模电实验原始数据表

合集下载

实验三(模电实验报告)

实验三(模电实验报告)

实验三两级放大电路一实验目的1.掌握多级放大器静态工作点的调整与测试方法。

2.学会放大器频率特性测量方法。

3.了解放大器的失真及消除方法。

4.掌握两级放大电路放大倍数的测量方法和计算方法。

5.进一步掌握两级放大电路的工作原理。

二实验仪器示波器数字万用表信号发生器直流电源三实验原理及仿真波形如下:静态工作点的测量: 第一级:BQ U ≈0.625V ;E R =1.9K ΩBEQ b e U U U =- =624.70mv-82.85mv =0.54VBQ BEQCQ EQ EU U I I R -≈==0.045mA第二级:BQ U ≈2.3V ;E R =2K ΩBEQ b e U U U =- =2.3-1.68v =0.62VBQ BEQCQ EQ EU U I I R -≈==0.84mA放大倍数:35.3516.79i oL U U mV ==μV ;16.7947535.35oL u i U mVA U ===μV幅频特性曲线如下所示:所以:217;98L H f Hz f KHz ==;9821797.7H L BW f f KHz Hz KHz =-=-=四 实验内容与步骤1.静态工作点的计算测量阻容耦合多级放大器各级的静态工作点相互独立,互不影响。

所以静态工作点的调整与测量与前述的单级放大器一样。

2. 多级放大器放大倍数的测量多级放大电路,不管是采用阻容耦合还是直接耦合,前一级的输出信号即为后级的输入信号,而后级的输入电阻会影响前级的交流负载。

多级放大电路的放大倍数,为各级放大倍数的乘积,而每一级电路电压放大倍数的计算,要将后级电路的输入电阻作为前级电路的负载来计算。

3.多级放大器的输入、输出电阻多级放大器不存在级间反馈时,输入电阻为第一级放大器的输入电阻,输出电阻为最后一级放大器的输出电阻。

4. 多级放大器的幅频特性多级放大器幅频特性的测量原理与单级放大器相同,理论分析与实践证验都表明,多级放大器的通频带小于任一单级放大器的通频带。

模电实验报告【范本模板】

模电实验报告【范本模板】

模拟电子技术基础实验报告**:***学号:**********日期:2015。

12.21实验1:单极共射放大器实验目的:对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。

实验原理:静态工作点的测量是指在接通电源电压后放大器输入端不加信号(通过隔直电容将输入端接地)时,测量晶体管集电极电流ICQ 和管压降VCEQ.其中集电极电流有两种测量方法。

直接法:将万用表传到集电极回路中.间接法:用万用表先测出RC 两端的电压,再求出RC两端的压降,根据已知的RE的阻值,计算ICQ。

输出波底失真为饱和失真,输出波顶失真为截止失真.电压放大倍数即输出电压与输入电压之比。

输入电阻是从输入端看进去的等效电阻,输入电阻一般用间接法进行测量.输出电阻是从输出端看进去的等效电阻,输出电阻也用间接法进行测量. 实验电路:实验仪器:(1)双路直流稳压电源一台.(2)函数信号发生器一台。

(3)示波器一台。

(4)毫伏表一台。

(5)万用表一台。

(6)三极管一个.(7)电阻各种组织若干。

(8)电解电容10uF两个,100uF一个。

(9)模拟电路试验箱一个。

实验结果:经软件模拟与实验测试,在误差允许范围内,结果基本一致。

实验2:共射放大器的幅频相频实验目的:测量放大电路的频率特性。

实验原理:放大器的实际信号是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。

但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容和晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。

放大器的幅频特性是指放大器的电压放大倍数与输入信号的频率之间的关系。

在一端频率范围内,曲线平坦,放大倍数基本不变,叫作中频区。

在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0.707倍时,对应的低频和高频频率分别对应下限频率和上限频率。

通频带为:f BW=f H-f L实验电路:实验结果:理论估算值实际计算值参考f L f H f L f H=2k欧17.98H Z53.13MH Z17。

模电实验报告

模电实验报告

2.1 晶体管共射极单管放大器一、实验目的1、掌握用multisim仿真软件分析单级放大器主要性能指标的方法。

2、掌握晶体管放大器静态工作点的调试和调整方法,观察静态工作点对放大器输出波形的影响。

3、测量放大器的放大倍数、输入电阻和输出电阻。

二、实验原理实验电路如图2.1-1所示,采用基极固定分压式偏置电路。

电路在接通直流电源Vcc而未加入信号(Vi=0)时,三极管三个极电压和电流称为静态工作点,即V BQ=R2V CC/(R2+R3+R7)I CQ=I EQ=(V BQ-V BEQ)/R4I BQ=I EQ/βV CEQ=V CC-I CQ(R5+R4)1、放大器静态工作点的选择和测量放大器的基本任务是不失真的放大小信号。

