5.2.不等式的基本性质

合集下载

5.2不等式的基本性质

5.2不等式的基本性质

5.2不等式的基本性质教学目的:1.使学生理解不等式的概念,初步掌握不等式的三条基本性质;2.培养学生对比以及观察、分析问题的能力,并初步领会对比的思想方法.教学重点:不等式的三条基本性质.教学难点:不等式的基本性质3.教学过程:引言:运用对比的方法,引导学生猜想出不等式的三条基本性质,并通过实例加以验证首先,让学生用“>”或“<”号填空:(1)7+3______4+3; (2)7+(-3)______ 4+(-3);(3)7×3 ______ 4×3; (4)7×(-3)______ 4×(-3).然后,启发学生由上面第(1)、(2)小题猜想出与等式的基本性质类似的不等式的性质.并请学生叙述不等式的基本性质1.此时,教师应抓住学生叙述中的问题予以纠正.即不能笼统地说“仍是不等式”,要改为书中所说的“不等号的方向不变”.对比等式中关于两边都乘以或除以同一个数的性质,让学生思考不等式类似的性质.引导学生观察上述第(3)、(4)小题,并将题中的3换成5,-3换成-5,按题中的要求再做一遍,并猜想出结论.然后让学生试着叙述所得到的不等式的基本性质2,3.(在观察上述练习题时,引导学生注意不等号的方向,并用彩色粉笔标出来,并问原因是什么?当学生在叙述不等式的基本性质感到困难时,教师应作适当的引导,启发.并依次板书这几条基本性质)不等式基本性质:1.不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变.3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变.此时,教师要特别强调不等式基本性质3,并举例:若a <b ,c <0,则ac >bc(或c a >c b) 然后,让学生用不等式-2<4两边都分别加上5,-6,两边都分别乘以3, -3来验证上述不等式的三条基本性质.问题:(1)在不等式 -2<6两边都乘以m 后,结论将会怎样?(当字母m 的取值不明确时,需对m 分情况讨论)(2)比较等式性质与不等式的基本性质的异同.(问这两个问题的目的在于,强化学生对不等式基本性质的理解,特别是对不等式基本性质3的理解)五、应用举例,变式练习例1 根据不等式基本性质,把下列等式化成x >a 或x <a 的形式:(1)x-2<3; (2)6x <5x-1;解:(1)由不等式的基本性质1可知,不等式的两边都加上2,不等号的方向不变,所以x-2+2<3+2,x <5.(2)、(3)、(4)题略.(解题时,要求学生要联想解一元一次方程的思想方法,并将原题与x >a 或x <a 对照着用哪条基本性质能达到题目要求.同时强调推理的根据,尤其要注意不等式基本性质3和基本性质2的区别,解题书写要规范)例2 设a >b ,用“<”或“>”号填空:(3)-4a ______ -4b ; (4)ma ______mb .(m ≠0)解:(1)因为a >b ,两边都减去3,所以由不等式基本性质1,得a-3>b-3.(2),(3)题略.(4)因为a>b,两边都乘以m.当m>0时,由不等式基本性质2,得ma>mb,当m<0时,由不等式基本性质3,得ma<mb.(解题时,要让学生明白推理要有根据,并要求以后做类似的习题时,都要写出根据,逐步培养学生逻辑思维的能力)练习(投影)1.根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:(1)x+1>2; (2)4x<3x-5;(5)3x<x+4; (6)x<3x+4.2.设a<b,用“>”或“<”号填空:(1)a+5______ b+5; (2)2a ______ 2b;3. 7页 1.2.3六、小结七、作业1.根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:(5)4x<2x+6.2.设 a>b,用“>”或“<”号填空:(1)a+3 ______ b+3; (2)5a ______ 5b;(5)ma______ mb(m≠0).3.8页3题,4题4.9页B组,C组做书上。

不等式的基本性质教学设计教案

不等式的基本性质教学设计教案

不等式的基本性质教学设计-教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解不等号(>,<,≥,≤)的含义举例说明不等式的表示方法1.2 不等式的基本性质性质1:如果a>b,a+c>b+c(加法性质)性质2:如果a>b且c>0,ac>bc(乘法性质,正数)性质3:如果a>b且c<0,ac<bc(乘法性质,负数)性质4:如果a>b且c≥0,a-c>b-c(减法性质)第二章:不等式的运算2.1 不等式的加减法运算展示不等式的加减法运算规则,举例说明练习题:求解下列不等式组的解集2.2 不等式的乘除法运算介绍不等式的乘除法运算规则,注意正负数的处理练习题:求解下列不等式组的解集第三章:不等式的解法3.1 简单不等式的解法介绍简单不等式的解法,如直接解、移项、合并同类项等练习题:求解下列简单不等式的解集3.2 不等式组的解法介绍不等式组的解法,如图像法、区间法等练习题:求解下列不等式组的解集第四章:不等式的应用4.1 实际问题中的不等式举例说明不等式在实际问题中的应用,如距离问题、分配问题等练习题:解决下列实际问题中的不等式4.2 不等式的优化问题介绍不等式在优化问题中的应用,如最大值、最小值问题练习题:解决下列优化问题中的不等式第五章:不等式的综合练习5.1 不等式的综合应用综合运用不等式的基本性质、运算和解法解决实际问题练习题:解决下列综合应用问题中的不等式5.2 复习与总结复习不等式的概念、基本性质、运算和解法总结不等式的重要性和在数学中的应用第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式:x ≤a 或x ≥a说明标准形式在解不等式组中的重要性6.2 标准形式的不等式解法展示如何将不等式转换为标准形式练习题:将给定的不等式转换为标准形式并求解第七章:不等式的绝对值7.1 不等式中的绝对值解释绝对值在不等式中的含义和作用举例说明绝对值不等式的解法7.2 绝对值不等式的解法展示绝对值不等式的解法步骤练习题:求解含有绝对值的不等式第八章:不等式的函数关系8.1 不等式与函数的关系探讨不等式与函数之间的关系举例说明如何通过函数图像解决不等式问题8.2 函数图像下的不等式解法介绍如何利用函数图像求解不等式练习题:利用函数图像解决给定的不等式问题第九章:不等式的不等式系统9.1 不等式系统的概念介绍不等式系统的概念及其解法说明不等式系统在实际问题中的应用9.2 不等式系统的解法展示如何解不等式系统练习题:求解给定的不等式系统第十章:不等式的拓展与应用10.1 不等式的拓展探讨不等式在其他数学领域的应用介绍不等式的相关拓展知识10.2 不等式的实际应用分析不等式在现实生活中的应用练习题:解决实际生活中的不等式问题教案总结:本教案涵盖了不等式的基本概念、性质、运算、解法、应用以及拓展等内容。

