七年级平行线与三角形全等

合集下载

构造全等三角形的四种技巧

构造全等三角形的四种技巧

构造全等三角形的四种技巧在几何学中,全等三角形是一个非常重要的概念。

全等三角形是指两个或两个以上的三角形,它们的形状和大小完全相同。

理解并能够构造全等三角形,对于解决各种几何问题有着至关重要的作用。

以下是构造全等三角形的四种技巧:利用公理:全等三角形的公理是:如果两个三角形的三边对应相等,那么这两个三角形全等。

这个公理可以用来构造全等三角形。

确定你需要构造的全等三角形的所有边长,然后根据这些边长画出两个三角形。

这两个三角形的形状和大小将会完全相同。

利用角平分线:角平分线定理指出,一个角的平分线将对应的边分为两段,这两段与角的两边形成的两个小三角形是全等的。

通过这个定理,你可以通过一个角的平分线,构造出一个全等三角形。

利用中垂线:中垂线定理指出,一条中垂线将一个线段分为两段,这两段与线段的两端形成的两个小三角形是全等的。

这个定理可以用来构造全等三角形。

确定你需要构造的全等三角形的所有边长,然后通过中垂线将这些边分为两段。

这样,你就可以得到两个全等的三角形。

利用平行线:平行线定理指出,如果两条平行线被第三条直线所截,那么截得的对应线段成比例。

这个定理可以用来构造全等三角形。

确定你需要构造的全等三角形的所有边长,然后在两条平行线上画出对应的线段。

由于这些线段成比例,因此它们形成的两个小三角形是相似的。

如果这些相似三角形的对应边长度相等,那么它们就是全等的。

以上就是构造全等三角形的四种技巧。

理解和掌握这些技巧,对于解决各种几何问题有着重要的作用。

已知两个三角形全等,则它们对应边上的高也________;对应角平分线也________;对应边上的中线也________。

两个直角三角形全等,除了用定义外,还可以用以下________判定。

已知三角形ABC全等三角形DEF,且AB=18cm,BC=20cm,CA=15cm,则DE=________cm,DF=________cm,EF=________cm.做衣服需要依据身体部位的大小来选择布料,而教学则需要依据学生原有的知识基础来选择教学方法。

初中数学知识归纳平行线与三角形的性质

初中数学知识归纳平行线与三角形的性质

初中数学知识归纳平行线与三角形的性质初中数学知识归纳——平行线与三角形的性质在初中数学中,平行线与三角形是两个重要的概念。

了解平行线与三角形的性质,对于解决与它们相关的数学问题非常重要。

本文将对平行线与三角形的性质进行归纳总结,旨在帮助读者更好地理解和应用这些数学知识。

一、平行线的性质平行线是指在同一个平面上,永不相交的两条直线。

对于平行线的性质,我们可以总结如下:1. 定义:如果两条平行线被一条横线所截,那么它们对应的内角相等,而对应的外角相等。

2. 同位角性质:两条平行线被一条横线截断,那么同位角相等。

3. 内错角性质:两条平行线被一条横线截断,那么内错角相等。

4. 全等三角形性质:如果三角形的一对边分别平行于另一个三角形的一对边,并且对应边的长度相等,那么这两个三角形全等。

除了以上性质,学生们还需要了解平行线的判定方法。

常用的判定方法包括:通过证明两条线段的斜率相等、通过证明线段的夹角相等、通过证明两组对应角相等等。

熟练掌握这些方法,能够解决与平行线相关的问题。

二、三角形的性质三角形是由三条线段组成的图形,是初中数学中最基本的二维图形之一。

初中数学中,我们通常关注三角形的边长、角度和面积等性质。

1. 三角形的内角和性质:三角形的三个内角之和为180度。

这个性质在解决与三角形的角相关的问题时非常有用。

2. 等腰三角形:如果一个三角形的两边长度相等,那么这个三角形就是等腰三角形。

等腰三角形的特点是两个底角相等。

3. 直角三角形:如果一个三角形有一个内角是90度,那么这个三角形就是直角三角形。

直角三角形中,斜边的长度可以通过勾股定理来计算。

4. 等边三角形:如果一个三角形的三条边长度都相等,那么这个三角形就是等边三角形。

等边三角形的三个内角都是60度。

5. 相似三角形:如果两个三角形的对应角相等,并且对应边的比例相等,那么这两个三角形相似。

相似三角形的性质在比例和面积计算中经常使用。

以上仅是平行线与三角形性质的一部分,通过深入学习这些性质,我们可以掌握更多与平行线和三角形相关的数学知识,并且能够灵活运用这些知识解决问题。

第13讲全等三角形与平行四边形

第13讲全等三角形与平行四边形

第13讲全等三角形与平行四边形专题一:全等三角形(一):【知识梳理】1.全等三角形的判定方法(1)三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.(2)两角和它们的夹边对应相等的两个二角形全等,简写成“角边角”或"ASA”(3)两角和其中一角的对边对应角相等的两个三角形全等,简写成“角角边”或“AAS”.(4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.(5)有斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜过直角边定理”或“HL”.2.全等三角形的性质:全等三角形的对应边相等,对应角相等.3.注意事项:(1)说明两个三角形全等时,应注意紧扣判定的方法,找出相应的条件,同时要从实际图形出发,弄清对应关系,把表示对应顶点的字母写在对应的位置上.(2)注意三个内角对应相等的两个三角形不一定全等,另外已知两个三角形的两边与一角对应相等的两个三角形也不一定全等.(二):【经典考题剖析】1.如图,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为()A.145°B.130°C、110°D.70°2.两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.如图,点D、E、F分别为△ABC三边的中点,且S△DEF=2,则△ABC的面积为()A.4 B.6 C.8 D.124.如图,已知AB=CD,AE⊥BD于E,CF⊥BD于F,AE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对5.如图,△ABC是等边三角形,点D、E、F分别是线段AB、DC、CA上的点,(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.(三):【拓展与应用】1.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙2.如图,两个平面镜α,β的夹角为θ,入射光线AO平行于β入射到α上,经两次反射后的反射光线CB平行于α,则∠α等于()A.30o B.45 o C.60 o D.90 o3.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E、AD、CE交于点H,请你添加一个适当的条件,使△AEH≌△CEB.你的条件是,4.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是;(2)证明:5.如图,AC和BD相交于点O,AB=DC,∠A=∠D,(1)请写出符合条件的五个结论(对顶角除外,且不添加辅助线)(2)从你写出的五个结论中任选一个说明你的理由.6.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?并任选其中一对给予证明.7.如图所示,在△ABC中,∠A=50°,BO、CO分别平分∠ABC和∠ACB.求∠BOC的度数.8.如图,AC和BD交于点O,OA= OC,OB=OD,试说明DC∥AB.9.如图,已知AB、CD相交于点O,AC∥BD,OC=OD,E、F为AB上两点,且AE=BF,试说明CE=DF.10.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点(1)求证:AF⊥CD;(2)在你连结BE后,还能得出什么新的结论?请写出三个.(不要求证明)专题二:平行四边形及密铺(一):【知识梳理】1.平行四边形是四边形中应用广泛的一种图形,它是研究特殊四边形的基础,是研究线段相等、角相等和直线平行的根据之一.2.平行四边形的定义:两组对边分别平行的四边形是平行四边形,平行四边形的定义要抓住两点,即“四边形”和“两组对边分别平行”.四边形的边角按位置关系可分为两类:对边(没有公共端点的两条边);邻边(有一个公共端点的两条边)对角(没有公共边的两个角);邻角(有一条公共边的两个角)对角线:不相邻的两个顶点连成的线段3.两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线间的距离.两条平行线间的距离是一个定值,不随垂线段位置改变而改变,两条平行线间的距离处处相等.4.平行四边形的性质:平行四边形的两组对边分别平行;平行四边形的两组对边分别相等;符号语言表达:平行四边形的两组对角分别相等;平行四边形的对角线互相平分.5.平行四边形的判定:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.符号语言表达:AB∥CD.BC∥AD四边形ABCD是平行四边形AB=CD,BC=AD四边形ABCD是平行四边形.AB平行且相等CD或BC平行且相等AD四边形ABCD是平行四边形.OA=OC,OB=OD四边形ABCD是平行四边形.∠ABC=∠ADC,∠DAB=∠DCB边形ABCD是平行四边形.6.平面的密铺定义:把形状、大小完全相同的一种或几种平面图形拼接在一起,使得平面上不留空隙,不重叠,这就是平面图形的密铺,也叫平面图形的镶嵌.7.对于限于用一种图形密铺的问题,有三角形、四边形和正六边形,如果能实现平面图形的密铺,密铺图的每个顶点都必须集中在几个多边形的顶角,于是在每个顶点集中的顶角刚好拼成一个周角.(二):【经典考题剖析】1.下面给出四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判别四边形ABCD是平行四边形的是()A.l:2:3:4 B.2:3:2:3 C.2:3:3:2 D.1:2:2:32.以不在同一直线上的三点作平行四边形的三个顶点,则可作出平行四边形()A.1个 B.2个 C.3个 D.4个3.如图,□ABCD中,对角线AC和 BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是()A.1<m<11;B.2<m<22;C.10<m<12;D.5<m<64.一个正多边形的每个外角都是36○,则这个多边形是_________边形.5.已知一个多边形的内角和是它的外角和的3倍,那么这个多边形的边数是_________.(三):【拓展与应用】1.平行四边形一组对角的平分线()A.在同一条直线上;B.平行;C.相交; D.平行或在同一直线上2.如图,在□ABCD中,如果点M为CD中点,AM与BD相交于点N那么SΔDMN:S□ABCD为()A.1:12 B.1:9 C.1:8 D.1:63.已知□ABCD的周长为30㎝,AB:BC=2:3,那么AB=___________㎝.4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=10,BD=8,AB=x,则x的取值范围是()A.1<x<9;B.2<x<18;C.8<x<10;D.4<x<55.现有一块等腰直角三角形的铁板,通过切割焊接成一个含有45○角的平行四边形,请你设计一种最简单的方案,并说明你的方案正确的理由.6.如图,在平行四边形ABCD中,点E、F 在对角线AC上,且AE=CF,请你以F为一个端点,和图中已标明字母的某一个点连成一条新线段,猜想并证明它和图中已有的某一条线段相等.(只需说明一组线段相等即可)(1)连接_______;(2)猜想________(3)说明理由.7.如图,某村有一块四边形池塘,在它的四个角A、B、C、D处均有一棵大核桃树,此村准备开挖池塘建养鱼池,想使池塘的面积扩大一倍,又保持核桃树不动,并要求扩建后的池塘成平行四边形状,你认为该村能否实现这一设想?若能,请你设计并画出图形;若不能请说明理由.8.已知:如图1―4―7在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.9.小明家用瓷砖装修卫生间,还有一块墙角面未完工(如图1-4-61甲所示),他想在现有的六块瓷砖余料中(如图1-4-61乙所示)挑选2块或3块余料进行铺设,请你帮小明设计两种不同的铺设方案(在下面图丙、图丁中画出铺设示意图,并标出所选用每块余料的编号)10.用三种不同的方法把平行四边形面积四等分.(在所给的图形图如图1-4-78中,画出你的设计方案,画图工具不限).望子成龙学校家庭作业第一部分1.如图,若△ABC≌△DEF,∠E等于()A.30°B.50°C.60°D、100°2.如图,在△ABC中,AD⊥BC于D,再添加一个条件____,就可确定△ABD≌△ACD3.在下列各组几何图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形;B.两个等边三角形C.腰长相等的两个等腰直角三角形D.各有一个角是40°腰长都是5cm的两个等腰三角形4.下列说法中不正确的是()A.有两角和其中一角的对边对应相等的两个三角形全等B.有两边和其中一边上的中线对应相等的两个三角形全等C.有一边对应相等的两个等边三角形全等D.面积相等的两个直角三角形全等5.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这个100°角对应的角是()A.∠A B.∠B C.∠C或∠C第二部分1.四边形任意两个相邻的角都互补,那么这个四边形是________.2.在四边形ABCD中,给出下列条件:①AB∥CD,②AD=BC,③∠A=∠C,④AD∥BC.能判断四边形是平行四边形的组合是_______3.当围绕一点拼接在一起的几个多边形的内角加在一起恰好组成__________时,多边形可以密铺.4.请在能够进行平面图形的密铺的图形后打“√”若不能打“×”(1)正方形();(2)正七边形();(3)正六边形();(4)正三角形与正十边形();(5)正方形与正八边形();(6)正三角形、正方形与正六边形();(7)任意四边形();(8)任意三角形().5.n边形的每个内角等都等于120○,则n等于_____.。