为了获得最大不失真输出电压,静态工作点应选在输出特性曲线上交流负载线的中点。

若工作点选的太高,则容易引起饱和失真;而选的太低,又易引起截止失真。

静态工作点的测量是指在接通电源电压后放大器输入端不加信号时,测量晶体管的集电极电流ICQ和管压降VCEQ。

其中VCEQ可直接用万用表直流电压档测C-E极间的电压既得,而ICQ的测量则有直接法和间接法两种:(1)直接法:将万用表电流档串入集电极电路直接测量。

此法精度高,但要断开集电极回路,比较麻烦。

(2)间接法:用万用表直流电压档先测出R5上的压降,然后根据已知R5算出ICQ,此法简单,在实验中常用,但其测量精度差。

为了减小测量误差,应选用内阻较高的电压表。

当按照上述要求搭好电路,在输入端引入正弦信号,用示波器观察输出。

静态工作点具体的调节步骤如下:根据示波器上观察到的现象,做出不同的调整动作,反复进行。

当加大输入信号,两种失真都出现,减小输入信号,两种失真同时消失,可以认为此时的静态工作点正好处于交流负载线的中点,就是最佳的静态工作点。

去掉输入信号,测量此时的VCQ,就得到了静态工作点。

2.电压放大倍数的测量电压放大倍数是指放大器的输入电压Ui输出电压Uo之比:Au=Uo/Ui (2.1-5)用示波器分别测出Uo和Ui,便可按式(2.1-5)求得放大倍数,电压放大倍数与负载Rl有关。

模电实验一-----仪器使用--2014

模电实验一-----仪器使用--2014

模拟实验一常用仪器的使用一.实验目的1.学习并掌握双踪模拟示波器的使用方法;2.学会正确使用数字万用表、函数发生器、电压毫伏表,掌握其基本功能的使用;3.掌握电阻、电容、二极管等元器件的测量方法;4.RC低通电路的幅频、相频的测量。

二.实验内容1.电子示波器扫描初态调整。

(1)示波器接通电源前,其面板上各旋钮、按键应按照表1-01所列的初始位置设定。

(2)打开示波器的电源开关,电源指示灯亮,让仪器预热几分钟。

示波器屏幕上应出现一条水平线(即扫描线)。

若没有出现扫描线,可先顺时针调节触发电平旋钮、辉度旋钮,再调节水平和垂直位移旋钮,直到屏幕上扫描线位置居中、亮度合适为止。

当扫描线较粗不清晰时,可分别调整两个聚焦调节旋钮。

当扫描线不稳定时,调整触发电平旋钮,使信号显示稳定。

2.观察示波器提供的自校信号“CAL”:将测试线上的信号端夹子夹在示波器面板上的校准信号“CAL”输出端,此时测试线上黑夹子可悬空(因“CAL”信号的“地”已与示波器内部“地”接在一起)。

可从示波器屏幕上观察到“CAL”方波信号。

调节相应的旋钮,使波形完整显示3或4个周期,并记录旋钮位置和波形。

记录重要的参数值。

3.单踪显示4项中函数发生器的输出信号波形。

单踪显示就是在示波器屏幕上仅显示一个信号波形。

当选用“CH1”信号通道时,将垂直工作方式一组按键中“CHl”按下。

如选用“CH2”信号通道时,将垂直工作按键中“CH2”按下。

下面以“CH1”信号通道输入信号为例;在“CH1”信号输入插座上接信号测试线(同轴电缆),测试线一端有两个连线端,其中,黑夹子是地,必须与被测信号的“地”端(公共端)。

将“CH1”输入耦合方式选择“GND”,调好零输入时的参考基准电平线的位置(因为此时输入信号在示波器内部被短路,所以输入电压为零);再将“CH1”输入耦合方式拨到“AC”位置,可将测试信号输入到示波器中。

4.用函数发生器产生测试信号。

(即:以下内容在函数发生器上读出数据)⑴调节函数发生器的输出信号幅值约为2V、4KHz的正弦波,加到示波器信号输入通道CH1或CH2,调节示波器有关控制键,使屏幕上分别显示出幅度适中、清晰、稳定的二个、四个周期波形。