不等式的性质、解不等式

不等式的性质、解不等式

不等式的基本性质、解不等式【基础知识】一、不等式的概念及基本性质注意:①不等式的基本性质,没有减法和除法。

如果遇到减法和除法,可以转化乘加法 和乘法,如:求a b -的范围可以转化成求()a b +-的范围,求a b 的范围可以转化成求1a b⨯的范围。

②方程和不等式的两边不能随便乘除,必须先研究这个数的性质,再乘除。

三、分式不等式和高次不等式 1、分式不等式的解法 把分式不等式通过移项、通分、因式分解等化成()0()f xg x ≥的形式→化成不等式组()0()()0g x f x g x ≠⎧⎨≥⎩→解不等式组得解集。

温馨提示:解分式不等式一定要考虑定义域。

2、高次整式不等式的解法(序轴标根法)先把高次不等式分解因式化成123()()()()0n x a x a x a x a ---->的形式(x 的系数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上往下穿(奇穿偶不穿)→写出不等式的解集。

实际上,序轴标根法适用于所有的整式不等式,根据它可以很快地写出整式不等式的解集。

四、绝对值不等式 1、解绝对值不等式 方法一:公式法 解只含有一个绝对值形如()ax b c +><的不等式,一般直接用公式x a x a x a >⇔><-或 x a a x a <⇔-<<,注意集合的关系和集合的运算,集合的运算主要利用数轴。

方法二:零点讨论法 解含有两个绝对值形如()x a x b c +++><的不等式,常用零点讨论法和数形结合法。

注意小分类求交大综合求并。

方法三:平方法 如果绝对值的不等式的两边都是非负数,如:3x >,可以用平方法。

2、绝对值三角不等式a b a b a b -≤±≤+绝对值三角不等式的运用主要体现在直接利用绝对值三角不等式证明不等式和求函数的最值。

【例题精讲】例1 已知不等式 的解集为 ,求 、 的值。

不等式的基本性质 优秀教案

不等式的基本性质 优秀教案

《不等式的基本性质》教案教学目标:(1)知识与技能目标:①掌握不等式的基本性质。

②经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。

(2)过程与方法目标:①能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。

②进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。

(3)情感与态度目标:①尊重学生的个体差异,关注学生的学习情感和自信心的建立。

②关注学生对问题的实质性认识与理解。

教学重难点:不等式的基本性质2和不等式的基本性质3教学过程:一、激情引入古有关羽千里走单骑,过五关斩六将,今天我们也来闯关,有没有必胜的信心?二、探究新知第一关:智力大比拼有两对父子,为何只有三个人?(因为是祖孙三代)爷爷今年70岁,爸爸今年30岁,他俩谁大?(70>30)五年后:70+5 > 30+520年前:70-20 > 30-20X年后:70+x > 30+xX年前:70-x > 30-x问:上面四个不等式与原来不等式相比,哪些地方发生了变化?哪些又始终没变?你能得出什么结论?不等式的基本性质1与等式的基本性质1类似,你能总结出不等式的基本性质1吗?不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;用字母表示:如果a>b,那么a+c>b+c,a-c>b-c如果a<b,那么a+c<b+c,a-c<b-c第二关:探索发现对比“等式基本性质2”,你有什么想法?不等式两边同时乘(或除以一个不为0)的数结果不等号的方向是否发生改变6>4同时乘以26>4同时除以23<9同时乘以-33<9同时除以-3不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;用字母表示:如果a>b,并且c>0那么ac>,>b÷cbc ca÷如果a<b,并且c>0那么ac<,<b÷cbc ca÷不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

不等式的基本性质[整理] [其它]

不等式的基本性质[整理] [其它]

