高考数学离心率专题
2023年高考数学二轮复习(新高考版) 第1部分 专题突破 专题6 微重点15 离心率的范围问题

跟踪演练3 (2022·长沙市雅礼中学等十六校联考)已知双曲线 C:ax22-by22= 1(a>0,b>0)的左、右焦点分别为 F1,F2,若 C 与直线 y=x 有交点,且 双曲线上存在不是顶点的点 P,使得∠PF2F1=3∠PF1F2,则双曲线离心 率的取值范围为____( __2_,__2_) __.
专题强化练
考点一
利用圆锥曲线的定义求离心率的范围
例1 (1)(2022·南京模拟)设 e1,e2 分别为具有公共焦点 F1 与 F2 的椭圆
和双曲线的离心率,P 为两曲线的一个公共点,且满足∠F1PF2=π3,则
e1e2 的最小值为
√A.
3 2
B.32
C.
3 4
D.34
设椭圆的长半轴长为a1,双曲线的实半轴长为a2,不妨设|PF1|>|PF2|, 由椭圆和双曲线的定义可得||PPFF11||+ -||PPFF22||= =22aa12, , 得||PPFF12||= =aa11+ -aa22, ,
A.0,12
B.0,
2
2
C.12,1
√
D.
22,1
如图所示,A为椭圆的上顶点.
依题意∠F1AF2≥90°,即∠OAF2≥45°, 又|AF2|=a,|AO|=b,|OF2|=c, ∴sin∠OAF2=||OAFF22||=ac=e,
∵∠OAF2≥45°,
∴sin∠OAF2∈
22,1,即
√C.0,12
D.12,1
连接OP,当P不为椭圆的上、下顶点时, 设直线PA,PB分别与圆O切于点A,B,∠OPA=α, ∵存在M,N使得∠MPN=120°, ∴∠APB≥120°,即α≥60°, 又α<90°,∴sin α≥sin 60°, 连接 OA,则 sin α=||OOPA||=|ObP|≥ 23,∴|OP|≤2 33b. 又 P 是 C 上任意一点,则|OP|max≤2 33b, 又|OP|max=a,∴a≤2 33b,
高考数学大一轮复习热点聚焦与扩展专题49离心率及其范围问题

专题49 离心率及其范围问题【热点聚焦与扩展】纵观近几年的高考试题,高考对圆锥曲线 离心率问题是热点之一.从命题的类型看,有小题,也有大题.一把说来,小题大难度基本处于中低档,而大题中则往往较为简单.小题中单纯考查椭圆、双曲线的离心率的确定较为简单,而将三种曲线结合考查,难度则大些.本文在分析研究近几年高考题及各地模拟题的基础上,重点说明离心率及其范围问题的解法与技巧.1、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距.从而可求解(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求.如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可 (3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞【经典例题】例1.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .3B .3C .3D .13【答案】A 【解析】点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=ca;x/k**w②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).例2.【2017课标II,理9】若双曲线C:22221x ya b-=(0a>,0b>)的一条渐近线被圆()2224x y-+=所截得的弦长为2,则C的离心率为()A.2 B32 D.23 3【答案】A 【解析】例3.【2018届山东省济南省二模】设椭圆的左、右焦点分别为,点.已知动点在椭圆上,且点不共线,若的周长的最小值为,则椭圆的离心率为()A. B. C. D.【答案】A∴故选:A例4.【2018届云南省昆明第一中学第八次月考】已知双曲线的左、右焦点分别为,点是双曲线底面右顶点,点是双曲线上一点,平分,且,则双曲线的离心率为()A. B. C. D.【答案】D例5.【2017课标1,理】已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.【答案】23 3【解析】试题分析:例6.【2018届重庆市江津中学校4月月考】如图,双曲线的中心在坐标原点,焦点在轴上,为双曲线的顶点,为双曲线虚轴的端点,为右焦点,延长与交于点,若是锐角,则该双曲线的离心率的取值范围是()A. B. C. D.【答案】D【解析】试题分析:根据∠B1PB2为与夹角,并分别表示出与,由∠B1PB2为钝角,.<0,得ac﹣b2<0,利用椭圆的性质,可得到e2-e﹣1>0,即可解得离心率的取值范围.详解:如图所示,∠B1PB2为与的夹角;设椭圆的长半轴、短半轴、半焦距分别为a,b,c,=(a,b),=(c,﹣b),∴1<e<,故选:C.点睛:本题主要考查双曲线的定义及几何性质,以双曲线为载体,通过利用导数研究的单调性,考查逻辑思维能力、运算能力以及数形结合思想.双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围.基本的解题思路是建立椭圆和双曲线中的关系式,求值问题就是建立关于的等式,求取值范围问题就是建立关于的不等式.例7.已知椭圆和双曲线有共同焦点,是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值是()A. B. C. 2 D. 3【答案】A【解析】化简得:该式可变成:,故选点睛:本题综合性较强,难度较大,运用基本知识点结合本题椭圆和双曲线的定义给出与、的数量关系,然后再利用余弦定理求出与的数量关系,最后利用基本不等式求得范围.例8.【2018届福建省漳州市5月测试】已知直线与椭圆交于、两点,与圆交于、两点.若存在,使得,则椭圆的离心率的取值范围是A. B. C. D.