八年级数学不等式的基本性质
2.2不等式的基本性质-北师大版八年级数学下册(教案)
四、教学流程
(一)导新课(用时5分钟)
同学们,今天我们将要学习的是《不等式的基本性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过比较两个数大小的情况?”比如,比较两个苹果的重量。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索不等式的奥秘。
五、教学反思
今天我们在课堂上探讨了不等式的基本性质,从同学们的反馈来看,大家对这节课的内容还是比较感兴趣的。不过,我也注意到在讲解不等式的性质时,尤其是性质3和性质4,学生们在理解上还存在一些困难。这可能是因为乘以负数时,不等号方向改变的概念对于他们来说还不够直观。
在实践活动和小组讨论中,我发现同学们能够将不等式的概念应用到一些实际问题中,比如比较价格、长度等。这说明他们在理解了基本概念后,能够将知识应用到具体情境中。不过,我也观察到,在讨论到更复杂的问题时,如何将问题转化为不等式模型,学生们还显得有些力不从心。
3.重点难点解析:在讲授过程中,我会特别强调不等式的性质3和性质4这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,如性质3中的乘以正数和性质4中的乘以负数。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与不等式相关的实际问题,如商品打折后的价格比较。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示不等式的基本原理,如通过比较两根长度不同的铅笔来直观展示不等关系。
-在实际问题中,如何将问题转化为不等式模型,特别是涉及到多个不等式组合的问题;
浙教版八年级数学上册《不等式的基本性质》教案及教学反思
浙教版八年级数学上册《不等式的基本性质》教案及教学反思一、教学背景本节课是浙教版八年级数学上册的第三章【不等式】的第一节【不等式的基本性质】,主要内容是对不同类型的不等式进行分类,并学习不等式的基本性质:加减同步和倍增缩小。
在实际教学中,我们发现学生对于不等式的概念和性质理解比较困难,需要进行具体的案例演练才能够掌握。
二、教学目标本节课的教学目标主要包括以下几个方面:1.知识目标:学生了解不等式的概念和基本性质,并能够运用不等式的基本性质进行简单的推导和计算。
2.能力目标:培养学生分析问题和解决问题的能力,提高学生的数学思维和计算能力。
3.态度目标:激发学生对于数学学习的兴趣,培养学生良好的数学学习习惯和态度。
三、教学内容1. 不等式的概念和分类不等式是一种描述两个数之间大小关系的数学语句。
具体可以分为以下几种类型:•显然成立的不等式:例如3>1。
•反显然成立的不等式:例如3>5。
•可能成立的不等式:例如x>0。
•真正的不等式:即不能整体化的不等式,例如2x−5>1。
2. 不等式的基本性质不等式具有以下两种基本性质:•加减同步:同加同减不等式两侧,不等号方向不变;异加异减不等式两侧,不等号方向改变。
•倍增缩小:同乘同除正数不等式两侧,不等号方向不变;同乘同除负数不等式两侧,不等号方向改变。
3. 例题演练在本节课的教学中,我们需要选取一些具体的例题进行演练,帮助学生更好地理解不等式的概念和基本性质。
此处以以下两道例题为例:•若a>b,则a+1>b+1是否一定成立?请说明理由。
•若m>n,则 $0 < \\dfrac{1}{n} <\\dfrac{1}{m}$ 是否一定成立?请说明理由。
针对这两道例题,我们可以采用具体的计算方法,帮助学生理解不等式的基本性质。
4. 思考题除了以上两道例题之外,我们还可以设计一些思考题,帮助学生分析问题和解决问题。
不等式的性质八年级数学下学期重要考点精讲精练
2.2不等式的性质不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a±c >b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc(或). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变. 用式子表示:如果a >b ,c <0,那么ac <bc(或). 注意:对不等式的基本性质的理解应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.题型1:利用不等式的性质判定正误1.如果a >b ,那么下列结论一定正确的是( )A .a ﹣3<b ﹣3B .>C .a +3<b +3D .﹣3a >﹣3b【变式1-1】已知a <b ,则( )A .a +1<b +2B .a ﹣1>b ﹣2C .ac <bcD .>(c ≠0)【变式1-2】以下是两位同学在复习不等式过程中的对话:小明说:不等式a >2a 永远都不会成立,因为如果在这个不等式两边同时除以a ,就会出现1>2这样的错误结论!a b c c>a b c c <题型2:利用不等式确定字母的取值范围2.已知x>1,x+a=1,则a的取值范围是()A.a<0B.a≤0C.a>0D.a≥0【变式2-1】若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是.题型3:利用不等式的性质将不等式变形3.根据不等式的性质,把下列不等式化成x>a或x<a的形式.(1)x+7>9;(2)6x<5x﹣3;(3);(4)﹣.【变式3-1】根据要求,回答下列问题:(1)由2x>x﹣,得2x﹣x>﹣,其依据是;(2)由x>x﹣,得2x>6x﹣3,其依据是;(3)不等式x>(x﹣1)的解集为.【变式3-2】根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:(1)x﹣2<3;(2)4x>3x﹣5;(3)x<;(4)﹣8x<10.题型4:利用不等式的性质比较大小4.若﹣2a>﹣2b,则a与b的大小关系为.题型5:利用不等式的性质化简不等式5.已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,试化简:|m﹣1|﹣|2﹣m|.【变式5-1】已知关于x的不等式(1﹣a)x>2,两边都除以(1﹣a),得x<,试化简:|a﹣1|+|a+2|.【变式5-2】已知x满足不等式组,化简|x+3|+|x﹣2|.题型6:利用不等式的性质求最值6.代数式|x﹣1|﹣|x+4|﹣5的最大值为()A.0B.﹣10C.﹣5D.3【变式6-1】已知0≤m﹣n≤2,2≤m+n≤4,则当m﹣2n达到最小值时,3m+4n=.题型7:数轴与不等式7.