第34课 不等式的基本性质【考点指津】1.不等式的概念用不等号(>、<或≠)联结而成的式子叫做不等式.2.两个实数大小的比较设a 、b ∈R ,则a>b 0>-⇔b a ,0<-⇔<b a b a ,这是比较两个实数大小和运用比较法的根据.3.不等式的性质性质1 a b b a <⇔> (对称性)性质2 a>b ,c a c b >⇒> (传递性)性质3 a>b ,c b c a +⇒+性质4 a>b ,bc ac c >⇒>0,a>b ,bc ac c <⇒<0以上是不等式的基本性质,以下是不等式的运算性质.性质5 a>b ,d b c a d c +>+⇒> (加法法则)性质6 a>b>0,bd ac d c >⇒>>0 (乘法法则)性质7 a>b>0,n n b a N n >⇒∈* (乘方法则)性质8 a>b>0,n n b a N n >⇒∈* (开方法则)不等式性质在证明不等式和解不等式中有广泛的应用,它也是高考的热点,通常是以客观题形式考查某些性质,有时在证不等式或解不等式过程中间接考查不等式性质. 在复习中,对不等式性质的条件与结论,要彻底弄清,特别是对不等式两边平方、开方或同乘上某个数(或式子)时,要注意所得不等式与原不等式是否同向,否则在解题时往往因忽略了某些条件而造成错误. 从知识的联系上看,不等式的性质与函数的单调性是相互联系的,因此比较一些实数大小的问题,从不等式性质与函数性质结合的角度去认识是必要的.【知识在线】1.下列命题中,正确的命题是( )①若a>b ,c>b ,则a>c ; ②a>b ,则0lg >ba ; ③若a>b ,c>d ,则ac>bd ; ④若a>b>0,则b a 11<;⑤若db c a >,则ad>bc ; ⑥若a>b ,c>d ,则a-d>b-c . A . ①② B . ④⑥ C . ③⑥ D . ③④⑤2.下列命题中,正确的命题是( )A .a 3>b 3,ab>0ba 11>⇒ B . m>n>0,a>0a a n m >⇒ C .b ac b c a >⇒> D . a 2>b 2,ab>0ba 11<⇒ 3.下列命题中正确的是( )A .若|a|>b ,则a 2>b 2B . 若a>b>c ,则(a-b)c>(b-a)cC . 若a>b ,c>d ,则a-b>c-dD . 若a>b>0,c>d>0,即c bd a > 4.下列命题中,正确的命题是( )A . 若ac>bc ,则a>bB . 若a 2>b 2,则a>bC . 若ba 11>,则a<b D . 若b a <,则a<b 5.设命题甲:x 和y 满足⎩⎨⎧<<<+<3042xy y x 命题乙:x 和y 满足⎩⎨⎧<<<<3210y x ,那么( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲是乙的充分条件,也不是乙的必要条件【讲练平台】例1(2000年全国卷) 若a>b>1,P=b a lg lg ⋅,)lg (lg 21b a Q +=,)2lg(b a R +=,则( ).A . R<P<QB . p<Q<RC . Q<P<RD . P<Q<R分析一 借助对数函数单调性用基本不等式求解.解法一 ∵ a>b>1,∴ lga>lgb>0. ∴2lg lg lg lg b a b a +<⋅,即P<Q .又∵2b a ab +<, ∴ 2lg lg b a ab +<. ∴ )2lg()lg (lg 21b a b a +<+,即Q<R . ∴ P<Q<R ,故选B .分析二 用特殊值法解解法二 取a=10000,b=100,则lga=4,lgb=2.∴ P=22,Q=3,R=lg5050.显然P<Q ,R=lg5050>lg1000=3=Q .∴可排除A 、C 、D . 故选B .点评 不等式性质的考查常与幂函数、指数函数和对数函数的性质的考查结合起来,一般多以选择题的形式出现. 此类题目要求考生有较好、较全面的基础知识,一般难度不大.例2 若函数f(x),g(x)的定义域和值域为R ,则f(x)>g(x)(x ∈R )成立的充要条件是( ).A . 有1个x ∈R ,使得f(x)>g(x)B . 有无穷多个x ∈R ,使得f(x)>g(x)C . 对R 中任意的x ,都有f(x)>g(x)+1D . R 中不存在x ,使得f(x)≤g(x)分析 4个命题的关系在证明问题过程中经常使用. 原命题:若A 成立,则B 成立,逆命题:若B 成立,则A 成立;否命题:若A 成立则B 成立;逆否命题:若B 成立,则A 成立. 其中A ⇒B 与A B ⇒互为充要条件.由于对任意x ∈R ,f(x)>g(x)成立的逆否命题为:在R 中不存在x ,使f(x)≤g(x)成立. 答 选D .点评 本题也可通过构造特殊函数,采用排除法解决. 值得强调的是:不等式的性质的考查方向将更加注重基础性、全面性. 题型灵活多变.例3 已知1≤a+b ≤5,-1≤a-b ≤3,求3a-2b 的取值范围.分析 本题应视a+b 与a-b 为两个整体.解 设a+b=u ,a-b=v ,则2v u a +=,2v u b -=. ∴v u b a 252123+=-. 由已知1≤u ≤5,-1≤v ≤3,易得-2≤3a-2b ≤10.点评 本题常见的错误解法是:由已知,得0≤a ≤4,-1≤b ≤3.进一步,得0≤3a ≤12,-6≤-2b ≤2.从而,得-6≤3a-2b ≤14.由解题过程知,u 与v 各自独立地在区间[1,5]与[-1,3]内取值,从而知v u 2521+可取[-2,10]内的一切值.在错误解法中,得到的0≤a ≤4,-1≤b ≤3已不表明a 与b 可各自独立地在区间[0,4]与[-1,3]内取值了. 如a=4,b=3,a+b=7已不满足1≤a+b ≤5. 得到的区间[0,4]与[-1,3]应这样理解:对于任意给定的p ∈[1,5]与q ∈[-1,3],存在a ∈[0,4],b ∈[-1,3],使得a+b=p ,a-b=q .不等式的性质与等式的性质不一样,一般不具有可逆性. 掌握不等式性质时要谨防与等式性质做简单类比而致错.【知能集成】1.对不等式性质,关键是正确理解和运用,要弄清每一性质的条件和结论、注意条件的放宽和加强,以及条件与结论之间的相互联系;不等式性质包括“单向性”和“双向性”两个方面. 单向性主要用于证明不等式,双向性是解不等式的基础. 因为解不等式要求的是同解变形.2.高考试题中,对不等式性质的考查主要是:(1) 根据给定的条件,利用不等式的性质、判断不等式或与之有关的结论是否成立.(2) 利用不等式的性质与实数的性质、函数性质的结合,进行数值大小的比较.(3) 判断不等式中条件与结论之间的关系,是充分条件或必要条件或充分必要条件.3.要注意不等式性质成立的条件,例如:在应用“a>b ,ab>0b a 11<⇒”这一性质时. 有些同学要么是弱化了条件得a>b b a b 1<⇒. 要么是强化了条件而得ba b a 110<⇒>>. 【训练反馈】1.(2001年上海春招卷)若a 、b 是实数,则a>b>0是a 2>b 2的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既非充分条件也非必要条件2.若a>b ,c>d ,则下列不等关系中不一定成立的是( )A . a-d>b-cB . a+d>b+cC . a-c>b-cD . a-c<a-d3.已知a 、b 、c ∈R ,则下面推理中正确的是( )A . a>b ⇒am 2>bm 2B .b ac b c a >⇒> C . a 3>b 3,ab>0b a 11<⇒ D . a 2>b 2,ab>0ba 11<⇒ 4.(1999年上海卷)若a<b<0,则下列结论中正确的是( )A .不等式b a 11>和||1||1b a >均不能成立 B .不等式a b a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和22)1()1(ab b a +>+均不能成立 D .不等式||1||1b a >和22)1()1(a b b a +>+均不能成立 5.当0<a<b<1时,下列不等式中正确的是( )A . b b a a )1()1(1->-B . (1+a)a >(1+b)bC . a b a a )1()1(->-D . b a b a )1()1(->-6.(2001年北京春招卷)若实数a 、b 满足a+b=2,则3a +3b 的最小值是( )A . 18B . 6C . 32D . 4327.a 、b 为不等的正数,k ∈N*,则(ab k +a k b)-(a k+1+b k+1)的符号为( )A . 恒正B . 恒负C . 与a 、b 大小有关D . 与k 是奇数或偶数有关8.不等式2>+xy y x 成立的充要条件是( ) A . x>y B . x ≠y C . x ≠y 或xy>0 D . x ≠y 且xy>09.(2000年北京春招卷)已知函数f(x)=ax 3+bx 2+cx+d 的图象如图,则( )A . )0,(-∞∈bB . )1,0(∈bC . )2,1(∈bD . ),2(+∞∈b10.已知1≤a+b ≤4,-1≤a-b ≤2,则4a-2b 的取值范围为________.11.已知三个不等式:①ab>0,②bd a c ,③bc>ad . 以其中两个作为条件,余下一个作为结论,则可以组成________个正确的命题,请用序号写出它们. 即_______. (把所有正确的命题都填上)12.已知f(x)=ax 2-c ,且-4≤f(1)≤-1,-1≤f(2)≤5,试求f(3)的最大值与最小值.。

5不等式和它的基本性质

5不等式和它的基本性质

不等式和它的基本性质一、考点扫描:1.了解不等式的意义。

2.掌握不等式的三条基本性质,并会运用这些基本性质将不等式变形。

二、名师精讲:1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。

2.不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

用式子表示:如果a>b,那a+c>b+c(或a–c>b–c)(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

用式子表示:如果a>b,且c>0,那么ac>bc(或> )(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

用式子表示:如果a>b,且c<0,那么ac<BC(< SPAN>或< )3.不等式的基本性质是对不等式变形的重要依据。

不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。

在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。

三、例题分析第一阶梯[例1]我们已经学过的等式,方程是用"="连接式子,它表示数量间的相等关系,例如2+3=5,3x-1=2x+7, a+b=b+a等。

事实上,在实际生活中,同类量之间具有不相等关系的例子是大量的,普遍的,例如:某天的气温最低是-2℃,最高是3℃说明气温不相等,两个同学们体重分别是95斤和87斤,也不相等,上述两个例子我们可以分别表示成-2<3,95>87,像这种用不等号表示不等关系的式子,叫做不等式,常用的不等号有">""<"">""≥""≤""≠"。