【答案】C【解析】分析:先根据直线的方程判定该直线过定点,且该点是圆的圆心,再利用判定点是线段的中点,再利用点差法进行求解.详解:将化为,即直线恒过定点,且该点为圆的圆心,由,得是的中点,点睛:1.判定直线过定点的方法:法一:化为点斜式方程;法二:分别令,得,解得;法三:化为,则;2.在处理圆锥曲线的中点弦问题时,利用点差法,可减少运算量,提高解题速度.例9.【2018届河南省名校压轴第二次考试】已知椭圆的右焦点为,短轴的一个端点为,直线交椭圆于两点,若,点到直线的距离不小于,则椭圆的离心率的取值范围是()A. B. C. D.【答案】A解得,所以,所以椭圆的离心率的取值范围是,故选A.例10.【2018届河南省名校压轴第二次考试】过双曲线的右焦点且垂直于轴的直线与双曲线交于两点,为虚轴的一个端点,且为钝角三角形,则此双曲线离心率的取值范围为__________.【答案】【解析】分析:设出双曲线的左焦点,令x=﹣c,代入双曲线的方程,解得A,B的坐标,讨论∠DAB为钝角,可得<0,或∠ADB为钝角,可得<0,运用向量数量积的坐标表示,再由离心率公式和范围,即可得到所求范围.详解:设双曲线的左焦点F1(﹣c,0),令x=﹣c,可得y=±=±,可得A(﹣c,),B(﹣c,﹣),又设D(0,b),可得=(c,b﹣),=(0,﹣),=(﹣c,﹣b﹣),由△ABD为钝角三角形,可能∠DAB为钝角,可得<0,化为c4﹣4a2c2+2a4>0,由e=,可得e4﹣4e2+2>0,又e>1,可得e>.综上可得,e的范围为(1,)∪(.+∞).故答案为:点睛:(1) 本题考查双曲线的离心率的范围及向量数量积的坐标表示. 意在考查学生对这些知识的掌握能力和分析推理运算能力.(2)本题的关键是转化为钝角三角形,这里是利用数量积<0转化的,比较简洁高效.【精选精练】1.已知椭圆的半焦距为,左焦点为,右顶点为,抛物线与椭圆交于两点,若四边形是菱形,则椭圆的离心率是()A. B. C. D.【答案】C详解:由题意得,椭圆,为半焦距),的左焦点为,右顶点为,则,抛物线于椭圆交于两点,两点关于轴对称,可设,四边形是菱形,,则,将代入抛物线方程得,,,则不妨设,再代入椭圆方程,化简得,由,即有,解得或(舍去),故选C.2.【2018届湖南师范大学附属中学月考(六)】设椭圆的右焦点为,椭圆上的两点关于原点对称,且满足,则椭圆的离心率的取值范围是( )A. B. C. D.【答案】A整理得,令,得,又由,得,所以,所以离心率的取值范围是,故选A.3.已知双曲线的右焦点为,右顶点为,过作的垂线与双曲线交于、两点,过、分别作、的垂线,两垂线交于点,若到直线的距离小于,则双曲线的离心率的取值范围是()A. B. C. D.【答案】A为,到直线的距离小于,,,则,即,即,则双曲线的离心率的取值范围是,故选A.4.【2018届河南省郑州市第三次预测】已知双曲线的右焦点为为坐标原点,若存在直线过点交双曲线的右支于两点,使,则双曲线离心率的取值范围是__________.【答案】【解析】分析:先求出当直线与x轴垂直时的离心率,再求出当直线与渐近线平行时这一极端情况下的离心率,由此可得所求的范围.若直线平行于渐近线时,直线的斜率为,直线方程为,代入双曲线方程可得点A的坐标为,∴的斜率为,又此时有,∴,整理得,解得.但此时直线与双曲线的右支只有一个交点,不合题意.∴双曲线离心率的取值范围是.5.【2018届山东省烟台市高考练习(二)】已知点是抛物线:与椭圆:的公共焦点,是椭圆的另一焦点,是抛物线上的动点,当取得最小值时,点恰好在椭圆上,则椭圆的离心率为_______.【答案】【解析】分析:由题意可知与抛物线相切时,取得最小值,求出此时点的坐标,代入椭圆方程求出的值,即可求解其离心率.详解:抛物线的焦点坐标为,准线方程为,因为在椭圆上,且为椭圆的焦点,所以,解得或(舍去),所以,所以离心率为.6.已知,是椭圆和双曲线的公共焦点,是它们的一个公共点,且为直角,椭圆的离心率为,双曲线的离心率,则的值为_________.【答案】2.故答案为:2.7.【2018届江西省上饶市三模】已知两定点和,动点在直线:上移动,椭圆以,为焦点且经过点,则椭圆的离心率的最大值为__________.【答案】【解析】分析:作出直线y=x+2,过A作直线y=x+2的对称点C,2a=|PA|+|PB|≥|CD|+|DB|=|BC|,即可得到a的最大值,由于c=1,由离心率公式即可得到.详解:由题意知c=1,离心率e=,椭圆C以A,B为焦点且经过点P,则c=1,对应的离心率e有最大值.故答案为:点睛:(1)本题主要考查椭圆的几何性质和点线对称问题,意在考查学生对这些基础知识的掌握能力和数形结合的分析转化能力. (2)解答本题的关键是求a的最小值.本题求|PA|+|PB|的最小值,利用了对称的思想.求点P关于直线l的对称点时,直线l实际上是线段垂直平分线,根据垂直平分得到一个方程组,即可求出点的坐标.8.【2018届福建省三明市5月测试】已知双曲线的左、右焦点分别为,是右支上的一点,是的延长线上一点,且,若,则的离心率的取值范围是______________.【答案】又即,得:∴方程有大于的根∴得,又∴故答案为:9.如图所示,椭圆中心在坐标原点,为左焦点,分别为椭圆的右顶点和上顶点,当时,其离心率为,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率等于___________.【答案】.则,,∵,∴,∴,∴,解得或(舍去),∴黄金双曲线”的离心率e等于.点睛:本题考查类比推理和双曲线离心率的求法,解题的关键是得到“黄金双曲线”的特征,得到相关点的坐标后将这一特征转化为的关系式,构造出关于离心率的方程,解方程可得所求,解题时要注意双曲线的离心率大于1这一条件.10.【2018届5月第三次全国大联考】已知双曲线的左、右焦点分别为,,过点作轴的垂线,在第一象限与双曲线交于点.设直线的斜率为,若,则双曲线的离心率的取值范围为______________.【答案】11.【百校联盟TOP202018届高三四月联考】已知是椭圆上关于原点对称的两点,若椭圆上存在点,使得直线斜率的绝对值之和为1,则椭圆的离心率的取值范围是______.【答案】【解析】分析:由是椭圆上关于原点对称的两点,易知斜率之积为定值,结合均值不等式即可建立关于的不等式,从而得到椭圆的离心率的取值范围.详解:不妨设椭圆C的方程为,,则,所以,,两式相减得,所以,所以直线斜率的绝对值之和为,由题意得,,所以=4,即,所以,所以.故答案为:.12.【2018届云南省曲靖市第一中学4月监测卷(七)】已知椭圆的右焦点为,短轴的一个端点为,直线交椭圆于两点,若,点到直线的距离不小于,则椭圆离心率的取值范围是__________.【答案】则,即,设,因为点到直线的距离不小于,所以,即,即,即,即椭圆离心率的取值范围是.点睛:(1)在处理涉及椭圆或双曲线的点和焦点问题时,往往利用椭圆或双曲线的定义进行转化,可起到事半功倍的效果;(2)在求椭圆的离心率时,往往用到如下转化:.。