三角形全等的判定ASA

三角形全等的判定ASA

边角边相等(SAS)
如果两个三角形的两边长度相等,且 这两边所夹的角也相等,则这两个三 角形全等。
三角形全等的应用
解决几何问题
通过三角形全等关系,可以证明 线段相等、角相等、垂直关系等 ,从而解决各种几何问题。
制作精确图形
在几何作图或设计领域,三角形 全等关系可以用来制作精确的图 形或模型。
02
与平行线判定定理的联系
在三角形全等的判定中,常常需要利用平行线的性质来证明 两个三角形全等。例如,在ASA全等判定定理中,需要证明 两角及夹角的边相等,而夹角的边是通过平行线性质推导出 来的。
与勾股定理的联系
勾股定理是三角形全等判定中的重要工具。在证明两个直 等于斜边的平方。
02
全等关系具有传递性,即如果三 角形ABC与三角形DEF全等,那 么三角形DEF也与三角形ABC全 等。
三角形全等的条件
边边边相等(SSS)
角边角相等(ASA)
如果两个三角形的三边长度分别相等 ,则这两个三角形全等。
如果两个三角形有两个角分别相等, 且这两个角所夹的边也相等,则这两 个三角形全等。
ssa全等判定方法
总结词
两边及其夹角对应相等的两个三角形 全等。
详细描述
根据SSA全等判定定理,如果两个三 角形有两边长度相等且这两边所夹的 角相等,则这两个三角形全等。这个 定理在解决几何问题时非常有用。
aas全等判定方法
总结词
两角及其夹边对应相等的两个三角形 全等。
详细描述
根据ASA全等判定定理,如果两个三 角形有两个角相等且这两个角所夹的 边也相等,则这两个三角形全等。这 个定理是三角形全等判定的重要依据 之一。
asa全等定理的应用
总结词:广泛实用

七年级下册数学课本目录

七年级下册数学课本目录

七年级下册数学课本目录第一章整式的乘除
1.同底数幂的乘法
2.幂的乘方与积的乘方
3.同底数幂的除法
4.整式的乘法
5.平方差公式
6.完全平方公式
7.整式的除法
第二章相交线与平行线
1.两条直线的位置关系
2.探索直线平行的条件
3.平行线的性质
4.用尺规作角
第三章三角形
1.认识三角形
2.图形的全等
3.探索三角形全等的条件
4.用尺规作三角形
5.利用三角形全等测距离
第四章变量之间的关系
1.用表格表示的变量间关系
2.用关系式表示的变量间关系
3.用图像表示的变量间关系第五章生活中的轴对称
1.轴对称现象
2.探索轴对称的性质
3.简单的轴对称图形
4.利用轴对称进行设计
第六章概率初步
1.感受可能性
2.频率的稳定性
3.等可能事件的概率。

七年级相交线与平行线、全等三角形复习整理资料

七年级相交线与平行线、全等三角形复习整理资料

相交线与平行线复习一、对顶角、邻补角、邻余角、互补、互余、垂线1. 相关概念(1) 对顶角:公共顶点+反向边,对顶角相等。

(2) 邻补角:公共边+两侧边反向,邻补角和为180° (3) 邻余角:公共边+两侧边互相垂直。

(4) 互补与邻补的区别、互余和邻余的区别。

(5) 平面内的直线位置关系有:重合、相交(垂直、斜交)、平行 (6) 两条直线相交所成的角的角度x 取值范围(0< x <180°)两直线的夹角的角度y 的取值范围 (0< y ≤90°) ,当y=90°时,两直线垂直(7) 平面内,过任意一点有且只有一条直线与已知直线垂直(作图)平面内,过已知直线外...一点有且只有一条直线与已知直线平行(作图) (8) 点到直线的距离——直线外一点到这条直线的垂线段...的长度..(作图) 对顶角、邻补角的区分:下面四个图形中,∠1与∠2是对顶角的图形的个数是( )12121212例题:如果两个角的两条分别互相平行,则这两个角的数量关系是_________________ 如果两个角的两条边分别互相垂直,则这两个角的数量关系是_______________ 若两条直线相交所成的四个角中,其中一个比另一个的2倍少20度,则这两直线的夹角是______ 2. 几个基本图形中的角的关系 (图1)可得OE ⊥OD ,从而可得互余关系的角__________________________ 可得互补关系的角__________________ (图2)已知OA ⊥OB ,OC ⊥OD可得相等的角_______________________________ 可得∠BOC 与 ∠____________互补 (图3)OE ⊥AB ,OB 平分∠DOF ,若∠EOC =115°,则∠BOF = ,∠COF = 。

(图1) (图2)二、同位角、内错角、同旁内角1. 相关概念: “三线八角”图2. 能利用概念找清角的关系 以下概念必须具有公共边(截线): (1)描出要判定的两个角,看清公共边(截线)同位角F 、内错角Z 、同旁内角C(2三、平行线的判定与性质1.判定与性质、相关结论(1).⎫−−−→⎪⎬←−−−⎪⎭判定性质同位角相等内错角相等(两直线平行)同旁内角互补(数量关系与位置关系的转化)(2).平行线的传递性——同平行于一条直线的两直线平行(性质)(3).平面内同垂直于一直线的两直线平行(不可直接利用,可由同位角等证明)(4).平行线间的距离处处相等。

12.2 三角形全等的判定(解析版)

12.2 三角形全等的判定(解析版)