根据不等式的概念,请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4提示:什么叫做不等式?常用的不等号有哪些?参考答案:②③④⑤是不等式。

不等式的基本性质

不等式的基本性质
总结词
以数学符号表示为:若A>B,则B<A。例如,如果一个人年龄大于另一个人年龄,那么另一个人年龄必然小于第一个人年龄。
详细描述
不等式的对称性是指在不等式两端同时加上或减去同一个数或式子,不等式仍然成立。
以数学符号表示为:若A>B,则A±C>B±C。例如,如果一个人身高大于另一个人身高,那么无论在这两个人身高上加上或减去同一个数值,不等式仍然成立。
04
不等式的应用
数学竞赛中的不等式主要用于解决一些与不等式有关的问题,如最值、不等式证明等。
通过使用不等式性质,可以分析得出一些解决问题的技巧和方法,如放缩法、常数代换法等。
数学竞赛中的应用
不等式在数论中主要用于研究一些与不等式有关的问题,如三角不等式、柯西不等式等。
不等式在数论中还有许多应用,如在研究素数分布、算术级数等问题时都会涉及到不等式的应用。
最优化问题
控制理论
数据科学
经济与金融
THANK YOU.
谢谢您的观看
不等式可以用来描述各种最优化问题,如线性规划、二次规划、非线性规划等。
在经济学和金融学中,不等式被用来描述各种经济和金融模型,如供需模型、最优消费模型等。
在控制理论中,不等式被用来描述系统的稳定性和性能限制。
在数据科学中,不等式被用来进行特征选择和降维,以及建立数据隐私保护的约束条件。
不等式的进一步应用和研究方向
一次不等式
形如ax²+bx+c>0,a、b、c为实数且a≠0的不等式叫做二次不等式。
二次不等式
除一次和二次不等式外,还有指数不等式、对数不等式等其他
VS
不等式的传递性是指如果A和B之间存在不等式关系,且B和C之间也存在不等式关系,那么A和C之间也必然存在同样的不等式关系。

5.2不等式基本性质

5.2不等式基本性质
等式 基本性质1 基本性质 若a=b,b=c,则a=c , , 传递性 基本性质2 如果 ,那么 如果a=b, 基本性质 移项法则 a+c=b+c,a-c=b-c , 基本性质3 基本性质
如果a=b,且c≠o, 如果 , , 那么ac=bc, , 那么 a b = c c
不等式
若a<b, b<c, 则a<c < < < 如果a>b,那么 如果 > 那么 a+c>b+c,a-c>b-c > , > 如果a> 且 > 如果 >b,且c>0, b a 那么ac> 那么 >bc , > . c c 如果a> 且 < 如果 >b,且c<0, b a 那么ac< 那么 <bc, < . c c
c
b-c b a-c
c
a
若a>b,则a+c>b+c, a-c>b-c. b,则a+c> a-
不等式的基本性质2 不等式的基本性质2
不等式的两边都加上( 或减去) 不等式的两边都加上 ( 或减去 ) 同 一个数,所得到的不等式仍成立。 一个数,所得到的不等式仍成立。
如果a> ,那么a+c>b+c,a-c>b-c; 即 如果 >b,那么 > , > ; 如果a< ,那么a+c<b+c,a-c<b-c. 如果 <b,那么 < , <
小明和小华在探究数学问题. 小明和小华在探究数学问题 小明说: 小明说: “ 3y>4y ”. > 小华认为小明说错了,应该是 < , 小华认为小明说错了,应该是3y<4y, 聪明的你觉得呢?为什么? 聪明的你觉得呢 为什么? 为什么
5.2 不等式的基本性质
观察图形回答: 观察图形回答:
a b c
已知a<0,试比较 与a的大小. 例 已知 ,试比较2a与 的大小 利用不等式基本性质2: 利用不等式基本性质2: 作差法: 数形结合: 作差法 数形结合 不等式的基本性质3: 不等式的基本性质3: ∵a< a=a < , ∵2a-0, <0, - ,

不等式及其性质与解法

不等式及其性质与解法

(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。

(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。

热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。

(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。

[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。

A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。

不等式的基本性质教学设计教案

不等式的基本性质教学设计教案

不等式的基本性质教学设计-教案第一章:不等式的概念1.1 不等式的定义介绍不等式的概念,举例说明。

解释不等式中的“大于”、“小于”、“大于等于”、“小于等于”等符号的含义。

1.2 不等式的表示方法介绍不等式的标准形式和斜线形式。

演示如何书写不等式,并强调箭头和斜线的区别。

1.3 不等式的解集解释不等式的解集的概念。

演示如何表示不等式的解集,包括用数轴表示解集的方法。

第二章:不等式的基本性质2.1 不等式的传递性质介绍不等式的传递性质,即如果a < b且b < c,则a < c。

通过示例解释传递性质的应用。

2.2 不等式的同向加减性质介绍不等式的同向加减性质,即如果a < b,则a + c < b + c(c为正数)和a c > b c(c为负数)。

通过示例解释同向加减性质的应用。

2.3 不等式的反向乘除性质介绍不等式的反向乘除性质,即如果a < b,且c为正数,则ac < bc和a/c > b/c (c不为零)。

通过示例解释反向乘除性质的应用。

第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如直接解不等式、同向加减、反向乘除等。

通过示例演示如何解简单不等式。

3.2 复合不等式的解法介绍解复合不等式的方法,如先解不等式组、利用不等式的传递性质等。

通过示例演示如何解复合不等式。

3.3 不等式的应用介绍不等式的应用,如解决实际问题、求解最值等。

通过示例演示不等式在实际问题中的应用。

第四章:不等式的性质练习4.1 简单不等式的性质练习提供一些简单不等式,让学生练习解题,并解释解题过程。

强调解题中的关键步骤和常见错误。

4.2 复合不等式的性质练习提供一些复合不等式,让学生练习解题,并解释解题过程。

强调解题中的关键步骤和常见错误。

第五章:不等式的综合应用5.1 不等式的综合应用问题提供一些不等式的综合应用问题,让学生解决问题,并解释解题过程。

不等式的基本性质

不等式的基本性质
第一讲 不等式和绝对值不等式 1、不等式的基本性质
一、实数比较大小的理论依据
a b 0

ab ab ab
a b 0 a b 0
要比较两个实数的大小,只要考察他们的差与0 的大小就可以了.
二、不等式的基本性质
性质1: 如果 a > b ,那么
如果 b < a ,那么 a>b b<a b<a;
例5:已知f ( x) ax c, 且 4 f (1) 1,
2
1 f (2) 5, 求f (3)的取值范围。