离心率的范围问题--2024年高考数学重难点攻略 解析版

微重点 离心率的范围问题圆锥曲线离心率的范围问题是高考的热点题型,对圆锥曲线中已知特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘应用也可使问题求解更简洁.知识导图考点一 利用圆锥曲线的定义求离心率的范围考点二 利用圆锥曲线的性质求离心率的范围考点三 利用几何图形的性质求离心率的范围考点分类讲解考点一 利用圆锥曲线的定义求离心率的范围规律方法 此类题型的一般方法是利用圆锥曲线的定义,以及余弦定理或勾股定理,构造关于a ,b ,c 的不等式或不等式组求解,要注意椭圆、双曲线离心率自身的范围.1(23-24高三上·内蒙古锡林郭勒盟·期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上存在点P ,使得PF 1 =4PF 2 ,其中F 1,F 2是椭圆C 的两个焦点,则椭圆C 的离心率的取值范围是()A.35,1 B.14,35C.12,1D.0,14【答案】A【分析】根据给定条件,利用椭圆的定义求出PF 1 ,PF 2 ,再利用线段和差关系建立不等式求解即得.【详解】点P 在椭圆C :x 2a 2+y 2b2=1(a >b >0)上,F 1,F 2是椭圆C 的两个焦点,令半焦距为c ,由PF 1 =4PF 2 及PF 1 +PF 2 =2a ,得PF 1 =8a 5,PF 2 =2a5,显然PF 1 -PF 2 ≤|F 1F 2|,当且仅当点F 1,F 2,P 共线,且F 2在线段PF 1上时取等号,因此2c ≥8a 5-2a 5=6a 5,即e =c a ≥35,又0<e <1,则35≤e <1,所以椭圆C 的离心率的取值范围是35,1 .故选:A2(23-24高三上·云南曲靖·阶段练习)已知F 1,F 2,分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,M 为双曲线左支上任意一点,若MF 22MF 1 的最小值为8a ,则双曲线离心率e 的取值范围是()A.1,72B.2,4C.1,3D.3,5【答案】C【分析】由双曲线定义MF 2 2MF 1=MF 1 +2a2MF 1,变形后由基本不等式得最小值,从而得MF 1 =2a ,再利用双曲线中的范围有MF 1 ≥c -a ,由此结合可得离心率的范围.【详解】F 1,F 2是左、右焦点,M 为双曲线左支上的任意一点,则MF 2 -MF 1 =2a ,即MF 2 =MF 1 +2a ,代入MF 22MF 1得MF 22MF 1=MF 1 +2a2MF 1=MF 1 +4a 2MF 1+4a ≥2MF 1 ×4a 2MF 1+4a =8a ,当且仅当MF 1 =2a 时取等号,即MF 1 =2a ,又点M 是双曲线左支上任意一点,所以MF 1 ≥c -a ,即2a ≥c -a ,解得e ≤3,所以双曲线离心率e 的取值范围是1,3 .故选:C .3(23-24高三上·陕西安康·阶段练习)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过点F 1的直线l 与双曲线E 的左、右两支分别交于点A ,B ,弦AB 的中点为M 且MF 1⊥MF 2.若过原点O 与点M 的直线的斜率不小于3,则双曲线E 的离心率的取值范围为()A.1,2 B.2,+∞C.1,5D.5,+∞【答案】B【分析】方法一:连接AF 2,BF 2,结合双曲线的定义,再由条件列出不等式,代入计算,即可得到结果;方法二:连接AF 2,BF 2,可得AF 2 =BF 2 ,联立直线与双曲线方程,结合韦达定理代入计算,表示出k OM ,列出不等式,即可得到结果.【详解】方法一:如图,设双曲线E 的半焦距为c ,连接AF 2,BF 2,因为MF 1⊥MF 2,所以AF 2 =BF 2 .设AF 2 =m ,由双曲线的定义,得AF 1 =m -2a ,BF 1 =2a +m ,所以AB =4a ,AM =BM =2a ,MF 1 =m ,所以MF 2 2=m 2-4a 2=4c 2-m 2,即m 2=2c 2+2a 2.设∠BF 1F 2=α,则∠MOF 2=2α,所以tan2α=2tan α1-tan 2α≥3,解得13≤tan 2α<1.又tan α=MF 2 MF 1 ,所以13≤m 2-4a 2m 2<1,解得m 2≥6a 2,所以2c 2+2a 2≥6a 2,即c 2≥2a 2,所以e =ca≥ 2.故选:B .方法二:如图,设双曲线E 的半焦距为c ,连接AF 2,BF 2,因为MF 1⊥MF 2,所以AF 2 =BF 2 .设AF 2 =m ,由双曲线的定义,得AF 1 =m -2a ,BF 1 =2a +m ,所以AB =4a .设直线l 的方程为x =ty -c ,A x 1,y 1 ,B x 2,y 2 .由x =ty -cx 2a2-y 2b2=1,消去x 并整理,得b 2t 2-a 2 y 2-2b 2tcy +b 4=0.422422242242因为直线l 与双曲线E 的两支相交,所以-b a <1t <ba,即b 2t 2-a 2>0.由y 1+y 2=2b 2tc b 2t 2-a2y 1y 2=b 4b 2t 2-a 2,得AB =1+t 2y 1-y 2 =2ab 21+t 2 b 2t 2-a 2.