第三章-静定结构----三

合集下载

第三章静定平面刚架讲解

第三章静定平面刚架讲解

A C
x
L
B 斜梁的反力与相应简支 梁的反力相同。
(2)内力 求斜梁的任意截面C的内力,取隔离体AC:
a
相应简支梁C点的内力为:
FP1 A
FYA
x
MC FNC C
FQC
MC0
=
FY
0 A
x
FP1 (x
a)
FQ0C = FY A FP1 FN0C = 0
Fp1 M0
C
斜梁C点的内力为:
MC = FYA x FP1 (x a) = MC0
F0 YA
F0 QC
FQC = (FYA FP1)Cos = FQ0CCos
FNC = (FYA FP1)Sin = FQ0CSin
结论:斜梁任意点的弯矩与水平梁相应点相同, 剪力和轴力等于水平梁相应点的剪力在沿斜梁 切口及轴线上的投影。
例:求图示斜梁的内力图。
q
A
L
解:a、求反力
B
XA =0
FNDC=8k0N
A
MDC=24kN.m(下拉)
FQDB=8kN D FNDB=6kN
MDB=16kN.m(右拉)
8kN
B
6kN C 6kN
2m
8kN
B24kN.m
6kN
4m
6kN

-6kN 8kN
∑Fx = 8-8 = 0 ∑Fy = -6-(-6) = 0
16kN.m 6kN
∑M = 24-8 - 16 = 0
Fx = 0 : FNCE = 0 .45 kN
校核 Fy= (3.13+0.45)sin +(1.793.58)cos
= 3.58 1.79×2 = 0

第03章: 结构力学 静定结构内力分析

第03章: 结构力学   静定结构内力分析
A
2
2qa 2
2qa2
4qa
2
2
4qa2
14qa2
2qa2 q
14qa
弯矩图
10
也可直接从悬臂端开始计算杆件 8 2qa2
8qa 2
B
10qa 2
6qa 2q
2
2qa 2
4qa2
14qa
2
M图
(4)绘制结构Q图和N图 2qa2 2qa2 C 6qa q E

D
2q A 2a 2a 4a B
3a
6qa
FN2=0
FN=0
FN=0
FN1=0
判断结构中的零杆
FP FP FP/2
FP/ 2
FP



截取桁架的某一局部作为隔离体, 由平面任意力系的平衡方程即可求得未知 的轴力。 对于平面桁架,由于平面任意力系的 独立平衡方程数为3,因此所截断的杆件数 一般不宜超过3
试用截面法求图示桁架指定杆件的内力。
5、三铰拱的合理轴线 拱的合理轴线:在固定荷载作用下使拱处于无弯距状态 的轴线。 求解公式:在竖向荷载作用下,三铰拱的合理轴线使拱 的各截面处于无弯距状态,即
M M FH y 0
0
M y FH
0
结论: (1)三铰拱在沿水平线均匀分布的竖向荷载作用下,合理轴 线为一抛物线。
y
M AD
1 qL x2 8
M BD
q(l x) 1 x qx 2 2 2
Mx1max
1 qL x2 8
由以上三处的弯矩得到:
q(L x) 1 2 1 2 x qx qL x 2 2 8
整理得:
x 0.172L

第三章 静定结构的内力计算

第三章 静定结构的内力计算

FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC

第三章3静定结构受力分析(平面刚架)

第三章3静定结构受力分析(平面刚架)

MA= qa2+2qa2-2aYB=0 (1)
2) 对中间铰C建立矩平衡方程 qa
MB=0.5qa2+2aXB -aYB=0 (2) 解方程(1)和(2)可得
a
XB=0.5qa YB=1.5qa 3) 再由整体平衡 X=0 解得 XA=-0.5qa Y=0 解得 YA=0.5qa
qa/X2 A YA
1/2qa2
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
C
1/2qa2
A
a
a
qa2 q
B XqBa/2 YB
2 绘制弯矩图
注意:三铰刚架绘制弯矩图往往只须求一水平反力,然后由 支座作起!!
画三铰刚架弯矩图
CM
O M
M/2
M/2
a
C
A
B
a
a
Mo=m-2a×XB=0, 得 XB=M/2a
注意:
A
RA
B
XB
YB
1、三铰刚架仅半边有荷载,另半边为二力体,其反力沿两铰连线,
§3-3 静定平面刚架
一. 刚架的受力特点