【方法指导】(1)利用排除法(利用特值)可解, (2)利用两命题间的关系可解. 【解析】(1)当c<0时,ac<bc,A不正确;当 a>0>b时,B不正确;当a=1,b=-2时, a2<b2,C不正确;因为a>b,所以ea>eb,D正 确. (2)若(a-b)a2<0,则必有a-b<0,即a<b;而 当a<b时,不能推出(a-b)a2<0,如a=0,b =1.所以“(a-b)a2<0”是“a<b”的充分不必要 条件.
a > b.
性质2:如果 a > b ,且 b > c ,那么 a > c .
a > b ,b > c a>c
等价命题是:
c<b, b<a c<a
性质3:如果 a > b,那么 a + c > b + c。
(1) 等价命题:如果 a < b,那么
a+c<b+c (2) 移项法则:如果 a + b > c,那么 a > c-b 也就是说,不等式中任何一项都可以改变符号后移到

浙教版数学八年级上第五章 5.2 不等式的基本性质(比赛用)

浙教版数学八年级上第五章 5.2 不等式的基本性质(比赛用)
这个性质也叫做 不等式的传递性.
双休日,小明、小慧分别进行1小时 当不等式两边加上 和0.5小时的体育运动. 由于运动会临近, 或减去同一个数时, 他们需要对参加的体育项目进行训练,两 不等号的方向保持 人都增加了0.5 1 小时的运动时间,请问增加 不变 运动时间之后,谁的运动时间长? 小明 1> 0.5 1+0.5 > 0.5+0.5 1+1> 0.5+1 1+(-1)__0.5+(-1) > 1-2__0.5-2 > > 1-(-3)__0.5-(-3) 若a>b,
若x>y,比较2-3x与2-3y的大小, 并说明理由.
解:∵x>y ∴-3x<-3y (不等式的基本性质3) ∴2-3x<2-3y (不等式的基本性质2)
初 出 茅 庐
小 试 牛 刀
崭 露 头 角
百 尺 竿 头
锋 芒 毕 露
大 显 身 手
某品牌计算机键盘的单价在60元 至70元之间(包括60元,70元),买 3个这样的键盘需要多少钱(用适当 的不等式表示)? 解:设计算机键盘的单价为x元, 由题意得:
选择适当的不等号填空,并,则a____-b ;
< (2)若a>0,且(b-1)a<0,则b____1.
已知a<0,试比较2a与a的大小.
解法一:∵2>1,a<0, 你能想到 ∴2a<a(不等式的基本性质3) 哪些方法 呢? 解法二:在数轴上分别表示2a和a的点(a<0),
60≤X≤70
∴180≤3X≤210
若x>y,且(a-3)x<(a-3)y, 求a的取值范围. 解:∵x>y,且(a-3)x<(a-3)y, ∴a-3<0(不等式的基本性质3) ∴a<3(不等式的基本性质2)

不等式的基本性质知识点

不等式的基本性质知识点

不等式的基本性质知识点不等式的基本性质知识点1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。

① 其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

如证明y=x3为单增函数,设x1, x2∈(-∞,+∞), x1<x2,f(x1)-f(x2)=x13-x23=(x1-x2)(x12+x1x2+x22)=(x1-x2)[(x1+)2+x22]再由(x1+)2+x22>0, x1-x2<0,可得f(x1)<f(x2), ∴ f(x)为单增。

2.不等式的性质:① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:(1) a>b b<a (对称性)(2) a>b, b>c a>c (传递性)(3) a>b a+c>b+c (c∈R)(4) c>0时,a>b ac>bcc<0时,a>b ac<bc。

运算性质有:(1) a>b, c>d a+c>b+d。

(2) a>b>0, c>d>0ac>bd。

(3) a>b>0a n>b n(n∈N, n>1)。

(4) a>b>0>(n∈N, n>1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

② 关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

不等式的基本性质

不等式的基本性质

题型一
题型二
题型三
题型四
反思对于考查不等式的基本性质的选择题,解答时,一是利用不等
式的相关性质,其中,特别要注意不等号变号的影响因素,如数乘、
取倒数、开方、平方等;二是对所含字母取特殊值,结合排除法去
选正确的选项,这种方法一般要注意选取的值应具有某个方面的代
表性,如选取0、正数、负数等.
题型一
题型二
谢谢!
≤ .
2 2 2 2
2
2
2
题型一
题型二
题型三
题型四
π+ππ≤ 和− ≤2
2
2
2
-
π

π
≤ 的错误,导致该种错误的原因是忽视了 , 不能同时取到
2
2
2 2
4
π
和 − 以及忽视了α,β 的大小关系.
4
错因分析:在解答本题的过程中易出现 − ≤
题型一
题型二
正解: ∵
题型三
题型四
π
π
− 2≤α<β≤2,
π π -
π

的取值范围为 - ,
,
的取值范围为 - ,0 .
2
2 2 2
2
题型一
题型二
题型三
题型四
反思求代数式的取值范围是不等式性质应用的一个重要方面,严
格依据不等式的性质和运算法则进行运算,是解答此类问题的基础.
在使用不等式的性质时,如果是由两个变量的取值范围求其差的取
值范围,一定不能直接作差,而要先转化为同向不等式后再求和.
第一讲 不等式
和绝对值不等式
一 不等式
1.不等式的基本
性质
学习目标:

不等式的基本性质2

不等式的基本性质2
(其中a, b, c, d均为实数),用其中两个 不等式作为 条件, 余下的一个 作为结论组成一个命题, 可组成
的 正 确 命 题 的 个 数D是
A.0个 B.1个 C.2个 D.3个
3.已知0 x y a 1,则有 D
A.loga ( xy) 0 B.0 loga ( xy) 1 C .1 loga ( xy) 2 D.loga ( xy) 2
(A).若ac2 > bc2,则a > b (B).若a < b < 0,则a2 > ab > b2
(C).若a
<
b
<
0,则
1 a
1 b
•练习
(D).若a
<
b
<
0பைடு நூலகம்则
b a
a b
•1、若-1 < a < b < 0,试把 1/a , 1/b , a2 , b2 从小到大排起来.
•2、若6 < a < 8, 2 < b < 3,分别求a+b , a – b , b/a 的取值范围.
[典型例题解析]
2、应用不等式的性质证明
例2、已知c>a>b>0,求证:c
a a
b cb
分析:此题要根据不等式的构成特征,从已知条件入 手,以不等式的性质为依据,应用构造法完成证明。
a>b>0 -a<-b<0 0<c-a<c-b
1 c-a
>
1 c-b
>
0
又Q a b 0
a ca
b cb
此题也可利用分析法,结合不等式的性质解决问题