结合AB =4a ,化简得t 2=b 2+2a 2b 2①.由x 21a 2-y 21b 2=1x 22a 2-y 22b 2=1,两式相减,得x 1-x 2y 1-y 2=a 2b 2⋅y 1+y 2x 1+x 2,即t =a 2b 2⋅k OM ②,②代入①化简,得k 2OM=b 4+2a 2b 2a 4≥3,所以b 2≥a 2,即c 2≥2a 2,所以e ≥ 2.故选:B .4(2023·亳州模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若C 与直线y =x 有交点,且双曲线上存在不是顶点的P ,使得∠PF 2F 1=3∠PF 1F 2,则双曲线离心率的取值范围为.【答案】 (2,2)【解析】双曲线C 与直线y =x 有交点,则b a >1,b 2a 2=c 2-a 2a 2>1,解得e =ca>2,双曲线上存在不是顶点的P ,使得∠PF 2F 1=3∠PF 1F 2,则P 点在双曲线右支上,设PF 1与y 轴交于点Q ,由对称性得|QF 1|=|QF 2|,所以∠QF 1F 2=∠QF 2F 1,所以∠PF 2Q =∠PF 2F 1-∠QF 2F 1=2∠PF 1F 2=∠PQF 2,所以|PQ |=|PF 2|,所以|PF 1|-|PF 2|=|PF 1|-|PQ |=|QF 1|=2a ,由|QF 1|>|OF 1|得2a >c ,所以e =ca<2,又在△PF 1F 2中,∠PF 1F 2+∠PF 2F 1=4∠PF 1F 2<180°,∠PF 1F 2<45°,所以c 2a =cos ∠PF 1F 2>22,即e =ca>2,综上,2<e <2.考点二 利用圆锥曲线的性质求离心率的范围规律方法 利用圆锥曲线的性质,如:椭圆的最大角,通径,三角形中的边角关系,曲线上的点到焦点距离的范围等,建立不等式(不等式组)求解.1(2024·陕西·模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1-c ,0 ,F 2c ,0 ,抛物线C2:x2=2py(p>0),椭圆C1与抛物线C2相交于不同的两点A,B,且四边形ABF1F2的外接圆直径为5c2,若b>c,则椭圆C1的离心率的取值范围是()A.55,2 2B.22,255C.55,255D.255,1【答案】A【分析】先利用椭圆与抛物线的对称性分析得四边形ABF1F2的外接圆就是△BF1F2的外接圆,再利用正弦定理求得sin∠F1BF2,再利用椭圆中焦点三角形的性质得到∠F1MF2=θ的取值范围,从而得到关于a,b,c的齐次不等式,解之即可得解.【详解】如图,由椭圆与抛物线的对称性,知点A,B关于y轴对称,四边形ABF1F2是等腰梯形,易知四边形ABF1F2的外接圆就是△BF1F2的外接圆,设四边形ABF1F2的外接圆半径为R.在△BF1F2中,由正弦定理,知2csin∠F1BF2=2R=5c2,∴sin∠F1BF2=45,记椭圆C1的上顶点为M,∠F1MF2=θ,坐标原点为O,易知∠F1BF2<θ,又b>c,则tan θ2=tan∠F1MO=cb<1,0<θ2<π2,∴0<θ2<π4,∴0<∠θ<π2,即θ为锐角,∴45=sin∠F1BF2<sinθ,又sinθ=2sinθ2cosθ2sin2θ2+cos2θ2=2tanθ2tan2θ2+1,∴2tanθ2tan2θ2+1>45,∴12<tanθ2<2.又0<θ2<π4,∴12<tanθ2<1,∴12<cb<1,则14<c2b2<1,所以14<c2a2-c2<1,则55<ca<22,即55<e<22,则椭圆C1的离心率的取值范围是55,22,故选:A.【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=c a;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).2(2024高三·全国·专题练习)如图,椭圆的中心在坐标原点,焦点在x轴上,A1,A2,B1,B2椭圆顶点,F2为右焦点,延长B1F2与A2B2交于点P,若∠B1PA2为钝角,则该椭圆离心率的取值范围是()A.5-22,0B.0,5-22C.0,5-12D.5-12,1【答案】D【分析】利用椭圆的性质及平面向量数量积的坐标表示构造齐次式计算即可.【详解】解:如图所示,∠B 1PA 2是B 2A 2 与F 2B 1的夹角;设椭圆的长半轴、短半轴、半焦距分别为a ,b ,c ,则B 2A 2 =a ,-b ,F 2B 1=-c ,-b ,∵向量的夹角为钝角时,B 2A 2 ⋅F 2B 1=-ac +b 2<0,又b 2=a 2-c 2,∴a 2-ac -c 2<0,两边除以a 2得1-e -e 2<0,解得e >5-12或e <-5-12;又∵0<e <1,∴1>e >5-12.故选:D .3(23-24高三下·陕西安康·阶段练习)已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),抛物线C 2:x 2=2py (p >0),且椭圆C 1与抛物线C 2相交于A ,B 两点,若F 1A ⋅F 1B=3c 2,则椭圆C 1的离心率的取值范围是()A.0,33B.0,33C.33,1D.33,1 【答案】B【分析】由椭圆和抛物线的对称性可知A ,B 两点关于y 轴对称,设出两点坐标,代入条件计算,将结果与椭圆联立可求解A 点纵坐标,结合点在椭圆上纵坐标的范围即可求出离心率的范围.【详解】解:设A x 0,y 0 ,则B -x 0,y 0 ,因为F 1(-c ,0),F 2(c ,0),由F 1A ⋅F 1B =3c 2,得:x 0+c ⋅-x 0+c +y 20=3c 2,即x 20-y 20=-2c 2,点A ,B 在椭圆上,所以满足x 20a 2+y 20b2=1,代入上式可得:y 20-2c 2a 2+y 20b 2=1,即b 2y 20-2c 2 +a 2y 20=a 2b 2,即y 20=a 2b 2+2b 2c 2a 2+b 2,因为点在椭圆上,所以y 20=a 2b 2+2b 2c 2a 2+b 2≤b 2,解得:2c 2≤b 2,即3c 2≤a 2,解得:0<e ≤33.