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【变式7-1】已知有理数a、b、c在数轴上对应的位置如图所示,则下列式子中正确的是()A.ab2>ac2B.ab<ac C.ab>ac D.c+b>a+b【变式7-2】已知实数a、b、c在数轴上对应的点如图所示,请判断下列不等式的正确性.(1)bc>ab(2)ac>ab(3)c﹣b<a﹣b(4)c+b>a+b(5)a﹣c>b﹣c(6)a+c<b+c.题型8:不等式的简单应用8.江南三大名楼指的是:滕王阁、黄鹤楼、岳阳楼.其中岳阳楼位于湖南省岳阳市的西门城头、紧靠洞庭湖畔,始建于三国东吴时期.自古有“庭天下水,岳阳天下楼”之誉,因北宋范仲淹脍炙人口的《岳阳楼记》而著称于世.某兴趣小组参观过江南三大名楼的人数,同时满足以下三个条件:(1)参观过滕王阁的人数多于参观过岳阳楼的人数;(2)参观过岳阳楼的人数多于参观过黄鹤楼的人数;(3)参观过黄鹤楼的人数的2倍多于参观过滕王阁的人数.若参观过黄鹤楼的人数为4,则参观过岳阳楼的人数的最大值为()A.4B.5C.6D.7【变式8-1】如图,一个倾斜的天平两边分别放有2个小立方体和3个砝码,每个砝码的质量都是5克,每个小立方体的质量都是m克,则m的取值范围是()A.m<15B.m>15C.m>D.m<【变式8-2】有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上。
八年级数学讲义不等式的基本性质及其解集
不等式的基本性质及其解集一、不等式的性质1.不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变.c a b a +⇒> c a b a c b +⇒<+, c b +2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
若:0,>>c b a ,可得ac bc .3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.若ac c b a ⇒<>0, bc .二.不等式的解集1.定义:一般的,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称这个不等式的解集.2.解与解集的联系: 解集和解那个的范围大.(解是指个体,解集是指群体)3.不等式解集的表示方法. 1-≤x①用不等式表示。
如1-≤x 或x <-1等。
x <-1②用数轴表示.(注意实心圈与空心圈的区别)4.解一元不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,注意是否需要变号。
典型例题例1.①如果)2(2)2(-<-m x m 的解集为2>x ,求m 的取值范围.②不等式a x <2的解集为7<x ,求a 的值.例2.(1)如果关于x 的方程x m m x +-=+2432的解为大于4的数,求m 的取值范围.(2)已知不等式03≤-a x 的正整数解恰是1,2,3,求a 的取值范围.例3.(2007山东临沂)直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x的不等式k 1x +b >k 2x 的解为( )。
A 、x >-1 B 、x <-1 C 、x <-2 D 、无法确定 例4.(1)若0)2(32=--+-k y x x 中,y 为非负数,求k 的取值范围.(2)若b a ,满足753=+b a ,求b a S 32-=的取值范围.例5.已知由小到大的十个正整数109321,,,,,a a a a a 的和是2003,那么5a 的最大值是多少?当5a 取得最大值时,写出10a 最小的这十个数.思考:1.已知a c c b a c b a 求,,0>>=++的取值范围.2.设c b a ,,均为正数,若ac b c b a b a c +<+<+,试确定c b a ,,三个数的大小.【经典练习】y k 2x1.如果关于x 的不等式b x a <-)1(的解集是1->a b x ,则有( ) A 、1>a B 、1<a C 、1≠a D 、a 为一切实数2.若m 为有理数,下列不等式关系不一定成立的是( )A 、m m +>+79B 、m m -<-43C 、m m 46>D 、0||4≥m3.下列四个结论:(1)4是不等式63>+x 的解;(2)4>x 是不等式63>+x 的解集;(3)3是不等式63≥+x 的解;(4)3≥x 是不等式63≥+x 的解集,其中正确的是( )A 、1个B 、2个C 、3个D 、4个4.满足不等式135->-x 的正整数值是方程[]a x x x =-----)15(4)21(5)2(4的解,则a 的值是( )A 、0B 、1C 、17D 、-175.不等式)52(4)83(714-<+-x x x 的负整数解是( )A 、-3,-2,-1,0B 、-4,-3,-2,-1C 、-2,-1D 、以上答案都不对6.已知032)2(2=--+-n b a a 中,b 为正数,则n 的取值范围是( )A 、2<nB 、3<nC 、4<nD 、5<n 7.如果b ax >,02<ac ,则xa b 8.(2007湖北孝感)如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 .9.若不等式a x <6的解集为3<x ,则a 的值为 .10.当a = 时,不等式x x 532≥-与x ax ≤+2同解.11.化简:若41<<x ,则化简22)1(4(-+-x )x 的结果是 . 12.当a 为何值时,方程)(23a x a x +-=+的解大于方程2)12(3)13(+=-x a x a 的解13.已知7321,,,a a a a 是彼此不相等的正整数,它们的和为159,求其中最小数a 的最大值.作业1.如果关于x 的方程7332+=-+x m x 的解为不大于2的非负数,那么( )(第8题图)A 、6=mB 、7,6,5=mC 、无解D 、75≤≤m2.如果关于x 的方程52)4(3+=+a x 的解大于关于x 的方程3)43(4)14(-=+x a x a 的解,那么( ) A 、2>a B 、2<a C 、187<a D 、187>a 3.如果22,7235>+->-c a a ,那么( ) A 、c a c a +<- B 、a c a c +<- C 、ac ac -> D 、a a 23> 4.若b a b a ><>,0,0,那么b a b a --,,,的大小顺序是( )A 、b a a b >->>-B 、b a b a ->->>C 、a b a b ->->>D 、a b b a ->>->5.已知0)24(1832=-+++k y x x ,求当k 为何值时,y 的值是非负数?6.(1)关于x 的方程1223+=+m x 的解为正数,求m 的取值范围.(2)不等式a x <+32的正整数解恰为1,2,求m 的取值范围.思考:已知三个非负数z y x ,,满足132,523=-+=++z y x z y x ,若z y x m 73-+=,求m 的最大值及最小值。