1 8
ql2
l
1 ql2 8
刚架
桁架
弯矩分布均匀 可利用空间大
§3-3 静定刚架受力分析
一. 刚架的受力特点 二. 刚架的支座反力计算
静定刚架的分类:
三铰刚架 (三铰结构)
简支刚架 悬臂刚架
单体刚架 (联合结构)
复合刚架 (主从结构)
1.单体刚架(联合结构)的支座反力(约束力)计算
三. 刚架指定截面内力计算
四.刚架的内力分析及内力图的绘制
①分段:根据荷载不连续点、结点分段。 ②定形:根据每段内的荷载情况,定出内力图的形状。 ③求值:由截面法或内力算式,求出各控制截面的内力值。

第三章 静定结构的内力计算(组合结构)

第三章 静定结构的内力计算(组合结构)

A A A A 0 0 0 0
0 0 0 0
8 8 8 8
HC
3、求梁式杆内力 处理结点A处力
结构力学
第3章静定结构的内力计算
静定结构特性
结构力学
第3章静定结构的内力计算
静定结构特性 静定结构特性 一、结构基本部分和附属部分受力影响
A
F1
B
C
F2
D
E
F3
F
如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; Ⅰ Ⅱ Ⅲ 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 特性一、静定结构基本部分承受荷载作用,只在基本部分上产 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 生反力和内力;附属部分上承受荷载作用,在附属部分和基本 部分上均产生反力和内力。
第3章静定结构的内力计算
q = 1 kN/m A FR Ax FR Ay FNDA F C FNFD VC
8 8 8 8
M M图 图 ( m M图 (kN· kN· m) ) M 图 (kN· m) (kN· m) F 图 FQ 图 Q ( ) FkN 图 ( kN Q ) FkN 图 ( Q ) (kN) F 图 FN N图 ( ) FkN ( kN ) N图 FkN N图 ( ) (kN)
结构力学
第3章静定结构的内力计算
二、平衡荷载的影响
F C B D
A B q C

结构力学 第三章 静定结构

结构力学 第三章 静定结构
• 由结点弯矩平 衡校核弯矩计算是 否正确。
MBC=1kN· m
B
MBE= 4kN· m
MBA=5kN· m
FP1=1kN FP2=4kN
• 用计算中未使 用过的隔离体平衡 条件校核结构内力 计算是否正确。
5kN· m
1kN
3kN
FP3=1kN
2、简支刚架
• 解: • (1)、求支座 反力 • ∑y=0 • FCy =80kN(↑) • ∑m0=0 • FAx=120kN(←) •∑x=0 •FBx=80kN(→)
§3-2 静定多跨梁

由中间铰将若干根梁(简单梁) 联结在一起而构成的静定梁,称为静 定多跨梁。
1、几何组成:
• 基本部分+附属部分。 • (1)、基本部分:不依赖其它部分, 本身能独立承受荷载并维持平衡。 • (2)、附属部分:依赖于其它部分而 存在。
2、层叠图和传力关系
(1)、附属部分荷载 传 基本部分或 支撑它的附属部分。 • (2)、基本部分的荷载对附属部分无 影响,从层叠图上可清楚的看出来。 •
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
l l l
例题
4kN· m
4kN
3m
3m
(1)集中荷载作用下
6kN· m
(2)集中力偶作用下
4kN· m 2kN· m
(3)叠加得弯矩图
4kN· m
4kN· m
例题
3m
8kN· m
2kN/m
3m
2m
(1)悬臂段分布荷载作用下
FP2=4kN
q=0.4kN/m

