)由题意,得220(60)8000x --+=6000,解得150x =,270x =,∵抛物线P=220(60)8000x --+的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x ≤58,∴50≤x ≤58,∵在201600y x =-+中,20k =-<0,∴y 随x 的增大而减小,∴当x=58时,y 最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒. 考点:二次函数的应用.28.(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35° 【解析】 【分析】(Ⅰ)由旋转的性质可得AC =CD ,CB =CE ,∠ACD =∠BCE ,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC =CD ,∠ABC =∠DEC ,∠ACD =∠BCE =50°,∠EDC =∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=180ACD2︒-∠,∠CBE=180BCE2︒-∠,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE =80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.29.13【解析】【分析】分别用字母A,B,C代替引导员、联络员和咨询员岗位,利用列表法求出所有等可能结果,再根据概率公式求解可得.【详解】分别用字母A,B,C代替引导员、联络员和咨询员岗位,用列表法列举所有可能出现的结果:的结果中,小南和小西恰好被分配到同一个岗位的结果有3种,即AA,BB,CC,∴小南和小西恰好被分配到同一个岗位进行志愿服务的概率=39=13.【点睛】考查随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.30.小路的宽为1m.【解析】【分析】如果设小路的宽度为xm,那么整个草坪的长为(16﹣2x)m,宽为(9﹣x)m,根据题意即可得出方程.【详解】设小路的宽度为xm,那么整个草坪的长为(16﹣2x)m,宽为(9﹣x)m.根据题意得:(16﹣2x)(9﹣x)=112解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点睛】本题考查了一元二次方程的应用,弄清“整个草坪的长和宽”是解决本题的关键.。
2016年长沙市中考数学试卷及答案 (2)
2016年长沙中考数学测试卷一、选择题1.下列四个数中,最大的数是( )A.-2B.31 C.0 D.6 2.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路线全长95500米,则数据95500用科学记数法表示为( )A .0.955×105 B. 9.55×105 C. 9.55×104 D . 9.5×1043.下列计算正确的是( )A .1052=⨯ B. x 8÷x 2=x 4 C. (2a )3=6a 3 D . 3a 3 · 2 a 2=6a 64.六边形的内角和是( )A .︒540 B. ︒720 C. ︒900 D . ︒3605.不等式组⎩⎨⎧<-≥-048512x x 的解集在数轴上表示为( )6.下图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是( )7.若一个三角形的两边长分别为3和7,则第三边长可能是( )A .6 B. 3 C. 2 D . 118.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为( )A .(-2,-1) B. (-1,0) C. (-1,-1) D . (-2,0)9.下列各图中,∠1与∠2互为余角的是( )10.已知一组数据75, 80,85,90,则它的众数和中位数分别为( )A .75, 80 B. 80,85 C. 80,90 D . 80,8011.如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为︒30,看这栋楼底部C 处的俯角为︒60,热气球A 处与楼的水平距离为120 m ,则这栋楼的高度为( )A .1603m B. 1203mC .300 mD . 1602m 12.已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx +c=0无实数根;③a -b +c ≥0;④a b c b a -++的最小值为3.其中,正确结论的个数为( )A .1个 B.2个 C.3个 D.4个二、填空题13.分解因式:x 2y -4y =____________.14.若关于x 的一元二次方程x 2-4x -m =0有两个不相等的实数根,则实数m 的取值范围是_________.15.如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为_______.(结果保留π)16.如图,在⊙O 中,弦AB=6,圆心O 到AB 的距离OC=2,则⊙O 的半径长为_____________.17.如图,△ABC 中,AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为______.15题图 16题图 17题图18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________.三、解答题19.计算:4sin60°-︱- 2︳-12+(-1)201620.先化简,再求值:b a a -(a b 11-)+b a 1-.其中,a =2,b =31.21.为积极响应市委市政府“加快建设天蓝·水净·地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种,为了更好的了解社情民意,工作人员在街道辖区范围内随即抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成下面两个不完整的统计图.请根据所给信息解答以下问题:(1)这次参与调查的居民人数为_______;(2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?22.如图,AC是□ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;2,求□ABCD的面积.(2)若AB=2,AC=323.2016年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将会给乘客带来美的享受。
【初中数学】湖南省株洲市2016年中考数学模拟试卷(二)(解析版) 人教版
湖南省株洲市2016年中考数学模拟试卷(二)(解析版)一、选择题:1.﹣4的绝对值是( )A .﹣4B .4C .±4D .﹣2.下列所示的几何体的主视图是( )A .B .C .D .3.函数中自变量x 的取值范围是( ) A .x ≥﹣1 B .x ≤﹣1C .x ≥﹣1且x ≠0D .x ≠04.不等式组的解集在数轴上可表示为( )A .B .C .D .5.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )A .B .C .D .6.下列运算正确的是( ) A .3a ﹣2a=1 B .x 8﹣x 4=x 2C .D .﹣(2x 2y )3=﹣8x 6y 37.若(17x ﹣11)(7x ﹣3)﹣(7x ﹣3)(9x ﹣2)=(ax +b )(8x ﹣c ),其中a ,b ,c 是整数,则a +b +c 的值等于( )A.9 B.﹣7 C.13 D.178.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6 B.7 C.8 D.99.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°10.如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线.若∠ABE=∠C,AE:ED=2:1,则△BDE与△ABC的面积比为何?()A.1:6 B.1:9 C.2:13 D.2:15二、填空题:11.25的算术平方根是______.12.等腰三角形的一条边长为6,另一条边长为12,则它的周长是______.13.在将Rt△ABC中,∠A=90°,∠C:∠B=1:2,则sinB=______.14.如图,在直角坐标系中,直线y=6﹣x与双曲线(x>0)的图象相交于A、B,设点A的坐标为(m,n),那么以m为长,n为宽的矩形的面积和周长分别为______,______.15.现有四张完全相同的卡片,上面分别标有数字﹣1,﹣2,3,4.把卡片背面上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是______.16.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是______.17.如图,已知菱形ABCD的两条对角线长分别是3和4,点M、N分别是边BC、CD的中点,点P是对角线上的一点,则PM+PN的最小值是______.18.如图,P1(x1,y1),P2(x2,y2),…,P n(x n,y n)在函数(x>0)的图象上,A n都是等腰直角三角形,斜边OA1,A1A2,A2A3,…,△P1OA1,△P2A1 A2,…,△P n A n﹣1A n都在x轴上(n是大于或等于2的正整数),则点P n的坐标是______;(用含n的A n﹣1代数式表示)三、解答题(共8个小题,共66分)19.计算:.20.先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.21.如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD 和B′C相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.22.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该公司打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?23.(10分)(2016•株洲模拟)2011年北京春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表请你根据以上信息,回答下列问题:(1)补全统计表和统计图;(2)打算购买住房面积小于100平方米的消费者人数占被调查人数的百分比为______;(3)求被调查的消费者平均每人年收入为多少万元?24.已知等边△ABC内接于⊙O,AD为O的直径交线段BC于点M,DE∥BC,交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若等边△ABC的边长为6,求BE的长.25.(10分)(2016•株洲模拟)在平面直角坐标系xOy中,已知点A(8,0),点B(0,8),动点在以半径为4的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D (其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为______;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.26.(10分)(2016•株洲模拟)已知:m、n是方程x2﹣6x+5=0的两个实数根,且m<n,抛物线y=﹣x2+bx+c的图象经过点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标.2016年湖南省株洲市中考数学模拟试卷(二)参考答案与试题解析一、选择题:1.﹣4的绝对值是()A.﹣4 B.4 C.±4 D.﹣【考点】绝对值.【分析】直接根据绝对值的意义求解.【解答】解:|﹣4|=4.故选B.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.2.下列所示的几何体的主视图是()A.B. C. D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间是一个小正方形,故选B.【点评】本题考查了简单组合体的三视图,熟记三视图的基本定义是解题关键.3.函数中自变量x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x≥﹣1且x≠0 D.x≠0【考点】函数自变量的取值范围.【分析】根据被开方数是非负数,分母不能为零,可得到答案.【解答】解:由题意,得x+1≥0且x≠0,解得x≥﹣1且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式是解题关键.4.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每个不等式的解集,在数轴上分别表示这些解集,找出公共部分即可.【解答】解:∵不等式组可化为:∴不等式组的解集是x>3,故选D.【点评】本题考查不等式组的解法和在数轴是表示不等式组的解集.