12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。

一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。

2.书写格式①先写出所要判定的两个三角形。

②列出条件:用大括号将两个三角形中相等的边分别写出。

③得出结论:两个三角形全等。

如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。

如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。

3.作一个角等于已知角已知:∠AOB 。

求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。

②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。

D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.【答案】AB DC=【分析】根据全等三角形的判定:三边对应相等的两个三角形全等,即可.【详解】∵全等三角形的判定“SSS ”:三边对应相等的两个三角形全等,∴当ABC V 和DCB △中,AC DB BC BC AB DC =ìï=íï=î,∴()SSS ABC DCB @V V ,故答案为:AB DC =.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定()SSS :三边对应相等的两个三角形全等.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.【答案】AB DC=【分析】要使ABC DCB @V V ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC V 和DCB △中AB DC BC CB AC BD =ìï=íï=î,∴()ABC DCB SSS @△△,故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.【答案】AC BD=【分析】由图形可知BC 为公共边,则可再加一组边相等,可求得答案.【详解】解:∵AB DC =,BC CB =,∴可补充AC DB =,在ABC V 和DCB V 中,AB DC BC CB AC DB =ìï=íï=î,∴ABC V ≌()SSS DCB V ;故答案为:AC DB =.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.【分析】根据全等三角形的判定得出ABE CDF △≌△,推出B D Ð=Ð,利用平行线的判定解答即可.【详解】证明:∵BF DE =,∴BE DF =,在ABE V 和CDF V 中,AB DC AE CF BE DF =ìï=íï=î,∴()SSS ABE CDF V V ≌,∴B D Ð=Ð,∴AB CD ∥.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会利用全等三角形解决问题,属于中考常考题型.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.【分析】先根据M 为PQ 的中点得出PM QM =,再由SSS 定理得出PRM QRM V V ≌,由全等三角形的性质即可得出结论.【详解】证明:M Q 为PQ 的中点(已知),PM QM \=,在RPM △和RQM V 中,RP RQ PM QM RM RM =ìï=íï=î,(SSS)RPM RQM \V V ≌,PRM QRM \Ð=Ð(两三角形全等,对应角相等)即RM 平分PRQ Ð.【点睛】本题考查的是全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答此题的关键.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.【分析】连接BD ,已知两边对应相等,加之一个公共边BD ,则可利用SSS 判定ABD CBD ≌△△,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD ,AB CB =Q ,BD BD =,AD CD =,SSS ABD CBD \≌()V V .A C \Ð=Ð.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,HL 等.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系【分析】(1)根据作一个角等于已知角的方法在;A Ð的内部作CED A Ð=Ð,即可求解.(2)根据图形及平行线的判定定理可直接得到答案.【详解】(1)解:如图所示,在A Ð的内部作CED A Ð=Ð, 则CED Ð即为所求;(2)∵CED A ÐÐ=,∴DE AB ∥.故答案为:DE AB ∥.【点睛】本题主要考查角的尺规作图及平行线的判定,熟练掌握基本作图以及平行线的判定定理是解题的关键.1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==【分析】先画射线BP ,以B 为圆心,a 为半径画弧,与射线BP 交于点D ,再画DA a =,再以b 的顶点为圆心,a 为半径画弧,交b 的两边分别为E ,F ,再以D 为圆心,EF 为半径画弧,交前弧于C ,再连接AC ,从而可得答案.【详解】解:如图,ABC V 即为所求;【点睛】本题考查的是作三角形,作一个角等于已知角,作一条线段等于已知线段,熟练掌握基本作图是解本题的关键.2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)【分析】按照作与已知角相等的角的尺规作图方法作图即可.【详解】解:如图,CAB Ð为所作.【点睛】本题主要考查了作与已知角相等的角的尺规作图,熟知相关作图方法是解题的关键.二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。

七年级下册数学三角形基本知识以及平行线练习

七年级下册数学三角形基本知识以及平行线练习

三角形知识点一、三角形相关概念1.三角形的概念: 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示:通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段: 三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.知识点二、三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可知识点三、三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.知识点四、三角形的内角结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°结论2:在直角三角形中,两个锐角互余.注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.知识点五、三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.六、多边形①多边形的对角线2)3(nn条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°一、选择题:1.下列可能是n边形内角和的是()A、300°B、550°C、720°D、960°2.若一个多边形的内角和与外角和相加是1800°,则此多边形是( )A、八边形B、十边形C、十二边形D、十四边形3.多边形每一个内角都等于150°,则此多边形一个顶点发出的对角线有()A、7条B、8条C、9条D、10条4.小李家装修地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则小李不应购买的地砖形状是( )A、正方形B、正六边形C、正八边形D、正十二边形二、填空题:1.一个多边形中,它的内角最多可以有个锐角。

北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形的判定讲义(含有答案)

北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形的判定讲义(含有答案)