建筑力学与结构第三章

建筑力学与结构第三章
M 0 x a V ( x ) R A l AC段 : M ( x) R x Mx 0 x a A l
M /l
V
Mb / l
M
Ma / l
讨论:集中力偶M作用点C处:
M V ( x) RB l a x l CB段 : M ( x) RB l x M l x a x l l
4、判断各段V、M图形状:
3.8 2.2 CA和DB段:
q=0,V图为水平线, M图为斜直线。
AD段:q<0, V 图为向下斜直线,
1.41
M图为下凸抛物线。
按叠加原理作弯矩图(AB=2a,力P作用在梁AB的中点处)。 P A P A V B + M B x
Pa qa2 + 2 2
+ x
= +
V B
V=12KN/m
根据2-2截面右侧的外力计算V2 、 M2 V2 =+(V· 1.5)-RB =12· 1.5-29 =-11KN M2 =-(V· 1.5)· 1.5/2+RB· 1.5 =-(12· 1.5)· 1.5/2+29· 1.5 = +30 KN· m
M2 V2Βιβλιοθήκη RB第三章 静定结构的内力
MDC=30×2=-60KNM(左拉)
NDE=30KN(压力) VDE=40KN MDE= 30×2=-60KNM(上拉)
VBE=30KN
MBE= 0
60
180
30
40
30 80
M图(KNM)
30 40
V图(KN)
80
N图(KN)
三、三铰刚架弯矩图

第3章 三铰拱

第3章  三铰拱

(二) 对称三铰拱的数解法
1. 计算支座反力
图示三铰拱中,共有 四个反力: VA、HA、VB、HB。 根据整体的平衡 条件可建立三个 平衡方程: ∑MA=0 ∑MB=0 ∑X=0 再取中间铰一侧隔离 体, ∑ MC=0, 由这四个方程可 解出四个反力。
由∑MB= 0,得: VAl-P1b1- P2b2-…= 0 VA= (P1b1 + P2b2 + …)/ l V0A 由∑MA= 0,得: VB= (P1a1+ P2a2+…)/ l V0B 把两个竖向反力VA 、VB与相应简支梁支座反力V0A 、 V0B 相比,可知竖向荷载作用下,对称三铰拱的竖向反力与 其相应简支梁的反力完全相同。
两个投影方程可用拱轴在该点的法线n和切线t为 投影轴。
∑n = 0 ,得: QD = VA cosφD -P1 cosφD -P2 cosφD -H sinφD = (V0A-P1-P2) cosφD -H sinφD
= Q0D cosφD -H sinφD
∑t = 0 ,得: ND = VA sinφD - P1 sinφD -P2 sinφD +H cosφD = (V0A-P1-P2) sinφD +H cosφD
由∑X= 0,得: HA= HB = H 中间铰左侧隔离体 ∑MC=0 得:
∑ MC =
VAl1-P1(l1 - a1) - P2(l1 - a2) - P3(l1 - a3)- H f = 0 得: H=[VAl1-P1(l1 - a1)- P2(l1 - a2)- P3(l1 - a3)] / f 因 VA = V0A ,得:H= M0C / f M0C为相应简支梁截面C的弯矩。
最后根据本例的已知条件,进行具体计算。
VA=VB= V0A = q l / 2= 4× 16 / 2 = 32kN H = (q l 2 / 8) / f = (4× 162 / 8) / 4 = 32kN

静定结构内力计算全解[详细]

静定结构内力计算全解[详细]
➢ 杆件结构的组成和分析是两个相关的过程,应当 把受力分析与组成分析联系起来,根据结构的组 成特点确定受力分析的合理途径。
从组成的观点,静定结构的型式: ✓悬臂式、简支式(两刚片法则) ✓三铰式(三刚片法则) ✓组合式(两种方式的结合)
悬臂式 三铰式
简支式 组合式
组合式结构中:
✓基本部分:结构中先组成的部分,能独立承载; ✓附属部分:后组成的以基本部分为支承的部分,不能独立 承载。
三铰拱作业:
y
100kN
1
A O
2m
20kN/m
4m 8m
2
B x
Hale Waihona Puke 2m求图示抛物线拱的1、2截面的内力。
三、三铰拱的合理拱轴线
使拱在给定荷载下只
M M 0 FH y 0 产生轴力的拱轴线,被
y M0
称为与该荷载对应的合 理拱轴
FH
三铰拱的合理拱轴线 的纵坐标与相应简支梁弯 矩图的竖标成正比。
Mik
i
FQik
Mik
i
Fiy
q Mki
k
FQki q
Mki
k
Fky
叠加法作弯矩图: 叠加法作弯矩图:
+
要点:先求出杆两端 截面弯矩值,然后在 两端弯矩纵距连线的 基础上叠加以同跨度、 同荷载简支梁的弯矩 图。
§3 静定多跨梁与静定平面刚架
一、静定多跨梁 多根梁用铰连接组成的静定体系。
AB、CD梁为基本部分 BC梁为附属部分。
2、求支座反力和内部约束力
根据组成和受力情况,取整个结构或部分结构为隔离 体,应用平衡方程求出。
B
B
F
F
FBy
A FC
FAx A FAy