需要注意不等式组的解集在数轴上的表示方法,当包括该数时,在数轴上表示应用实心圆点的表示方法,当不包括该数时应用空心圆圈来表示.5.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A.B.C.D.【考点】几何概率;平行四边形的性质.【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【解答】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,,观察发现:图中阴影部分面积=S四边形∴针头扎在阴影区域内的概率为,故选:B.【点评】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.6.下列运算正确的是()A.3a﹣2a=1 B.x8﹣x4=x2C.D.﹣(2x2y)3=﹣8x6y3【考点】幂的乘方与积的乘方;合并同类项;二次根式的性质与化简.【分析】A、合并同类项得到结果,即可作出判断;B、本选项不能合并,错误;C、利用二次根式的化简公式计算得到结果,即可作出判断;D、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、3a﹣2a=a,本选项错误;B、本选项不能合并,错误;C、=|﹣2|=2,本选项错误;D、﹣(2x2y)3=﹣8x6y3,本选项正确,故选D【点评】此题考查了积的乘方与幂的乘方,合并同类项,同底数幂的乘法,熟练掌握公式及法则是解本题的关键.7.若(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(ax+b)(8x﹣c),其中a,b,c是整数,则a+b+c的值等于()A.9 B.﹣7 C.13 D.17【考点】多项式乘多项式.【分析】首先将原式利用提取公因式法分解因式,进而得出a,b,c的值,进而得出答案.【解答】解:(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(7x﹣3)[(17x﹣11)﹣(9x﹣2)]=(7x﹣3)(8x﹣8)∵(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(ax+b)(8x﹣c),可因式分解成(7x ﹣3)(8x﹣8),∴a=7,b=﹣3,c=8,∴a+b+c=7﹣3+8=13.故选C【点评】此题主要考查了提取公因式法分解因式以及代数式求值,根据已知正确分解因式是解题关键.8.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6 B.7 C.8 D.9【考点】扇形面积的计算.【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=,计算即可.【解答】解:∵正方形的边长为3,∴弧BD的弧长=6,==×6×3=9.∴S扇形DAB故选D.=.【点评】此题考查了扇形的面积公式,解题的关键是:熟记扇形的面积公式S扇形DAB9.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【考点】旋转的性质.【分析】根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB1,再根据旋转的性质对应边的夹角∠BAB1即为旋转角.【解答】解:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°,∴旋转角等于125°.故选C.【点评】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.10.如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线.若∠ABE=∠C,AE:ED=2:1,则△BDE与△ABC的面积比为何?()A.1:6 B.1:9 C.2:13 D.2:15【考点】相似三角形的判定与性质;全等三角形的判定与性质.【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE=S△BED,根据S△ABC=S△ABE+S△ACD+S△BED即可求得.【解答】解:∵AE:ED=2:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴S△ABE:S△ACD=4:9,∴S△ACD=S△ABE,∵AE:ED=2:1,∴S△ABE:S△BED=2:1,∴S△ABE=2S△BED,∴S△ACD=S△ABE=S△BED,∵S△ABC=S△ABE+S△ACD+S△BED=2S△BED+S△BED+S△BED=S△BED,∴S△BDE:S△ABC=2:15,故选D.【点评】本题考查了相似三角形的判定和性质,不同底等高的三角形面积的求法等,等量代换是本题的关键.二、填空题:11.25的算术平方根是5.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.【点评】易错点:算术平方根的概念易与平方根的概念混淆而导致错误.规律总结:弄清概念是解决本题的关键.12.等腰三角形的一条边长为6,另一条边长为12,则它的周长是30.【考点】等腰三角形的性质;三角形三边关系.【分析】根据任意两边之和大于第三边,知道等腰三角形的腰的长度是12,底边长6,把三条边的长度加起来就是它的周长.【解答】解:因为6+6<12,所以等腰三角形的腰的长度是12,底边长6,周长:12+12+6=30,答:它的周长是30,故答案为:30【点评】此题考查等腰三角形的性质,关键是先判断出三角形的两条腰的长度,再根据三角形的周长的计算方法,列式解答即可.13.在将Rt△ABC中,∠A=90°,∠C:∠B=1:2,则sinB=.【考点】锐角三角函数的定义.【分析】根据题意和三角形内角和定理求出∠B的度数,根据正弦的定义解答即可.【解答】解:∵∠A=90°,∴∠C+∠B=90°,又∠C:∠B=1:2,∴∠B=60°,∴sinB=,故答案为:.【点评】本题考查的是锐角三角函数的定义、三角形内角和定理的应用,掌握三角形内角和等于180°、熟记锐角三角函数的定义是解题的关键.14.如图,在直角坐标系中,直线y=6﹣x与双曲线(x>0)的图象相交于A、B,设点A的坐标为(m,n),那么以m为长,n为宽的矩形的面积和周长分别为4,12.【考点】反比例函数与一次函数的交点问题;矩形的性质.【分析】以m为长、n为宽的矩形的面积为:mn,符合反比例函数解析式的特点,因此根据点A在反比例函数的图象上即可得解;以m为长、n为宽的矩形的周长为:2(m+n),符合直线AB的解析式,根据A点在一次函数图象上即可得解.【解答】解:∵点A(m,n)在直线y=6﹣x与双曲线的图象上,∴n=6﹣m,n=,即m+n=6,mn=4,∴以m为长、n为宽的矩形面积为mn=4,周长为2(m+n)=12.故答案为:4,12【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是运用数形结合的思想方法进行求解.解题时注意,不应盲目的去求交点A的坐标,而应观察所求的结论和已知条件之间的联系,避免出现复杂的计算过程.15.现有四张完全相同的卡片,上面分别标有数字﹣1,﹣2,3,4.把卡片背面上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出数字之积为负数的情况数,求出所求的概率即可.【解答】解:列表如下:所有等可能的情况数有12种,其中数字之积为负数的情况有8种,则P数字之积为负数==.故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是19.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是AE×BE=×3×4=6,∴阴影部分的面积是25﹣6=19,故答案为:19.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.17.如图,已知菱形ABCD的两条对角线长分别是3和4,点M、N分别是边BC、CD的中点,点P是对角线上的一点,则PM+PN的最小值是.【考点】菱形的性质;轴对称-最短路线问题.【分析】作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.【解答】解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP 的值最小,连接AC,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=,BP=BD=2,在Rt△BPC中,由勾股定理得:BC==,即NQ=,∴MP+NP=QP+NP=QN=,故答案为:.【点评】本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.18.如图,P1(x1,y1),P2(x2,y2),…,P n(x n,y n)在函数(x>0)的图象上,A n都是等腰直角三角形,斜边OA1,A1A2,A2A3,…,△P1OA1,△P2A1 A2,…,△P n A n﹣1A nA n都在x轴上(n是大于或等于2的正整数),则点P n的坐标是(+,﹣1﹣);(用含n的代数式表示)【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】根据等腰直角三角形的性质可得出x1=y1,x2=2x1+y2,x3=2x1+2x2+y3,…,再由点P1(x1,y1),P2(x2,y2),…,P n(x n,y n)在函数(x>0)的图象上,可得出x1•y1=x2•y2=x3•y3=…=x n•y n=1,从而得出y n=﹣,由x n•y n=1即可得出点P n的坐标.A n都是等腰直角三角形,【解答】解:∵△P1OA1,△P2A1 A2,…,△P n A n﹣1∴x1=y1,x2=2x1+y2,x3=2x1+2x2+y3,…,)+y n.∴x n=2(x1+x2+…+x n﹣1∵点P1(x1,y1),P2(x2,y2),…,P n(x n,y n)在函数(x>0)的图象上,∴x1•y1=x2•y2=x3•y3=…=x n•y n=1.∴x1=y1=1,y2=﹣1,y3=﹣,…,y n=﹣(n是大于或等于2的正整数),∴x n==+(n是大于或等于2的正整数).∴点P n的坐标是(+,﹣).故答案为:( +,﹣).【点评】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质以及规律型中点的坐标,解题的关键是求出y n=﹣.本题属于中档题,难度不大,解决该题型题目时,结合反比例函数图象上点的坐标特征以及等腰直角三角形的性质,找出点P n纵坐标的变化规律是关键.三、解答题(共8个小题,共66分)19.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=2﹣+1+3×=3﹣+=3【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.20.先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.【考点】分式的化简求值.【分析】先把除法转化成乘法,再根据乘法的分配律分别进行计算,然后把所得的结果化简,最后选取一个合适的数代入即可.【解答】解:=×=﹣==,由于a≠±1,所以当a=时,原式==.【点评】此题考查了分式的化简求值,用到的知识点是乘法的分配律、约分,在计算时要注意把结果化到最简.21.如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD 和B′C相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.【考点】等腰三角形的判定;全等三角形的判定;平行四边形的性质.【分析】(1)根据题意,结合图形可知等腰三角形有△ABB′,△AOC和△BB′C;(2)因为四边形ABCD是平行四边形,所以AB=DC,∠ABC=∠D,又因为,△AB’C和△ABC关于AC所在的直线对称,故AB′=AB,∠ABC=∠AB′C,则可证△AB’O≌△CDO.【解答】解:(1)△ABB′,△AOC和△BB′C;(2)在▱ABCD中,AB=DC,∠ABC=∠D,由轴对称知AB′=AB,∠ABC=∠AB′C,∴AB′=CD,∠AB′O=∠D.在△AB′O和△CDO中,∴△AB′O≌△CDO(AAS).【点评】此题是一道把等腰三角形的判定、平行四边形的性质和全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力.22.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该公司打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?【考点】二元一次方程组的应用.【分析】(1)设需甲车x辆,乙车y辆列出方程组即可.(2)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,列出等式.【解答】解:(1)设需甲车x辆,乙车y辆,根据题意得,解得.答:需甲种车型为8辆,乙种车型为10辆.