三角形全等的断定〔1〕__________________________________________________________________________________ __________________________________________________________________________________1、理解全等三角形的断定方法SSS 、SAS 、ASA 、AAS ;2、能运用断定方法断定两个三角形全等;3、经理探究断定方法断定两个三角形全等的过程,体会数学知识来源生活,又应用于生活.1.SSS____________的两个三角形全等〔简称SSS 〕.这个定理说明,只要三角形的三边长度确定了,这个三角形的形状和大小就完全确定了,这也是三角形具有__________的原理.判断两个三角形全等的推理过程,叫做证明三角形全等.如以下图,:△ABC 与△DEF 的三条边对应相等,求证:△ABC ≌△DEF .证明:在△ABC 与△DEF 中,∴△ABC ≌△DEF 〔SSS 〕.角用直尺和圆规作一个角等于角的示意图如下图,说明'''A O B =AOB ∠∠的根据是_________.4.边角边定理三角形全等断定方法2:______和它们的______分别相等的两个三角形全等.〔简称SAS 〕 符号语言:在△ABC 与△DEF 中,∴△ABC ≌△DEF 〔SAS 〕.图示:5.探究边边角两边及其一边所对的角分别相等,两个三角形________等.6.ASA_______________分别相等的两个三角形全等,简称角边角或ASA .▲如以下图,∠D=∠E ,AD =AE ,∠1=∠2.求证:△ABD ≌△ACE .证明:∵∠1=∠2〔〕∴∠1+∠CAD =∠2+∠CAD 〔相等的角加同一个角仍相等〕即∠BAD =∠CAE在△ABD 和△ACE 中, ∠D=∠E 〔〕AD=AE 〔〕∠BAD =∠CAE 〔等量相加〕∴△ABD≌△ACE〔ASA〕.7.AAS______________________分别相等的两个三角形全等,简称角角边或AAS.▲如图:D在AB上,E在AC上,DC=EB,∠C=∠B.求证:△ACD≌△ABE.证明:在△ACD和△ABE中.∠C=∠B〔〕∠A=∠A〔公共角〕DC=EB〔〕∴△ACD≌△ABE〔AAS〕.参考答案:1.三边分别相等稳定性3.全等三角形的对应角相等4.两边夹角5.不一定全6.两角和它们的夹边7.两个角和其中一个角的对边1.先证明对应边相等,再证全等〔利用中点、等量相加等〕【例1】如下图,在△ABC和△FED中,AD=FC,AB=FE,BC=ED,求证:△ABC≌△FED.【解析】∵AD=FC,∴AD+DC=FC+DC,即AC=FD.在△ABC和△FED中,∴△ABC≌△FED〔SSS〕.总结:利用“SSS〞证明两个三角形全等,有如下几种常见类型:〔1〕有公共边的两个三角形.〔2〕有公共线段的两个三角形,我们可以用等量相加或相减,推出两边相等.〔3〕含有中点的两个三角形,如图:AB=AC,D是BC的中点,由中点的定义可得:BD=CD.继而可证△ABD≌△ACD.练1.如图,AC=BD,0是AB、CD的中点,求证△AOC≌△BOD.【解析】要证△AOC≌△BOD,只需看这两个三角形的三条边是否分别相等.证明:∵O是是AB、CD的中点,∴AO=BO,CO=DO.在△AOC和△BOD中,∴△AOC≌△BOD.2.先利用SSS证明三角形全等,继而证明边〔角〕相等,或求边〔角〕【例2】如下图,AB=DC,AC=DB,求证:∠1=∠2.【解析】在△ABC与△DCB中,∴△ABC≌△DCB〔SSS〕.∴∠ABC=∠DCB,∠ACB=∠DBC.∴∠ABC-∠DBC=∠DCB-∠ACB.即∠1=∠2.总结:1.要求证在两个不同三角形内的角相等,往往利用全等三角形的性质.2.当两个角所在的三角形不易证全等时,可以利用等量的和〔差〕相等,将问题转化.3.求证不在同一个三角形内的两边相等,同样可以利用全等三角形的性质.练2.如图是“人〞字形屋梁,AB=AC.如今要在程度横梁BC上立一根垂直的支柱支撑屋梁,工人师傅取BC的中点D,然后在A,D之间竖支柱AD.那么这根AD符合“垂直〞的要求吗?为什么?【解析】AD⊥BC符合要求,理由如下:∵点D是BC的中点,∴BD=CD.在△ABD和△ACD中,∴△ABD≌△ACD〔SSS〕.∴∠ADB=∠ADC.又∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°.∴AD⊥BC.练3.如下图,:A,C,F,D四点在同一直线上,AB=DE,BC=EF,AF=DC,求证:AB∥DE.【解析】先根据SSS证明两三角形全等,由三角形全等的性质得出:∠A=∠D,即可证明AB ∥DE.证明:∵AF=DC,∴AF-CF=DC-CF.∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF〔SSS〕.∴∠A=∠D.∴AB∥DE.练4.:如下图,在四边形ABCD中,AB=CB,AD=CD,求证:∠C=∠A.【解析】连接BD,在△ABD和△CBD中,∴△ABD≌△CBD〔SSS〕.∴∠C=∠A.练5.如图,在四边形ABCD中,AB=CD,AD=CB,求证:∠A+∠D=180°.【解析】证明:连接AC,在△ADC与△CBA中,∴△ADC≌△CBA〔SSS〕,∴∠ACD=∠CAB,∴AB∥CD,∴∠A+∠D=180°.3.利用SAS直接证明三角形全等【例3】如下图,△ABC,△DEF均为锐角三角形,AB=DE,AC=DF,∠A=∠D.求证:△ABC ≌△DEF.【解析】直接根据SAS可证明△ABC≌△DEF.证明:在△ABC和△DEF中,∴△ABC≌△DEF〔SAS〕.总结:运用“边角边〞断定两个三角形全等时,〔1〕同一三角形的边、角要放在等号的同一边,按照“边角边〞的顺序书写;〔2〕注意条件里的三个元素必须齐全,且对应相等;〔3〕条件里的三个元素必须对应,一个三角形中的元素依次是“边—角—边〞,另一个三角形的元素也必须依次是“边—角—边〞,假如是其他“边—边—角〞或“角—边—边〞,那么两个三角形不一定全等;〔4〕在条件中,相等的角必须是所给两边的夹角,假如把夹角改为其中一条边的对角,那么不一定全等.练6.〔2021秋•天元区期末〕如图,在△ABC和△DEF中,AB=DE,BC=EF,根据〔SAS〕断定△ABC ≌△DEF,还需的条件是〔〕A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均可以【解析】根据三角形全等的断定中的SAS,即两边夹角.做题时根据条件,结合全等的断定方法逐一验证,要由位置选择方法.解:要使两三角形全等,且SASAB=DE,BC=EF,还差夹角,即∠B=∠E;A、C都不满足要求,D也就不能选取.应选B.练7.如以下图所示,∠1=∠2,AO=BO,求证:△AOC≌△BOC.【解析】两个三角形包含一个公共边,结合条件,根据SAS可证明△AOC≌△BOC.证明:在△AOC和△BOC中,∴△AOC≌△BOC〔SAS〕.4.先证明对应边或对应角相等,再证明三角形全等【例4】〔2021春•启东市校级月考〕如图,AE=CF,AD∥BC,AD=CB.求证:△ADF≌△CBE.【解析】根据平行线的性质及全等三角形的断定定理“SAS〞证得结论.证明:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE.又∵AD∥BC,∴∠A=∠C.∵在△ADF与△CBE中,∴△ADF≌△CBE〔SAS〕.总结:没有直接给出能证明三角形全等的条件时,〔1〕先根据条件或求证的结论确定三角形,然后再根据三角形全等的断定方法,看缺什么条件,再去证什么条件;假如两边,那么要找第三边或夹角;假如一角和该角的一边,那么需要找夹角的另一条边;〔2〕在证明三角形全等时,有些题目的条件含而不露,通常要挖掘出隐含条件,比方公共边、对顶角等,从而为解题所用;〔3〕有些条件需要用到线段与角的和差关系才能得到.练8.〔2021•房山区二模〕如图,AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.【解析】∠1=∠2,∠BAE是公共角,从而可推出∠DAE=∠BAC,AB=AD,AC=AE,从而可以利用SAS来断定△ABC≌△ADE.证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC.在△ABC和△ADE中,∴△ABC≌△ADE〔SAS〕.练9.〔2021•永春县质检〕:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE.求证:△AEC≌△BDC.【解析】根据∠ACD=∠BCE,可得出∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD.根据边角边公理可得出△AEC≌△BDC.证明:在△AEC和△BDC中,∵点C是线段AB的中点,∴AC=BC,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,在△AEC和△BDC中,∴△AEC≌△BDC〔SAS〕.点评:此题考察了全等三角形的断定SAS.5.先用SAS证明三角形全等,再证对应边、对应角相等【例5】〔1〕〔2021•十堰〕如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.【解析】首先根据条件AB=AC,AD=AE,再加上公共角∠A=∠A可利用“SAS〞定理证明△ABE≌△ACD,进而得到∠B=∠C.证明:在△ABE和△ACD中,∴△ABE≌△ACD〔SAS〕.∴∠B=∠C.〔2〕〔2021春•鼓楼区校级月考〕如图,点E,F在AC上,AB∥CD,AB=CD,AE=CF.求证:BF=DE.【解析】先由平行线的性质得出内错角相等,再证出AF=CE,根据SAS证明△ABF≌△CDE,由全等三角形的对应边相等即可得出结论.证明:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,∴△ABF≌△CDE〔SAS〕,∴BF=DE.总结:综合利用三角形全等的断定与性质解题步骤如下:〔1〕由问题中的条件,根据三角形全等的断定方法证明两个三角形全等;〔2〕由三角形全等的性质证得对应角相等、对应边相等.练10.〔2021秋•涞水县期末〕如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,那么∠D的度数为〔〕A.50° B.30°C.80°D.100°【解析】利用SAS可证明△AOD≌△COB,那么∠D=∠B=30°.解:∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB〔SAS〕,∴∠D=∠B=30°.应选B.练11.〔2021春•锦州校级期中〕如图,点B,E,C,F在同一直线上,在△ABC与△DEF中,AB=DE,AC=DF,假设∠_____=∠______,那么△ABC≌△DEF,所以BC=_____,因此BE=________.【解析】根据三角形全等的断定方法SAS,假设∠A=∠D时,两个三角形全等,得出对应边相等,得出结果.解:假设∠A=∠D时,△ABC≌△DEF;∵在△ABC和△DEF中,∴△ABC≌△DEF〔SAS〕,∴BC=EF,∴BE=CF;故答案为:∠A=∠D,EF,CF.6.先用ASA证全等,再证边角相等【例6】如下图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:BO=DO.【解析】先用“ASA 〞证明△ABC ≌△ADC ,得出AB=AD ,再用“SAS 〞证明△ABO ≌△ADO ,可得出结论.证明:在△ABC 和△ADC 中,∴△ABC ≌△ADC 〔ASA 〕.∴AB =AD.在△ABO 与△ADO 中,△ACO ≌△ADO 〔SAS 〕.∴BO =DO .总结:全等三角形的对应边相等,对应角相等,所以证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.练12.如下图,在△ABC 中,点O 为AB 的中点,AD ∥BC ,过点O 的直线分别交AD ,BC 于点D ,E ,求证:OD =OE.【解析】∵点O 为AB 的中点,∴AO =BO .∵AD ∥BC ,∴∠ADO =∠BEO ,∠DAO =∠EBO.在△AOD 与△BOE 中,∴△AOD ≌△BOE 〔AAS 〕.∴OD =OE .7.先用AAS 证全等,再证边角相等【例7】如下图,∠1=∠2,∠C =∠D ,求证:AC =AD .D C BA O12 3 4【解析】先利用AAS 证明两三角形全等,再根据全等三角形的性质得出AC =AD .证明:在△ACB 与△ADB 中,∴△ACB ≌△ADB 〔AAS 〕.∴AC =AD .总结:1. 由“ASA 〞与“AAS 〞可知,两个三角形假如有两个角及任意一边对应相等,那么这两个三角形相等.2. 注意不用混淆“ASA 〞和“AAS 〞,“ASA 〞是两角及夹边对应相等,“AAS 〞是两角及一对边对应相等.练13.如下图,C ,F 在BE 上,∠A =∠D ,AC ∥DF ,BF =EC .求证:AB =DE .【解析】先利用平行证明角相等,再用等量相减的思想证明BC =EF ,应用AAS 可得△ABC ≌△DEF ,进而得出结论.证明:∵AC ∥DF ,∴∠ACE =∠DFB.又∵∠ACE +∠ACB =180°,∠DFB +∠DFE =180°,∴∠ACB =∠DFE.又BF =EC ,∴BF -CF =EC -CF ,即BC =EF.在△ABC 与△DEF 中,∴△ABC ≌△DEF 〔AAS 〕.∴AB =DE .8.灵敏选用证明方法证〔判断〕全等AB C FED【例8】如下图,∠B=∠DEF,BC=EF,要证△ABC≌△DEF,假设要以“ASA〞为根据,还缺条件_________;以“SAS〞为根据,还缺条件_________;以“AAS〞为根据,还缺条件_________.【解析】一组角和一组边相等,要根据“ASA〞证全等就要求夹边的另一组角相等,故填∠ACB=∠DFE;要根据“SAS〞证全等就要求夹角的另一组边相等,故填AB=DE;要根据“AAS〞证全等就要求另一组角相等,故填∠A=∠D.答案:∠ACB=∠DFE;AB=DE;∠A=∠D.总结:1.到目前为止,我们学习了4种证明三角形全等的方法,分别是“边边边〞“边角边〞“角边角〞“角角边〞.注意:三角形全等的断定方法中不存在“角边边〞“角角角〞.2.“边边边〞“角边角〞“角角边〞“边角边〞这四种判断方法中,都要求有一组边对应相等.3.在寻求全等条件时,要注意结合图形挖掘图中隐含的公共边、公共角、对顶角、中点、角平分线.4.以及平行线中包含的角的关系,垂直中包含的角的关系,以便顺利求解.练14.如下图,点D在AB上,点E在AC上,且∠B=∠C,那么补充以下一个条件后,仍无法断定△ABE≌△ACD的是〔〕.=AE B.∠AEB=∠ADC==AC【解析】选择A中的AD=AE,加上条件,可根据AAS证明△ABE≌△ACD;选项B中给出∠AEB=∠ADC,加上条件,可得三对角相等,但三对角相等的三角形不一定全等;选项C中的BE=CD,加上条件,可根据AAS证明△ABE≌△ACD;选项D中的AB=AC,加上条件,可根据ASA证明△ABE≌△ACD;应选:B.练15.如下图,BF ⊥AC ,DE ⊥AC ,垂足分别为点F ,E ,BF =DE ,∠B =∠D ,求证:AE =CF.【解析】∵BF ⊥AC ,DE ⊥AC ,∴∠DEC =∠BFA =90°.在△BFA 与△DEC 中,∴△BFA ≌△DEC 〔ASA 〕.∴AF =CE.∴AF +EF =CE +EF.∴AE =CF.练16.如图,将△BOD 绕点O 旋转180°后得到△AOC ,再过点O 任意画一条与AC ,BD 都相交的直线MN ,交点分别为M 和N .试问:线段OM =ON 成立吗?假设成立,请进展证明;假设不成立,请说明理由.【解析】OM =ON 成立.理由是:∵△BOD 绕点O 旋转180°后得到△AOC ,∴△BOD ≌△AOC .∴∠A =∠B ,AO =BO .又∵∠AOM =∠BON ,∴△AOM ≌△BON (ASA).∴OM =ON .练17.如下图,直角三角形ABC 的直角顶点C 置于直线l 上,AC =BC ,现过A ,B 两点分别作直线l 的垂线,垂足分别为点D ,E.DC E FA B BA C DE【解析】〔1〕△ACD ≌△CBE ,证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°.又∵AD ⊥l ,∴∠CAD +∠ACD =90°.∴∠BCE =∠CAD.∵BE ⊥l ,∴∠ADC =∠CEB =90°.在△ACD 与△CBE 中,∠CAD =∠BCE ,∠ADC =∠CEB ,AC =CB ,∴△ACD ≌△CBE 〔AAS 〕.〔2〕由〔1〕可知△ACD ≌△CBE ,∴AD =CE ,CD =BE ,∴AD =CE =CD +DE =BE +DE =3+5=8.1.如下图,AB ∥CD ,OB =OD ,那么由“ASA 〞可以直接断定△______≌△___________.2.如下图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D ,E ,AD ,CE 交于点H ,EH =EB =3,AE =4,那么CH 的长是___________.3.如下图,点E ,C 在线段BF 上,BE =CF ,AB ∥DE ,∠ACB =∠F .求证:△ABC ≌△DEF .AC D F EB l4.如下图,∠B =∠E ,∠BAD =∠EAC ,AC =AD ,求证:AB =AE.5.〔2021•厦门校级一模〕如图,A 、B 、C 、D 四点在同一条直线上,AB=CD ,EC=DF ,EC ∥DF .求证:△ACE ≌BDF ._________________________________________________________________________________ _________________________________________________________________________________1.:如图,AB=CD ,BE=DF ,AF=EC 。