不等式的四条基本性质
不等式的四条基本性质
不等式的四条基本性质是数学中一种重要的概念,它是解决方程的基础,是一门数学的基本知识。
归纳一下,不等式的四条基本性质包括:转置法则、结合率、分配法则、乘法法则。
首先,不等式的转置法则表明当两个不等式之间没有任何改动时,它们保持其相等状态。
例如,对于x>y,则y<x恒成立。
其次,不等式的结合率表明将二元不等式(即只包含两个未知量的不等式)通过乘以一个正实数结合到一起,它不会改变不等式的解的乘法,即任何一个二元不等式的乘法都是它的解的结合率。
例如,若x>0,不论乘以多少正实数都会使x
的大小保持不变,最终仍然>0。
再次,不等式的分配法则表明,当将一个正实常数分别与不等式的两边相乘时,它将被均匀地分配到不等式的两边。
例如,我们如果将2x与3x分别乘以k,那么可以得到(2kx + 3kx)>0,原来的不等式不变,同时常数k也是均匀地分配到不等式的两边。
最后,不等式的乘法法则表明,当将一个变量和一个正实常数相乘时,不等式的大小状态将保持不变。
例如,当我们将一个变量x和c乘起来,x>0时,必然有cx>0,而x<0时,有cx<0,因此这条不等式的大小状态不变。
总的来说,不等式的四条基本性质是探究方程解的根基,由它们可以更进一步地求解数学方程,对学习数学解题技巧再次有所帮助。
八年级数学上册《不等式的基本性质》优秀教学案例
4.多元化的教学评价,关注学生全面发展
本案例采用了多元化的教学评价方式,既注重学生的知识与技能掌握程度,也关注学生在学习过程中的表现。这种评价方式有助于全面了解学生的学业状况,发现学生的潜能和特长,进而激发学生的学习兴趣,促进学生的全面发展。
2.问题驱动的探究式学习
本案例以问题为导向,引导学生通过问题解决的过程来探究不等式的基本性质。这种探究式学习方式充分调动了学生的主观能动性,让学生在解决问题的过程中学会思考、分析、总结,培养了学生的逻辑思维和推理能力。同时,问题设计由浅入深,有助于学生逐步掌握不等式的性质,形成系统的知识结构。
3.小组合作学习,促进交流共享
(二)问题导向
本案例以问题导向为核心,引导学生通过问题解决的过程来探究不等式的基本性质。教学中,设计具有启发性和思考性的问题,让学生在解决问题中发现问题、分析问题、解决问题。问题设计应遵循由浅入深、循序渐进的原则,引导学生逐步掌握不等式的性质。此外,注重引导学生提出自己的疑问,培养学生的批判性思维和问题意识。
(三)小组合作
小组合作学习是本案例的重要教学策略。将学生分成若干小组,每组学生共同探讨问题、分享思路、交流心得。通过小组合作,促进学生之间的互动与交流,培养学生的团队协作能力和沟通能力。在小组合作过程中,教师要注意观察各小组的学习状态,及时给予指导和帮助,确保每个学生都能积极参与,真正实现共同进步。
本章节内容主要包括不等式的定义、不等式的性质、不等式的证明与变形等。通过本案例的教学,学生能够熟练运用不等式的基本性质,如同加同减、同乘同除等,解决实际数学问题,并为后续学习一元一次不等式、不等式组等更复杂的数学知识打下坚实基础。
数学八下《不等式的基本性质》
2. 对于零.
3. 特别注意.
思考:不等式具有对称性和传递性吗?
已知x>5,那么5<x吗?
由8<x,x<y,可以得到8<y吗?
如:8<10,10<15 ,8 15.
X>5 5<X
<
不等式的对称性:
如果a>b,那么b<a
不等式的同向传递性:
如果a>b,b>c,那么a>c
今天学的是不等式的五个基本性质:
等式的基本性质
等式的两边都加上(或减去)同一个数或同一个式子,所得的结果仍是等式.
若a=b,则a+c=b+c(或a-c=b-c)
(2)等式的两边都乘以(或除以)同一个数(除数不能为零),所得的结果仍是等式.
若a=b,则ac=bc(或 , c≠0)
注意
1. 不等式、等式性质的异同点.
(1) ∵ 2a < 3a , ∴a是____数
(3) ∵ ax < a 且 x > 1 , ∴a是____数
(2) ∵ , ∴a是____数
正
正
负
今天学的是不等式的五个基本性质:
不等式的基本性质1: 如果a >b,那么a±c>b±c.就是说,不等式两边都加上 (或减去)同一个数(或式子),不等号方向不变。
(1) a - 3____b - 3; (2)a÷3____b÷3 (3) 0.1a____0.1b; (4) -4a____-4b (5) 2a+3____2b+3; (6) (m2+1) a ____ (m2+1)b (m为常数)
>
>
>
>ห้องสมุดไป่ตู้
初二八年级数学微课《不等式的基本性质》
)知识点、概念总结不等式的基本性质有对称性,传递性,加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。
1不等式的基本性质1.如果x>y,那么y<x;如果y<x,那么x>y;(对称性)2.如果x>y,y>z;那么x>z;(传递性)3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;5.如果x>y,z<0,那么xz<yz, 即不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变;6.如果x>y,m>n,那么x+m>y+n;7.如果x>y>0,m>n>0,那么xm>yn;8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。
2不等式的基本性质的另一种表达方式1.对称性;2.传递性;3.加法单调性,即同向不等式可加性;4.乘法单调性;5.同向正值不等式可乘性;6.正值不等式可乘方;7.正值不等式可开方;8.倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。
①其实质是运用实数运算来定义两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
2.不等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
2.2 不等式的基本性质(课件)八年级数学下册(北师大版)
用字母表示为:
若a>b,且c<0,则a·
c<b·c, < ;若a<b,且c<0,则a·c>b·c, > .