(2)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,由题意得5a+8b+10(14﹣a﹣b)=120,化简得5a+2b=20,即a=4﹣b,∵a、b、14﹣a﹣b均为正整数,∴b只能等于5,从而a=2,14﹣a﹣b=7,∴甲车2辆,乙车5辆,丙车7辆,∴需运费400×2+500×5+600×7=7500(元).答:甲车2辆,乙车5辆,丙车7辆,需运费7500元.【点评】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.利用整体思想和未知数的实际意义通过筛选法可得到未知数的具体解,这种方法要掌握.23.(10分)(2016•株洲模拟)2011年北京春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表请你根据以上信息,回答下列问题:(1)补全统计表和统计图;(2)打算购买住房面积小于100平方米的消费者人数占被调查人数的百分比为52%;(3)求被调查的消费者平均每人年收入为多少万元?【考点】频数(率)分布直方图;统计表;算术平均数.【分析】(1)被调查的100人减去其他收入的人数即可得到年收入在6万元的人数;(2)用小于100的人数除以总人数即可得到小于100平米的所占比例;(3)用加权平均数计算即可.【解答】解:(1)100﹣10﹣30﹣9﹣1=50人,∴年收入为6万元的有50人;如图;(2)由统计图可知打算购买住房面积小于100平方米的消费者人数为52人,∴52÷100=52%;(3)=7.5(万元).故被调查的消费者平均每人年收入为7.5万元.【点评】本题考查了条形统计图的相关知识,解题的关键是根据条形统计图求出除去年收入在6万元以下的人数.24.已知等边△ABC内接于⊙O,AD为O的直径交线段BC于点M,DE∥BC,交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若等边△ABC的边长为6,求BE的长.【考点】切线的判定;等边三角形的性质.【分析】(1)由等边三角形的性质得出O即是△ABC的外心,又是△ABC的内心,得出∠BAM=∠CAM=30°,因此∠AMB=90°,由平行线的性质得出∠EDA=90°,即可得出结论;(2)由等边三角形的性质得出BM=AB=3,连接OB,则∠OBM=30°,得出OM=OB,由勾股定理求出OB,由平行线的性质得出=,求出AE,即可得出BE的长.【解答】(1)证明:∵等边△ABC内接于⊙O,∴∠ABC=60°,O即是△ABC的外心,又是△ABC的内心,∴∠BAM=∠CAM=30°,∴∠AMB=90°,∵DE∥BC,∴∠EDA=∠AMB=90°,∵AD为⊙O的直径,∴DE是⊙O的切线;(2)解:∵△ABC是等边三角形,∴BM=AB=3,连接OB,如图所示:则∠OBM=30°,∴OM=OB,由勾股定理得:OB2﹣OM2=BM2,即OB2﹣(OB)2=32,解得:OB=2,∴OM=,AM=3,AD=4,∵DE∥BC,∴=,即=,解得:AE=8,∴BE=AE﹣AB=8﹣6=2.【点评】本题考查了切线的判定、等边三角形的性质、平行线的性质、勾股定理等知识;熟练掌握切线的判定和等边三角形的性质,由勾股定理求出半径是解决问题的突破口.25.(10分)(2016•株洲模拟)在平面直角坐标系xOy中,已知点A(8,0),点B(0,8),动点在以半径为4的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D (其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为45°;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.【考点】圆的综合题.【分析】(1)由A与B的坐标可知:∠OBA=45°,当OC∥AB时,∠BOC=∠ABO=45°;(2)过点C作CE⊥AB于点E,当E为AB中点时,△ABC的面积有最大值,此时只需要求出CE的值即可求出△ABC的面积;(3)①当OC∥AD时,此时∠ODA=90°,即点D在以OA为直径的圆上,作出以AB为直径的⊙F,⊙F与⊙O相交于点D1,D2,又因为OC⊥OD,所以可求出分别求出点C的坐标;②连接BC后,求出OG,BG的长度,然后求出tan∠CBG的值,即可求得∠CBG=30°,所以∠OCB=90°.【解答】(1)∵A(8,0),B(0,8),∴OA=OB=8,当OC∥AB时,∴∠BOC=∠ABO=45°;(2)如图1,过点C作CE⊥AB于点E,当E为AB中点时,△ABC的面积有最大值,由勾股定理可求得:AB=8,∴OE=4,又∵OC=4,∴CE=OC+OE=4+4,∴△ABC的面积为:AB•CE=××(4+4)=16+32;(3)当OC∥AD时,∴∠ODA=90°,∴由圆周角定理可知:D在以OA为直径的圆上,如图2,以OA为直径作⊙F,交⊙O于点D1,D2,①连接D1F,∴D1F=OA,∴△OD1F是等边三角形,∴∠D1OA=60°,∵∠C1OD1=90°,∴∠C1OB=60°,过点C1作C1G⊥y轴,∴OG=2,由勾股定理可知:C1G=2,∴C1(﹣2,2),同理可知:∠D2OA=60°,∴∠C2OA=30°,∴∠C2OB=60°由圆的对称性可知:C1与C2关于y轴对称,∴C2(2,2),综上所述,当OC∥AD时,点C的坐标为(﹣2,2)或(2,2);②如图3,连接BC1,由①可知:OG=2,C1G=2,∴BG=OB﹣OG=8﹣2=6,∴tan∠C1BG==,∴∠C1BG=30°,又∵∠C1OB=60°,∴∠BC1O=90°,∴BC1与⊙O相切,∴由圆的对称性可知:BC2与⊙O相切,综上所述,当OC∥AD时,BC与⊙O相切.【点评】本题考查圆的综合问题,涉及锐角三角函数,圆周角定理,圆的切线判定,等边三角形的性质等知识内容,本题综合程度较高,需要学生综合运用所学知识解决.26.(10分)(2016•株洲模拟)已知:m、n是方程x2﹣6x+5=0的两个实数根,且m<n,抛物线y=﹣x2+bx+c的图象经过点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标.【考点】二次函数综合题.【分析】(1)通过解方程即可求出m、n的值,那么A、B两点的坐标就可求出.然后根据A、B两点的坐标即可求出抛物线的解析式.(2)根据(1)得出的抛物线的解析式即可求出C、D两点的坐标.由于△BCD的面积无法直接求出,可用其他图形的面积的“和,差关系”来求出.过D作DM⊥x轴于M,那么△BCD的面积=梯形DMOB的面积+△DCM的面积﹣△BOC的面积.由此可求出△BCD的面积.(3)由于△PCH被直线BC分成的两个小三角形等高,因此面积比就等于底边的比.如果设PH与BC的交点为E,那么EH就是抛物线与直线BC的函数值的差,而EP就是E点的纵坐标.然后可根据直线BC的解析式设出E点的坐标,然后表示出EH,EP的长.进而可分两种情况进行讨论:①当EH=EP时;②当EH=EP时.由此可得出两个不同的关于E点横坐标的方程即可求出E点的坐标.也就求出了P点的坐标.【解答】解:(1)解方程x2﹣6x+5=0,(x﹣1)(x﹣5)=0,得x1=5,x2=1由m<n,有m=1,n=5所以点A、B的坐标分别为A(1,0),B(0,5).将A(1,0),B(0,5)的坐标分别代入y=﹣x2+bx+c.得,解这个方程组,得:所以,抛物线的解析式为y=﹣x2﹣4x+5(2)由y=﹣x2﹣4x+5,令y=0,得﹣x2﹣4x+5=0,解这个方程,得x1=﹣5,x2=1,所以C点的坐标为(﹣5,0).由顶点坐标公式计算,得点D(﹣2,9).过D作x轴的垂线交x轴于M.则S△DMC=×9×(5﹣2)==×2×(9+5)=14,S梯形MDBOS△BOC=×5×5=,+S△DMC﹣S△BOC=14+﹣=15.所以,S△BCD=S梯形MDBO(3)设P点的坐标为(a,0)因为线段BC过B、C两点,所以BC所在的直线方程为y=x+5.那么,PH与直线BC的交点坐标为E(a,a+5),PH与抛物线y=﹣x2﹣4x+5的交点坐标为H(a,﹣a2﹣4a+5).由题意,得①EH=EP,即(﹣a2﹣4a+5)﹣(a+5)=(a+5)解这个方程,得a=﹣或a=﹣5(舍去)②EH=EP,即(﹣a2﹣4a+5)﹣(a+5)=(a+5)解这个方程,得a=﹣或a=﹣5(舍去),P点的坐标为(﹣,0)或(﹣,0).【点评】此题主要考查了一元二次方程的解法,二次函数解析式的确定、图形的面积求法、函数图象交点等知识及综合应用知识、解决问题的能力.利用函数图象交点坐标为两函数解析式组成的方程组的解以及不规则图形的面积通常转化为规则图形的面积的和差.。
长沙市中考数学模拟试卷(二)
长沙市中考数学模拟试卷( 二)一、选择题(每题 3 分)1.给出四个数: 0,,, 1,此中最大的是()A.0 B. C .D.﹣ 12.以下各图中,∠ 1 与∠ 2 互为余角的是()A.B.C.D.3.以下图形中,是中心对称图形但不是轴对称图形的是()A.平行四边形B.矩形C.正方形D.圆4.据统计, 2016 年长沙市的常住人口约为7500000 人,将数据7500000 用科学记数法表示为()A. 7.5 × 106B. 0.75 × 107C. 7.5 × 107D. 75× 1055.已知对于 x 的不等式 ax﹣ 3x+2> 5 的一个解是﹣2,则 a 的取值范围为()A. a<B. a>C. a>﹣D. a<﹣6.以下说法中,正确的选项是()A.任何一个数都有平方根B.任何正数都有两个平方根C.算术平方根必定大于0D.一个数不必定有立方根7.在以下数据75, 80,80, 85,90 中,众数、中位数分别是()A. 75, 80B. 80, 80C. 80, 85D. 80, 908.已知一个正n 边形的每个内角为120°,则这个多边形的对角线有()A.5 条 B.6 条 C.8 条 D.9 条9.如图, C 是线段 AB 的中点, D 是线段 CB的中点,以下说法错误的选项是()A. CD=AC﹣ BD B. CD= AB﹣ BD C. AC+BD=BC+CD D. CD= AB10.如图,已知 A 是反比率函数y=图象上的一点,过点 A 向 x 轴作垂线交x 轴于点 B,在点 A 从左往右挪动的过程中,△ABO的面积将()A.愈来愈大B.愈来愈小C.先变大,后变小D.不变11.如图,扇形AOB是圆锥的侧面睁开图,已知圆锥的底面半径为2,母线长为6,则暗影部分的面积为()A. 12π﹣B. 4π﹣ C . 12π﹣ 9D. 4π﹣ 912.如图, A 点在半径为 2 的⊙ O上,过线段OA上的一点 P 作直线 m,与⊙ O过 A 点的切线交于点B,且∠ APB=60°,设 OP=x,则△ PAB的面积 y 对于 x 的函数图象大概是()A.B.C.D.二、填空题(每题3d 分)13.分解因式: 2x2﹣8=______ .14.以下图,在? ABCD中,∠ BAD的角均分线 AE交 BC于点 E, AB=4, AD=6,则EC=______.15.化简:+2=______ .16.一个不透明的口袋中共放有3 个红球和 11 个黄球,这两种球除颜色外没有其余任何差别,若从口袋中随机拿出一个球,则取到黄球的概率是______.17.以下图,在⊙ O中, AB为⊙ O的直径, AC=8, sinD=,则 BC=______.18.规定一种新的运算:a? b=,则1? 2=______.三、解答题20.先化简,再求值:(2a ﹣ b ) 2﹣ b (b ﹣ 2a )﹣ a 2,此中 3a=2b .21.长沙市中考体育分值已经提升到了 60 分,此中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此增强了对体育训练的重视.引体向上(男)和一分钟仰卧起坐(女)共16 分 单位:次数分值1615 14 13 12 10 8 6 3男 7654321成 8(次)绩女403632 28 25 22 20< 1945(次)注: 0.5 次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完好达成一次某中学对全校学生这两项运动的成绩进行了统计,规定分值15 分及以上为优异, 12 分到 14 分为优异, 6 分到 10 分为合格, 6 分以下不合格,在全校 800 名初三学生中,随机抽取部分学生进行测试,并将测试 成绩绘制成以下两幅不完好的统计图,求:( 1)某女生说她得了 12 分,请问她一分钟做了多少次仰卧起坐; ( 2)请问一共抽取了多少名学生?并补全条形统计图; ( 3)依据抽样结果预计,本校项目由多少学生可以得优异?22.如图,在 Rt △ PAD 中,∠ PAD=90°,∠ APD 的角均分线 PO 交 AD 于 O 点,以 O 为圆心, OA 为半径作⊙ O ,交 AD 于点 B ,过 D 作 DE ⊥ PO 交 PO 的延伸线于点 E .( 1)求证: PD 是⊙ O 的切线;( 2)若 PA=6,tan ∠ PDA= ,求半径 OA 及 OE 的长.23 .某汽车专卖店销售 A 、 B 两种型号的新能源汽车.上周售出1 辆 A 型车和 3 辆 B 型车,销售额为 96 万 元;本周已售出2 辆 A 型车和 1 辆 B 型车,销售额为 62 万元. ( 1)求每辆 A 型车和 B 型车的售价各为多少元; ( 2)甲企业拟向该店购置 A 、 B 两种型号的新能源汽车共 6 辆,购车资许多于 130 万元,但不超出 140 万 元.则有哪几种购车方案?并写出哪一种方案所需的购车花费最低.24 .已知,如图,△ ABC 是等边三角形,过 AC 边上的点 D 作 DG ∥ BC ,交 AB 于点 G ,在 GD 的延伸线上取 点 E ,使 DE=DC ,连结 AE 、 BD . ( 1)求证:△ AGE ≌△ DAB ;( 2)过点 E 作 EF ∥ DB ,交 BC 于点 F ,连结 AF ,求∠ AFE 的度数.25.