静定结构的内力分析

静定结构的内力分析

40
第 三 章80 静定结构的内力计算
D
FNDE FNED
E
30
30
FNDC
FNEB
FQ
40 kN
FN 30 kN
80 kN
练习:
第三章
静定结构的内力计算
解: (1) 求支座反力。
F=qa
C
D
由 X 0
E
FxA q 2a 0
q
a B
得 FAx 2qa
a
由 M A 0
FxA
A
FyB
2qa a F a FyB 2a 0
首先进行定性分析。
由内力图的外观校核。杆上无分布荷载FS图为水 平直线;M图为斜直线。杆上有分布荷载FS图为斜直 线;M图为二次抛物线。 FS图为零的截面M为极值。 杆上集中荷载作用的截面, FS图上有突变;M图上有折 弯。根据这些特征来检查,本题的M图、FS图均无误。
第 三 章 静定结构的内力计算
6
FA=58 kN 26
10
18 FB=12 kN
q ME
FQE
MF
FS 图 ( kN )
FQF
第 三 章 静定结构的内力计算
二、 多跨静定梁 (multi-span statically determinate beam)
附属部分--依赖基本
基本部分--不依赖其它
部分的存在才维持几
部分而能独立地维持其

3.外力与杆轴关系(平行,垂直,重合) 4.特殊部分(悬臂部分,简支部分)
5.区段叠加法作弯矩图
第 三 章 静定结构的内力计算
结点平衡条件的应用:
一、铰结点: (集中力偶只能作用于杆端处)
M

第三章 静定结构的受力分析

第三章 静定结构的受力分析

斜直线
FS=0处
有突变
突变值为P
如变号
无变化
M图
斜直线
抛物线
有尖角


有极值
尖角指向同P
有极值
有突变
M=0
利用上述关系可迅速正确地绘制梁的内力图(简易法)8
Structural mechanics
静定结构的受力分析
简易法绘制内力图的一般步骤:
(1)求支反力。
2)分段:凡外力不连续处均应作为分段点,如集中力
15
Structural mechanics
基本部分:
静定结构的受力分析
不依赖其它部分的存在而能独立地维持其几何不变性的部 分。 如:AB、CD部分。
(a)
基本部分
(b) A
B
层叠图:
基本部分
C
附属部分:
必须依靠基本部分 才能维持其几何不变 D 性的部分。如BC部分 。
为了表示梁各部分之间的支撑关系,把基本部分画在下层, 而把附属部分画在上层, (b)图所示,称为层叠图。
3
Structural mechanics
静定结构的受力分析
§3—1 梁的内力计算的回顾
单跨静定梁应用很广,是组成各种结构的基构件之一,其受 力分析是各种结构受力分析的基础。这里做简略的回顾和必
要的补充。
1. 单跨静定梁的反力
常见的单跨静定梁有:
简支梁
外伸梁
悬臂梁

→↑
↙ ↑
→↙ ↑↑
→↑ ↙
反力只有三个,由静力学平衡方程求出。 4
16
Structural mechanics
(2)受力分析方面:
静定结构的受力分析