初中数学《全等三角形》单元教学设计以及思维导图

初中数学《全等三角形》单元教学设计以及思维导图

全等三角形主题单元教学设计模板单, 书写容易规范化, 引导学生独立思考、共同探究。

1.注重探索结论。

2.注重推理能力的培养。

3.注重联系实际。

学法教法建议: 根据教学内容、教学目标和学生的认知水平,主要采取教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法.教学过程中,创设适当的教学情境,证明的方向明确,过程简单,书写容易规范化,引导学生独立思考、共同探究。

1.注重探索结论。

2.注重推理能力的培养。

3.注重联系实际。

学法教法建议:根据教学内容、教学目标和学生的认知水平,主要采取教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法.教学过程中,创设适当的教学情境,证明的方向明确,过程简单,书写容易规范化,引导学生独立思考、共同探究。

1.注重探索结论。

2.注重推理能力的培养。

3.注重联系实际。

主题单元规划思维导图主题单元学习目标2.学生动手操作⑴在纸板上任意画一个三角形ABC, 并剪下, 然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。

⑵问题:如何在另一张纸板再剪一个三角形DEF, 使它与△ABC全等?3.板书课题: 全等三角形活动二、探究新知全等三角形中的对应元素1.问题: 你手中的两个三角形是全等的, 但是如果任意摆放能重合吗?该怎样做它们才能重合呢?2. 学生讨论、交流、归纳得出结论:⑴.两个全等三角形任意摆放时, 并不一定能完全重合, 只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。

这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

⑵.表示两个全等三角形时, 通常把表示对应顶点字母写在对应的位置上, 这样便于确定两个三角形的对应关系。

全等三角形的性质1.观察与思考:寻找甲图中两三角形的对应元素, 它们的对应边有什么关系?对应角呢?2.用几何语言表示全等三角形的性质探求全等三角形对应元素的找法什么?把对折的纸片再任意折一次, 然后把纸片展开, 又看到了什么?角平分线的性质即已知角的平分线, 能推出什么样的结论.操作:1. 折出如图所示的折痕PD、PE.2. 你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕, 并度量所画PD、PE 是否等长?活动二、探究与归纳问题: (出示投影片)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.已知事项: OC平分∠AOB, PD⊥OA, PE⊥OB, D.E为垂足.由已知事项推出的事项: PD=PE.归纳角的平分线的性质:在角的平分线上的点到角的两边的距离相等.活动三、深入探究问题1: 到角的两边距离相等的点是否在角的平分线上呢?(出示投影)。

七年级下册数学平行线及其判定

七年级下册数学平行线及其判定

七年级下册数学平行线及其判定平行线及其判定一、什么是平行线在数学中,平行线指的是两条线段在共线的情况下,两条线段的端点不重合,其余点在这两条线段上都存在。

它们在每一条垂直于这两条线段的直线上,都有两个相对对称的直线,这样它们才能称之为平行线。

二、平行线判定1、直角三角形平行线判定一个直角三角形有两条斜边,如果其中任意一条斜边与直角边平行,则另外一条斜边也必定与直角边平行,因此斜边两条线段相互也是平行的。

2、锐角三角形平行线判定对于锐角三角形,根据角平行定理,其中任意两条边所对的角是相等的,那么当两条边所在的直线交于相同的角点时,这两条边所在的线段就是平行线。

3、同长角相等平行线判定倘若一个四边形有两条对角线,其中任意两个角的长度和两个角的大小都相等,那么对角线所在的线段便是平行的。

4、直角三角形内连接平行线判定如果一个三角形是直角三角形,它的两个斜边上各准备了一条连接线,则两条连接线在垂直于直角边的水平线上,一定是平行的,因为斜边所在的两条线段也是平行线。

三、平行线的性质(1)平行线恒有相同距离,任何两个任意点(包括其端点)到平行线的投影都有相同的距离;(2)平行线内任何一条线段,到两个平行线的投影都有相同的距离;(3)平行线之间任何一点的投影到平行线的端点都有相同的距离;(4)在两个平行的线段上的一点,它到两条平行线的距离都是相等的。

四、结论平行线是数学中一个重要的概念,它在解决几何问题中有着重要的作用。

因为之前的分析,我们可以得出,平行线有其特殊的性质,其中比较重要的是恒有相同距离,可以给几何问题带来极大的方便,可以帮助我们准确地判断两条线段是否是平行线。

三角形全等的判定教案

三角形全等的判定教案

三角形全等的判定教案教学目标1。

通过实际操作理解“学习三角形全等的四种判定方法”的必要性。

2。

比较熟练地掌握应用边角边公理时寻找非已知条件的方法和证明的分析法,初步培养学生的逻辑推理能力。

3。

初步掌握“利用三角形全等来证明线段相等或角相等或直线的平行、垂直关系等”的方法。

4。

掌握证明三角形全等问题的规范书写格式。

教学重点和难点应用三角形的边角边公理证明问题的分析方法和书写格式。

教学过程设计一、实例演示,发现公理1.教师出示几对三角形模板,让学生观察有几对全等三角形,并根据所学过的全等三角形的知识动手操作,加以验证,同时写出全等三角形的数学表达式。

2.在此过程当中应启发学生注意以下几点:(1)可用移动三角形使其重合的方法验证图3-49中的三对三角形分别全等,并根据图中已知的三对对应元素分别相等的条件,可以证明结论成立。

如图3-49(c)中,由AB=AC=3cm,可将△ABC绕A点转到B与C重合;由于∠BAD=∠CAE=120°,保证AD能与AE重合;由AD=AE=5cm,可得到D与E重合。

因此△BAD可与△CAE重合,说明△BAD≌△CAE。

(2)每次判断全等,若都根据定义检查是否重合是不便操作的,需要寻找更实用的判断方法——用全等三角形的性质来判定。

(3)由以上过程可以说明,判定两个三角形全等,不必判断三条边、三个角共六对对应元素均相等,而是可以简化到特定的三个条件,引导学生归纳出:有两边和它们的夹角对应相等的两个三角形全等。