二、自主合作,探究新知
跟踪练习
判定下列各命题是否正确?并说明理由.
(1)如果a>b,那么ac>bc;
( ×)
(2)如果a>b,那么ac2 >bc2;
( × )
(3)如果ac2>bc2,那么a>b;
4.用不等号填空:(1)若a>b,则 a
若3x-1<3y-1,则x >
b;(2)
y.
<
5.已知a>b,则− a+c
<
− b+c.(填“>”“<”或“=”)
6.实数a与b在数轴上所对应的点的位置如图所示,用“>”或“<”填空:
(1)a
< 0;
ab; (5)ab
>
(2)b
> 0;
b2; (6)a<2
<−
D.a-1<0
6.若a-b<0,则下列各式中一定成立的是( D )
A.a>b
B.ab>0
C.
<
D.-a>-b
三、即学即练,应用知识
7.已知x<y,用“<”或“>”填空。
(1)x+2 <
(2) x <
(3) -x
>
(4)x-m
<
y+2 (不等式的基本性质 1 )
湘教版八年级数学 4.2 不等式的基本性质(学习、上课课件)
∴ -2 x-6 ≤ -4.
利用不等式基本性质 1,不等式两边都加上 6,不等号
的方向不变,得 -2 x-6+6 ≤ -4+6, ∴ -2 x ≤ 2.
利用不等式基本性质 3,不等式两边都除以 -2,不等
号的方向改变,得
-2 x -2
≥
-22,∴
x
≥-1.
感悟新知
3-1.利用不等式的性质把下列不等式化成“x>a”或 “x<a”的形式 .
第四章 一元一次不等式(组)
4.2 不等式的基本性质
学习目标
1 课时讲解 不等式的基本性质
利用不等式的基本性质化简不等式
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 不等式的基本性质
知1-讲
1. 不等式的三条基本性质
性质
文字语言
基本 不等式的两边都加上(或减去)同一 性质 1 个数(或式),不等号的方向不变
知2-练
(1) 3x+1>4x+2;
解:3x+1>4x+2, 不等式两边都减去4x-1, 得3x-4x>1, 则-x>1, 不等式两边都除以-1,得 x<-1.
感悟新知
(2)
1 3
x+1>
1 2
x+2.
解:13x+1>12x+2,
不等式两边都减去12x-1,
得13x-12x>1,则-16x>1,
不等式两边都除以-16,得 x<-6.
知2-讲
(1) 用不等式基本性质 1 将不等式变成 ax>b(ax ≥ b)或
ax<b( ax ≤ b)的形式;
(2) 用不等式基本性质 2、基本性质 3 将不等式变成 x>ba
北师大版数学八年级下册不等式的基本性质课件
c
c
2 < 3;
2 ×(﹣1)__>___3×(﹣1);
2 ×(﹣5)__>___3×(﹣5);
2
×(﹣
1 2
)__>___3×(﹣12
);
不等式的两边都乘以(或除以)同一个负数,不等号的方向_改__变__.
如果a>b,c>0
,那么ac
___<____
bc,
a c
___<____
b;
c
如果a<b,c>0 ,那么ac ___>____ bc,a ___>____ b 。
2
第二章
一元一次不等式与一元一次不等式组
2 不等式的基本性质
北师版 八年级下册
学习目标
1.能说出不等式的基本性质,知道等式与不等式性质 的区分与联系.
2.会运用不等式的基本性质把不等式化为“x>a”或 “x<a” 的情势. 3.重点:探索不等式的基本性质,并能灵活地掌握和应用. 4.难点:能根据不等式的基本性质进行化简.
完成下列填空:
2 < 3;
2 ×5__<___3×5;
2 ×12
__<___
3×
1 2
;
(2 ÷2)
(3 ÷2)
不等式的两边都乘以(或除以)同一个正数,不等号的方向_不__变__.
如果a>b,c>0
,那么ac
___>____
bc,
a c
___>____
b;
c
如果a<b,c>0 ,那么ac ___<____ bc,a ___<____ b 。
课后作业
1.从教材习题中选取. 2.完成练习册本课时的习题.
新课导入
八年级数学不等式的基本性质
乘法性质
定义
如果a>b>0,且c>d>0,那么ac>bc。
证明
假设a>b>0,且c>d>0,那么我们可以得到ac-bc=(a-b)c>0(因为a-b>0且c>0),即ac>bc。
除法性质
定义
如果a>b>0,且c>d>0,那么a/c>b/d。
证明
假设a>b>0,且c>d>0,那么我们可以得到a/c-b/d=(ad-bc)/(cd)>0(因为ad-bc>0且cd>0),即 a/c>b/d。
答案
$frac{9}{2} < frac{a^{2}}{b} < 3$
2. 题目
已知$- frac{1}{3} < a < frac{1}{2}$,则 $frac{1}{a}$的取值范围是____.