故选:B4已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若双曲线上存在点P ,使sin ∠PF 1F 2sin ∠PF 2F 1=ac ,则该双曲线的离心率的取值范围为()A.(1,1+2) B.(1,1+3)C.(1,1+2]D.(1,1+3]【答案】A【解析】若点P 是双曲线的顶点,a sin ∠PF 1F 2=csin ∠PF 2F 1无意义,故点P 不是双曲线的顶点,在△PF 1F 2中,由正弦定理得|PF 1|sin ∠PF 2F 1=|PF 2|sin ∠PF 1F 2,又a sin ∠PF 1F 2=c sin ∠PF 2F 1,∴|PF 1||PF 2|=c a ,即|PF 1|=ca ·|PF 2|,∴P 在双曲线的右支上,由双曲线的定义,得|PF 1|-|PF 2|=2a ,∴c a |PF 2|-|PF 2|=2a ,即|PF 2|=2a 2c -a ,由双曲线的几何性质,知|PF 2|>c -a ,∴2a 2c -a>c -a ,即c 2-2ac -a 2<0,∴e 2-2e -1<0,解得-2+1<e <2+1,又e >1,∴双曲线离心率的取值范围是(1,1+2).考点三 利用几何图形的性质求离心率的范围规律方法 利用几何图形中几何量的大小,例如线段的长度、角的大小等,构造几何度量之间的关系.1(2023·无锡模拟)已知点P 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,P 到两渐近线的距离分别为d 1,d 2,若d 1d 2≤12|OP |2恒成立,则C 的离心率的最大值为()A.2B.3C.2D.5【答案】 A【解析】双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±b a x ,即bx ±ay =0,设双曲线上的点P (x 0,y 0),所以x 20a 2-y 20b2=1,即b 2x 20-a 2y 20=a 2b 2,则P (x 0,y 0)到两条渐近线bx ±ay =0的距离分别为d 1=bx 0+ay 0a 2+b2,d 2=bx 0-ay 0a 2+b2,所以d 1d 2=b 2x 20-a 2y 2a 2+b 2=a 2b 2a 2+b2,又|OP |2=x 20+y 20=a 2+a 2b2y 20+y 20=a 2+a2b2+1y 20,y 0∈R ,所以|OP |2≥a 2,因为d 1d 2≤12|OP |2恒成立,所以a 2b 2a 2+b2≤12a 2,整理得b 2≤a 2,即b 2a2≤1,所以离心率e =c a =c 2a 2=1+b 2a2≤2,则C 的离心率的最大值为 2.2(2022高三上·河南·专题练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的焦距为2c ,直线y =b a x +b2与椭圆C 交于点P ,Q ,若PQ ≤7c ,则椭圆C 的离心率的取值范围为()A.32,1 B.0,22 C.105,1 D.0,13【答案】C【分析】联立椭圆与直线方程,利用韦达定理与弦长公式得到关于a ,b ,c 的齐次不等式,从而得解.【详解】联立方程y =b a x +b 2x 2a2+y 2b2=1,消去y ,整理得8x 2+4ax -3a 2=0,则Δ=4a 2-4×8×-3a 2 =112a 2>0,设P ,Q 的横坐标分别为x 1,x 2,则x 1+x 2=-a 2,x 1⋅x 2=-3a 28,所以PQ =1+b a 2⋅x 1-x 2 =1+b a2⋅x 1+x 2 2-4x 1x 2=a 2+b 2a 2⋅a 24+3a 22=72a 2+b 2,由PQ ≤7c ,得72a 2+b 2≤7c ,整理得a 2+b 2≤4c 2,即a 2+a 2-c 2≤4c 2,即c 2a2≥25,又0<e <1,则e =c a ≥105,故105≤e <1,所以椭圆C 的离心率的取值范围为105,1 .故选:C .【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式e =ca;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3(23-24高三上·广东·阶段练习)过双曲线C :x 2a 2-y 2b2=1,a >0,b >0 的右焦点F 作渐近线的垂线,垂足为H ,点O 为坐标原点,若sin ∠HOF >sin ∠HFO ,又直线y =2x 与双曲线无公共点,则双曲线C 的离心率的取值范围为()A.(2,5]B.(2,+∞)C.(1,5)D.(2,5)【答案】A【分析】结合题意以及双曲线的有关知识,找到a ,b ,c 之间的不等关系,整理计算即可.【详解】如图,可知△OFH 中,OF =c ,FH =b ,OH =a ,因为sin ∠HOF >sin ∠HFO ,由正弦定理可知b >a ,即b 2>a 2,所以c 2>2a 2,得e >2.又因为直线y =2x 与双曲线无公共点,则ba≤2,即b ≤2a ,结合a 2+b 2=c 2,所以c 2≤5a 2,所以e ≤5.综上:2<e ≤5,故选:A .4(2023·陕西西安·模拟预测)已知两动点A ,B 在椭圆C :x 2a2+y 2=1a >1 上,动点P 在直线3x +4y -10=0上,若∠APB 恒为锐角,则椭圆C 的离心率的取值范围是()A.0,23B.23,1C.0,63D.63,1【答案】C【分析】由椭圆性质和图像得出椭圆的两条互相垂直的切线的交点的轨迹为圆,由条件可知直线3x +4y -10=0与圆x 2+y 2=a 2+1相离, 从而可得出a 的范围, 进而求出离心率的范围.【详解】若从圆x 2+y 2=a 2+b 2上一点引椭圆x 2a 2+y 2b2=1的两条切线一定互相垂直.