3。

画图加以巩固。

教师照课本上所叙述的过程带领学生分析画图步骤并画出图形,理解“已知两边及夹角画三角形”的方法,并加深对结论的印象。

二、提出公理1。

板书边角边公理,指出它可简记为“边角边”或“SAS”,说明记号“SAS’的含义.2.强调以下两点:(1)使用条件:三角形的两边及夹角分别对应相等.(2)使用时记号“SAS”和条件都按边、夹角、边的顺序排列,并将对应顶点的字母顺序写在对应位置上.3.板书定理证明应使用标准图形、文字及数学表达式,正确书写证明过程.如图3-50,在△ABC与△A’B’C’中,(指明范围)三、应用举例、变式练习1.充分发挥一道例题的作用,将条件、结论加以变化,进行变式练习,例1已知:如图3-51,AB=CB,∠ABD=∠CBD.求证:△ABD≌△CBD.分析:将已知条件与边角边公理对比可以发现,只需再有一组对应边相等即可,这可由公共边相等 BD=BD得到.说明:(1)证明全等缺条件时,从图形本身挖掘隐含条件,如公共边相等、公共角相等、对顶角相等,等等.(2)学习从结论出发分析证明思路的方法(分析法).分析:△ABD≌△CBD因此只能在两个等角分别所在的三角形中寻找与AB,CB夹两已知角的公共边BD.(3)可将此题做条种变式练习:练习1(改变结论)如图 3-51,已知 AB=CB,∠ABD=∠CBD。

2022届成都市七年级下期 相交线与平行线、三角形全等练习题

2022届成都市七年级下期 相交线与平行线、三角形全等练习题

2022届成都市七年级下期相交线与平行线、三角形全等练习题1.下列说法中,正确的是()A.倒数等于它本身的数是1 B.如果两条线段不相交,那么它们一定互相平行C.等角的余角相等D.任何有理数的平方都是正数2.茗茗总结的下列结论中,不正确的是()A.等角的补角相等B.等角的余角相等C.过两点有且只有两条直线D.两点之间线段最短3.下列说法中,正确的是()A.垂线最短B.过直线外一点有且只有一条直线与已知直线平行C.相等的角一定是对顶角D.过一点有且只有一条直线与已知直线垂直4.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④5.下面说法正确的个数为()(1)过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个6.如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.则∠A=∠F,请说明理由.解:∵∠AGB=∠EHF∠AGB= (对顶角相等)∴∠EHF=∠DGF∴DB∥EC∴∠=∠DBA (两直线平行,同位角相等)又∵∠C=∠D∴∠DBA=∠D∴DF∥(内错角相等,两直线平行)∴∠A=∠F.7.(1)如图1,已知∠1=∠2,∠B=∠C,可推得AB∥CD,理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B()∴AB∥CD().(2)已知,如图2,AD∥BE,∠1=∠2,∠A与∠E相等吗?试说明理由.9.如下图所示,边长分别为a,b的两个正方形拼在一起,用代数式表示图中阴影部分的面积,并求a=8,b=5时,阴影部分的面积.10.操作示例: 如图1,△ABC中,AD为BC边上的中线,则S△ABD=S△ADC.实践探究(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,则S阴和S矩形ABCD之间满足的关系式为(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S阴和S平行四边形ABCD之间满足的关系式为;(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S阴和S四边形ABCD之间满足的关系式为;解决问题:(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和,即S1+S2+S3+S4= .11.已知:△ABC中,AD⊥BC,AE平分∠BAC,请根据题中所给的条件,解答下列问题:(1)如图1,若∠BAD=60°,∠EAD=15°,求∠ACB的度数.(2)通过以上的计算你发现∠EAD和∠ACB-∠B之间的关系应为:.(3)在图2的△ABC中,∠ACB>90°,那么(2)中的结论仍然成立吗?为什么?12.已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;13.如图(1),由三角形的内角和或外角和可知:∠ABC=∠A+∠C+∠O在图(2)中,直接利用上述的结论探究:①若AD、CD分别平分∠OAB,∠OCB,且∠O=80°∠B=120°,求∠ADC的度数②AD、CD分别平分∠OAB,∠OCB,猜想∠O,∠ABC,∠ADC之间的等量关系,并说明理由.14.学习数学应该积极地参加到现实的、探索的数学活动中去,努力地成为学习的主人.下面,请你探究:随着P点位置的变化,∠BPC与∠A的大小关系.(1)、(2)问用“>”表示其关系,(3)、(4)、(5)用“=”表示其关系.1如图(1),点P在AC上(不同于A、C两点),∠BPC与∠A的关系是,用一句话说出你判断的依据;②如图(2),点P在△ABC内部,∠BPC与∠A的关系是;③如图(3),点P是∠ABC、∠ACB平分线的交点,此时∠BPC与∠A的关系是;④如图(4),点P是∠ABC平分线和∠ACB外角平分线的交点,∠BPC与∠A的关系是;⑤如图(5),点P是∠ABC与∠ACB两外角平分线的交点,∠BPC与∠A的关系是;⑥在上述五种情形中,选择其中一种情形给予说明理由.⑦问题解决:如图(6),在△ABC中,∠C=90°,点P是∠ABC平分线和∠BAC外角平分线的交点,则∠P的度数为.1.给出下列各命题:①有两边和它们的夹角对应相等的两个三角形一定全等;②有两边和一角对应相等的两个三角形一定全等;③有两条直角边对应相等的两个直角三角形一定全等;④有两条边分别相等的两个直角三角形一定全等;其中假命题共有()A.1个B.2个C.3个D.4个2.(荆门)给出以下判断:(1)线段的中点是线段的重心(2)三角形的三条中线交于一点,这一点就是三角形的重心(3)平行四边形的重心是它的两条对角线的交点(4)三角形的重心是它的中线的一个三等分点那么以上判断中正确的有()A.一个B.两个C.三个D.四个3.(深圳)已知三角形的两边a=3,b=7,第三边是c,且a<b<c,则c的取值范围是()A.4<c<7 B.7<c<10 C.4<c<10 D.7<c<134.(鄂州)下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③5.命题①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等;⑥任何数都有倒数;⑦如果a2=b2,那么a=b;⑧三角对应相等的两三角形全等;⑨如果∠A+∠B=90°,那么∠A与∠B互余.其中真命题有…()A.3个B.4个C.5个D.6个6.如图所示的△ABC中,线段BE是三角形AC边上的高的是()A.B.C.D.7.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线8.下列说法错误的有()①只有两个三角形才能完全重合;②如果两个图形全等,它们的形状和大小一定都相同;③两个正方形一定是全等图形;④边数相同的图形一定能互相重合.A.4个B.3个C.2个D.1个9.已知EF是AB上的两点,AE=BF,AC∥BD,且AC=DB,求证:CF=DE.10.如图(19),在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.(1)若BC在DE的同侧(如图①)且AD=CE,求证:BA⊥A C.(2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是请予证明,若不是请说明理由.11、如图,AB=AC,B D⊥AC于D,CE⊥AB于E BD、CE相交于F,,试说明AF平分∠BAC12、如图AB、CD相交于点O,,OA=OB,OC=OD,EF是过O点的任意一条直线,且交AC于点E,交BD于点F,请回答:(1)AC和BD有什么关系?(2)求证:OE=OF13. 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF 的中点吗?请证明你的结论。