不等式的基本性质

不等式的基本性质

第二节1.2不等式的基本性质—目标导引1.历经不等式基本性质探索,进一步体会不等式与等式的区别.2.掌握并能灵活运用不等式的基本性质1.2不等式的基本性质—内容全解1.不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向要变向.2.等式性质与不等式性质的区别其最大区别在于不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变第二课时●课题§1.2 不等式的基本性质●教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.●教学重点探索不等式的基本性质,并能灵活地掌握和应用.●教学难点能根据不等式的基本性质进行化简.●教学方法 类推探究法即与等式的基本性质类似地探究不等式的基本性质. ●教具准备 投影片两张 第一张:(记作§1.2 A ) 第二张:(记作§1.2 B ) ●教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? [生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5 ∴3+2<5+2 3-2<5-2 3+a <5+a 3-a <5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变. [师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究. [生]∵3<5 ∴3×2<5×23×21<5×21. 所以,在不等式的两边都乘以同一个数,不等号的方向不变. [生]不对. 如3<53×(-2)>5×(-2) 所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明. [生]如3<4 3×3<4×33×31<4×31 3×(-3)>4×(-3)3×(-31)>4×(-31)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释π42l >162l 的正确性[师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π42l 和162l ,且有π42l >162l 存在,你能用不等式的基本性质来解释吗?[生]∵4π<16 ∴π41>161 根据不等式的基本性质2,两边都乘以l 2得π42l >162l 3.例题讲解将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9. [生](1)根据不等式的基本性质1,两边都加上5,得 x >-1+5 即x >4;(2)根据不等式的基本性质3,两边都除以-2,得x <-23; (3)根据不等式的基本性质2,两边都除以3,得 x <-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议投影片(§1.2 A )或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流. [生](1)正确∵a <b ,在不等式两边都加上c ,得 a +c <b +c ; ∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c ,得 ac <bc , 所以正确.(4)根据不等式的基本性质2,两边都除以c ,得c a <cb 所以结论错误.[师]大家同意这位同学的做法吗? [生]不同意.[师]能说出理由吗? [生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a <b ,两边同时乘以c 时,没有指明c 的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c =0,则有ac =bc ,正是因为c 的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac <bc .只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c ≠0,但不知c 是正数还是负数,所以不能决定不等号的方向是否改变,若c >0,则有c a <c b ,若 c <0,则有c a >cb,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x >a ”或“x <a ”的形式.(1)x -1>2 (2)-x <65 [生]解:(1)根据不等式的基本性质1,两边都加上1,得x >3 (2)根据不等式的基本性质3,两边都乘以-1,得 x >-65 2.已知x >y ,下列不等式一定成立吗? (1)x -6<y -6; (2)3x <3y ; (3)-2x <-2y . 解:(1)∵x >y ,∴x -6>y -6. ∴不等式不成立; (2)∵x >y ,∴3x >3y ∴不等式不成立;(3)∵x >y ,∴-2x <-2y ∴不等式一定成立. 投影片(§1.2 B )Ⅳ.课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.●板书设计●备课资料 参考练习1.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3;(2)6x <5x -1; (3)21x >5;(4)-4x >3. 2.设a >b .用“<”或“>”号填空. (1)a -3 b -3;(2)2a 2b ; (3)-4a -4b ;(4)5a 5b ;(5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0; (7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0. 参考答案:1.(1)x <5;(2)x <-1; (3)x >10;(4)x <-43. 2.(1)> (2)> (3)< (4)>(5)> (6)< (7)< (8)>.●迁移发散 迁移1.若a <b ,则下列不等式中成立的是哪些,说明理由. ①-3+a <-3+b ②-3a <-3b③-3a -1<-3b -1 ④-3a +1>-31b +1 解:在已知条件下成立的有①,其余皆错.错因:②在a <b 的条件下,根据不等式的基本性质3应有-3a >-3b ; ③基本上同②;④在a <b 条件下,由不等式的基本性质,两边必须加(减、乘、除)同一个整式或数.2.判断x =-51能否满足不等式3-2x <5+6x ,x =-1呢? 解:将x =-51代入得:3-2×(-51)<5+6×(-51)3+52<5-56,519517 ∴x =-51满足不等式3-2x <5+6x当x =-1时,代入不等式得:3-2×(-1)<5+6×(-1),3+2<5-6,5<-1 显然不能成立.∴x =-1不能满足不等式3-2x <5+6x . 发散本节我们用到了我们以前学过的知识如下:等式的基本性质1:等式的两边都加上(或都减去)同一个整式,等式仍成立. 等式的基本性质2:等式的两边都乘以(或除以)同一个不为零的数,等式仍成立.●方法点拨[例1]判断下列各运算运用了不等式的哪一条性质. ①∵2<3 ∴2×5<3×5 ②∵2<3 ∴2+x <3+x③∵2<3 ∴2×(-1)>3×(-1) 解:①运用了不等式的性质2. ②运用了不等式的性质1. ③运用了不等式的性质3.[例2]判断下列运算是否正确,请说明理由. ∵2<3 ∴2a <3a .点拨:在此没有说明a 的取值,所以要分三种情况讨论.即a >0,a =0,a <0. 解:此运算错误.当a >0时,则有2a <3a . 当a =0时,不等式不成立. 当a <0时,则有2a >3a .[例3]根据不等式的性质.把下列不等式化为x >a 或x <a 的形式. (1)2x -15<5 (2)3x >2x +1 (3)3x +1<5x -2(4)31x >51x +1. 解:(1)先由不等式基本性质1,两边都加15得:2x <5+15.即2x <20. 再由不等式基本性质2,两边都乘以21得:x <10. (2)由不等式的基本性质1,两边都减去2x 得:3x -2x >1.即x >1.(3)先由不等式的基本性质1,两边都加上-5x -1得:3x -5x <-2-1,即-2x <-3.再由不等式的性质3,两边都除以-2得:x >23(注意不等号变向). (4)先由不等式的基本性质1,两边都减去51x 得:31x -51x <1,即152x <1.再由不等式的基本性质2,两边都乘以215得:x <215.[例4]在下列横线上填上适当的不等号(>或<)(1)如果a >b ,则a -b __________0. (2)如果a <b ,则a -b __________0. (3)如果2x <x ,则x __________0.(4)如果a >0,b <0,则ab __________0. (5)如果a +b >a ,则b __________0.(6)如果a >b ,则2(a -b )__________3(a -b ). 解:(1)> (2)< (3)< (4)< (5)> (6)<●作业指导 随堂练习1.解:(1)先由不等式的基本性质1,两边加1得:4x >2+1. 即4x >3.再由不等式基本性质2,两边都除以4得:x >43. (2)由不等式的基本性质3,两边都乘以-1得:x >-65. 2.解:(1)不成立. (2)不成立.(3)由不等式的基本性质3得成立. 习题1.21.解:(1)< (2)< (3)> (4)<2.解:(1)先由不等式的基本性质1,两边都减去3得:5x <-1-3 即5x <-4.再由不等式的基本性质2,两边都除以5得:x <-54. (2)由不等式的基本性质3,两边都乘以-3得:x <-15.试一试解:当a >0时,2a >a ;当a =0时2a =a ;当a <0时,2a <a .§1.2 不等式的基本性质●温故知新 想一想,做一做填空1.等式的两边都加上或都减去__________,结果仍是等式. 2.等式两边都乘以或除以__________,结果仍是等式. 3.用__________连接而成的式子叫做不等式.4.①若a 为非负数,则a __________(列出不等式). ②若a 为非正数,则a __________. ③若a 不小于3,则a __________. ④若a 不大于-3,则a __________. 你做对了吗?我们一起来对对答案:1.同一个整式2.同一个不为零的整式3.“<” “≤” “>” “≥”4.①≥0 ②≤0 ③≥3 ④≤-3 看看书,动动脑填空1.不等式的两边都加上(或减去)同一个整式,不等式的方向__________. 2.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________. 3.不等式两边都乘以(或除以)同一个负数,不等号方向__________.2.不等式的基本性质作业导航理解并掌握不等式的基本性质,会运用不等式的基本性质有根据地进行不等式的变形. 一、选择题1.若a +3>b +3,则下列不等式中错误的是( ) A.-55b a -< B.-2a >-2bC.a -2<b -2D.-(-a )>-(-b ) 2.若a >b ,c <0,则下列不等式成立的是( ) A.ac >bcB.cb c a < C.a -c <b -c D.a +c <b +c3.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )图1A.b -a >0B.ab >0C.c -b <c -aD.ab 11> 4.已知4>3,则下列结论正确的是( )①4a >3a ②4+a >3+a ③4-a >3-aA.①②B.①③C.②③D.①②③ 5.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA.2B.3C.4D.5 二、填空题(用不等号填空)6.若a <b ,则-3a +1________-3b +1.7.若-35x >5,则x ________-3. 8.若a >b ,c ≤0,则ac ________bc .9.若ba b a --||=-1,则a -b ________0. 10.若ax >b ,ac 2<0,则x ________a b . 三、解答题11.指出下列各题中不等式变形的依据.(1)由21a >3,得a >6. (2)由a -5>0,得a >5. (3)由-3a <2,得a >-32. 12.根据不等式性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9(2)6x <5x -3 (3)51x <52 (4)-32x >-1 13.如果a >ab ,且a 是负数,那么b 的取值范围是什么?*14.已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.参考答案一、1.B 2.B 3.D 4.C 5.B二、6> 7.< 8.≤ 9.< 10.<三、11.略12.(1)x >2 (2)x <-3 (3)x <2(4)x <23 13.b >1 14.m <mn 2<mn§1.2 不等式的基本性质(15分钟练习)班级:_______ 姓名:_______一、快速抢答用“>”或“<”填空,并在题后括号内注明理由:(1)∵a >b∴a -m ________b -m ( )(2)∵a >2b∴2a ________b ( ) (3)∵3m >5n ∴-m ________-35n ( ) (4)∵4a >5a∴a ________0( )(5)∵-24n m -< ∴m ________2n ( )(6)∵2x -1<9∴x ________5( )二、下列说法正确吗?(1)若a <b ,则ac 2<bc 2.( )(2)若b <0,则a -b >a .( )(3)若x >y ,则x 2>y 2.( )(4)若x 2>y 2,则x -2>y -2.( )(5)3a 一定比2a 大.( ) 三、认真选一选(1)若m +p <p ,m -p >m ,则m 、p 满足的不等式是( )A.m <p <0B.m <pC.m <0,p <0D.p <m(2)已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )A.-x >yB.a 2x >a 2yC.a -x <a -yD.x >-y(3)实数a 、b 满足a +b >0,ab <0,则下列不等式正确的是( )A.|a |>|b |B.|a |<|b |C.当a <0,b >0时,|a |>|b |D.当a >0,b <0时,|a |>|b |四、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式 (1)3432-<x (2)-0.3x >0.9(3)x +2≤-3(4)4x ≥3x +5参 考 答 案一、(1)>,不等式的性质1(2)>,不等式的性质2(3)<,不等式的性质3(4)<,不等式的性质1(5)>,不等式的性质3(6)<,不等式的性质1和2二、(1)×(2)√(3)×(4)×(5)×三、(1)C (2)C (3)D四、(1)x<-2 (2)x<-3 (3)x≤-3-2(4)x≥5。