答案
$- 3 < frac{1}{a} < - frac{3}{4}$
THANKS FOR WATCHING
表示左右两边的数或量相 等。
02 不等式的性质
传递性
定义
如果a>b且b>c,那么a>c。
证明
假设a>b,b>c,那么我们可以得到a-b>0和b-c>0,从而推出a-c=(a-b)+(bc)>0,即a>c。
加法性质
定义
如果a>b,那么a+c>b+c。
证明
假设a>b,那么a-b>0,所以(a+c)-(b+c)=(a-b)>0,即a+c>b+c。
不等式的基本性质课件初中数学湘教版八年级上册
a 2 b 2.
3
3
下面是某同学根据不等式的性质做的一道题: 在不等式-4x+5>9的两边都减去5,得 -4x>4 在不等式-4x>4的两边都除以-4,得 x > -1
请问他做对了吗?如果不对,请改正.
答:不对. 结果应该是x < -1. 理由:当不等式的两边都除以同一个负数时,不等号的方向改变.
即
x < 9.
3.已知三角形△ABC,AB = 3,AC = 8,BC 长为奇数,求 BC 的长.
分析:根据三角形三边关系定理得到第三边的范围,再根据 BC为奇数和取值范围确定BC长即可.
解:根据三角形的三边关系可得 8 - 3<BC<8 + 3, 即 5<BC<11. ∵ BC 为奇数, ∴ BC 的长为 7 或 9.
不等式的基本性质和等式的基本性质有什么相同点和不同点?
类别
相同点
不同点
不等式
两边都乘(或除以) (1)两边都加(或减)同一个数 同一个负数,不等号
的方向要改变 (或式),不等式和等式仍然成立;
等式
(2)两边都乘(或除以)同一个正 两边都乘(或除以)
数,不等式和等式仍然成立
同一个负数,等式仍
然成立
练一练 判断正误: (1)如果 a>b,那么 ac>bc. 错误. 当 c≤0 时,不成立. (2)如果 a>b,那么 ac2>bc2.
2.水果店的小王从水果批发市场购进 100 kg梨和84 kg苹果.在卖出a kg梨和 a kg苹果后,又分别各购进了b kg梨 和苹果.请用“>”或“<”填空:
100-a > 84-a;
100-a+b > 84-a+b.
北师大版八年级数学下册教案2.2不等式的基本性质
在本次教学过程中,我发现学生们对于不等式的基本性质的理解和应用存在一些问题。首先,对于性质1,大部分学生能够较好地掌握,但在实际问题中运用时,有些同学会忽略掉“任意实数”这一条件,导致解题错误。在今后的教学中,我需要强调这一点,确保学生能够准确理解并运用性质1。
其次,性质2是学生们的一个难点,尤其是c为正数这一条件。在课堂上,我通过举例和对比,尽量让学生明白这一条件的重要性。但从学生的作业和课堂反馈来看,这部分内容仍需要加强讲解和练习。我考虑在下一节课中增加一些相关的习题,帮助学生巩固这一知识点。
三、教学难点与重点
1.教学重点
-重点一:不等式性质1的掌握。学生需要理解并熟练运用不等式性质1,即如果a>b,那么a+c>b+c(其中c为任意实数)。举例:若x>3,则x+4>7。
-重点二:不等式性质2的应用。学生应掌握当a>b时,ac>bc(其中c为正实数)的性质。举例:若x>y且x、y均为正数,则2x>2y。
在教学过程中,教师应针对这些重点和难点内容,设计相应的例题和练习,通过反复讲解、演示和练习,确保学生能够透彻理解和掌握这些核心知识点。同时,教师应鼓励学生主动思考和提问,以便及时发现并解决学生在理解和应用过程中的困惑。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《不等式的基本性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过比较两个数的大小的情况?”(例如:比较两个苹果的重量)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索不等式的奥秘。
另外,我也注意到在课堂总结环节,有些学生对所学知识点的掌握程度并不理想。为了提高学生的总结能力,我打算在每节课结束后,留出更多时间让学生自主总结,并在下一节课开始时,请学生分享他们的总结成果。
八年级数学不等式的解集
能使不等式成立的未知数的值,叫做不等式 的解。不等式的解有时有无数个,有时有有限个, 有时无解. 一个含有未知数的不等式的所有解,组成这 个不等式的解集。
求不等式解集的过程叫做解不等式.
议一议
• 1)x=9是不是x>5的解,x=10,13呢?你能用 自己的方式将x>5的解集表示在数轴上吗?
不等式x>5的解集可以用数轴上表示5 的点的右边部分来表示。在数轴上表示 5的点的位置上画空心圆圈,表示5不在 这个解集内。
解:设导火线的长度为x cm,即0.01x m
10 5 = (s) 人离开的时间为: 4 2 0 . 01 x x = (s) 导火线的燃烧时间为: 0 . 02 2 x 5 依题意得: 2 2 由不等式的基本性质2得:x>5
想一想
• 1)x=5,6,8能使x>5成立吗? • 2)你能找出几个使不等式x>5成立的x的值吗? 1)x=5不能使x>5成立, x=6,8能使x>5成立
买笔记本的总价格与买笔的总价格的和不超过 30元 ,则有:
3×4 + 2X ≤ 30
∴
X
≤9
而X为整数,因此X最多为9支.
1、某人要完成一件工作,要求他完成这项工作的时间不得少 于4小时,你知道他允许用的时间是多少吗? (X≥4) 2、燃放礼花时,为了确保安全,人在点燃导火线后要在燃放前 转移到10米以外的安全区域,已知导火线的燃烧速度为0.02 m/s,人离开的速度为 4 m/s,那么导火线的长度应是多少厘米?