第3章静定结构的受力分析

第3章静定结构的受力分析

M0
1 2 ql 8
弯矩图的叠加指纵坐标的叠加, 不是图形的简单拼合。
任意直段杆的弯矩图:以(a)中的AB端为例,其隔离体如图(b)。
与图(c)中的简支梁相比, 显然二者的弯矩图相同。
因此:作任意直杆段弯矩图
就归结为作相应简支 梁的弯矩图。 AB段的弯矩图如图(d)。
M0 1 2 ql 8
§3-5 静定平面桁架
武汉长江大桥
1
桁架的特点和组成 由杆件组成的格构体系, 荷载作用在结点上, 各杆内力主要为轴力。
钢筋混凝土组合屋架
优点:重量轻,受力合理,能承受较大荷载,可作成较大 跨度。
武汉长江大桥采用的桁架形式
第3 章
静定结构的内力分析
§3-1 杆件内力计算 §3-2 静定梁 §3-3 静定刚架 §3-4 三铰拱 §3-5 静定桁架 §3-6 静定结构的内力分析和受力特点
第3章 静定结构的内力分析
本章讨论静定结构。 内容:静定结构的内力分析。 静定结构分析的要点: 1、如何选择“好的”隔离体; 2、怎样建立比较简单而又恰当的平衡方程, 计算最为简捷。
FQB FQA q y dx xA xB M B M A FQ dx xA
xB
积分关系的几何意义: B端的剪力=A端的剪力-该段荷载qy图的面积
B端的弯矩=A端的弯矩+此段剪力图的面积
5. 分段叠加法作弯矩图
图(a)结构荷载有两部分: 跨间荷载q和端部力偶MA、MB 端部力偶单独作用时,弯 矩图为直线,如图(b): 跨间荷载q单独作用时,弯 矩图如图(c): 总弯矩图为图(b)基础上叠加图 (c),如图(d):
FQ >0 F <0 增函数 降函数 Q 自左向右折角 斜直线 曲线

第三章静定结构的内力计算(精)

第三章静定结构的内力计算(精)

第三章静定结构的内力计算学习目的和要求不少静定结构直接用于工程实际,另外,它还是静定结构位移计算及超静定结构的计算基础。

所以静定结构的内力计算是十分重要的,是结构力学的重点内容之一。

通过本章学习要求达到:1、练掌握截面内力计算和内力图的形状特征。

2、练掌握截绘制弯矩图的叠加法。

3、熟练掌握截面法求解静定梁、刚架及其内力图的绘制和多跨静定梁及刚架的几何组成特点和受力特点。

4、了解桁架的受力特点及按几何组成分类。

熟练运用结点法和截面法及其联合应用,会计算简单桁架、联合桁架既复杂桁架。

5、掌握对称条件的利用;掌握组合结构的计算。

6、熟练掌握截三铰拱的反力和内力计算。

了解三铰拱的内力图绘制的步骤。

掌握三铰拱合理拱轴的形状及其特征学习内容梁的反力计算和截面内力计算的截面法和直接内力算式法;内力图的形状特征;叠加法绘制内力图;多跨静定梁的几何组成特点和受力特点。

静定梁的弯矩图和剪力图绘制。

桁架的特点及分类,结点法、截面法及其联合应用,对称性的利用,几种梁式桁架的受力特点,组合结构的计算。

三铰拱的组成特点及其优缺点;三铰拱的反力和内力计算及内力图的绘制;三铰拱的合理拱轴线。

§3.1梁的内力计算回顾一、截面法1、平面杆件的截面内力分量及正负规定:轴力N (normal force) 截面上应力沿轴线切向的合力以拉力为正。

剪力Q (shearing force)截面上应力沿轴线法向的合力以绕隔离体顺时针转为正。

弯矩M (bending moment) 截面上应力对截面中性轴的力矩。

不规定正负,但弯矩图画在拉侧。

2、截面内力计算的基本方法:截面法:截开、代替、平衡。

内力的直接算式:直接由截面一边的外力求出内力。

1、轴力=截面一边的所有外力沿轴切向投影代数和。

2、剪力=截面一边的所有外力沿轴法向投影代数和,如外力绕截面形心顺时针转动,投影取正否则取负。

3、弯矩=截面一边的所有外力对截面形心的外力矩之和。

弯矩及外力矩产生相同的受拉边。

第三章静定结构受力分析

第三章静定结构受力分析

内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N 、剪力F Q 和弯矩MM A轴力----截面上应力沿杆轴切线方向的合力。