八年级上52不等式的基本性质的教学反思

八年级上52不等式的基本性质的教学反思

八年级上《5.2不等式的基本性质》的教学反思横溪镇中学徐丽波在七年级的时候学过一元一次方程的解法,而列方程也是处理很多实际问题的一种很好的途径。

而生活中的例子告诉我们列方程并不是唯一方法,生活中的数学还存在很多不等量关系,所以会列不等式与解不等式就变得更加重要,而不等式的基本性质将是整章的关键。

本解课的整体过程是:首先是不等式的基本性质1的推出:让学生在数轴上从左到右,任意画三个数,如“-5”,“-2”,“3.5”,不同学声画的数不同,然后让学生体会,-5与-2的大小关系,-2与3.5的大小关系,然后总结出-5与3.5的大小关系。

由于每一个同学画的数字不一样,所以我们可以总结出不等式的基本性质1(不等式的传递性)。

其次在学生完成后,继续利用数轴,在数轴上任意画两个数a<b,让学生同时向右移动相同的单位,如移动c长(其中c>0),然后让学生思考移动后的数的大小,结果仍然满足a+c<b+c,同样的方法推出a-c<b-c。

然后让学生总结不等式的基本性质2。

由于以前学过等式的基本性质2推出移项法则。

所以在此选择两道实际的例子推理出移项仍然满足于不等式!接着再次总结一下移项容易犯的几种错误:①移项没有变号;②没移动的项也改变了符号;③移项改变了不等式的方向(不等式专有)。

接着利用多媒体展示两组数据:①2〈5,-3〈1,0〈4.5三个式子两边同乘以2,结果如何?②2〈5,-3〈1,0〈4.5三个式子两边同乘以-1又如何?如果换成除以呢?然后总结出不等式的基本性质3(其中的总结过程都由学生完成),由于两边乘(除)负数很多学生容易忘记了变方向,所以设计了一部分的对应练习。

然后讲解例1,由于解方程已经奠定了基础,所以不等式的基本性质的推出,大部分学生掌握,所以例1这样的基础题目容易解决,为了培养学生的发散思维能力,这道例题设计了几种解决方法,其中包含数轴解决,同时也让学生体会了数形结合的方法。