新人教版七年级数学下册(五四制)《三角形全等的判定(1)》教案

新人教版七年级数学下册(五四制)《三角形全等的判定(1)》教案

18.2 三角形全等的判定第1课时一、教学目标 (一)学习目标1.经历探索三角形全等条件的过程,体验分类讨论的数学思想,体会利用操作、归纳获得数学结论的过程.2.经历探索利用 “边边边”判定两个三角形全等的过程,体会从特殊到一般的数学思维过程. 3.掌握三角形全等的判定“边边边”,初步体会并运用综合推理证明命题,掌握作一个角等于已知角的方法. (二)学习重点1.指导学生分析问题,寻找判定三角形全等的条件. 2.三角形全等的“边边边”条件的探索和运用. (三)学习难点1.理解证明的基本过程,初步学会证三角形全等的格式. 2.会用尺规作一个角等于已知角. 二、教学设计 (一)课前设计 1.预习任务(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”) (2)利用尺规作一个角等于已知角.其作法的根据是 边边边 . 2.预习自测(1)如图,AB=AD ,CB=CD ,则________≌_________. 根据是________.DCBA【知识点】全等三角形的判定:边边边 【思路点拨】图中的隐含条件公共边“AC=AC” 【答案】△ABC ,△ADC , 边边边 或SSS(2)如图,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,则下面的结论中不正确的是( ) A .△ABC ≌△BAD B .∠C=∠D C .∠CAB=∠DBA D .OB=ODOD CBA【知识点】全等三角形的判定:边边边,全等三角形的性质.【思路点拨】由题中两个条件和公共边可证得两个三角形全等,再根据全等三角形的性质得对应边相等. 【解题过程】由AC=BD ,AD=BC ,AB=BA,可证得△ABC ≌△BAD ,故A 正确;由△ABC ≌△BAD ,可得∠C=∠D ,故B 正确;由△ABC ≌△BAD ,可得∠CAB=∠DBA ,故C 正确;OB 和OD 不是△ABC 和△BAD 的对应边,故D 不正确. 故选:D(3)将下列推理过程补充完整.如图,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF . 求证:∠B=∠D.FEDC BA证明:∵AE=CF ∴AE+EF=CF+EF 即______=________. 在△ABF 和△CDE 中,⎪⎩⎪⎨⎧_______________________∴△ABF ≌△CDE ( ) ∴____________________.【知识点】全等三角形的判定定理:边边边,全等三角形的性质.【思路点拨】利用等式的性质,等式两边同时加上EF,可得AF=CE,再得△ABF≌△CDE,最后由全等三角形的性质得∠B=∠D.【答案】AF,CE,AB=CD,BF=DE,AF=CE,SSS,∠B=∠D(二)课堂设计1.知识回顾(1)能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.2.问题探究探究一:探索三角形全等的条件●活动①创设情境,提出问题问题:两个三角形全等,是否一定需要六个条件呢?如果只满足六个条件中的一部分,是否也能保证两个三角形全等呢?【设计意图】问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望.●活动②建立模型,探索发现1.两个三角形满足六个条件中的一个条件,两个三角形全等吗?一个条件有几种情况?学生经过交流得出:一条边或一个角.2.(1)让学生画一个一边长为3cm的三角形,画后剪下来看与同桌的三角形能否重合. (2)让学生画一个一个角为30°的三角形,画后剪下来看与同桌的三角形能否重合.只给定一条边相等:只给定一个角相等:3.通过上面的操作,你得到了什么结论?学生讨论后得出结论.结论:两个三角形一条件相等不一定全等.【设计意图】学生动手操作,通过实践、自主探索、交流,获得新知,同时也渗透了分类讨论的思想.●活动③1.两个三角形满足六个条件中的两个条件时两个三角形全等吗?两个条件有几种情况?学生分组交流讨论.结论:一条边和一个角相等、两个角相等、两条边相等.2.让学生画一个一边长为3cm和一个角为30°三角形,画好后剪下来看与同桌的三角形能否重合?①3cm3cm 3cm30︒30︒30︒3.让学生画一个两个角分别为30°和50°的三角形,画好后剪下来看与同桌的三角形能否重合.②50︒50︒30︒30︒4.让学生画一个两边分别为3cm和5cm的三角形,画好后剪下来看与同桌的三角形能否重合.5.通过上面的操作,你得到了什么结论?学生通过画一画,比一比,得出结论.结论:两个三角形两个条件相等不一定全等.【设计意图】学生动手操作自主探索、交流,获得新知,明确两条件不能判定两个三角形全等,为探究后面三个条件判定两个三角形全等作铺垫.探究二:探索三角形全等的判定“边边边”.1.师问:前面通过探究一个条件或两个条件的两个三角形不一定全等,那么当满足三个条件的两个三角形是否全等,三个条件有几种情况?学生分组讨论后,每组选代表发言.结论:三内角、三条边、两边一内角、两内角一边.师问:三个内角相等全等吗?请举例说明.通过学生的回答,全班明白三个内角相等的两个三角形不一定全等.2.画一个三角形的三条边长分别为3cm 、4cm 、5cm .画好后剪下来看与同桌的三角形能否重合.3.任意画一个△ABC ,根据前面作法,同样可以作出一个△A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,观察两个三角形能否重合. 4.通过上面的操作,你得到了什么结论?学生经过特殊到一般的思想,通过画一画,比一比,得出结论. 结论:两个三角形满足三条边相等时,这个两个三角形全等。

七年级下册三角形,平行线,轴对称,整式知识点总结及习题

七年级下册三角形,平行线,轴对称,整式知识点总结及习题

第七章生活中的轴对称(知识点总结)一,基本概念1.轴对称图形,对称轴如果一个图形沿着某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

轴对称图形不一定只有一条对称轴,但至少有一条。

2.轴对称对于两个图形,如果沿一条直线对折后,它们能完全的重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称。

3.轴对称和对称轴图形中的对称轴是直线,而不是线段和射线。

4.轴对称的性质:1)对应点所连的线段被对称轴垂直平分;2)对应线段相等,4.角平分的性质:角平分线上的点到这个角的两边的距离相等。

5.垂直平分线:垂直并且平分一条线段的直线叫做这条线段的垂直平分线。

6.垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

7.等腰三角形:有两边相等的三角形叫做等腰三角形。

8.等腰三角形性质:1)等腰三角是轴对称图形;2)等腰三角形顶角的平分线、底边上的中线,底边上的高重合(三线合一),它们所在的直线都是等腰三角形的对称轴。

3)等腰三角形的两个底角相等。

(注意:等腰三角形的性质常用于说明两线段相等或两角相等)9.等腰三角形的判定方法:1)有两个角相等的三角形是等腰三角形(等角对等边);2) 有两条边相等的三角形是等腰三角形(等边对等角)。

10.等边三角形:三边都相等的三角形是等边三角形,也叫正三角形。

11.等边三角形的性质:1)等边三角形的三个内角均为600; 2)等边三角形的三边相等。

12.镜子成像的特点:1) 物体与镜子平行时:左右互换是关键,物与像成轴对称,简单可以看反面。

;2)物体与镜面垂直时:像的方向与物体的方向上下颠倒。

第五章三角形(知识点总结)1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

用“△”表示三角形,以A、B、C为顶点的三角形记作“△ABC”。

2三角形的三边关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边。

平行线相似三角形性质和判定

平行线相似三角形性质和判定
二、要熟悉该定理的几种基本图形
A
D
DA
B
E
BE
C
F
C
F
2019/7/14
推 平行于三角形一边的直线截其他两边(或两 论 边的延长线)所得的线段对应成比例.
2019/7/14
平行线等分线段定理
P
G. F. E.
A
D
C
B
如果一组平行线在一条直线上截得的线段相等,那么在其他
直线上截得的线段也相等。
推论1
小结 拓展
图形的相似
1.形状相同的图形 ①表象:大小不等,形状相同. ②实质:各对应角相等、各对应边成比例.
三个角对应相等,三条边对应成比例的两个三角形, 叫做相似 三角形.
△ABC与△DEF相似,就记作:△ABC∽△DEF. 注意:要把表示对应角顶点的字母写在对应的位置上!
性质:相似三角形的各对应角相等,各对应边对应成比例.
性质定理
判定定理
平行于三角形一边的直线截其他两
边所在的直线,截得的对应线 段成比例.
平行于三角形的一边的直线, 截其它两边所在的直线,截得 的三角形的三边与原三角形的 三边对应成比例.
如果一条直线截三角形的两边的延 长线(这两边的延长线在第三边 的 同侧),所得的对应线段成比例,那 么这条直线平行于三角形的第三边.
相似三角形
1. 相似图形三角形的判定方法:
通过定义 (三边对应成比例,三角相等) 平行于三角形一边的直线(预备定理) 三边对应成比例(SSS) 两边对应成比例且夹角相等(SAS) 两角对应相等(AA) 两直角三角形的斜边和一条直角边对应成比例
(HL)
相似三角形的性质:
对应角相等。 对应边成比例。 对应高的比等于相似比。 对应中线的比等于相似比。 对应角平分线的比等于相似比。