模拟电子技术标准实验报告 实验1-4

模拟电子技术标准实验报告 实验1-4

w.
ibm
14mV 2 18 A 1.16 K I B 18 A 10 A, 选30 A。
I E I C I B 65 30A 2mA
ju
选管 3DG6C,测量其=65。 为求r be ,设I E 2mA,则
st
26mV 1.16k 2mA
I bm 是U i 产生I B 的最大值。为避免产生截止失真,不应使输入信号工作在输入特性的弯 曲部分。故在设置基极电流时最少加 10A的起始电流。
ibm
rbe 300 1 65
ww
核算I E 与初选值是否吻合:
3)选择偏置电阻R b1 和R b2 欲使I B 稳定应使 I 1 I B ,硅管的 I 1 5 10 I B,I B 30 A , 则I 1 150 300 A . 选 I 1 220 A 。 考虑到设计任务对放大器未提出温度等特殊要求,故设计中可作常温(0--45C)处理。 基极电压可选择低一些,使V B =3V,
ww
w.
四、思考题: 1、示波器荧光屏上的波形不断移动不能稳定,试分析其原因。调节哪些旋钮才能使波形稳 定不变。 答:用示波器观察信号波形,只有当示波器内部的触发信号与所测信号同步时,才能在荧光 屏上观察到稳定的波形。 若荧光屏上的波形不断移动不能稳定, 说明触发信号与所测信号不 同步,即扫描信号(X轴)频率和被测信号(Y轴)频率不成整数倍的关系( x n y ),从而使 每一周期的X、Y轴信号的起扫时间不能固定,因而会使荧光屏上显示的波形不断的移动。 此时,应首先检查“触发源”开关(SOURCE)是否与Y轴方式同步(与信号输入通道保持 一致) ;然后调节“触发电平” (LEVEL) ,直至荧光屏上的信号稳定。 2、在测量中交流毫伏表和示波器荧光屏测同一输入电压时,为什么数据不同?测量直流电压 可否用交流毫伏表,为什么? 答: 交流毫伏表和示波器荧光屏测同一输入电压时数据不同是因为交流毫伏表的读数为正弦 信号的有效值,而示波器荧光屏所显示的是信号的峰峰值。 不能用交流毫伏表测量直流电压。 因为交流毫伏表的检波方式是交流有效值检波, 刻度 值是以正弦信号有效值进行标度的,所以不能用交流毫伏表测量直流电压。

模拟电子技术实验报告

模拟电子技术实验报告

桂林电子科技大学模拟电子技术实验报告实验一单级放大电路5、查找三极管9013 资料,在下图中标出9013 的三个引脚(E、B、C),并写出3~5 项你认为重要的参数?四.实验步骤及注意事项1. 测量导线、信号线、电源线好坏。

注意事项:使用台式万用表蜂鸣器档测量导线,不测量将可能导致实验失败!2.检查实验所用的A1 电路板上三极管所在位置的背面是否焊接有三极管。

注意事项:若有则第3、4 步可跳过不做,在表2 中β记为100。

3. 测量三极管9013 的直流放大系数β记录在表2 中。

注意事项:使用UT8803N 台式数字万用表HFE 档位,将三极管插到NPN 一边。

4.将已经测过值的三极管插入A1 电路板对应的三极管插孔中。

注意事项:三极管必须按照正确顺序插入A1 电路板中,不插入或插错将导致实验测量数据全错!5. 连接电路,接通12V 直流电源,但不接入信号源!注意事项:(1)单级放大电路的输入端暂时不能接入信号源。

(2)检查电路无误后,才能接通电源。

(3)所用的12V 要用万用表测量校准。

6. 设置静态工作点。

注意事项:(1)用台式万用表DCV(直流电压)档位监测UEQ电压变化(电路中三极管发射极与“地” 之间的电压,万用表黑表笔接“地”)。

(2)调节电位器RP 的大小,使得UEQ调到约为1.9V,不用非常精确。

7.测量静态工作点注意事项:UBQ、UEQ、UCQ分别表示电路中三极管基极、发射极、集电极与“地”之间的电压,而“ Q”表示的是“静态”而不是“地”,UBEQ= UBQ- UEQ,UCEQ= UCQ- UEQ。

8.测量RP的阻值。

注意事项:测量RP的阻值时,应把RP与电路断开,测完RP后再接回!9.电路输入端接入信号源,输出端将5.1KΩ 负载接上,用示波器双通道同时测量输入输出波形,观察ui、uoL的相位关系,并在一个坐标系上画出波形图。

注意事项:(1)信号源和示波器必须共地,即黑夹子要接地。

模电实验报告

模电实验报告

模拟电路实验报告一使用示波器测量函数信号发生器产生的信号【原始数据】选做思考题:观察不同频率下,函数信号发生器输出信号的波型和幅度,并分析信号在高频和低频下失真的原因。

(10MHz档括号里的小数表明该次峰-峰值与最大一次峰-峰值的比值)1)在1Hz-1MHz档,输出的波形最大/最小的峰-峰值基本保持稳定,只是在10MHz档三种波的峰-峰值突都然减小。

其中三角波衰减最厉害,正弦波次之,方波衰减最少。

2)通过观察波形发现,在频率为1HZ至1MHZ左右的信号都能在示波器上显示出正常的波形,但是在频率为10MHZ左右的方波,三角波,均不能正常显示,方波波形已经趋向正弦波,但不对称,仍保留部分陡增的特性。

三角波更趋向于正弦波。

我觉得这是由于实验室中使用的示波器采样频率有限,而输出信号频率过高。

在一个周期中,示波器要至少采集到2个点才能无失真地还原信号,但此时无法在一个周期中采集到足够样点,所以信号失真。

三角波、方波都趋向与正弦波,三角波更像。

是由于在信号发生器里,三角波和方波可根据傅里叶变化表示为基频为w倍数的多个正弦、余弦波之和。

因为本身在10MHz时,w值已经很大,频率过高(nw)的那部分正弦信号输出后,示波器采样频率不够无法还原,造成失真,使方波、三角波趋向于正弦波样式。

由于三角波傅里叶变换后频谱比方波分散,三角波更像前面一部分正弦波的波形,更趋向。

二.掌握函数信号发生器上AMPL、OFFSET、DUTY的功能,测量按下ATT-20dB键后信号的变化,并计算实际衰减值。

1、AMPL:信号幅度微调,逆时针,(转向MIN),幅度减小,顺时针(转向MAX)幅度增加。

拔出,信号衰减为原来的十分之一(衰减20dB);数据如下:2、Offset:当Offset拔出后:在直流耦合下,波形位置会发生变化,随着Offset移动,波形上下移动,但是不变形。