若 x1、x2是对于 x 的一元二次方程ax2+bx+c=0 (a≠ 0)的两个根,则方程的两个根x1、 x2和系数 a、b、 c 有以下关系: x1+x2=﹣, x12=,我们把它们称为根与系数的关系定理,请你参照上述定理,解? x答以下问题:设二次函数 y=ax2+bx+c( a≠0)的图象与 x 轴的两个交点为A( x1, 0), B( x2, 0).抛物线的极点为C,且△ ABC为等腰三角形.( 1)求 A、 B 两点之间的距离(用字母a、 b、 c 表示)( 2)当△ ABC为等腰直角三角形时,求b2﹣ 4ac 的值;( 3)设抛物线 y=x 2+kx+1 与 x 轴的两个交点为 A、B,极点为 C,且∠ ACB=90°,试问怎样平移此抛物线,才能使∠ ACB=60°?26.如图,四边形OABC为直角梯形, OA∥BC,∠ AOC=90°, OA=OC=4,BC=3.点 M从 O出发以每秒 2 个单位长度的速度向 A 运动;点 N从 B 同时出发,以每秒 1 个单位长度的速度向 C运动,当此中一个动点达到终点时,另一个动点也随之停止运动,过点N作 NP垂直 OA于点 P,连结 AC交 NP于点 Q,连结 MQ.( 1)当 t 为什么值时, M和 P 两点重合;( 2)求△ AQM的面积 S 与运动时间 t的函数关系式,并写出自变量t 的取值范围,及当t 为什么值时, S 的值最大;( 3)能否存在点M,使得△ AQM为直角三角形?若存在,求NQ的长;若不存在,请说明原因.4/162017 年长沙市中考数学模拟试卷(二)参照答案与试题分析一、选择题(每题 3 分)1.给出四个数:0,,,1,此中最大的是()A.0B.C.D.﹣ 1【考点】实数大小比较.【剖析】依据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:∵>1,∴0<<1<,∴最大的数是,应选; B.2.以下各图中,∠ 1 与∠ 2 互为余角的是()A.B.C.D.【考点】余角和补角.【剖析】假如两个角的和等于 90°(直角),就说这两个角互为余角.依此定义联合图形即可求解.【解答】解:四个选项中,只有选项 C 知足∠ 1+∠ 2=90°,即选项 C 中,∠ 1 与∠ 2 互为余角.应选 C.3.以下图形中,是中心对称图形但不是轴对称图形的是()A.平行四边形B.矩形C.正方形D.圆【考点】中心对称图形;轴对称图形.【剖析】依据中心对称图形和轴对称图形的观点对各选项剖析判断即可得解.【解答】解:A、平行四边形是中心对称图形但不是轴对称图形,故本选项正确;B、矩形是中心对称图形也是轴对称图形,故本选项错误;C、正方形是中心对称图形也是轴对称图形,故本选项错误;D、圆是中心对称图形也是轴对称图形,故本选项错误.应选 A.4.据统计, 2016 年长沙市的常住人口约为7500000 人,将数据7500000 用科学记数法表示为()A. 7.5 × 106B. 0.75 × 107C. 7.5 × 107D. 75× 105【考点】科学记数法—表示较大的数.【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤ |a|< 10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:将数据 7500000 用科学记数法表示为 7.5 × 106.应选 A.5.已知对于 x 的不等式 ax﹣ 3x+2> 5 的一个解是﹣ 2,则 a 的取值范围为()A. a<B. a>C. a>﹣D. a<﹣【考点】不等式的解集;解一元一次不等式.【剖析】先将 x=﹣ 2 代入不等式,获得对于 a 的一元一次不等式,求得 a 的取值范围即可.【解答】解:∵不等式 ax﹣ 3x+2> 5 的一个解是﹣ 2∴﹣ 2a+6+2> 5∴﹣ 2a>﹣ 3∴a<应选 A.6.以下说法中,正确的选项是()A.任何一个数都有平方根B.任何正数都有两个平方根C.算术平方根必定大于0D.一个数不必定有立方根【考点】立方根;平方根;算术平方根.【剖析】依据平方根、算术平方根、立方根,即可解答.【解答】解: A、任何一个数都有平方根,错误,负数没有平方根;B、任何正数都有两个平方根,正确;C、算术平方根必定大于0,错误, 0 的算术平方根是 0;D、任何数都有立方根,故错误;应选: B.7.在以下数据 75, 80,80, 85,90 中,众数、中位数分别是()A. 75, 80B. 80, 80C. 80, 85D. 80, 90【考点】众数;中位数.【剖析】第一找出这组数据中出现次数最多的数,则它就是这组数据的众数;而后把这组数据从小到大摆列,则中间的数就是这组数据的中位数,据此解答即可.【解答】解:∵数据75, 80, 80, 85, 90 中, 80 出现的次数最多,出现了 2 次,∴这组数据的众数是80;把数据 75, 80, 80, 85, 90 从小到大摆列,可得75, 80, 80, 85, 90,因此这组数据的中位数是80.应选: B.8.已知一个正n 边形的每个内角为120°,则这个多边形的对角线有()A.5 条 B.6 条 C.8 条 D.9 条【考点】多边形内角与外角.【剖析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再依据多边形一个极点出发的对角线=n﹣ 3,即可求得对角线的条数.【解答】解:∵多边形的每一个内角都等于120°,∴每个外角是60 度,则多边形的边数为360°÷ 60°=6,则该多边形有 6 个极点,则此多边形从一个极点出发的对角线共有6﹣3=3 条.∴这个多边形的对角线有( 6× 3)=9 条,应选 D.9.如图, C 是线段 AB 的中点, D 是线段 CB的中点,以下说法错误的选项是()A. CD=AC﹣ BD B. CD= AB﹣ BD C. AC+BD=BC+CD D. CD= AB【考点】两点间的距离.【剖析】依据线段中点的性质,可得CD、 BD与 AB、 BC的关系,可得答案.【解答】解:由 C 是线段 AB 的中点, D 是线段 CB的中点,得AC=CB, CD=DB.A、 CD=CB﹣ BD=AC﹣ BD,故 A 正确;B、 CD=CB﹣ BD=AB﹣ BD,故 B 正确;C、 AC+BD=BC+CD,故 C 正确;D、 CD= BC= AB,故 D错误;应选: D.10.如图,已知 A 是反比率函数y=图象上的一点,过点 A 向 x 轴作垂线交x 轴于点 B,在点 A 从左往右挪动的过程中,△ABO的面积将()A.愈来愈大B.愈来愈小C.先变大,后变小D.不变【考点】反比率函数系数k 的几何意义.【剖析】由点 A在反比率函数图象上以及AB⊥ x 轴于点 B,联合反比率函数系数k 的几何意义即可得出S△= |k| ,由此即可得出结论.ABO【解答】解:∵点 A 是反比率函数y=图象上的一点,且AB⊥ x 轴于点 B,∴ S△= |k| ,ABO∴点 A 从左往右挪动的过程中,△ABO的面积不变.应选 D.11.如图,扇形AOB是圆锥的侧面睁开图,已知圆锥的底面半径为2,母线长为6,则暗影部分的面积为()A. 12π﹣B. 4π﹣ C . 12π﹣ 9D. 4π﹣ 9【考点】圆锥的计算.【剖析】第一求得睁开扇形的圆心角的度数,从而求得圆心到线AB的长,用扇形的面积减去三角形的面积即可求得暗影部分的面积.【解答】解:由题意知:弧长=圆锥底面周长 =2× 2π =4π cm,扇形的圆心角=弧长× 180÷母线长÷π=4π× 180÷6π =120°.作 OC⊥ AB 于点 C,∴ OC= OA=3, AB=2AC=2× 3=6,∴ S 暗影 =S扇形﹣ S△=﹣× 3×6=12π﹣ 9,AOB应选 C.12.如图, A 点在半径为 2 的⊙ O上,过线段OA上的一点 P 作直线 m,与⊙ O过 A 点的切线交于点B,且∠ APB=60°,设 OP=x,则△ PAB的面积 y 对于 x 的函数图象大概是()A.B.C.D.【考点】动点问题的函数图象.【剖析】依据已知得出S 与 x 之间的函数关系式,从而得出函数是二次函数,当x=﹣=2 时, S 取到最小值为:=0 ,即可得出图象.【解答】解:∵ A 点在半径为 2 的⊙ O上,过线段 OA上的一点 P 作直线 m,与⊙ O过 A 点的切线交于点B,且∠ APB=60°,∴AO=2, OP=x,则 AP=2﹣ x,∴t an60 °= = ,解得: AB=(2﹣x)=﹣x+2,∴ S = × PA×AB= ( 2﹣x) ?? (﹣ x+2) =x2﹣ 2 x+2 ,△ ABP故此函数为二次函数,∵a=>0,∴当 x=﹣=2 时, S 取到最小值为:=0 ,依据图象得出只有 D 切合要求.应选: D.二、填空题(每题3d 分)13.分解因式: 2x 2﹣8= 2( x+2)( x﹣2).【考点】因式分解 - 提公因式法.【剖析】察看原式,找到公因式2,提出即可得出答案.214.以下图,在? ABCD中,∠ BAD的角均分线AE交 BC于点 E, AB=4, AD=6,则 EC= 2.【考点】平行四边形的性质.【剖析】依据平行四边形的性质获得 AD=BC=6, DC=AB=4, AD∥BC,推出∠ DAE=∠BEA,依据 AE 均分∠ BAD,能证出∠ BAE=∠ BEA,依据等腰三角形的判断获得 AB=BE=4,依据 EC=BC﹣ BE,代入即可.【解答】解:∵四边形 ABCD是平行四边形,∴AD=BC=6, DC=AB=4, AD∥BC,∴∠ DAE=∠ BEA,∵ AE均分∠ BAD,∴∠ DAE=∠ BAE,∴∠ BAE=∠ BEA,∴AB=BE=4,∴EC=BC﹣ BE=6﹣ 4=2,故答案为: 2.15.化简:+2=.【考点】分式的加减法.【剖析】原式通分并利用同分母分式的加法法例计算即可获得结果.【解答】解:原式 =+=,故答案为:16.一个不透明的口袋中共放有 3 个红球和 11 个黄球,这两种球除颜色外没有其余任何差别,若从口袋中随机拿出一个球,则取到黄球的概率是.【考点】概率公式.【剖析】用黄球的个数除以球的总个数可得.【解答】解:∵不透明的袋中有除颜色外没有其余任何区其余 3 个红球和 11 个黄球,共 14 个球,此中黄球有 11 个,∴从口袋中随机拿出一个球,则取到黄球的概率是,故答案为:.17.以下图,在⊙O中, AB为⊙ O的直径, AC=8, sinD=,则BC=6.【考点】圆周角定理;解直角三角形.【剖析】依据圆周角定理获得∠D=∠A,设 BC=3x,依据正弦的定义获得AB=5x,依据勾股定理计算即可.【解答】解:∵ AB 为⊙ O的直径,∴∠ ACB=90°,由圆周角定理得,∠D=∠A,又 sinD=,∴ sinA=,即=,设 BC=3x,则 AB=5x,由勾股定理得,( 5x)2﹣( 3x)2=82,解得, x=2,则 BC=6,故答案为: 6.18.规定一种新的运算:a? b=,则1? 2=﹣.【考点】有理数的混淆运算.【剖析】依据 2 大于 1,利用题中的新定义计算即可获得结果.【解答】解:∵ 2> 1,∴1? 2= ﹣1=﹣,故答案为:﹣三、解答题19.计算: 2cos30 °﹣ |﹣2|﹣+1.【考点】实数的运算;特别角的三角函数值.【剖析】原式利用特别角的三角函数值,绝对值的代数意义,以及二次根式性质计算即可获得结果.【解答】解:原式 =2×﹣2+﹣2+1=﹣ 1.20.先化简,再求值:(2a﹣ b)2﹣ b(b﹣ 2a)﹣ a2,此中 3a=2b.【剖析】原式利用完好平方公式,单项式乘以多项式法例计算,去括号归并获得最简结果,将已知等式代入计算即可求出值.【解答】解:原式 =4a2﹣ 4ab+b2﹣ b2+2ab﹣ a2=3a2﹣ 2ab,由 3a=2b,获得 a= b,则原式 = b2﹣ b2 =0.21.长沙市中考体育分值已经提升到了 60 分,此中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此增强了对体育训练的重视.引体向上(男)和一分钟仰卧起坐(女)共 16 分 单位:次数分值 16 15 14 13 12 10 8 6 3男 7 6 5 4 3 2 1 成 8(次) 绩 女40 36 32 28 25 22 20 < 1945 (次)注: 0.5 次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完好达成一次某中学对全校学生这两项运动的成绩进行了统计,规定分值15 分及以上为优异, 12 分到 14 分为优异, 6 分到 10 分为合格, 6 分以下不合格,在全校 800 名初三学生中,随机抽取部分学生进行测试,并将测试成绩绘制成以下两幅不完好的统计图,求:( 1)某女生说她得了 12 分,请问她一分钟做了多少次仰卧起坐; ( 2)请问一共抽取了多少名学生?并补全条形统计图; ( 3)依据抽样结果预计,本校项目由多少学生可以得优异?【考点】 条形统计图;用样本预计整体;扇形统计图. 【剖析】 ( 1)由表格即可知答案;( 2)依据“优异”的人数及其占被检查学生的百分比可得总人数,总人数乘以“不合格”的百分比可得对应人数,由个等级人数之和等于总人数可得“优异”的人数,补全条形图; ( 3)用样本中“优异”的人数所占百分比乘以全校总人数可得.【解答】 解:( 1)由表可知,她一分钟做了 28 次仰卧起坐;( 2)一共抽取学生有: 10÷ 20%=50(人),“不合格”的学生有 50× 10%=5(人),“优异”的学生有 50﹣ 10﹣ 15﹣ 5=20(人),补全统计图如图:( 3) 800× 20%=160(人), 答:依据抽样结果预计,全校有160 名学生可以获得优异.22.