不等式的性质教学教案

不等式的性质教学教案

不等式的性质教学教案第一章:不等式的引入1.1 不等式的概念:介绍不等式的定义,理解不等号(>,<,≥,≤)的含义。

1.2 实例解析:通过实际问题引入不等式,让学生感受不等式的应用。

1.3 解不等式:讲解如何解简单的不等式,如2x > 6。

第二章:不等式的基本性质2.1 性质1:不等式两边加(减)同一个数(式子),不等号方向不变。

2.2 性质2:不等式两边乘以(除以)同一个正数,不等号方向不变。

2.3 性质3:不等式两边乘以(除以)同一个负数,不等号方向改变。

第三章:不等式的运算3.1 加减法运算:讲解不等式中加减法的运算规则,举例说明。

3.2 乘除法运算:讲解不等式中乘除法的运算规则,举例说明。

3.3 复合不等式:介绍含有多个不等式的复合不等式,讲解求解方法。

第四章:不等式的应用4.1 最大值和最小值问题:利用不等式的性质求解最大值和最小值问题。

4.2 范围问题:利用不等式表示范围,求解实际问题。

4.3 线性规划:简单介绍线性规划问题,利用不等式求解最优解。

第五章:不等式的进一步性质5.1 不等式的传递性:讲解不等式的传递性质,即如果a > b且b > c,a > c。

5.2 不等式的比较:介绍如何比较两个不等式的大小,讲解不等式的排序。

5.3 不等式的恒等变形:讲解如何通过对不等式进行恒等变形,得到新的不等式。

第六章:不等式的绝对值性质6.1 绝对值不等式:介绍绝对值不等式的概念,如|x| > 5。

6.2 绝对值性质:讲解绝对值不等式的性质,如|a| ≥0,|a| = a 当a ≥0,|a| = -a 当a < 0。

6.3 绝对值不等式的解法:讲解如何解绝对值不等式,举例说明。

第七章:不等式的分式性质7.1 分式不等式:介绍分式不等式的概念,如1/(x-1) > 0。

7.2 分式性质:讲解分式不等式的性质,如当分子分母同号时,分式不等式的符号与分子分母的符号相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有两对父子, 为什么只有 三个人呢?
我今年 c岁了!
我今年 我今年 a岁了!你能 a岁了! a 与 c比较哪个数 用不等式表示a与b, 大呢? b与c的大小关系吗?
我今年b 岁了!
把a<b,b<c表示在数轴上 a b ∴a<c c
不等式的基本性质1:
若a<b,b<c,则a<c.
这个性质也叫做不等式的传递性.
18>8 0.6 <12 -2 >-6 -11.6 <-4.8 2>-8 -16 <1.8 8.4 >0 -10 <0 不变
3
4
不等号的方向
等式性质 :等式的两边都乘以(或都除以)同一个不 为零的数或式,所得的等式仍成立.
不等式的基本性质3: 不等式的两边都乘(或都除以)同一个正数, 所得的不等式仍成立。 ________________ (不等号的方向不变) 不等式的两边都乘(或都除以)同一个负数,
必须把不等号的方向改变,所得的不等式成立。 ________________ ________________
(不等号的方向改变)
练习2
依据:
已知a>b,用“>”或“<”填空,并讲出
(1)51 a (2 ) 3 a
> 5b 1 <
——根据不等式基本性质3 ——根据不等式基本性质3
b a b >; bc, ____ (3)若 ac c ____ 0,那么 bc , ____ ac ____ > ; c c ca cb (4)若c 0,则 ac ____ . < < bc , ___ c c
(1)已知2a+4 > 2b+4,可得a > b. (√) (2)由5 > 4,可得5a > 4a. (× ) (× ) (3)已知a > b,可得 ac 2> bc2 . 2 2 (4)已知 ac > bc ,可得 a > b. (√)
(1)对,应分两步. 思考:由 4a > 5a,a
不等式两边同减去 4,得2a > 2b .(不等式基本性质2) (2)不对,应分三种情况逐一讨论. 再将不等式两边同除以 2 ,得 a > b.( 不等式基本性质 3) 当a>0时,5a>4a.(不等式基本性质3)
b 3 a
加减都用性质2,不等号方向不改变。
乘除正数性质3,不等号方向还不变。
乘除负数性质3,不等号方向必改变。
例 已知a>0,试比较2a与a的大小.
解:在数轴上分别表示2a和a的点 (a>0), 如图. a a a 2a
0
2a位于a的右边,∴2a>a.
思考:当a<0呢?当a=0呢?
练习3
判断正误,并说明理由:
60≤X≤70
∴180≤3X≤210
某商场有A、B两款服装,A款服装价格超 过B款服装价格的1倍以上;国庆期间,商场开 展了促销活动,这两款服装的价格都下调了 15%. 你认为价格下调之后,A款服装价格仍超 过B款服装价格的1倍以上吗?请说明理由.
解:设A、B两款服装的原价分别为a元、b元. 由题意得, a>2b. 国庆期间,A、B两款服装的价格分别为 (1-15%)a元、 (1-15%)b元. ∵1-15%>0,∴(1-15%)a>2(1-15%)b. 即价格下调之后,A款服装价格仍超过B 款服装价格的1倍以上.
联想: 若a>b 则 a×c>b×c 若a<b 则a×c<b×c 这两个结论正确吗?
> +30 > ×30 35×30__6 35+30__6 试一试 35- 5__ > 6- 5 35×(-5)< __ 6×(-5)
类 别
1
不等式
不等式的两 边都×2
2
9>4 0.3<6 -1 >-3 -5.8 <-2.4 1 >-4 -8 <0.9 4.2 >0 -5 <0
(1)若a 0, 0 b,则a ____ > b.
(2)若a<b,b<2a-1,则a____2a-1. <
a ____ (3) 0 1, < a 1.
(a 1) 2 ____ ≥ 0, ≥ 2. (4) (a 1) ____
2
2
不等式性质2 :若a>b,则a±c>b±c 若a<b,则a±c<b±c
当 a=0时,5a=4a. 当a<0时,5a<4a.(不等式基本性质 问题是什么?
练习4
(1)若x≠2,(x-2)a >(x-2)b,
比较a和b的大小. (2)若x>y,比较2-3x与2 -3y的大
小,并说明理由。
某品牌计算机键盘的单价在60元 至70元之间(包括60元,70元),买 3个这样的键盘需要多少钱(用适当 的不等式表示)? 解:设计算机键盘的单价为x元, 由题意得:
同理可得当a<b时, a+c<b+c,a-c<b-c
等式性质 :等式的两边都加上(或都减去)同一个数 或式,所得的等式仍成立.
不等式的基本性质2:
不等式的两边都加上(或减去)同一个 所得到的不等式仍成立。 数, ________________
注意:不等号的方向不变。
练习1 选择适当的不等号填空,并说明理由:
我今年6岁,爸爸今年 35岁,再过30年,我 就比爸爸大了!
若a>b, 35+30 >6+30 35- 5 > 6-5 猜想 则a+c > b+c; 35+x > 6+x a-c >b-c.
把a>b表示在数轴上, 不妨设c>0 c c
b b+c a a+c ∴a+c>b+c
c c
b-c b a-c a ∴a-c>b-c
相关文档
最新文档