轴力以拉力为正。

剪力----截面上应力沿杆轴法线方向的合力。

剪力以绕微段隔离体顺时针转者为正。

内力的概念和表示弯矩----截面上应力对截面形心的力矩。

在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。

作图时,轴力图和剪力图要注明正负号,弯矩图规定画在杆件受拉的一侧,不用注明正负号。

内力的计算方法梁的内力的计算方法主要采用截面法。

截面法可用“截开、代替、平衡”六个字来描述:1.截开----在所求内力的截面处截开,任取一部分作为隔离体;隔离体与其周围的约束要全部截断。

2.代替----用截面内力代替该截面的应力之和;用相应的约束力代替截断约束。

3.平衡----利用隔离体的平衡条件,确定该截面的内力。

内力的计算方法利用截面法可得出以下结论:1.轴力等于截面一边的所有外力沿杆轴切线方向的投影代数和;2.剪力等于截面一边所有外力沿杆轴法线方向的投影代数和;3.弯矩等于截面一边所有外力对截面形心力矩的代数和。

以上结论是解决静定结构内力的关键和规律,应熟练掌握和应用。

分段叠加法画弯矩图1.叠加原理:几个力对杆件的作用效果,等于每一个力单独作用效果的总和。

= +=+2.分段叠加原理:上述叠加法同样可用于绘制结构中任意直杆段的弯矩图。

例例:下图为一简支梁,AB段的弯矩可以用叠加法进行计算。

(1)(2)(3)(4)静定多跨连续梁的实例现实生活中,一些梁是由几根短梁用榫接相连而成,在力学中可以将榫接简化成铰约束,这样由几个单跨梁组成几何不变体系,称作为静定多跨连续梁。

下图为简化的静定多跨连续梁。

静定多跨梁的受力特点结构特点:图中AB依靠自身就能保持其几何不变性的部分称为基本部分,如图中AB;而必须依靠基本部分才能维持其几何不变性的部分称为附属部分,如图中CD。

受力特点:作用在基本部分的力不影响附属部分,作用在附属部分的力反过来影响基本部分。

第3章_静定结构的内力分析

第3章_静定结构的内力分析
第3章
静定结构受力分析
一、静定单跨梁的类型
(1)简支梁;
(2)悬臂梁; (3)伸臂梁
二、杆件截面内力及正负号规定 1、轴力:沿杆件轴线方向的截面内力,拉力为正、压力为负。 2、剪力:相切于横截面的内力,顺转为正,反之为负。
3、弯矩:截面内力对截面形心的力矩,下部受拉为正、反之 为负。 + + M M Q Q + N N - - M M Q Q - N N
C 60
B
叠加法绘制直杆弯矩图 一、简支梁弯矩图的叠加方法
MA
A
q L
MB
B
MA
MAB中 1 qL2 MB 8
若MA、MB在杆的两侧,怎么画?
MA MB q
A
MA
MAB中
B MB

A 1 qL2 8
B
MAB中= ( MA + MB)/2
MA A
P a b
MB B MA M Pab L MB
L
M怎么计算?
C A 3.75kN 2m
D
4m
B
2m 0.25kN
ND左 = -10kN
求截面C、D左、D右的内力。 解:1、求支座反力 2、C截面的内力 取C截面以左为对象:
QD左 = 3.75-2×2 =-0.25kN MD左 = 3.75×6-2×2×5
=2.5kNm
4、D右截面的内力 取D右截面以右为对象:
三、内力图的校核
除一般校核平衡条件和荷载、内力微分关系外,重点是校核 刚结点处的平衡条件,即∑X = 0 , ∑Y = 0,∑M = 0
例1:作图示刚架的弯矩图。 2kN/m C A B 5m 4m
16
4
C
B MCB = 0 MBC = 2×4×2 =16kNm(上拉) MBA = 2×4×2 = 16kNm(右拉) MAB =2×4×2 = 16kNm(右拉)