如图,在 Rt △ PAD 中,∠ PAD=90°,∠ APD 的角均分线 PO 交 AD 于 O 点,以 O 为圆心, OA 为半径作⊙ O ,交 AD 于点 B ,过 D 作 DE ⊥ PO 交 PO 的延伸线于点 E .( 1)求证: PD 是⊙ O 的切线;(2)若 PA=6,tan ∠ PDA= ,求半径 OA及 OE的长.【考点】切线的判断.【剖析】( 1)作 OC⊥ PD于 C,依据角均分线的性质得出OC=OA,即可判断PD是⊙ O的切线;(2)依据已知求得 AD,PC,依据勾股定理求得 PD,得出 CD,设半径为 x,则 OD=8﹣ x,在 RT△ ODC中,依据勾股定理得出( 8﹣ x)2 =x2+42,解得半径为 3,而后依据勾股定理求得 OP,从而证得△ POA∽△ DOE,依据相像三角形的性质即可求得.【解答】( 1)证明:作 OC⊥ PD于 C,∵ OP是∠ APD的角均分线, OA⊥ PA,OC⊥ PD,∴ OC=OA,∴ PD是⊙ O的切线;(2)解:∵ PA=6, tan ∠PDA= = ,∴AD=8,∴ PD==10,∵PA⊥OA,∴PA是⊙O的切线,∵PD是⊙O的切线,∴PC=PA=6,∴CD=PD﹣ PC=4,设半径为x,则 OD=8﹣ x,222在 RT△ ODC中, OD=OC+CD,∴( 8﹣ x)2=x2+42,解得 x=3,∴半径 OA=3,∴ OD=8﹣ 3=5,在 RT△ AOP中,OP==3 ,∵∠ PAO=∠ E=90°,∠ POA=∠ DOE,∴△ POA∽△ DOE,∴=,即=,∴OE=.23.某汽车专卖店销售 A、 B 两种型号的新能源汽车.上周售出 1 辆 A 型车和 3 辆 B 型车,销售额为96 万元;本周已售出 2 辆 A 型车和 1 辆 B 型车,销售额为 62 万元.( 1)求每辆 A 型车和 B型车的售价各为多少元;( 2)甲企业拟向该店购置A、 B 两种型号的新能源汽车共 6 辆,购车资许多于 130 万元,但不超出140 万元.则有哪几种购车方案?并写出哪一种方案所需的购车花费最低.【考点】一元一次不等式组的应用;二元一次方程组的应用.【剖析】( 1)每辆 A 型车和 B 型车的售价分别是 x 万元、 y 万元.则等量关系为: 1 辆 A 型车和3辆B型车,销售额为96 万元, 2 辆 A 型车和 1 辆 B 型车,销售额为62 万元;( 2)设购置 A 型车 a 辆,则购置 B 型车( 6﹣ a)辆,则依据“购置 A,B 两种型号的新能源汽车共 6 辆,购车资许多于130 万元,且不超出 140 万元”获得不等式组.【解答】解:( 1)每辆 A 型车和 B 型车的售价分别是 x 万元、 y 万元.则,解得.答:每辆 A 型车的售价为18 万元,每辆 B 型车的售价为26 万元;(2)设购置 A 型车 a 辆,则购置 B 型车( 6﹣ a)辆,则依题意得,解得 2 ≤ a≤ 3.∵a 是正整数,∴ a=2 或 a=3.∴共有两种方案:方案一:购置 2 辆 A 型车和 4 辆 B 型车;方案二:购置 3 辆 A 型车和 3 辆 B 型车.方案二:购置 3 辆 A 型车和 3 辆 B 型车所需的购车花费最低.24.已知,如图,△ABC是等边三角形,过AC边上的点D作 DG∥ BC,交 AB于点 G,在 GD的延伸线上取点 E,使 DE=DC,连结 AE、 BD.( 1)求证:△ AGE≌△ DAB;( 2)过点 E 作 EF∥ DB,交 BC于点 F,连结 AF,求∠ AFE的度数.【考点】全等三角形的判断;等边三角形的性质.【剖析】( 1)依据 SAS判断△ AGE和△ DAB全等;(2)证明四边形 DEFB是平行四边形,△ AEF是个等边三角形.【解答】( 1)证明:∵△ ABC是等边三角形, DG∥BC,∴∠ AGD=∠ ABC=60°,∠ ADG=∠ ACB=60°,且∠ BAC=60°,∴△ AGD是等边三角形,AG=GD=AD,∠ AGD=60°.∵DE=DC,∴ GE=GD+DE=AD+DC=AC=AB,∴在△ AGE与△ DAB中,,∴△ AGE≌△ DAB( SAS);(2)解:由( 1)知 AE=BD,∠ ABD=∠AEG.∵ EF∥DB, DG∥BC,∴四边形 BFED是平行四边形.∴ EF=BD,∴ EF=AE.∵∠ DBC=∠ DEF,∴∠ ABD+∠ DBC=∠ AEG+∠DEF,即∠ AEF=∠ABC=60°.∴△ AFE是等边三角形,∠AFE=60°.25.若 x、x2是对于 x 的一元二次方程ax2+bx+c=0 (a≠ 0)的两个根,则方程的两个根x 、 x和系数 a、112b、 c 有以下关系: x1+x2=﹣, x1? x2=,我们把它们称为根与系数的关系定理,请你参照上述定理,解答以下问题:设二次函数y=ax2+bx+c( a≠0)的图象与 x 轴的两个交点为 A( x1, 0), B( x2, 0).抛物线的极点为C,且△ ABC为等腰三角形.( 1)求 A、 B 两点之间的距离(用字母a、 b、 c 表示)( 2)当△ ABC为等腰直角三角形时,求b2﹣ 4ac 的值;( 3)设抛物线 y=x 2+kx+1 与 x 轴的两个交点为 A、B,极点为 C,且∠ ACB=90°,试问怎样平移此抛物线,才能使∠ ACB=60°?【考点】二次函数综合题.【剖析】( 1)令二次函数分析式中y=0,依据根与系数的关系可得出“x1+x2=﹣, x1 ? x2=”,利用配方法即可求出|x 2﹣ x1| 的值,由此即可得出结论;( 2)利用配方法将二次函数分析式转变为极点式,由此即可求出点C的坐标,再依据等腰直角三角形的性质可得出2×||=,利用换元解方程即可求出b2﹣4ac 的值;( 3)由( 2)的结论即可得出对于k 的方程,解方程即可得出抛物线的分析式,画出函数图象,由此可得出若要使∠ ACB=60°,则需把抛物线往下平移,设平移的距离为n( n> 0),则平移后的抛物线的分析式为 y=x 2﹣ 2 x+1﹣n,联合( 1)( 2)的结论即可得出对于 n 的一元二次方程,解方程即可得出结论.【解答】解:( 1)令 y=ax2+bx+c( a≠0)中 y=0,则有 ax2+bx+c=0,∵二次函数y=ax2+bx+c( a≠0)的图象与x 轴的两个交点为A( x1, 0), B( x2, 0),∴x1+x2=﹣, x1? x2= ,∴ |x 2﹣ x1|===.( 2)∵二次函数y=ax 2+bx+c=a+,∴点 C的坐标为(﹣,),∵△ ABC为等腰直角三角形,∴2×||=,令=m,则有 m2﹣2m=0,解得: m=2,或 m=0,∵二次函数与x 轴有两个不同样的交点,∴ m==2,∴b2﹣ 4ac=4.(3)∵∠ACB=90°,∴ b2﹣ 4ac=k 2﹣ 4=4,解得: k=± 2 .选 k=﹣ 2 ,画出图形,以下图.若要使∠ ACB=60°,则需把抛物线往下平移,设平移的距离为n( n> 0),则平移后的抛物线的分析式为y=x 2﹣ 2 x+1﹣ n,由( 1)可知 AB==2,由( 2)可知点 C(﹣,),即(,﹣ 1﹣ n),∵△ ABC为等腰三角形,且∠ACB=60°,∴﹣ y C= AB,即 1+n=,解得: n=﹣ 1(舍去),或 n=2.故将抛物线往下平移 2 个单位长度,能使∠ACB=60°.26.如图,四边形OABC为直角梯形, OA∥BC,∠ AOC=90°, OA=OC=4,BC=3.点 M从 O出发以每秒 2 个单位长度的速度向 A 运动;点 N从 B 同时出发,以每秒 1 个单位长度的速度向 C运动,当此中一个动点达到终点时,另一个动点也随之停止运动,过点N作 NP垂直 OA于点 P,连结 AC交 NP于点 Q,连结 MQ.( 1)当 t 为什么值时, M和 P 两点重合;( 2)求△ AQM的面积 S 与运动时间t的函数关系式,并写出自变量t 的取值范围,及当 t 为什么值时, S 的值最大;( 3)能否存在点M,使得△ AQM为直角三角形?若存在,求NQ的长;若不存在,请说明原因.【考点】四边形综合题.【剖析】( 1)用 t 可表示出 BN、OM,则可表示出 CN,又由△ OAC为等腰直角三角形, MN⊥ OA,可获得CN=NQ, AP=PQ,当 M、 P重合时,则有 AM=PQ,可获得对于 t 的方程,可求得 t ;( 2)由( 1)可用 t 分别表示出AM、 PQ,可表示出△ AQM的面积,再利用二次函数的性质可求得其最大值;(3)因为∠ OAC=45°,故当△ AQM为直角三角形只好有M、 P 重合,由( 1)可获得 t 的值,当 MQ⊥ AQ时,则有【解答】解:(1)∵ OA=OC=4,∠ AOC=90°,∴∠ OAC=45°,∵OA∥BC,∴∠ BCA=∠ OAC=45°,∵NP⊥OA,∴CN=NQ, PQ=AP,QM⊥ OA和 MQ⊥AQ两种状况,当 QM⊥ OA时,则MP=PQ,可获得对于 t 的方程可,可求得 t 的值.当运动 t 秒时,则有BN=t, OM=2t,且 BC=3,∴CN=NQ=BC﹣BN=3﹣ t , AP=PQ=PN﹣ NQ=4﹣( 3﹣ t )=t+1 , AM=OA﹣ OM=4﹣ 2t ,当 M和 P 重合时,则有 AM=PQ,即 t+1=4 ﹣2t ,解得 t=1 ,∴当 t 的值为 1 秒时, M和 P 两点重合;( 2)当运动时间为 t 秒时,由( 1)可知 PQ=t+1,AM=4﹣ 2t ,∴ S= AM? PQ= ( t+1 )( 4﹣ 2t ) =﹣( t ﹣)2+,∵OA=4,∴M点的运动时间最大为 2 秒,∴0≤ t ≤ 2,∴当 t=时,S max=,综上可知S=﹣( t ﹣)2+(0≤ t≤ 2),当t=时S有最大值;(3)∵∠ OAC=45°∴当△ AQM为直角三角形只好有QM⊥ OA和 MQ⊥ AQ两种状况,①当 QM⊥ OA时,则 M、 P 重合,由( 1)可获得t=1 ,此时 NQ=3﹣ t=2 ;②当 MQ⊥ AQ时,则有MP=PQ,由( 1)可知 AM=4﹣ 2t ,AP=t+1,∴PM=AM﹣ AP=(4﹣ 2t )﹣( t+1 )=3﹣3t ,又 PQ=t+1,∴3﹣ 3t=t+1 ,解得 t= ,此时 NQ=3﹣ t= ;综受骗 t 的值为 1 秒或秒时,△ AQM为直角三角形,NQ的长分别为 2 或.。
2021年湖南省长沙市中考数学学业模拟试卷(二)(解析版)
2021年湖南省长沙市中考数学学业模拟试卷(二)一、选择题(共12小题).1.下列四个数中,最大的负数是()A.﹣2B.﹣1C.1D.22.的平方根是()A.±4B.4C.±2D.+23.用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.1414.下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)25.在平面直角坐标系中,点G的坐标是(﹣2,1),连接OG,将线段OG绕原点O顺时针旋转90°,得到对应线段OG′,则点G′的坐标为()A.(2,1)B.(1,2)C.(﹣2,﹣1)D.(﹣1,﹣2)6.某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A.甲B.乙C.丙D.丁7.若m2+2m=1,则4m2+8m﹣3的值是()A.4B.3C.2D.18.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°9.长沙电视塔位于岳麓山顶峰,其功能集广播电视信号发射与旅游观光于一身某校数学社团的同学对长沙电视塔的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往塔的方向前进104m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该塔的高度CD为()A.81m B.85m C.88m D.93m10.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =5,AC=4,则△ACE的周长为()A.9B.10C.13D.1411.如图,要拧开一个边长为a(a=6mm)的正六边形,扳手张开的开口b至少为()A.4mm B.6mm C.4mm D.12mm12.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,点C 的坐标为(5,0),点P为坐标平面内一点,CP=2,连接AP、BP,当点P运动到某一位置时,BP+AP有最小值,则最小值是()A.B.C.5D.二、填空题(共4小题,每小题3分,共计12分)13.在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为.14.函数y=的自变量x的取值范围.15.如图,在正方形ABCD中,DE平分∠CDB,EF⊥BD于点F.若BE=,则此正方形的边长为.16.如图,在平面直角坐标系中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是.三、解答题(共9小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25题每题10分,共72分)17.计算:﹣(﹣2)0+|1﹣|+2cos30°.18.先化简,再求值:÷﹣,其中a=+2.19.解不等式组:,并将解集在数轴上表示出来.20.新学期复学后,学校为了保障学生的出行安全,随机调查了部分学生的上学方式(每位学生从乘私家车、坐公交、骑车和步行4种方式中限选1项),根据调查数据制作了如图所示的不完整的统计表和扇形统计图.