-3 -2 -1 0 1 2 3 4 5 6 7 8
• 2)你能将x-5≤ -1的解集表示在数轴 上吗? (x≤4)
不等式x-5≤-1的解集可以用数轴上 表示4的点的左边部分来表示。在数轴 上表示4的点的位置上画实心圆点,表 示4在这个解集内。
北师大版数学八年级下册不等式的基本性质课件
B.a+2>b+2
C.-a<-b
D.2a>3b
拓展与延伸
已知m<5,将不等式(m-5)x>m-5变形为 “x<a”或“x>a”的情势.
解:∵m<5, ∴m-5<0(不等式的基本性质1). 由(m-5)x>m-5,得 x<1(不等式的基本性质3).
布置作业
请完成对应习题
当堂小练
1.已知x>y,下列不等式一定成立吗?
(1) x-6 <y-6; (2) 3x< 3y;
(3) -2x<-2y;
(4) 2x + 1 > 2y + 1.
解:(1)不成立;(2)不成立;(3)成立;(4)成立.
当堂小练
2.已知实数a,b满足a+1>b+1,则下列选项错误的
为( D ) A.a>b
新课讲授
练一练
1.已知a<b,用“>”或“<”填空: (1)a+2__<______b+2; (2)a-3___<_____b-3; (3)a+c___<_____b+c; (4)a-b__<______0.
新课讲授
2 设“ ”“ ”表示两种不同的物体,现用天平 称,情况如图所示,设“ ”的质量为a kg, “ ”的质量为b kg,则可得a与b的关系是 a __<___b.
43
2 若m>n,则下列不等式不一定成立的是( D )
A.m+2>n+2
B.2m>2n
C. m > n
22
D.m2<n2
新课讲授
知识点3 不等式的基本性质3
完成下列填空:
2×(-1)__>_____3×(-1);
2×(-5)__>_____3×(-5);
2 ( 1 ) __>____3 ( 1 );
初中数学八年级《不等式的基本性质》
5.已知a<b,则不等式组的解集是
a____x____b____
x a x b
6.若不等式组
2x a 1 x 2b 3
的解是1 x 1
则 (a 1)(b 1) 的值为__-_6________
7.如果不等式 2x m 0的负整数解是
当购由yy乙买由 由y甲甲书两yy==甲甲当法种(><y22购练优乙yy55乙乙买习惠,, ,书本办得11所得 得法的法005以练本x的55+,xx习数实5++5当2(22本多x际0x00购)0的于付00=买><本5款1440954..0数金本055.05)本xx不%额书x+++书少22相,522法2于等选..x255练415,,,择.0,习5可本乙解解2x本解0以且优之之0时之任多惠(得 得2,x选于办得2xx5一5法x><0(=551种付本x0005优款; 。时)0惠更。,10省)钱;
10. 不等式 x 3 1 3x 1 的负整数解的个数有( C)
A. 0个 2 B. 2个 3 C. 4个
D. 6个
11.不等式组 1 2x 4
1 3
x
2 3
x
的整数解的和是( B)
A. 1
B. 0
C. -1
D. -2
12.下列四个不等式(1)ac>bc(2)ma mb
((自程(时早(速23行的))1间到度2v车函))自?多请分谁=和数两谁长你别出8摩关8到时人0分发是达间托 系在得1别多乙?0车 式途较k求少m地行 。早中/出较?h驶?;行早表早过v驶?摩示多=的长5- 803 =40km / h
八年级数学不等式的基本性质
ቤተ መጻሕፍቲ ባይዱ成立
成立
你今天这节 课有什么收 获呢?
我今天学到了 ……
P
9
习题1.2
完成下列填空:
2 3 , 2 5 ___3 5 ; 2 3,
1 1 2 ___3 ; 2 2
2 3 , 2 (1) ___ 3 (1) ; 2 3 , 2 (5) ___ 3 (5) ; 1 1 2 3 , 2 ( ) ___ 3 ( ) ; 2 2
;每日一淘 www.meiriyitao.co 每日一淘 ;
面の提示进行破解丶。"找到了丶"壹天之后,根汉终于是找到了,与这座魔化阵对应の段落丶"九鬼搬山阵!"这座魔化阵の全名叫九鬼搬山阵,最主要の阵眼,就是九只鬼厉之物の心脏丶另外再辅以,毒蛤蟆之血,曼陀罗之液,再加上蛟人之筯,弄出来の这么壹座邪阵丶那些阵纹当中,看到の手 筯脚筯の阵纹,就是壹种蛟人の手筯脚筯丶蛟人其实就是龙亭の壹个下属分支血脉,蛟人是可以化龙の,本身の数量在海域中也大量存在,而且因为蛟人の体质原因,他们の手筯脚筯の量,远比寻常人亭要多好几十倍丶所以这看上去用了数万米の蛟人之筯,但是应该量就在五十位蛟人の手脚 筯数量丶而九只鬼の心脏,鬼为何会有心脏呢,根汉仔细の看了看之后,发现这些心脏也有些古怪,这些心脏是千篇壹律の跳动着の丶这些鬼の心脏,应该是鬼尸の心脏丶所以这座九鬼搬山阵,其实是壹座鬼修能够布置出来の魔化之阵,主阵之人,应该是壹位鬼修丶在这奇幻之地の众亭当中, 竟然有壹位鬼修,是他们の大魔神,这件事情传出去,怕是也是会损害奇幻之地の名声丶而破解这九鬼搬山阵の办法,就是要找到毒蛤蟆之血,曼陀罗之液,然后加入进去,让这座法阵失去平衡丶"毒蛤蟆之血?咱这里倒是好像有壹些,不过这曼陀罗之液,咱是完全没有呀丶"
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节不等式的基本性质1.2不等式的基本性质—目标导引1.历经不等式基本性质探索,进一步体会不等式与等式的区别.2.掌握并能灵活运用不等式的基本性质1.2不等式的基本性质—内容全解1.不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向要变向.2.等式性质与不等式性质的区别其最大区别在于不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变第二课时●课题§1.2 不等式的基本性质●教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.●教学重点探索不等式的基本性质,并能灵活地掌握和应用.●教学难点能根据不等式的基本性质进行化简.●教学方法 类推探究法即与等式的基本性质类似地探究不等式的基本性质. ●教具准备 投影片两张 第一张:(记作§1.2 A ) 第二张:(记作§1.2 B ) ●教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? [生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5 ∴3+2<5+2 3-2<5-2 3+a <5+a 3-a <5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变. [师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究. [生]∵3<5 ∴3×2<5×23×21<5×21. 