结构力学——3静定结构的内力分析

结构力学——3静定结构的内力分析
x=1.6m 3.K截面弯矩的计算
M图(kN·m) Mk
Mmax=32.4kn·N
qx2
MK=ME+QE x- 2 =26+8×1.6- 51
62
2
=32.4kN·m
返10回
§3—2 多跨静定梁
1.多跨静定梁的概念 若干根梁用铰相联,并用若干支座与基础
相联而组成的结构。
2.多跨静定梁的特点: (1)几何组成上: 可分为基本部分和附属部分。
(5)校核: 内力图作出后应进行校核。
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
以例说明如下
返22回
E
20
20
75
45
0
例 3—7 绘制刚架的弯矩图。 解:
由刚架整体平衡条件 ∑X=0
得 FBX=5kN(←) 5kN 此时不需再求竖向反力便可
绘出弯矩图。 有:
40 30
MA=0 , MEC=0 MCE=20kN·m(外)
MCD=20kN·m(外)
MB=0
MDB=30kN·m(外)

李廉锟结构力学3

李廉锟结构力学3

【例3-1】 1.反力 2.控制截面 C-A-(D)-EF-GL-GR-B 3.FS-连线 4.M-连线 直线 曲线
(极值)
滚小球作Q图 力推小球同向走,力尽小球平行走 集中力偶中间铰,方向不变无影响 反推小球回到零,上正下负剪力图
斜梁 基本方法 ——截面法 斜杆内力 ——FS、FN随截面方向倾斜 1.支座反力 2.内力: M FS、FN:投影方向 3.内力图 4.斜长分布→水平分布
§3—2 多跨静定梁
1. 几何组成 基本部分——独立地维持其几何不变的部分 附属部分——依靠基本部分才能维持其几何不变 的部分 层叠图——层次关系
2.受力分析——特点 基本部分——荷载作用其上,附属部分不受力 附属部分——荷载作用其上,基本部分受力 3.内力分析步骤 未知反力数 = 独立平衡方程数 计算——按几何组成的相反次序求解 (避免解联立方程) 反力、内力计算,内力图绘制——同单跨梁
【例3-5】
1.简支
-反力 2.M图 3.FS图 4.FN图 5.校核
【例3-6】 1、反力* 2、M图 3、FS图 AD、BE *DC、CE: -M→FS 4、FN图 AD、BE DC、EC (结点)
【例3-7】组成分析——基本、附属部分 按组成相反次序,分别按基本形式计算
§3-4 快速绘制 M 图
任意直杆段——适用 叠加法作M图 (1)求控制截面值 外力不连续点 (F,M作用点, q的起点,终点等) (考虑全部荷载) (2)分段画弯矩图 控制截面间无荷载 ——连直线 控制截面间有荷载(q、F) ——连虚线, ——再叠加标准M0图
5.绘制内力图的一般步骤 (1)求反力(悬臂梁可不求) (2)分段 ——外力不连续点:q端点,F、M作用点 (3)定点 ——求控制截面内力值(全部荷载) (4)连线 ——按微分关系 连直线 曲线:连虚线,叠加简支梁M0图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 .6 6 7
7 .5 0 .5 5 5 0 .0 0 2 5 k N 0 .0 0 3 k N
2 3 3 4 1 , sin 2 0 .5 5 5 , co s 2 0 .8 3 2

N 2 Q 2 sin 2 H cos 2 11 2 3 0 . 555
VA
M M Hy
Q
o

P1
Mo
Q Q co s H sin



V
A
N Q sin H co s

三、受力特点 (1)在竖向荷载作用下有水平反力 H; (2)由拱截面弯矩计算式可见,比相应简支梁小得多; (3)拱内有较大的轴向压力N.
q=2kN .m y
2 1 0 A 3 4 5 6
P=8kN
例 1、三铰拱及其所受荷载如
图所示拱的轴线为抛物线方程
7 8
2 y2 x
f=4m
B
y
4f l
2
xl x
计算反力并绘
制内力图。
H 7.5kN VB 9kN
VA VA VB VB