上学方式统计表上学方式人数乘私家车42坐公交54骑车a步行b(1)本次学校共调查了名学生,a=,m=;(2)求扇形统计图中“步行”对应扇形的圆心角;(3)甲、乙两位同学住在同一小区,且都坐公交车上学,有A、B、C三路公交车途径该小区和学校,假设甲、乙两位同学坐这三路公交车是等可能的,请用列表或画树状图的方法求某日甲、乙两位同学坐同一路公交车到学校的概率.21.如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠B=50°,求∠BAC的度数.22.口味虾是长沙网红美食之一,步行街某口味虾店“五一黄金周”期间,来店内就餐选择微辣和不辣两种口味虾的游客共2500人,其中微辣和不辣两种口味虾的人均消费分别为80元和60元.(1)“五一”期间,若选择微辣口味虾的人数是不辣口味虾人数的1.5倍,求有多少人选择不辣口味虾?(2)随着“五一”的结束,前来店里就餐的人数逐渐减少,据接下来的第二周统计数据显示,在(1)的条件下,选择微辣口味虾的人数下降了a%,选择不辣口味虾的人数不变,但选择微辣口味虾的人均消费增长了a%,选择不辣口味虾的人均消费增长了a%,最终销售总额为18万元,求a的值.23.如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sin B=,求CF的长.24.定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,△ABC中,AC>AB,DE是△ABC在BC边上的中分线段,F为AC中点,过点B作DE的垂线交AC于点G,垂足为H,设AC=b,AB=c.①求证:DF=EF;②若b=6.c=4,试说明AB=AG,并求出CG的长度;(2)若题(1)中,S△BDH=S△EGH,求的值.25.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).(1)求抛物线的解析式.(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.①当∠DPH=∠CAD时,求t的值;②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.参考答案一、选择题(共12小题,每小题3分,共计36分)1.下列四个数中,最大的负数是()A.﹣2B.﹣1C.1D.2【分析】有理数大小比较方法:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.据此判断即可.解:∵﹣2<﹣1<0<1<2,∴其中最大的负数是﹣1.故选:B.2.的平方根是()A.±4B.4C.±2D.+2【分析】根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案.解:=4,±=±2,故选:C.3.用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.141【分析】把万分位上的数字5进行四舍五入.解:3.14159精确到千分位的结果是3.142.故选:C.4.下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2【分析】直接利用公式法以及提取公因式法分解因式进而判断即可.解:A、x2﹣1=(x+1)(x﹣1),故此选项错误;B、a3﹣2a2+a=a(a﹣1)2,故此选项错误;C、﹣2y2+4y=﹣2y(y﹣2),故此选项错误;D、m2n﹣2mn+n=n(m﹣1)2,正确.5.在平面直角坐标系中,点G的坐标是(﹣2,1),连接OG,将线段OG绕原点O顺时针旋转90°,得到对应线段OG′,则点G′的坐标为()A.(2,1)B.(1,2)C.(﹣2,﹣1)D.(﹣1,﹣2)【分析】利用图象法求解即可.解:如图,观察图象可知G′(1,2).故选:B.6.某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差的意义求解可得.解:∵s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,且平均数相等,∴s甲2<s乙2<s丙2<s丁2,∴这4名同学3次数学成绩最稳定的是甲,故选:A.7.若m2+2m=1,则4m2+8m﹣3的值是()A.4B.3C.2D.1【分析】把代数式4m2+8m﹣3变形为4(m2+2m)﹣3,再把m2+2m=1代入计算即可求出值.解:∵m2+2m=1,∴4m2+8m﹣3=4(m2+2m)﹣3=4×1﹣3=1.8.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【分析】根据三角形的内角和和等腰三角形的性质即可得到结论.解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.9.长沙电视塔位于岳麓山顶峰,其功能集广播电视信号发射与旅游观光于一身某校数学社团的同学对长沙电视塔的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往塔的方向前进104m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该塔的高度CD为()A.81m B.85m C.88m D.93m【分析】由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=104m,∴CD=BD•sin60°=104×=52≈88(m),故选:C.10.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =5,AC=4,则△ACE的周长为()A.9B.10C.13D.14【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.解:∵DE是线段AB的垂直平分线,∴EA=EB,∴△ACE的周长=EA+EC+AC=EB+EC+AC=BC+AC=9,故选:A.11.如图,要拧开一个边长为a(a=6mm)的正六边形,扳手张开的开口b至少为()A.4mm B.6mm C.4mm D.12mm【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6mm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(mm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(mm).解法2:连接OC、OD,过O作OM⊥CD于M,如图1所示:则∠COD==60°,∴∠COM=90°﹣60°=30°,△OCD是等边三角形,∴OC=OD=CD=6mm,∵OM⊥CD,∴CM=DM=CD=3(mm),OM=CM=3(mm),∴b=2OM=6(mm),故选:B.12.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,点C 的坐标为(5,0),点P为坐标平面内一点,CP=2,连接AP、BP,当点P运动到某一位置时,BP+AP有最小值,则最小值是()A.B.C.5D.【分析】由CP=2可知P在以C为圆心、2为半径的圆上,然后取CD的中点E,构造相似三角形,使其相似比为,从而构造出,再根据两点之间,线段最短来解决问题即可.解:∵点P为坐标平面内一点,CP=2,∴点P在以C为圆心、2为半径的圆上,如图,设⊙C交x轴上一点为C,取CD的中点E,∵,∴,且∠ECP=∠PCA,∴△CPE∽△CAP,∴,∴,∴BP+=BP+PE,∴当B、P、E三点共线时,BP+PE=BE最小,∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,∴A(1,0),B(0,3),∴OB=3,OE=4,在Rt△BOE中,由勾股定理得:BE=.故选:C.二、填空题(共4小题,每小题3分,共计12分)13.在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为30.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在20%左右得到比例关系,列出方程求解即可.解:由题意可得,×100%=20%,解得,a=30.故答案为:30.14.函数y=的自变量x的取值范围x≥1且x≠3.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x﹣1≥0;根据分式有意义的条件,x﹣3≠0,则函数的自变量x取值范围就可以求出.解:根据题意得:解得x≥1且x≠3,即:自变量x取值范围是x≥1且x≠3.15.如图,在正方形ABCD中,DE平分∠CDB,EF⊥BD于点F.若BE=,则此正方形的边长为+1.【分析】由正方形的性质得∠CBD=45°,解直角三角形得EF,由角平分线的性质得CE,进而得正方形的边长.解:∵四边形ABCD是正方形,∴∠BCD=90°,∠CBD=45°,∵EF⊥BD于点F.BE=,∴EF=BE•sin45°=1,∵DE平分∠CDB,∴CE=EF=1,∴BC=+1.故答案为:+1.16.如图,在平面直角坐标系中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是或.【分析】联立y=kx、y=并解得:点A(,2),同理点B(,3),点C (,),分AB=BC、AC=BC两种情况分别求解即可.解:联立y=kx、y=并解得:点A(,2),同理点B(,3),点C(,),∴AB≠AC,①当AB=BC时,()2+(3﹣2)2=(3﹣)2,解得:k=±(舍去负值);②当AC=BC时,同理可得:(﹣)2+(3﹣2)2=(3﹣)2,解得:k=(舍去负值);故答案为:或.三、解答题(共9小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25题每题10分,共72分)17.计算:﹣(﹣2)0+|1﹣|+2cos30°.【分析】本题涉及开平方、零次幂、绝对值、特殊角的三角函数,在计算时,需要针对每个考点分别进行计算,然后再根据实数的运算法则求得计算结果.解:原式=3﹣1+﹣1+2×,=3﹣1+﹣1+,=5﹣2.18.先化简,再求值:÷﹣,其中a=+2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.解:原式=•﹣=﹣=,当a=+2时,原式===.19.解不等式组:,并将解集在数轴上表示出来.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.解:,由①得:x<5,由②得:x≥﹣4,∴不等式组的解集为﹣4≤x<5,20.新学期复学后,学校为了保障学生的出行安全,随机调查了部分学生的上学方式(每位学生从乘私家车、坐公交、骑车和步行4种方式中限选1项),根据调查数据制作了如图所示的不完整的统计表和扇形统计图.上学方式统计表上学方式人数乘私家车42坐公交54骑车a步行b(1)本次学校共调查了150名学生,a=24,m=28;(2)求扇形统计图中“步行”对应扇形的圆心角;(3)甲、乙两位同学住在同一小区,且都坐公交车上学,有A、B、C三路公交车途径该小区和学校,假设甲、乙两位同学坐这三路公交车是等可能的,请用列表或画树状图的方法求某日甲、乙两位同学坐同一路公交车到学校的概率.解:(1)本次学校共调查了54÷36%=150名学生,a=150×16%=24(名),m=×100=28;故答案为:150,24,28;(2)扇形统计图中“步行”对应扇形的圆心角为360°×(1﹣36%﹣28%﹣16%)=72°;(3)画树状图如图所示,∵共有9种等可能的结果,甲、乙两位同学坐同一路公交车的有3种情况,∴甲、乙两位同学坐同一路公交车的概率为=.21.如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠B=50°,求∠BAC的度数.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵D是BC的中点,∴BD=CD,在△BED与△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF;(2)解:∵∠B=50°,∴∠C=∠B=50°,∴∠BAC=180°﹣50°﹣50°=80°.22.口味虾是长沙网红美食之一,步行街某口味虾店“五一黄金周”期间,来店内就餐选择微辣和不辣两种口味虾的游客共2500人,其中微辣和不辣两种口味虾的人均消费分别为80元和60元.(1)“五一”期间,若选择微辣口味虾的人数是不辣口味虾人数的1.5倍,求有多少人选择不辣口味虾?(2)随着“五一”的结束,前来店里就餐的人数逐渐减少,据接下来的第二周统计数据显示,在(1)的条件下,选择微辣口味虾的人数下降了a%,选择不辣口味虾的人数不变,但选择微辣口味虾的人均消费增长了a%,选择不辣口味虾的人均消费增长了a%,最终销售总额为18万元,求a的值.解:(1)设有x人选择不辣口味虾,则有(2500﹣x)人选择微辣口味虾,依题意,得:2500﹣x=1.5x,解得:x=1000.答:1000人选择不辣口味虾.(2)依题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+a%)×1000=180000,整理,得:12a2﹣120a=0,解得:a1=10,a2=0(不合题意,舍去).答:a的值为10.23.