证明如下:设椭圆的切线方程为y =kx ±k 2a 2+b 2,∴过圆上一点p 1x 1,y 1 的切线为y 1=kx 1±k 2a 2+b 2,y 1-kx 1 2=k 2a 2+b 2,即x 21-a 2 k 2-2x 1y 1k +y 21-b 2 =0.(1)又∵p 1x 1y 1 在圆上, ∴x 21+y 21=a 2+b 2,即x 21-a 2=-y 21-b 2 .(i )当x 21-a 2≠0时, (1)式为k 2-2x 1y 1x 2-a 2k -1=0,由根与系数关系知k 1k 2=-1, 故两条切线互相垂直.(ii )当x 21-a 2=0时, x =±a ,y =±b , 此时两条切线显然互相重直.故圆x 2+y 2=a 2+b 2上一点引椭圆x 2a 2+y 2b2=1的两条切线一定互相垂直.所以椭圆x2a2+y 2=1的两条互相垂直的切线的交点的轨迹是圆x 2+y 2=a 2+1.若∠APB 恒为锐角, 则直线3x +4y -10=0与圆x 2+y 2=a 2+1相离故109+16>a 2+1, 又a >1,∴1<a <3,∴e =c a =a 2-1a =1-1a 2∈0,63 .故选:C .强化训练一、单选题1(2023·全国·模拟预测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,P 为双曲线C 的右支上一点,且PF 1⊥PF 2,2≤PF 1PF 2 ≤4,则双曲线C 的离心率的取值范围为()A.52,344B.173,5C.1,173D.5,+∞【答案】B【分析】先利用双曲线的定义及勾股定理等得到PF 1 PF 2 =2b 2,设PF 1 PF 2=m ,结合双曲线的定义得到PF 1⋅PF 2 =4a 2m (m -1)2,则b 2a 2=2m +1m -2,构造函数f (m )=m +1m -2(2≤m ≤4),利用导数法求解.【详解】解:因为PF 1 -PF 2 =2a ,PF 1⊥PF 2,∴PF 1 2+PF 2 2=PF 1 -PF 2 2+2PF 1 PF 2 =4a 2+2PF 1 PF 2 =4c 2,又b 2=c 2-a 2,∴PF 1 PF 2 =2b 2.设PF 1 PF 2=m ,则PF 1 =m PF 2 ,2≤m ≤4,∴PF 1 -PF 2 =(m -1)PF 2 =2a ,∴PF 2 =2a m -1,则PF 1 =2amm -1,∴PF 1 PF 2 =4a 2m(m -1)2.∴4a 2m (m -1)2=2b 2,则b 2a 2=2m m 2-2m +1=2m +1m -2,设f (m )=m +1m -2(2≤m ≤4),则f (m )=1-1m2>0,∴f m 在2,4 上单调递增,∴f (2)=12≤f (m )≤f (4)=94,∴49≤1f (m )≤2,∴89≤b 2a 2≤4,∴c 2a 2=1+b 2a2∈179,5 ,∴e =c a ∈173,5 ,故选:B .2(23-24高二上·江苏徐州·期中)设F 1,F 2分别为椭圆C 1:x 2a 21+y 2b 21=1a 1>b 1>0 与双曲线C 2:x 2a 22-y 2b 22=1a 2>0,b 2>0 的公共焦点,它们在第一象限内交于点M ,∠F 1MF 2=60°,若椭圆的离心率e 1∈22,32 ,则双曲线C 2的离心率e 2的取值范围为()A.52,62 B.62,+∞ C.324,62D.62,142【答案】C【分析】根据椭圆以及双曲线的定义可得,MF 1 =a 1+a 2MF 2 =a 1-a 2.进而在△MF 1F 2中,由余弦定理变形可得a 1c2+3a 2c 2-4=0,1e 22=134-1e 12.根据不等式的性质,结合已知,求解即可得出答案.【详解】根据椭圆及双曲线的定义可得MF 1 +MF 2 =2a 1MF 1 -MF 2 =2a 2 ,所以MF 1 =a 1+a 2MF2 =a 1-a 2.在△MF F 中,∠F MF =60°,由余弦定理可得cos ∠F 1MF 2=MF 12+MF 2 2-F 1F 2 22MF 1 ⋅MF 2 =a 1+a 2 2+a 1-a 2 2-4c 22a 1+a 2 a 1-a 2=12,整理可得,a 21+3a 22-4c 2=0,两边同时除以c 2可得,a 1c 2+3a 2c 2-4=0.又e 1=c a 1,e 2=ca 2,所以有1e 1 2+31e 22-4=0,所以,1e 2 2=134-1e 12.因为e 1∈22,32 ,所以12≤e 21≤34,所以43≤1e 21≤2,所以,-2≤-1e 21≤-43,2≤4-1e 21≤83,所以,23≤1e 2 2=134-1e 12 ≤89.则63≤1e 2≤223,故324≤e 2≤62.故选:C .3(2023·贵州黔东南·一模)设双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,M 0,3b ,若直线l 与E 的右支交于A ,B 两点,且F 为△MAB 的重心,则E 的离心率的取值范围为()A.133,3 ∪3,+∞B.2137,3 ∪3,+∞C.1,133D.1,2137 【答案】A【分析】设点D (x 0,y 0)为AB 的中点,根据F 为△MAB 的重心,求得D 3c 2,-3b 2,由直线l 与E 的右支交于A ,B 两点,得到3c 22a 2--3b22b 2>1,求得c a >133,再由e =3时,证得M ,F ,A ,B 四点共线不满足题意,即可求得双曲线E 的离心率的取值范围.