3、DUTY:对称性(占空比)调节旋钮,可以改变输出波形的对称度。

模电 实验报告

模电 实验报告

实验报告<1>实验时间:星期二下午五点半到九点半 <2>实验地点:实验楼十楼 <3>实验材料:电阻:100Ω,1ΩK ,5ΩK ,51ΩK ,10ΩK ,100ΩK 电容:47μF电源:12 V 直流电压源,50 mV 1KHz 0°交流电压源 晶体管:双极型晶体管BJT <4>电路原理图:U12N5551R251kΩR1100kΩR35kΩR4100ΩR51kΩRL10kΩC147µFC247µFC347µFV112 VPot190%V250mVpk 1kHz 0°<5>分析过程及结果:⑴直流分析:图中晶体管β=100. ①直流电路图:②欲使U CQ=6V,求pot1.解:U CQ=6V,则U R3=V1-U CQ=12V-6V=6VI CQ R3=U R3解得I CQ=1.2mA 则I BQ=βI CQ=0.012mA则U CEQ=V1-I CQ R3-I EQ(R4+R5)≈V1-I CQ(R3+R4+R5)=4.68V又U B=U BE+I EQ(RR5+)4=2.04V则有V1=U B+(pot1+R1)(I BQ+RU B2)解之:pot1=93KΩ③求解静态工作点Q解:由上一问可知I CQ=1.2mAU CEQ=4.68V④改变偏置电阻阻值对晶体管工作状态有何影响?答:对共射放大电路来说,主流是从发射极到集电极的IC,偏流就是从发射极到基极的IB。

相对与主电路而言,为基极提供电流的电路就是所谓的偏置电路。

偏置电路往往有若干元件,其中有一重要电阻,往往要调整阻值,以使集电极电流在设计规范内。

这要调整的电阻就是偏置电阻。

偏置:在电路某点给一个参考分量,使电路能适应工作需要。

在(电阻大)偏值小到一定程度后其基极电位已不足以维持最小静态基区电流,而此时的工作偏流则依靠输入信号的某半值电压!因而此时的输出信号失真是无静态的断续! 而在(电阻小)偏值过高引起的失真则是非线性阻塞失真! 由此可见晶体管的静态工作点只有在合理的区间才能做到最小的失真,最大的输出!区域内改变偏值电阻会影响增益!超区域改变偏值电阻会增加失真!⑤用multisim仿真静态工作点⑥根据仿真电压值计算出直流工作点由仿真结果知:U CEQ=4.382VU CQ=5.765V有I CQ R3=V1-U CQ解得I CQ=1.25mA可见,误差不是太大⑦直流工作点不合适会产生怎样的严重后果?答:直流工作点过高的话,会产生饱和失真甚至对电路产生不良影响;过低的话,会产生截止失真。

模拟电子技术实验报告(三)

模拟电子技术实验报告(三)

图 3-1 输入、输出电阻测量电路 测量时应注意下列几点: (1)由于电阻 R 两端没有电路公共接地点,所以测量 R 两端电压 UR 时必须分别 测出 US 和 Ui,然后按 UR=US-Ui 求出 UR 值。
(2)电阻 R 的值不宜取得过大或过小,以免产生较大的测量误差,通常取 R 与 Ri 为同一数量级为好,本实验可取 R=1~2KΩ。 3、输出电阻 R0 的测量 按图 3-1 电路,在放大器正常工作条件下,测出输出端不接负载 RL 的输出电压 UO 和接入负载后的输出电压 UL,根据: RL UL = UO RO + RL 即可求出:
黄淮学院电子科学与工程系 模拟电子技术验证性实验报告
实验名称 学生姓名 同组人员 一、实验目的 1、掌握放大器电压放大倍数、输入电阻、输出电阻的测试方法。 二、实验主要仪器设备和材料 1、模拟电路实验装置 2、双踪示波器 三、实验内容和原理 参见实验二说明 放大器动态指标包括电压放大倍数、 输入电阻、 输出电阻、 最大不失真输出电压 (动 态范围)和通频带等。 1、电压放大倍数 AV 的测量 调整放大器到合适的静态工作点,然后加入输入电压 ui,在输出电压 uO 不失真的 情况下,用交流毫伏表测出 ui 和 uo 的有效值 Ui 和 UO,则 U AV = 0 Ui 2、输入电阻 Ri 的测量 为了测量放大器的输入电阻,按图 3-1 电路在被测放大器的输入端与信号源之间 串入一已知电阻 R,在放大器正常工作的情况下, 用交流毫伏表测出 US 和 Ui,则根据 输入电阻的定义可得 U U Ui Ri = i = i = RS I i U R U S -U i R 3、交流毫伏表 4、万用表 单级放大电路动态参数测试 实验时间 实验地点 专业班级 2012年 月 日 模拟电路实验室 电技1101B