如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sin B=,求CF的长.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=∠BCO+∠OCA=90°,∵OB=OC,∴∠B=∠BCO,∵∠ACD=∠B,∴∠ACD=∠BCO,∴∠ACD+∠OCA=90°,即∠OCD=90°,∴DC为⊙O的切线;(2)解:Rt△ACB中,AB=10,sin B=,∴AC=6,BC=8,∵∠ACD=∠B,∠ADC=∠CDB,∴△CAD∽△BCD,∴,设AD=3x,CD=4x,Rt△OCD中,OC2+CD2=OD2,52+(4x)2=(5+3x)2,x=0(舍)或,∵∠CEF=45°,∠ACB=90°,∴CE=CF,设CF=a,∵∠CEF=∠ACD+∠CDE,∠CFE=∠B+∠BDF,∴∠CDE=∠BDF,∵∠ACD=∠B,∴△CED∽△BFD,∴,∴,a=,∴CF=.24.定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,△ABC中,AC>AB,DE是△ABC在BC边上的中分线段,F为AC中点,过点B作DE的垂线交AC于点G,垂足为H,设AC=b,AB=c.①求证:DF=EF;②若b=6.c=4,试说明AB=AG,并求出CG的长度;(2)若题(1)中,S△BDH=S△EGH,求的值.【解答】(1)①证明:∵BD=DC,AF=CF,∴DF=AB=c,∵DE是△ABC的中分线段,∴CD+CF+EF=BC+AC+AB,∵CD=BC,CF=AC,∴EF=AB=c,∴DF=EF.②证明:如图设BG交DF于O.∵DF=EF,∴∠FED=∠FDE,∵BG⊥DE,∴∠EHG=∠DHO=90°,∴∠FED+∠EGH=90°,∠FDE+∠HOD=90°,∵∠HOD=∠FOG,∴∠FOG=∠FGO,∵BD=DC,AF=CF,∴DF∥AB,∴∠ABG=∠FOG,∴∠ABG=∠AGB,∴AB=AG,∵AB=AG=4,AC=6,∴CG=AC﹣AG=6﹣4=2.(2)解:如图2中,过点E作EN⊥BC于N,过点G作GM⊥BC于M.∵S△BDH=S△EGH,∴S△BCG=S△ECD,∴•BC•GM=•CD•EN,∵BC=2CD,∴EN=2GM,∵EN∥GM,∴EG=CG,MN=CM,∵EF=c,CF=AF=b,∴EC=,∴CG=EC=,∵AB=AG=c,AG+GC=b,∴c+=b,∴4c+b+c=4b,∴5c=3b,∴=.25.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).(1)求抛物线的解析式.(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.①当∠DPH=∠CAD时,求t的值;②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.解:(1)在直线y=﹣2x+4中,令x=0时,y=4,∴点B坐标(0,4),令y=0时,得:﹣2x+4=0,解得:x=2,∴点A(2,0),∵抛物线经过点A(2,0),C(6,0),E(5,3),∴可设抛物线解析式为y=a(x﹣2)(x﹣6),将E(5,3)代入,得:3=a(5﹣2)(5﹣6),解得:a=﹣1,∴抛物线解析式为:y=﹣(x﹣2)(x﹣6)=﹣x2+8x﹣12;(2)①∵抛物线解析式为:y=﹣x2+8x﹣12=﹣(x﹣4)2+4,∴顶点D(4,4),∵点B坐标(0,4),∴BD∥OC,BD=4,∵y=﹣x2+8x﹣12与x轴交于点A,点C,∴点C(6,0),点A(2,0),∴AC=4,∵点D(4,4),点C(6,0),点A(2,0),∴AD=CD=2,∴∠DAC=∠DCA,∵BD∥AC,∴∠DPH=∠PQA,且∠DPH=∠DAC,∴∠PQA=∠DAC,∴PQ∥DC,且BD∥AC,∴四边形PDCQ是平行四边形,∴PD=QC,∴4﹣2t=3t,∴t=;②存在以点P,N,H,M为顶点的四边形是矩形,此时t=1﹣.如图,若点N在AB上时,即0≤t≤1,∵BD∥OC,∴∠DBA=∠OAB,∵点B坐标(0,4),A(2,0),点D(4,4),∴AB=AD=2,OA=2,OB=4,∴∠ABD=∠ADB,∴tan∠OAB===tan∠DBA=,∴PN=2BP=4t,∴MH=PN=4t,∵tan∠ADB=tan∠ABD==2,∴MD=2t,∴DH==2t,∴AH=AD﹣DH=2﹣2t,∵BD∥OC,∴=,∴=,∴5t2﹣10t+4=0,∴t1=1+(舍去),t2=1﹣;若点N在AD上,即1<t≤,∵PN=MH,∴点E、N重合,此时以点P,N,H,M为顶点的矩形不存在,综上所述:当以点P,N,H,M为顶点的四边形是矩形时,t的值为1﹣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年湖南省长沙市中考数学模拟试卷(二)一、选择题(本题共12个小题,每小题3分,共36分)1.(3分)数轴上的点A到原点的距离是3,则点A表示的数为()A.3或﹣3 B.6 C.﹣6 D.6或﹣62.(3分)下列计算正确的是()A.a3+a4=a7 B.a3•a4=a7 C.(a3)4=a7D.a6÷a3=a23.(3分)2015年10月18日,TCL2015长沙国际马拉松赛正式开赛,来自国内外的1.5万余名选手在长沙这座美丽的城市中奔跑.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米,将数据42千米用科学记数法表示为()A.42×103米B.0.42×105米 C.4.2×104米D.4.2×105米4.(3分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°5.(3分)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是()A.y=3(x﹣2)2+2 B.y=3(x+2)2﹣2 C.y=3(x﹣2)2+2 D.y=3(x+2)2+2 6.(3分)要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠17.(3分)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150° D.180°8.(3分)下列说法正确的是()A.随机抛掷一枚硬币,反面一定朝上B.数据3,3,5,5,8的众数是8C.某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖D.想要了解长沙市民对“全面二孩”政策的看法,宜采用抽样调查9.(3分)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5) B.(2.5,5)C.(3,5) D.(3,6)10.(3分)如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为()A.x l=1,x2=2 B.x l=﹣2,x2=﹣1 C.x l=1,x2=﹣2 D.x l=2,x2=﹣111.(3分)为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元B.亏了12元C.赚了20元D.亏了20元12.(3分)若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有2016个,且具有“波动性质”,则这2016个数的和为()A.﹣64 B.0 C.18 D.64二、填空题(本题共6个小题,每小题3分,共18分)13.(3分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).14.(3分)有一组数据如下:2,a,4,6,8,已知它们的平均数是5,那么这组数据的方差为.15.(3分)已知x,y满足方程组,则x﹣y的值是.16.(3分)若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为.17.(3分)如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O 上一点,若∠CAB=55°,则∠ADC的大小为(度).18.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是.三、解答题(本题共8个小题,第19、20小题,每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.(6分)计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.20.(6分)先化简,再求值:﹣,其中a=﹣1.21.(8分)为了认真贯彻教育部关于与开展“阳光体育”活动的文件精神,实施全国亿万学生每天集体锻炼一小时活动,吸引同学们走向操场、走进大自然、走到阳光下,积极参加体育锻炼,掀起校园内体育锻炼热潮,我市各学校结合实际情况举办了“阳光体育”系列活动,为了解“阳光体育”活动的落实情况,我市教育部门在红旗中学2000名学生中,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)参加调查的人数共有人,在扇形统计图中,表示“C”的扇形的圆心角为度;(2)补全条形统计图,并计算扇形统计图中m的值;(3)若要从该校喜欢“D”项目的学生中随机选择8名进行节目排练,则喜欢该项目的小丽同学被选中的概率是多少?22.(8分)如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.23.(9分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2013年的绿色建筑面积约为950万平方米,2015年达到了1862万平方米.若2014年、2015年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2016年是“十三五”规划的开局之年,我市计划推行绿色建筑面积达到2400万平方米.如果2016年仍保持相同的年平均增长率,请你预测2016年我市能否完成计划目标?24.(9分)如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.25.(10分)已知抛物线y1=x2+bx+c的顶点坐标为(﹣1,1),直线1的解析式为y2=2mx+3m2+4nm+4n2,且l与x轴、y轴分别交于A、B两点.(1)求b、c的值;(2)若函数y1+y2的图象与x轴始终有公共点,求直线l的解析式;(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB为等腰角形?若存在,直接写出点P的坐标;若不存在,请说明理由.26.(10分)在平面直角坐标系中,点C的坐标为(0,1.5),我们把以点C为圆心,半径为1.5的圆称为点C的朋友圈,圆周上的每一个点叫做点C的一个好友.(1)写出点C的两个好友坐标;(2)直线l的解析式是y=x﹣4,与x轴、y轴分别交于A、B两点,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当点C的朋友圈有好友落在直线上时,直线将受其影响,求在点C向下运动的过程中,直线受其影响的时间;(3)抛物线y=ax2+bx+c过原点O和点A,且顶点D恰好为点C的好友,连接OD.E为⊙C上一点,当△DOE面积最大时,求点E的坐标,此时△DOE的面积是多少?2016年湖南省长沙市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.(3分)数轴上的点A到原点的距离是3,则点A表示的数为()A.3或﹣3 B.6 C.﹣6 D.6或﹣6【解答】解:设这个数是x,则|x|=3,解得x=+3或﹣3.故选:A.2.(3分)下列计算正确的是()A.a3+a4=a7 B.a3•a4=a7 C.(a3)4=a7D.a6÷a3=a2【解答】解:A、a3与a4是相加,不是相乘,不能利用同底数幂的乘法计算,故本选项错误;B、a3•a4=a7,正确;C、应为(a3)4=a3×4=a12,故本选项错误;D、应为a6÷a3=a6﹣3=a3,故本选项错误.故选B.3.(3分)2015年10月18日,TCL2015长沙国际马拉松赛正式开赛,来自国内外的1.5万余名选手在长沙这座美丽的城市中奔跑.马拉松长跑是国际上非常普及的长跑比赛项目,全程距离约为42千米,将数据42千米用科学记数法表示为()A.42×103米B.0.42×105米 C.4.2×104米D.4.2×105米【解答】解:将42千米用科学记数法表示为4.2×104,故选C.4.(3分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°【解答】解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°﹣∠BAC=40°,故选:A.5.(3分)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系中抛物线的解析式是()A.y=3(x﹣2)2+2 B.y=3(x+2)2﹣2 C.y=3(x﹣2)2+2 D.y=3(x+2)2+2【解答】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向下、向左平移2个单位(﹣2,﹣2),所以在新坐标系中此抛物线的解析式为y=3(x+2)2﹣2.