所以,在不等式的两边都乘以同一个数,不等号的方向不变. [生]不对. 如3<53×(-2)>5×(-2) 所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明. [生]如3<4 3×3<4×33×31<4×31 3×(-3)>4×(-3)3×(-31)>4×(-31)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释π42l >162l 的正确性[师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π42l 和162l ,且有π42l >162l 存在,你能用不等式的基本性质来解释吗?[生]∵4π<16 ∴π41>161 根据不等式的基本性质2,两边都乘以l 2得π42l >162l 3.例题讲解将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9. [生](1)根据不等式的基本性质1,两边都加上5,得 x >-1+5 即x >4;(2)根据不等式的基本性质3,两边都除以-2,得x <-23; (3)根据不等式的基本性质2,两边都除以3,得 x <-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议投影片(§1.2 A )或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流. [生](1)正确∵a <b ,在不等式两边都加上c ,得 a +c <b +c ; ∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c ,得 ac <bc , 所以正确.(4)根据不等式的基本性质2,两边都除以c ,得c a <cb 所以结论错误.[师]大家同意这位同学的做法吗? [生]不同意.[师]能说出理由吗? [生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a <b ,两边同时乘以c 时,没有指明c 的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c =0,则有ac =bc ,正是因为c 的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac <bc .只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c ≠0,但不知c 是正数还是负数,所以不能决定不等号的方向是否改变,若c >0,则有c a <c b ,若 c <0,则有c a >cb,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x >a ”或“x <a ”的形式.(1)x -1>2 (2)-x <65 [生]解:(1)根据不等式的基本性质1,两边都加上1,得x >3 (2)根据不等式的基本性质3,两边都乘以-1,得x >-65 2.已知x >y ,下列不等式一定成立吗? (1)x -6<y -6; (2)3x <3y ; (3)-2x <-2y . 解:(1)∵x >y ,∴x -6>y -6. ∴不等式不成立; (2)∵x >y ,∴3x >3y ∴不等式不成立;(3)∵x >y ,∴-2x <-2y ∴不等式一定成立. 投影片(§1.2 B )Ⅳ.课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.●板书设计●备课资料 参考练习1.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3;(2)6x <5x -1; (3)21x >5;(4)-4x >3. 2.设a >b .用“<”或“>”号填空. (1)a -3 b -3;(2)2a 2b ; (3)-4a -4b ;(4)5a 5b ;(5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0; (7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0. 参考答案:1.(1)x <5;(2)x <-1; (3)x >10;(4)x <-43. 2.(1)> (2)> (3)< (4)>(5)> (6)< (7)< (8)>.●迁移发散 迁移1.若a <b ,则下列不等式中成立的是哪些,说明理由. ①-3+a <-3+b ②-3a <-3b③-3a -1<-3b -1 ④-3a +1>-31b +1 解:在已知条件下成立的有①,其余皆错.错因:②在a <b 的条件下,根据不等式的基本性质3应有-3a >-3b ; ③基本上同②;④在a <b 条件下,由不等式的基本性质,两边必须加(减、乘、除)同一个整式或数.2.判断x =-51能否满足不等式3-2x <5+6x ,x =-1呢? 解:将x =-51代入得:3-2×(-51)<5+6×(-51)3+52<5-56,519517 ∴x =-51满足不等式3-2x <5+6x当x =-1时,代入不等式得:3-2×(-1)<5+6×(-1),3+2<5-6,5<-1 显然不能成立.∴x =-1不能满足不等式3-2x <5+6x . 发散本节我们用到了我们以前学过的知识如下:等式的基本性质1:等式的两边都加上(或都减去)同一个整式,等式仍成立.等式的基本性质2:等式的两边都乘以(或除以)同一个不为零的数,等式仍成立.●方法点拨[例1]判断下列各运算运用了不等式的哪一条性质. ①∵2<3 ∴2×5<3×5 ②∵2<3 ∴2+x <3+x③∵2<3 ∴2×(-1)>3×(-1) 解:①运用了不等式的性质2. ②运用了不等式的性质1. ③运用了不等式的性质3.[例2]判断下列运算是否正确,请说明理由. ∵2<3 ∴2a <3a .点拨:在此没有说明a 的取值,所以要分三种情况讨论.即a >0,a =0,a <0. 解:此运算错误.当a >0时,则有2a <3a . 当a =0时,不等式不成立. 当a <0时,则有2a >3a .[例3]根据不等式的性质.把下列不等式化为x >a 或x <a 的形式. (1)2x -15<5 (2)3x >2x +1 (3)3x +1<5x -2(4)31x >51x +1. 解:(1)先由不等式基本性质1,两边都加15得:2x <5+15.即2x <20. 再由不等式基本性质2,两边都乘以21得:x <10. (2)由不等式的基本性质1,两边都减去2x 得:3x -2x >1.即x >1.(3)先由不等式的基本性质1,两边都加上-5x -1得:3x -5x <-2-1,即-2x <-3.再由不等式的性质3,两边都除以-2得:x >23(注意不等号变向). (4)先由不等式的基本性质1,两边都减去51x 得:31x -51x <1,即152x <1.