【详解】由题意,双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c ,0),且M 0,3b ,设点D (x 0,y 0)为AB 的中点,因为F 为△MAB 的重心,所以MF =2FD,即(c ,-3b )=2(x 0-c ,y 0),解得x 0=3c 2,y 0=-3b 2,即D 3c 2,-3b2,因为直线l 与E 的右支交于A ,B 两点,则满足3c 2 2a 2--3b 22b 2>1,整理得c 2a2>139,解得c a >133或c a <-133(舍去),当离心率为e =3时,即a =33c 时,可得b =c 2-a 2=63c ,此时D 3c 2,-6c2,设A (x 1,y 1),B (x 2,y 2),可得x 1+x 2=3c ,y 1+y 2=-6c ,又由x21a2-y21b2=1x22a2-y22b2=1,两式相减可得y2-y1x2-x1=b2x2+x1a2y1+y2=b2×3ca2×(-6c)=-6,即直线l的斜率为k l=-6,又因为k MF=0-3bc-0=-6,所以k MF=k l,此时M,F,A,B四点共线,此时不满足题意,综上可得,双曲线E的离心率的取值范围为133,3∪3,+∞.故选:A.【点睛】知识方法:求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得a,c得值,根据离心率的定义求解离心率e;2、齐次式法:由已知条件得出关于a,c的二元齐次方程或不等式,然后转化为关于e的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.4(2023·四川攀枝花·三模)已知双曲线C:x2a2-y2b2=1a>0,b>0,A为双曲线C的左顶点,B为虚轴的上顶点,直线l垂直平分线段AB,若直线l与C存在公共点,则双曲线C的离心率的取值范围是()A.2,3B.2,+∞C.3,+∞D.1,2【答案】B【分析】先根据题意求得直线l的斜率,再根据直线l与C存在公共点,只需直线l的斜率大于渐近线的斜率-ba即可求解.【详解】依题意,可得A-a,0,B0,b,则k AB=b-00+a=ba,又因为直线l垂直平分线段AB,所以k l=-a b,因为直线l与C存在公共点,所以-ab>-ba,即a2<b2,则a2<c2-a2,即2<c2a2,e2>2,解得e>2,所以双曲线C的离心率的取值范围是2,+∞.故选:B5(2023·湖北·模拟预测)已知双曲线x2m-y24-m=1,m∈0,4,过点P2,1可做2条直线与左支只有一个交点,与右支不相交,同时可以做2条直线与右支只有一个交点,与左支不相交,则双曲线离心率的取值范围是()A.1,5B.1,5 2C.1,2D.1,2【答案】B【分析】作出草图,利用双曲线的性质结合图形分类讨论计算即可.【详解】如图所示,设双曲线的两条渐近线分别为l、l ,由已知易知F22,0,若P在双曲线内部(如P 位置),显然作任何直线均与双曲线右支有交点,无法满足题意;若P在双曲线与渐近线l之间(如P 位置),过P所作直线若与双曲线左支相交则必与右支也相交,也无法满故P 只能在双曲线的渐近线l 上方,此时过P 可做唯一一条与右支相切的直线,也可以作一条与渐近线l 平行的直线,该两条直线均与左支无交点;同理也可作出唯一一条与左支相切的直线,及一条与渐近线l 平行的直线符合要求;即1>24-m m ⇒4m -1<14⇒e 2=4m <54,故e ∈1,52,故选:B6(23-24高三上·内蒙古锡林郭勒盟·期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上存在点P ,使得PF 1 =4PF 2 ,其中F 1,F 2是椭圆C 的两个焦点,则椭圆C 的离心率的取值范围是()A.0,25B.25,1C.35,1D.35,1【答案】D【分析】由PF 1 =4PF 2 结合椭圆的定义可求出PF 1 ,再由a +c ≥PF 1 ≥a -c 可求出离心率的范围.【详解】因为PF 1 =4PF 2 ,因为PF 1 +PF 2 =2a ,所以4PF 2 +PF 2 =2a ,所以PF 2 =2a 5,PF 1 =8a5,因为a +c ≥PF 1 ≥a -c ,所以a -c ≤8a5≤a +c ,所以5a -5c ≤8a ≤5a +5c ,所以5-5e ≤8≤5+5e ,解得e ≥35,因为0<e <1,所以35≤e <1,所以离心率的范围35,1 ,故选:D .7(2023·四川·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,离心率为2,焦点到渐近线的距离为 6.过F 2作直线l 交双曲线C 的右支于A ,B 两点,若H ,G 分别为△AF 1F 2与△BF 1F 2的内心,则HG 的取值范围为()A.22,4B.3,2C.2,433D.22,463【分析】求出双曲线的解析式,根据△AF 1F 2与△BF 1F 2的内心求出F 1E ,F 2E 的关系式和点H ,G 的横坐标,设出直线AB 的倾斜角,得到HG 的表达式,即可求出HG 的取值范围【详解】由题意,在C :x 2a 2-y 2b2=1a >0,b >0 中,根据焦点到渐近线的距可得b =6,离心率为2,∴e =ca =1+b 2a 2=1+6a 2=2,解得:a =2,∴c =b 2+a 2=22∴双曲线的方程为C :x 22-y 26=1.记△AF 1F 2的内切圆在边AF 1,AF 2,F 1F 2上的切点分别为M ,N ,E ,则H ,E 横坐标相等AM =AN ,F 1M =F 1E ,F 2N =F 2E ,由AF 1 -AF 2 =2a ,即AM +MF 1 -AN +NF 2 =2a ,得MF 1 -NF 2 =2a ,即F 1E -F 2E =2a ,记H 的横坐标为x 0,则E x 0,0 ,于是x 0+c -c -x 0 =2a ,得x 0=a ,同理内心G 的横坐标也为a ,故HG ⊥x 轴.设直线AB 的倾斜角为θ,则∠OF 2G =θ2,∠HF 2O =90°-θ2(Q 为坐标原点),在△HF 2G 中,HG =c -a tan θ2+tan 90°-θ2 =c -a ⋅sin θ2cos θ2+cos θ2sin θ2 =c -a ⋅2sin θ=22sin θ,由于直线l 与C 的右支交于两点,且C 的一条渐近线的斜率为ba=3,倾斜角为60°,∴60°<θ<120°,即32<sin θ≤1,∴HG 的范围是22,463 .故选:D .