平行线与全等三角形推导与证明

平行线与全等三角形推导与证明

平行线与全等三角形推导与证明在几何学中,平行线和全等三角形是两个基本概念。

平行线指的是在同一平面中永不相交的两条直线,而全等三角形则指的是具有相同边长和角度的两个三角形。

本文将推导和证明平行线与全等三角形之间的关系。

一、平行线的定义先来回顾一下平行线的定义。

在平面上,如果有一条直线和另外一条直线,它们任意选择一对内角相等,那么这两条直线就是平行线。

我们可以表示为线段AB║线段CD,其中║表示平行。

二、全等三角形的定义再来回顾一下全等三角形的定义。

对于两个三角形ABC和DEF来说,如果它们的对应边长相等且对应角度相等,那么这两个三角形就是全等三角形。

我们可以表示为△ABC≌△DEF,其中≌表示全等。

三、推导平行线与全等三角形之间的关系现在我们来推导平行线与全等三角形之间的关系。

假设有三角形ABC和DEF,其中AB║DE,BC║EF,且∠A=∠D,∠B=∠E。

根据平行线的定义,我们知道∠A和∠D是一对内角,∠B和∠E 是一对内角。

由于∠A=∠D,∠B=∠E,根据角的对应关系,我们可以推导出∠C=∠F。

另外,由于AB║DE,BC║EF,并且AC和DF是两条相交直线,根据同位角的性质,我们可以得知∠ACB=∠DFE。

现在我们已经得到了∠A=∠D,∠B=∠E,∠C=∠F,∠ACB=∠DFE这四个条件。

四、证明平行线与全等三角形之间的关系接下来,我们将利用之前推导得到的条件,证明平行线与全等三角形之间的关系。

首先,我们可以通过SAS(边角边)准则来证明两个全等三角形。

即通过三角形ABC和DEF的三边和两个对应角度相等来证明它们全等。

其次,通过全等三角形的性质,我们可以得知它们的对应边长相等,例如AB=DE,BC=EF,CA=FD。

因此,我们可以得出结论:如果在平面上有两组平行线AB║DE和BC║EF,并且∠A=∠D,∠B=∠E,那么三角形ABC和DEF是全等的。

总结:平行线和全等三角形是几何学中的基本概念。

平行线+顶点构造全等三角形

平行线+顶点构造全等三角形

平行线+顶点构造全等三角形
简介
在几何学中,构造全等三角形是常见的问题。

本文将介绍一种利用平行线和顶点构造全等三角形的方法。

通过这个方法,我们可以快速准确地构建出与给定三角形全等的三角形。

构造步骤
以下是利用平行线和顶点构造全等三角形的步骤:
1. 首先,我们需要给定一个已知的三角形ABC和一个点D。

将线段AD连接起来。

2. 在线段AD上选择一个任意点E,并通过点E作一条与边BC平行的线段EF。

3. 接下来,通过点F作一条与边AC平行的线段FG。

4. 然后,通过点G作一条与边AB平行的线段GH。

5. 我们需要证明线段GH和边BC平行才能继续构造。

6. 使用平行线定理,我们可以得出线段EF与边BC平行,因为它们与线段AD分别平行。

7. 类似地,根据平行线定理,我们可以得出线段FG与边AC 平行,线段GH与边AB平行。

8. 通过引理,我们可以证明线段EF与线段GH也是平行的。

这是因为它们与线段BC分别平行。

9. 基于平行线和顶点构造的定理,我们可以得出三角形ABC 与三角形HGF全等。

10. 最后,我们得到了一个与给定三角形ABC全等的三角形HGF。

总结
利用平行线和顶点构造全等三角形是一种简单且有效的方法。

通过按照上述步骤进行构造,我们可以轻松地得到一个全等的三角形。

这个方法在几何学中非常重要,因为它可以帮助我们解决关于全等三角形的问题。

希望本文对你理解平行线和顶点构造全等三角形的方法有所帮助。

如果你有任何疑问,请随时提出。

几何学平行线与角公式整理

几何学平行线与角公式整理

几何学平行线与角公式整理几何学是研究空间、图形和形体之间的关系和性质的学科。

平行线与角是几何学中重要的概念,它们在解决几何问题和证明定理时起到了关键作用。

在本文中,我们将整理并介绍一些与平行线和角相关的重要公式。

一、平行线的性质与公式1. 平行线的定义平行线是指在同一个平面上,永远不会相交的两条直线。

2. 平行线的判定定理● 对偶定理:若两条直线与第三条直线交叉形成的两组对应角(内角和外角)互为等角,则这两条直线平行。

● 同位角定理:若两条平行线被一条横截线相交,则所形成的同位角(即相互对应的内角或外角)相等。

● 内外角定理:若两直线被一条横截线相交,则所形成的内角与该角对应的外角互补。

3. 平行线的性质● 平行线之间的距离相等。

● 平行线与横截线所形成的同位角相等。

● 平行线与横截线所形成的内外角互补。

二、角的性质与公式1. 角的定义角是由两条线段或两条射线共享一个端点形成的图形。

2. 角的分类● 钝角:大于90度小于180度的角。

● 直角:等于90度的角。

● 锐角:小于90度的角。

3. 角的性质● 垂直角性质:互为补角的两个角称为垂直角,它们的度数之和为180度。

● 对顶角性质:由两条交叉直线形成的对顶角(相邻且不重叠的内角)互为相等角。

● 余角公式:给定一个角,其对角度数与90度的差称为余角。

若角A的度数为x,则其余角的度数为90度-x。

● 和角公式:若两个角的度数之和为180度,则它们互为补角。

● 差角公式:若两角的度数之差为180度,则它们互为补角。

三、平行线与角公式的应用1. 平行线与全等三角形当两条平行线被一条横截线相交时,所形成的对应角相等。

利用这个公式,我们可以证明两个三角形全等。

2. 平行线与相似三角形若两条平行线被两条或多条横截线分别切割,所形成的相应角相等,我们可以利用这个性质证明两个三角形相似。

3. 平行线的应用● 平行线的平分线定理:若一条直线与两条平行线相交,则它所形成的两个内角互为相等角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

授课内容:
平行线、相交线及三角形全等
教学目标:
1.掌握直线、射线、线段的特点
2.掌握角及角平分线的概念,能准确判断
3.掌握平行线的性质及判定
4.掌握三角形全等的判定定理并会证明三角形全等
教学重难点:平行线的判定
授课内容:
1. 两点确定一条直线,两点之间最短,即过两点有且只有一条直线。

2. 1周角=_______,1平角=_______,1直角=_______.
3.
如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,_______________ ___的补角相等.
4. ___________________________________叫对顶角,对顶角___________.
5. 过直线外一点心___________条直线与已知直线平行.
6. 平行线的性质:两直线平行,_________相等,________相等,________互补.
7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.
8. 平面内,过一点有且只有_____条直线与已知直线垂直.
9.线段的垂直平分线:
性质:线段垂直平分线上的到这条线段的的距离相等;
判定:到线段的点在线段的垂直平分线上。

10.角的平分线:
性质:角平分线上的点到角相等;
判定:到角的点在这个角的平分线上。

11.三角形全等的判定方法有几种__________,分别为
【中考试题】
一.选择题
1.(2011年广西桂林)下面四个图形中,∠1=∠2一定成立的是().
2.如图,直线a b ∥,则A ∠的度数是( )
A .28
B .31
C .39
D .42
第5题C B A
E D
O
3.(2011山东日照)如图,已知直线AB ∥CD ,
∠C=125°,∠A=45°,那么∠E 的大小为( ) A .70° B .80° C .90° D .100°
4.(2011•南通)如图,AB ∥CD ,∠DCE=80°,则∠BEF=( ) A 、120° B 、110° C 、100° D 、80°
5.(2011山西)如图所示,∠AOB 的两边OA 、OB 均为平面反光镜,∠AOB =35°在OB 上有一点E ,从E 点射出一束光线经OA 上的点D 反射后
,反射光线DC 恰好与OB 平行,则∠DEB 的度数是( )
A .35°
B . 70°
C . 110°
D . 120°
6.(2011重庆綦江)如图,直线a ∥b ,AC 丄AB ,AC 交直线b 于点C ,∠1=65°,则∠2的度数是( )
A .65°
B .50°
C .35°
D .25° 7.(2010重庆)如图,AB ∥CD ,∠C =80°,∠CAD =60°,则∠BAD 的度数等于( )
A .60°
B .50°
C . 45°
D . 40
8.(2011•河池)如图,AB ∥CD ,AC 与BD 相交于点O ,∠A=30°,∠COD=105°.则∠D 的大小是( )
A 、30°
B 、45°
C 、65°
D 、75° 9.(2011湖北潜江)如图,AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,则∠BC
E 等于( )A .23°
B .16°
C .20°
D .26°
10.(2011•安顺)如图,己知AB ∥CD ,BE 平分∠ABC ,∠CDE=150°,则∠C 的度数是( )
A 、100°
B 、110°
C 、120°
D 、150°
11.(2011•德州)如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3等于( )
A 、55°
B 、60°
C 、65°
D 、70°
12.(2011泰安)如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=20°,则∠α的度数为( )
A .25°
B .30°
C .20°
D .35° (第2题)
图 A
B C D a b 70° 31° A B
D
C
7题图
甲 乙

丁北
北A α(第6题图)
13.(2011四川泸州)如图,∠1与∠2互补,∠3=135°,则∠4的度数是( )
A.45°
B.55°
C.65°
D.75°
14.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是( )A 、32° B 、58° C 、68°
D 、60°
15.(2011天水)如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是( )
A 、30°
B 、45°
C 、40°
D 、50°
16.(2011四川雅安)如图,直线l 1,l 2被直线l 3所截,且l 1∥l 2,若∠1=72°,∠2=58°,则∠3=( )
A.45°
B.50°
C.60°
D.58°
17.(2011福建龙岩)如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是( )
A .25°
B .30°
C .35°
D .40°
18.(2011广东省茂名)如图,已知AB ∥CD ,则图中与∠1互补的角有( )
A 、2个
B 、3个
C 、4个
D 、5个
19.(2011吉林长春)如图,直线l 1∥l 2,点A 在直线l 1上,以点A 为圆心,适当长为半径画弧,分别交直线l 1.l 2于B .C 两点,连接AC .BC .若∠ABC =54°,则∠1的大小为( )
A .36°
B .54°
C .72°
D .73°
20.(2011襄阳)如图,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是( )
A .40°
B .60°
C .80°
D .120°
2
如图17所示,在∠AOB 的两边上截取AO =BO ,OC =OD ,连接AD 、BC 交于点P ,连接OP ,则下列结论正确的是 ( )
①△APC ≌△BPD ②△ADO ≌△BCO ③△AOP ≌△BOP ④△OCP ≌△ODP
A .①②③④
B .①②③
C .②③④
D .①③④

求证如图已知C B =BC :AC.=C A AB,=B A AC,A C AB,A B ,:.1''''⊥'⊥'
2.已知:如图,△ABC 中,点E 、F 分别在AB 、AC 边上,点D 是BC 边中点,且EF ∥BC,DE=DF . 求证:∠B=∠C
4. 已知:如图 , AB=DC ,AD=BC , O 是BD 中点 ,过O 的直线分别与DA 、BC 的延长线交于E 、F .
求证:OE=OF
8. 已知:如图,AD 是BC 上的中线,且DF=DE .
求证:BE ∥CF .
30、(2009年甘肃白银)如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:
(1)ACE BCD △≌△.
11、如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.。

相关文档
最新文档