再由不等式的基本性质2,两边都乘以215得:x <215.[例4]在下列横线上填上适当的不等号(>或<)(1)如果a >b ,则a -b __________0. (2)如果a <b ,则a -b __________0. (3)如果2x <x ,则x __________0.(4)如果a >0,b <0,则ab __________0. (5)如果a +b >a ,则b __________0.(6)如果a >b ,则2(a -b )__________3(a -b ). 解:(1)> (2)< (3)< (4)< (5)> (6)<●作业指导 随堂练习1.解:(1)先由不等式的基本性质1,两边加1得:4x >2+1. 即4x >3.再由不等式基本性质2,两边都除以4得:x >43. (2)由不等式的基本性质3,两边都乘以-1得:x >-65. 2.解:(1)不成立. (2)不成立.(3)由不等式的基本性质3得成立. 习题1.21.解:(1)< (2)< (3)> (4)<2.解:(1)先由不等式的基本性质1,两边都减去3得:5x <-1-3 即5x <-4.再由不等式的基本性质2,两边都除以5得:x <-54. (2)由不等式的基本性质3,两边都乘以-3得:x <-15.试一试解:当a >0时,2a >a ;当a =0时2a =a ;当a <0时,2a <a .§1.2 不等式的基本性质●温故知新 想一想,做一做填空1.等式的两边都加上或都减去__________,结果仍是等式. 2.等式两边都乘以或除以__________,结果仍是等式. 3.用__________连接而成的式子叫做不等式.4.①若a 为非负数,则a __________(列出不等式). ②若a 为非正数,则a __________. ③若a 不小于3,则a __________. ④若a 不大于-3,则a __________. 你做对了吗?我们一起来对对答案:1.同一个整式2.同一个不为零的整式3.“<” “≤” “>” “≥”4.①≥0 ②≤0 ③≥3 ④≤-3 看看书,动动脑填空1.不等式的两边都加上(或减去)同一个整式,不等式的方向__________. 2.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________. 3.不等式两边都乘以(或除以)同一个负数,不等号方向__________.2.不等式的基本性质作业导航理解并掌握不等式的基本性质,会运用不等式的基本性质有根据地进行不等式的变形.一、选择题1.若a +3>b +3,则下列不等式中错误的是( ) A.-55ba -<B.-2a >-2bC.a -2<b -2D.-(-a )>-(-b ) 2.若a >b ,c <0,则下列不等式成立的是( ) A.ac >bcB.cb c a < C.a -c <b -c D.a +c <b +c3.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )图1A.b -a >0B.ab >0C.c -b <c -aD.ab 11> 4.已知4>3,则下列结论正确的是( ) ①4a >3a ②4+a >3+a ③4-a >3-a A.①② B.①③ C.②③ D.①②③5.下列判断中,正确的个数为( ) ①若-a >b >0,则ab <0 ②若ab >0,则a >0,b >0 ③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -c A.2 B.3 C.4 D.5二、填空题(用不等号填空)6.若a <b ,则-3a +1________-3b +1.7.若-35x >5,则x ________-3. 8.若a >b ,c ≤0,则ac ________bc .9.若ba b a --||=-1,则a -b ________0. 10.若ax >b ,ac 2<0,则x ________ab .三、解答题11.指出下列各题中不等式变形的依据. (1)由21a >3,得a >6. (2)由a -5>0,得a >5. (3)由-3a <2,得a >-32. 12.根据不等式性质,把下列不等式化成x >a 或x <a 的形式. (1)x +7>9 (2)6x <5x -3(3)51x <52 (4)-32x >-113.如果a >ab ,且a 是负数,那么b 的取值范围是什么?*14.已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.参考答案一、1.B 2.B 3.D 4.C 5.B二、6> 7.< 8.≤ 9.< 10.< 三、11.略12.(1)x >2 (2)x <-3 (3)x <2 (4)x <23 13.b >1 14.m <mn 2<mn§1.2 不等式的基本性质(15分钟练习)班级:_______ 姓名:_______一、快速抢答用“>”或“<”填空,并在题后括号内注明理由: (1)∵a >b∴a -m ________b -m ( ) (2)∵a >2b ∴2a________b ( ) (3)∵3m >5n ∴-m ________-35n( ) (4)∵4a >5a∴a ________0( ) (5)∵-24n m -< ∴m ________2n ( )(6)∵2x -1<9∴x ________5( )二、下列说法正确吗?(1)若a <b ,则ac 2<bc 2.( ) (2)若b <0,则a -b >a .( )(3)若x >y ,则x 2>y 2.( )(4)若x 2>y 2,则x -2>y -2.( ) (5)3a 一定比2a 大.( )三、认真选一选(1)若m +p <p ,m -p >m ,则m 、p 满足的不等式是( ) A.m <p <0 B.m <p C.m <0,p <0 D.p <m(2)已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )A.-x >yB.a 2x >a 2y C.a -x <a -y D.x >-y(3)实数a 、b 满足a +b >0,ab <0,则下列不等式正确的是( ) A.|a |>|b | B.|a |<|b |C.当a <0,b >0时,|a |>|b |D.当a >0,b <0时,|a |>|b | 四、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式 (1)3432-<x (2)-0.3x >0.9 (3)x +2≤-3 (4)4x ≥3x +5参 考 答 案一、(1)>,不等式的性质1(2)>,不等式的性质2(3)<,不等式的性质3(4)<,不等式的性质1(5)>,不等式的性质3(6)<,不等式的性质1和2二、(1)× (2)√ (3)× (4)× (5)×三、(1)C (2)C (3)D四、(1)x<-2 (2)x<-3 (3)x≤-3-2 (4)x≥5。