模电实验三实验报告

模电实验三实验报告

差动放大电路一、 实验原理差动放大电路是一种特殊的直接耦合放大电路,要求电路两边的元器件完全对称,即两管的型号相同特性相同,各对应电阻值相同。

它是一种有效的放大差模(有用)的信号,抑制共模信号和零点漂移的直流放大器。

二、实验电路图三、 元器件清单 元件NPN 晶体三级管9013100Ω电位器503Ω电阻982KΩ电阻 240K Ω电阻 10.1K Ω电阻 26.8K Ω电阻 信号发生器 12.15V 直流电源-11.86V 直流电源数量 2 1 22 2 2 11 1 1四、 静态测量数据记录将两个输入端接地,使ui1=ui2=0,调节W ,使Vc1=Vc2,即uo=0。

此时测量静态工作点的参数。

测量的结果和理论值如下:静态测量记录(Vcc=12.15V ,VEE=-11.86V )1B V (V) 2B V (V) 1C V (V) 2C V (V) 1E I (mA )2E I (mA) E I (mA )β理论值 0.049 0.048 9.89 9.89 0.21 0.21 0.42 228 230测量0.074 0.074 10.03 10.01 2.112 2.096 0.423 228 230值五、 动态测量数据记录1、双端输入时差模电压放大倍数用信号发生器产生1KHZ 、30mV 的正弦波接入Ui ,用示波器观察Uo1、Uo2的波形,示波器采用“CH2反向”然后“叠加”的方法实现Uo 波形,比较它们的相位关系,然后把所测得的数据填入下面的表格中。

2、单端输入时的差模电压放大倍数 讲其中的一个输入端接地,信号发生器接入令一端与地之间,用1同样的方法观察波形并记录所测得的数据。

动态测量记录(Ui=30mv ,有效值,f=1KHZ 正弦波)电压(mV )(有效值) 放大倍数1o u 2o u o u 1VD A 2VD A VD A双端输入 720 755 1475 理论值 28 29 57 测量值 24 25.2 49.2 单端输入 708 698 1406 理论值 28 29 57 测量值 23.6 23.3 46.93、共模抑制比Kcmr 测量讲两个输入端短接为一段,信号发生器产生约1V 的正弦波,接入到该端和地之间,此时输入共模信号。

模电实验四的实验报告

模电实验四的实验报告

负反馈放大电路一、 实验原理在电子电路中,将输出量的一部分或全部通过一定的电路形式作用到输入回路,用来影响输入量的措施称为反馈。

其中,能够使输入量减小的反馈称为负反馈。

引入负反馈能够使电路提高放大倍数的稳定性、减小非线性失真和抑制噪声、对输入电阻、输出电阻也有相应的影响。

二、实验电路图三、 元器件清单元件 NPN 晶体三级管9013 100Ω电阻 51K Ω电阻 11K Ω电阻 1K Ω电阻 5.1K Ω电阻 100KΩ电阻 信号发生器12.15V 直流电源 -11.86V 直流电源 1.5K Ω电阻 20K Ω电阻 10uF 电容 33uF 电容数量2 1 1 2 2 4 11 1 1 1 12 2四、 静态测量数据记录断开开关K 测量两级静态工作点参数调节W ,使VE=1.5V ,测量参数填入下表中:静态测量记录(Vcc=12.15VV )B V (V) E V (V)C V (V) C I (mA) β第一级理论值 2.16 1.46 5.40 1.32 226 测量值1.941.355.881.34226第二级 理论值 2.28 1.58 6.80 1.05 228 测量值 2.101.506.961.02228五、 动态测量数据记录1、开环性能指标测量接入信号发生器s u ,测量开环下的v A 、i r 、o r ,测量数据确保在波形不失真下测量。

测量数据填入下表中。

2、 闭环性能指标测量接入f R 形成反馈,确保在输出波形不失真的情况下测量VF A 、iF r 、 OF r 。

测量数据填入下表。

动态测量(mv)S U (mv)i U '(v)o U()o U Vv Ai r (K Ω) o r (K Ω) 开环(微失真) 2.07 1.8 3.952.16理论值 1933 6.81 5.1 测量值1200 6.67 4.23 闭环12.3 11.0 0.531 0.518理论值 52259 0.133 测量值47.1176.80.1273、放大倍数稳定度测量将+12.15V 电压将低到10V 后再次测量电压放大倍数,填入下表:增益稳定度测量记录正常电源 12.15cc V V = 降压电源 10.1cc V V =稳定度v A(mv)i U ()o U V 'VA '100%V VVA A A -⨯ 开环(微失真) 1200 1.8 1.7 944.4 21.3% 闭环47.110.80.50246.51.3%六、 波形观察记录1、开环时的输入输出波形为:由于开环时放大倍数太大,所以当输入很小时,输出还是有一定失真。