故选:B.6.(3分)要使式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x<1 C.x≤1 D.x≠1【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:A.7.(3分)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150° D.180°【解答】解:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.8.(3分)下列说法正确的是()A.随机抛掷一枚硬币,反面一定朝上B.数据3,3,5,5,8的众数是8C.某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖D.想要了解长沙市民对“全面二孩”政策的看法,宜采用抽样调查【解答】解:A:抛硬币是一个随机事件,不能保证反面朝上,所以A错误;B:本组数据应该有两个众数,3、5都出现了两次,所以B错误;C:获奖概率为是一个随机事件,所以C错误;D:对长沙市民的调查涉及的人数众多,适合用抽样调查,所以D正确.故选:D.9.(3分)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5) B.(2.5,5)C.(3,5) D.(3,6)【解答】解:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选:B.10.(3分)如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为()A.x l=1,x2=2 B.x l=﹣2,x2=﹣1 C.x l=1,x2=﹣2 D.x l=2,x2=﹣1【解答】解:由图可知,两函数图象的交点坐标为(1,2),(﹣2,﹣1),故关于x的方程kx+b=的解为x l=1,x2=﹣2.故选C.11.(3分)为了迎接元旦小长假的购物高峰,黄兴南路步行街某运动品牌专卖店购进甲、乙两种服装,现此商店同时卖出甲、乙两种服装各一件,每件售价都为240元,其中一件赚了20%,另一件亏了20%,那么这个商店卖出这两件服装总体的盈亏情况是()A.赚了12元B.亏了12元C.赚了20元D.亏了20元【解答】解:设赚钱的衣服的进价为x元,赔钱的衣服的进价为y元,则x+20%x=240,解得x=200,y﹣20%y=240,解得y=300,∴240×2﹣(200+300)=﹣20(元).即:这个服装店卖出这两件服装亏本了,亏本20元.故选:D.12.(3分)若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有2016个,且具有“波动性质”,则这2016个数的和为()A.﹣64 B.0 C.18 D.64【解答】解:由题意得:a n+1=a n+a n+2,a n+2=a n+1+a n+3,a n+3=a n+2+a n+4,三式相加,得:a n+a n+2+a n+4=0,+a n+3+a n+5=0,同理可得:a n+1以上两式相加,可知:该数列连续六个数相加等于零,2016是6的倍数,所以结果为零.故选:B.二、填空题(本题共6个小题,每小题3分,共18分)13.(3分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件AF=CE,使四边形AECF是平行四边形(只填一个即可).【解答】解:添加的条件是AF=CE.理由是:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.故答案为:AF=CE.14.(3分)有一组数据如下:2,a,4,6,8,已知它们的平均数是5,那么这组数据的方差为4.【解答】解:a=5×5﹣2﹣4﹣6﹣8=5,s2=[(2﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(8﹣5)2]=4.故答案为:4.15.(3分)已知x,y满足方程组,则x﹣y的值是﹣1.【解答】解:,②﹣①得:x﹣y=﹣1.故答案为:﹣1.16.(3分)若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为0或﹣1.【解答】解:令y=0,则kx2+2x﹣1=0.∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,∴关于x的方程kx2+2x﹣1=0只有一个根.①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0,解得,k=﹣1.综上所述,k=0或﹣1.故答案为:0或﹣1.17.(3分)如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O 上一点,若∠CAB=55°,则∠ADC的大小为35(度).【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=55°,∴∠B=90°﹣∠CAB=35°,∴∠ADC=∠B=35°.故答案为:35°.18.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是6.【解答】解:Rt△ABC中,由勾股定理求AB==10,由旋转的性质,设AD=A′D=BE=x,则DE=10﹣2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=3,=DE×A′D=×(10﹣2×3)×3=6,∴S△A′DE故答案为:6.三、解答题(本题共8个小题,第19、20小题,每小题6分,第21、22小题每小题6分,第23、24小题每小题6分,第25、26小题每小题6分,共66分)19.(6分)计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.【解答】解:原式=2﹣1+3﹣2×=4﹣.20.(6分)先化简,再求值:﹣,其中a=﹣1.【解答】解:原式=+===,当a=﹣1时,原式==1﹣.21.(8分)为了认真贯彻教育部关于与开展“阳光体育”活动的文件精神,实施全国亿万学生每天集体锻炼一小时活动,吸引同学们走向操场、走进大自然、走到阳光下,积极参加体育锻炼,掀起校园内体育锻炼热潮,我市各学校结合实际情况举办了“阳光体育”系列活动,为了解“阳光体育”活动的落实情况,我市教育部门在红旗中学2000名学生中,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)参加调查的人数共有300人,在扇形统计图中,表示“C”的扇形的圆心角为108度;(2)补全条形统计图,并计算扇形统计图中m的值;(3)若要从该校喜欢“D”项目的学生中随机选择8名进行节目排练,则喜欢该项目的小丽同学被选中的概率是多少?【解答】解:(1)参加调查的人数为69÷23%=300(人),∵“C”的人数为:300﹣60﹣69﹣36﹣45=90(人),∴表示“C”的扇形的圆心角为×360°=108°,故答案为:300,108.(2)补全条形图如下:∵m%=×100%=20%,∴m=20;(3)=,答:喜欢该项目的小丽同学被选中的概率是.22.(8分)如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.【解答】(1)证明:∵AB=AC,AD=DC,∴∠C=∠B,∠1=∠C,∴∠1=∠B,又∵∠E=∠B,∴∠1=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°,∴AE⊥AC,∴AC是⊙O的切线;(2)解:过点D作DF⊥AC于点F,如图,∵DA=DC,∴CF=AC=3,在Rt△CDF中,∵sinC==,设DF=4x,DC=5x,∴CF==3x,∴3x=3,解得x=1,∴DC=5,∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C,∴△ADE∽△DFC,∴=,即=,解得AE=,即⊙O的直径为.23.(9分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2013年的绿色建筑面积约为950万平方米,2015年达到了1862万平方米.若2014年、2015年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2016年是“十三五”规划的开局之年,我市计划推行绿色建筑面积达到2400万平方米.如果2016年仍保持相同的年平均增长率,请你预测2016年我市能否完成计划目标?【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率x,根据题意得:950(1+x)2=1862,解得:x1=0.4=40%,x2=﹣2.4(不合题意,舍去),答:这两年我市推行绿色建筑面积的年平均增长率是40%;(2)根据题意得:∵2016年绿色建筑面积是:1862×(1+0.4)=2606.8万平方米>2400万平方米,∴2016年我市能完成计划目标.24.(9分)如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)判断∠PED=45°.证明:∵四边形ABCD是正方形,∴∠BCD=90°,∵△PBC≌△PDC,∴∠PBC=∠PDC,∵PE=PB,∴∠PBC=∠PEB,∴∠PDC=∠PEB,∵∠PEB+∠PEC=180°,∴∠PDC+∠PEC=180°,在四边形PECD中,∠EPD=360°﹣(∠PDC+∠PEC)﹣∠BCD=360°﹣180°﹣90°=90°,又∵PE=PD,∴△PDE是等腰直角三角形,∴∠PED=45°.25.(10分)已知抛物线y1=x2+bx+c的顶点坐标为(﹣1,1),直线1的解析式为y2=2mx+3m2+4nm+4n2,且l与x轴、y轴分别交于A、B两点.(1)求b、c的值;(2)若函数y1+y2的图象与x轴始终有公共点,求直线l的解析式;(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB为等腰角形?若存在,直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y1=x2+bx+c的顶点坐标为(﹣1,1),∴,解得:,∴b的值为2,c的值为2.(2)y1+y2=x2+2x+2+2mx+3m2+4nm+4n2=x2+(2+2m)x+3m2+4nm+4n2+2,∵函数y1+y2的图象与x轴始终有公共点,∴△=(2+2m)2﹣4×1×(3m2+4nm+4n2+2)≥0,即﹣4(m﹣1)2﹣4(m+2n)2≥0.∵(m﹣1)2≥0,(m+2n)2≥0,∴m=1,n=﹣,∴直线l的解析式为y=2x+2.(3)如图,A(﹣1,0),B(0,2).AB==,对称轴x=﹣1,①当BA=BP时,可得P1(﹣1,4),②当AB=AP时,可得P2(﹣1,),P3(﹣1,﹣),③当PA=PB时,可得P4(﹣1,2).综上所述,当△PAB是等腰三角形时,点P坐标为(﹣1,4)或(﹣1,)或(﹣1,﹣)或(﹣1,2).26.(10分)在平面直角坐标系中,点C的坐标为(0,1.5),我们把以点C为圆心,半径为1.5的圆称为点C的朋友圈,圆周上的每一个点叫做点C的一个好友.(1)写出点C的两个好友坐标;(2)直线l的解析式是y=x﹣4,与x轴、y轴分别交于A、B两点,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当点C的朋友圈有好友落在直线上时,直线将受其影响,求在点C向下运动的过程中,直线受其影响的时间;(3)抛物线y=ax2+bx+c过原点O和点A,且顶点D恰好为点C的好友,连接OD.E为⊙C上一点,当△DOE面积最大时,求点E的坐标,此时△DOE的面积是多少?【解答】解:(1)1.5﹣1.5=0,1.5+1.5=3,∴点(0,0)、(0,3)到点C的距离为1.5,∴点(0,0)、(0,3)为点C的好友.(2)设圆心C往下运动了t秒,则点C的坐标为(0,1.5﹣0.5t),直线l:y=x﹣4可变形为4x﹣3y﹣12=0,点C到直线l的距离d==|0.3t﹣3.3|,当直线受圆C影响时,有d≤1.5,即|0.3t﹣3.3|≤1.5,解得:6≤t≤16.∴在点C向下运动的过程中,直线受其影响的时间为6≤t≤16.(3)令y=x﹣4中y=0,则x﹣4=0,解得:x=3,即点A的坐标为(3,0).依照题意画出图形,如图1所示.∵抛物线y=ax2+bx+c过原点O和点A,点O(0,0),点A(3,0),∴抛物线的对称轴为x==1.5,∵点D恰好为点C的好友,∴点D的坐标为(1.5,1.5).连接OD,过点C作CM⊥OD于点M,延长MC交圆C于点E,连接EO、ED,此时S最大,如图2所示.△DOE∵OD是圆C的弦,CM⊥OD,∴点M为线段OD的中点,∴点M的坐标为(,)、OM==,在Rt△CMO中,OM=,CO=1.5=,∴CM==.∵CE=1.5=,EM=EC+CM,∴EM=,=OD•EM=OM•EM=×=.此时S△DOE设直线CM的解析式为y=mx+n,∵点C的坐标为(0,1.5)、点M的坐标为(,)即(0.75,0.75),∴,解得:,∴直线CM的解析式为y=﹣x+1.5.设点E的坐标为(x,﹣x+1.5)(x<0),∵EC==1.5,∴x=﹣,或x=(舍去),∴点E的坐标为(﹣,).故当△DOE面积最大时,点E的坐标为(﹣,),此时△DOE的面积是.。