7.5kN
x2=3m VA 11kN 3m 6m 6m
a1
d P1 a2
D
b1
c
f l2 l
b2
P2
HB
M
A
0
VB
1 l
P1 a 1
P2 a 2
VB VB

HA
y
M
B
0
VA
1 l
P1b1
P2 b 2
VA VA

x
VA
l1
x 0
VB
HA HB H
P1 d
P1
P2
c
H
MC 0
V A l1 P1 d H f 0
MC H f 0 H

c
VA

f l1
x
VB

VA
MC f

二、内力计算 以截面D为例
P1
Qo
x-a1 M
截面内弯矩要和竖向力及水平力对D点构成 的力矩相平衡,设使下面的纤维受拉为正。
H
y
D H x
M
D
0
Qo

M V A x P1 x a 1 H y
(1)计算支座反力
26983 12 2 6 389 12
11 6 2 6 3 4 7 .5 k N
1 1k N 9 kN
(2)内力计算
y2 4f l
2
以截面2为例
44 12
2
H
MC f


xl x
31 2 3 3 m
对拱结构而言,任意截面上弯矩计算式子为:
M M Hy

它是由两项组成,第一项是简支梁的弯矩,而后一项与拱轴形状 有关。令
M M

Hy 0
yx
M

x
H
在竖向荷载作用下,三铰拱的合理轴线的纵标值与简支梁 的弯矩纵标值成比例。
例1、设三铰拱承受沿水平方向均匀分布的竖向荷载,求其合理轴线。
由上式可得
这表明拱在法向dS 2 N sin
N qR
R
N q
因N为一常数,q也为一常数,所以任一点的曲率半径R也是常数,即拱轴为圆弧。
q y C q B l/2

A
l/2
f
B x
ql 2
A x
ql 2
[解] 由式 y x
M
x
M

先列出简支梁的弯矩方程
H
x
MC f

q 2

xl x
ql
2
拱的推力为:
H
8f
所以拱的合理轴线方程为:
y x q 2 xl x 8f ql
2

4f l
M 2 M 2 H y 2 1 1 3 2 3 1.5 7 .5 3

1.5 k N m
tg 2 dy dx x3 4f 2x 1 l l
x3

44 2 3 1 12 12
Q 2 Q 2 c o s 2 H sin 2 1 1 2 3 0 .8 3 2
0.600
0.000
A
1
1.125 1.500 1.125
2
y2
q=2kN .m
6m x
0.000 0.375 4.500
3
2
4 5
6m
6
0.375
7 B 8
P=8kN
0.000
M图 kN.m
N图 kN
Q图 kN
拱的合理轴线 在固定荷载作用下,使拱处于无弯矩状态的轴线称为合理 轴线。 从结构优化设计观点出发,寻找合理轴线即拱结构的优化选型。

7 . 5 0 . 832 9 . 015 kN
绘制内力图
0
y
13.300 10.958 9.015 7.749 7.500 7.433 3.325 6.796 11.235 11.665 11.700 1.421 3.331 1.060 0.600 1.000 0.472 0.003 0.354
2
xl x
例2、设三铰拱承受均匀分布的水压力,试证明其合理轴线是园弧曲线。
[证明] 设拱在静水压力作用下处于无弯矩状态,然后由平衡条件推导轴线方程。
q
D
E
dS R d
∑MO=0
ND×R=(ND+dND)×R dND=0
d 2 0 q Rd N d 0
§3-4 三 铰 拱受力分析 拱的支座称为拱趾 两拱趾之间的距离叫跨度 拱的最高点称为拱顶 拱点至拱趾连线间的距离称为拱高,也称为矢高。
矢高与跨度的比值称为矢跨比。
拱的实例 三铰拱的特点
P1
H
l
三铰拱的类型、基本参数
P2
f H
VA
VB
f l
1 10
曲线形状:抛物线、圆、悬链线……..
三铰拱的支座反力和内力 一、支座反力 与同跨度同荷载对应简支梁比较
相关文档
最新文档