模电实验本

模电实验本

的相位关系,记入表2。
项目 测量值 Ui(mV) Uo(V) Au
理论值
• (2)测量基本放大电路的输出电阻Ro。 • 接入RL=2.4K欧,测量UoL的值,计算输出电阻的值。 Ro=RL(Uo-UoL)/UOL • (3)测量基本放大电路的输入电阻Ri。 • 接入Rs,并加大信号源电压,使Uo与未接入Rs时相同, 测量此时的信号源电压Us,计算输入电阻Ri。 Ri=RsUi/(Us-Ui) 项目 Us Ui Ri Uo UoL Ro
刻度值 100Hz 10k Hz X轴开关位置 (S/div) Y轴开关位置 (V/div) 实测值 (格)
1k Hz
实验报告要求 (1)实验目的、实验仪器与实验电路。 (2)实验内容、测量数据及其分析。 (3)遇到的问题及其分析、处理情况。 讨论题
示波器中基线消失,应调整那个旋钮?示 波器显示的波形呈一条宽带,应调整那个 旋钮?
实验五 运算电路
一、实验目的 1. 掌握的比例、加减法和积分等基本运算电路的 功能。 2. 了解运算放大器在实际应用时应考虑的一些问 题
二. 实验仪器
函数信号发生器 双踪示波器 晶体管毫伏表 万用表、实验箱
1、集成运算放大器(741)芯片介绍
“1”与“5”——调零电位器接线端,分 别接其两固定端,中间滑动端接“4”;
2.直流电压的测量
• 将直流稳压电源输出的直流信号送至示波器 的y输入端,按示波器测量直流电压的方法 测量。
直流电压输出(v) -4 示波器测量值(v) -2 0 2 4
3.交流电压的测量
1.测量示波器内“校准信号” 将示波器的耦合选择开关置于“AC”,调出“校准信号” 波形。根据被测信号的幅度和频率,将校准信号输出端接 YA或YB,触发方式选择自动,触发源选择内触发,内触发 选择开关置于常态。

大物实验(2)电学实验数据表格

大物实验(2)电学实验数据表格
五、数据记录: 组号: 1、测定串联电路的谐振曲线 C= L=
R1 100 f / Hz u / mV i / mA
R2 200 u / mV i / mA f / Hz
R1 100 u / mV i / mA
R2 200 u / mV i / mA
1600 1700 1800 1900 2000 2100 2150 2200 2250 2300 2350
2400 2450 2500 2550 2600 2700 2800 2900 3000 3100 3200
R1 100 时: 共振频率的理论值 f0 = 达到共振时: UL= R2 200 时: 共振频率的理论值 f0 = 达到共振时: UL= ;共振频率的测量值 f 0 = U C= ;UR= ;共振频率的测量值 f 0 = U C= ;UR=
B(T)
2、测定样品一的饱和磁感应强度 Bm,剩磁,Br,矫顽力 Hc. Bm= 3、测绘磁化曲线 U/V 0.5 1.0 1.2 1.5 1.8
H( A/m ) B ( T)
; Br=
; Hc. =
.
U/V 2.0 2.2 2.5 2.8 3.0
H( A//mA V2/mV V3/mV V4/mV
VH
+B,+Is -B,+Is -B,-Is +B,-Is
V1 V2 V3 V4 4
mv
1.00 1.50 2.00 2.50 3.00 3.50 4.00
(2) 、保持霍尔片工作电流 IS 的值不变( IS =3.00mA) ,测绘曲线 VH—IM
五、数据记录: 组号:
1、电位差计校准电流表数据 校准值 校刻度值 I (μA) 上行 下行 平均值

模电实验报告(1)

模电实验报告(1)

模拟电路课程设计实验一常用电子测量仪器的使用1.实验目的(1)了解双踪示波器、函数信号发生器、晶体管毫伏表、直流稳压电源的工作原理和主要技术指标。

(2)掌握双踪示波器、晶体管毫伏表、直流稳压电源的正确使用方法。

2.实验原理示波器是电子测量中最常用的一种电子仪器,可以用它来测试和分析时域信号。

示波器通常由信号波形显示部分、垂直信道(Y通道)、水平信道(X通道)三部分组成。

YB4320G是具有双路的通用示波器,其频率响应为0~20MHz。

为了保证示波器测量的准确性,示波器内部均带有校准信号,其频率一般为1KHz,即周期为1ms,其幅度是恒定的或可以步级调整,其波形一般为矩形波。

在使用示波器测量波形参数之前,应把校准信号接入Y轴,以校正示波器的Y 轴偏转灵敏度刻度以及扫描速度刻度是否正确,然后再来测量被测信号。

函数信号发生器能产生正弦波、三角波、方波、斜波、脉冲波以及扫描波等信号。

由于用数字LED显示输出频率,读数方便且精确。

晶体管毫伏表是测量正弦信号有效值比较理想的仪器,其表盘用正弦有效值刻度,因此只有当测量正弦电压有效值时读数才是正确的。

晶体管毫伏表在小量程档位(小于1V)时,打开电源开关后,输入端不允许开路,以免外界干扰电压从输入端进入造成打表针的现象,且易损坏仪表。

在使用完毕将仪表复位时,应将量程开关放在300V挡,当电缆的两个测试端接地,将表垂直放置。

直流稳压电源是给电路提供能源的设备,通常直流电源是把市电220V的交流电转换成各种电路所需要的直流电压或直流电流。

一般一个直流稳压电源可输出两组直流电压,电压是可调的,通常为0~30V,最大输出直流电流通常为2A。

输出电压或电流值的大小,可通过电源表面旋钮进行调整,并由表面上的表头或LED显示。

每组电源有3个端子,即正极、负极和机壳接地。

正极和负极就像我们平时使用的干电池一样,机壳接地是为了防止外部干扰而设置的。

如果某一电路使用的是正、负电源,即双电源,此时要注意的是双电源共地的接法,以免造成短路现象。

模电数据

模电数据

信号发生器与示波器显示频率的对比(单位:Hz)数据分析:1)示波器所能显示波形的最小频率为0.6452Hz,最大频率为398400000Hz 。

2)信号波频率相当小时,示波器反应慢且无法显示;当信号波频率相当大时,示波器波形变得复杂不规律,并且频率变化很快很大。

方波、三角波、正弦波输出对比第一组信号发生器 示波器0.64487 0.6452 6.17 6.248 10.987 11.10 111.78 111.1 711.63 714.5 6961.0 6945.0 70000 69420 71182071370010555700 398400000峰值(V )振幅(V )频率(Hz )周期(ms )上升时间(ms )第二组方波 168 162 7.042 142.0 1.640三角波 156 144 7.009 142.5 49.33正弦波 160 156 6.996 143.2 39.16峰值(V ) 振幅(V ) 频率(Hz ) 周期(ms ) 上升时间(ms ) 方波 16816271.3414.000.316三角波 154 144 71.14 14.08 4.933正弦波160 156 71.02 14.19 4.070第三组第四组峰值(V ) 振幅(V ) 频率(Hz ) 周期(ms ) 上升时间(us ) 方波 168166724.61.38016.40三角波 156 134 715.1 1.397 528.0正弦波 164 160 716.1 1.400 413.0峰值(V ) 振幅(V ) 频率(kHz ) 周期(us ) 上升时间(us ) 方波 1701646.947141.91.562三角158 148 7.009 142.0 49.80数据分析:1)相同信号输入时,方波峰值、振幅最大,正弦波次之,三角波最小。

2)相同信号输入时,三角波上升时间最大,正弦波次之,方波最小(比其它波的上升时间小很多)。

《模电实验》PPT课件

《模电实验》PPT课件

横坐标
0 0.1 0.2 0.4 0.7
1
对应频率 791 996 1254 1987 3964 7910
增益A
20lg|A/AV|
表2
给滤波器输入1v的正弦波,其频率为3kHz,用毫伏表测量 记录此时的输出电压Vo,即得到通带电压增益AV
按表2中的对应频率调节信号源频率,注意保持输入电压1v 不变,用毫伏表测量滤波器输出电压(即增益A),填表2
有源滤波器
滤波器的功能是,使特定频率的信号通过, 而抑制(衰减)其他频率的信号。本次实验 的目的是熟悉二阶滤波器的构成及特性,掌 握滤波器幅频特性的测量方法。
1
AV
1
R4 R3
f0
n 2
2
1 R1R2C1C2
Q
R1R2C1C2
C2 (R1 R2 ) R1C1(1 AV )
2
Q
R1R2C1C2
C2 (R1 R2 ) R1C1(1 AV )
Q=0.707
Q<0.707
理想的低通幅频响应
Q>0.707
3
滤波器参数的确定步骤:
根据功能需要,确定滤波器特征频率 f0
Q值应当尽量接近0.707,可较其稍小。 根据公式和阻容系列值确定参数。
4
该低通滤波器特征频率计算:
f0 2
1
366Hz
1
对应频率 791 996 1254 1987 3964 7910
增益A
20lg|A/AV|
表2
对应频率 10横坐标 791
12
横坐标 对应频率
增益A
-1 -0.7 -0.5 -0.4 -0.3 79.1 157.8 250.1 314.9 396.4

模拟电子技术实验报告(九)

模拟电子技术实验报告(九)

模拟电子技术实验报告(九)一. 集成运算放大器的基本应用——(模拟运算电路)二. 实验原理:集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

(1)反相比例运算电路,该电路的输出电压与输入电压之间的关系:UO=-RFUi/R1(2)同相比例运算电路,该电路的输出电压与输入电压之间的关系:UO=(1+RF/R1) Ui R2=R1//RF三.实验过程和实验数据:1.反相比例运算电路:接通±12V电源,输入端对地短路,进行调零和消振。

并输入f=100Hz,Ui=0.5V的正弦交流信号,测量相应的UO,并用示波器观察uO和ui的相位关系Ui=0.5V f=100HZUi(V)U0(V)ui波形uO波形AV0.5045.04实测值计算值10-102.同相比例运算电路:接通±12V电源,输入端对地短路,进行调零和消振。

并输入f=10 0Hz,Ui=0.5V的正弦交流信号,测量相应的UO,并用示波器观察uO和ui的相位关系。

最后断开其电路图中的R1,并重复内容1的电路做。

Ui=0.5V f=100HzUi(V)UO(V)ui波形uO波形AV0.5045.76实测值计算值11.811四.实验分析:1.反相比例运算电路:用毫伏表与示波器相连,调到Ui=0.5V ,VP-P=1. 57V , 且ui波形的CH1=500mV Time=5ms 所以周期T=10ms 振幅=730mV;uo波形的CH2=2V Time=5ms 所以周期T=10ms 振幅=7V ;且UO=-100Ui/10=5V , AV=5/0. 5=10 .2.同相比例运算电路:ui波形的CH1=200mV Time=5ms 所以周期T=10ms 振幅=7 30mV;uo波形的CH2=5V Time=5ms 所以周期T=10ms 振幅=7.5V ;且UO=0.5(1+ 100/10)=5.5V , AV=5.5/0.504=11 .五.经过这次实验,知道了理想运放在线性应用时的两个重要特性输出电压UO与输入电压之间满足关系式UO=Aud(U+-U-)由于Aud=∞,而UO为有限值,因此,U+-U-≈0。

模拟电子技术实验综合

模拟电子技术实验综合

实验1 单级晶体管放大电路一、实验目的1.掌握放大电路静态工作点的调整和测试方法。

2.了解静态工作点对电压放大倍数的影响。

3.了解静态工作点对输出波形的影响。

4.学习测量放大电路的交流电压放大倍数、输入电阻、输出电阻以及最大不失真输出电压的测试方法。

5.熟悉常用电子仪器、仪表及模拟电子技术实验设备的使用。

二、实验原理电压放大电路的基本任务是在输入端接入交流信号u i 后,在其输出端便可以得到一个与之相位相反、不失真的交流放大输出信号u 0 ,且有足够的电压放大倍数。

图1-1为电阻分压式稳定静态工作点的共射极单管放大电路,其基极偏置电路由R B1和R B2分压电路构成。

如果静态工作点选择得过高或过低,或者输入信号过大,都会使输出波形失真。

为获得合适的静态工作点,一般采用调节上偏置电阻R P 的方法,在发射极接有电阻R e ,以稳定静态工作点Q 。

图1-1 分压式偏置共发射极放大电路图1-1的电路是交流放大电路中最常用的一种基本单元电路。

根据此电路学习放大电路的主要性能指标的测量方法。

1. 输入电阻r i放大器的输入电阻是从放大器的输入端看进去的等效电阻,加上信号源之后,它就是信号源的负载电阻,用r i 表示。

由此可知r i =U i / i i =R S U i / (U S -U i )U CC12V其中:U S—信号源电压的有效值,R S—信号源内阻;U i—放大电路输入电压的有效值。

r i的大小直接关系到信号源的工作情况。

2.输出电阻r o、放大器的输出电阻是从放大器的输出端回向放大器看进去的等效电阻,用r o表示,测出U oCU o L后r o由下式计算:r o=R L(U o1-U o2) /U o2——放大电路开路时输出电压的有效值;其中:U oCU o L——放大电路接负载R L时输出电压的有效值。

3.电压放大倍数A u放大器的电压放大倍数是在输出波形不失真的情况下输出电压与输入电压有效值(或最大值)的比值A u,即A u=U o /U i三、实验仪器设备及元器件1.直流稳压电源2.函数信号发生器3.数字式双踪示波器4.数字万用表5.交流毫伏表6.模拟电子实验箱、单级晶体管放大电路专用实验板7.晶体三极管、电位器、电阻器、电容器等电子元件四、预习要求1.理解分压式偏置放大电路的工作原理及电路中各元件的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学号:姓名:
实验一共发射极放大电路
一、静态工作点设置
二、电压放大倍数测量
三、输入、输出电阻测量
1、输出电阻的测量
输入信号取f=1kHz,u ipp=30mV时
2、输入电阻的测量
学号:姓名:
实验二差分放大电路
一、测量静态工作点
用万用表测量T1、T2、T3各极对地电压填入表中
二、测量共模特性和差模特性
三、单端输入差分放大电路
学号:姓名:
实验三负反馈放大器
一、电压串联负反馈对放大倍数稳定性的影响
二、电压串联负反馈对输入输出电阻的影响
1、对输出电阻的影响
输入信号取f=1kHz,u ipp=10mV时
(注:表中所测电压都为峰峰值电压)
2、对输入电阻的影响
结论:
学号:姓名:
实验四集成运算放大器的应用
一、反向比例放大器
二、同相比例放大器
三、积分器四、微分器
学号:姓名:
实验五互补对称功率放大器一、测量额定功率
P o =( u opp)2/8R L
二、测量效率
三、测量频率响应
学号:姓名:
实验六整流滤波与稳压电源一、串联稳压电路
纹波电压=
二、可调集成三端稳压电路
纹波电压=。

相关文档
最新文档