【点睛】本题考查双曲线的定义与几何性质、三角恒等变换,考查推理论证能力、运算求解能力、数形结合思想,以及角度的取值范围,具有极强的综合性.8(23-24高二上·山东济宁·阶段练习)设椭圆x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1、F 2,P 是椭圆上一点,PF 1 =λPF 2 13≤λ≤3 ,∠F 1PF 2=π2,则椭圆离心率的取值范围为()A.22,53 B.12,59C.22,104D.12,58【答案】C【分析】设PF 2 =t ,由椭圆定义和勾股定理得到e 2=λ2+1λ+1 2,换元后得到λ2+1λ+12=21m -12 2+12,根据二次函数单调性求出12≤e 2≤58,得到离心率的取值范围.【详解】设F 1-c ,0 ,F 2c ,0 ,由椭圆的定义可得,PF 1 +PF 2 =2a ,可设PF 2 =t ,可得PF 1 =λt ,即有λ+1 t =2a ,①由∠F 1PF 2=π2,可得PF 1 2+PF 2 2=4c 2,即为λ2+1 t 2=4c 2,②由②÷①2,可得e 2=λ2+1λ+12,令m =λ+1,可得λ=m -1,即有λ2+1λ+12=m 2-2m +2m 2=21m -12 2+12,由13≤λ≤3,可得43≤m ≤4,即14≤1m ≤34,则m =2时,取得最小值12;m =43或4时,取得最大值58.即有12≤e 2≤58,得22≤e ≤104.故选:C 【点睛】方法点睛:求椭圆的离心率或离心率的取值范围,常见有三种方法:①求出a ,c ,代入公式e =ca;②根据条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于离心率的方程(不等式),解方程(不等式)即可得离心率或离心率的取值范围;③由题目条件得到离心率关于变量的函数,结合变量的取值范围得到离心率的取值范围.二、多选题9(2024·河北邯郸·三模)已知双曲线C :x 2λ+6-y 23-λ=1,则()A.λ的取值范围是(-6,3)B.C 的焦点可在x 轴上也可在y 轴上C.C 的焦距为6D.C 的离心率e 的取值范围为(1,3)【答案】AC【分析】根据双曲线方程的特征,易于求得-6<λ<3,判断方程中分母的符号即可判断A ,B 项,计算易得C 项,先算出离心率的表达式,再根据λ的范围,即可确定e 的范围.【详解】对于A ,∵x 2λ+6-y 23-λ=1表示双曲线,∴(λ+6)(3-λ)>0,解得-6<λ<3,故A 正确;对于B ,由A 项可得-6<λ<3,故λ+6>0,3-λ>0,∴C 的焦点只能在x 轴上,故B 错误;对于C ,设C 的半焦距为c (c >0),则c 2=λ+6+3-λ=9,∴c =3,即焦距为2c =6,故C 正确;对于D ,离心率e =3λ+6,∵-6<λ<3,∴0<λ+6<3,∴e 的取值范围是(1,+∞),故D 错误.故选:AC .10(23-24高三上·黑龙江哈尔滨·期末)已知椭圆C :x 24+y 2b2=1(0<b <2)的左右焦点分别为F 1,F 2,点P 2,1 在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A.离心率的取值范围为0,22B.QF 1 ⋅QF 2 的最小值为4C.不存在点Q ,使得QF 1⋅QF2=0D.当e =33时,以点P 为中点的椭圆的弦的斜率为1【答案】AC【分析】根据点P 2,1 在椭圆内部求b 的范围,然后可得离心率范围,可判断A ;利用椭圆定义和基本不等式判断B ;当点Q 为短轴端点时∠F 1QF 2最大,然后利用余弦定理判断∠F 1QF 2的最大值,然后可判断C ;利用点差法求解即可判断D .【详解】因为点P 2,1 在椭圆内部,所以24+1b2<1,得b 2>2,因为e =c a=1-b 2a2=1-b 24,所以0<e <22,A 正确;因为点Q 在椭圆上,所以QF 1 +QF 2 =2a =4,所以QF 1 ⋅QF 2 ≤QF 1 +QF 2 22=4,当且仅当QF 1 =QF 2 时等号成立,所以,QF 1 ⋅QF 2 有最大值4,B 错误;由椭圆性质可知,当点Q 为短轴端点时∠F 1QF 2最大,此时,cos ∠F 1QF 2=a 2+a 2-2c 22a2=1-2e 2,因为0<e <22,所以cos ∠F 1QF 2=1-2e 2>0,即∠F 1QF 2的最大值为锐角,故不存在点Q ,使得QF 1⋅QF2=0,C 正确;当e =33时,有c 2=33,得c =233,所以b 2=83,易知,当点P 为弦中点时斜率存在,记直线斜率为k ,与椭圆的交点为A x 1,y 1 ,B x 2,y 2 ,则x 214+y 21b 2=1x 224+y 22b 2=1 ,由点差法得y 2-y 1 y 2+y 1 x 2-x 1 x 2+x 1 =-b 24=-23,又k =y 2-y 1x 2-x 1,x 2+x 1=22,y 2+y 1=2,所以22k =-23,即k =-223,D 错误.故选:AC11(2023·广东汕头·三模)已知F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,P 为椭圆上任意一点(不在x 轴上),△PF 1F 2外接圆的圆心为H ,半径为R ,△PF 1F 2内切圆的圆心为I ,半径为r ,直线PI 交x 轴于点M ,O 为坐标原点,则()A.S △PF 1F 2最大时,r =33B.PH ⋅PO的最小值为2C.椭圆C 的离心率等于PI IMD.R ⋅r 的取值范围为12,23【答案】ABD【分析】对于A ,根据当P 在短轴的端点时,S △PF 1F 2取得最大,且最大值为3,再根据S △MF 1F 2=S △IF 1F 2+S △IF 1P+S △IF 2P =3r ,代入进而即可求解;对于B ,根据PO =12PF 1 +PF 2,然后结合平面向量数量积的几何意义与基本不等式即可求解;对于C ,运用角平分线定理即可求解;对于D ,由正弦定理可得R =1sin θ,再又结合A 可得r =tan θ2,从而得到R ⋅r =tan θ2sin θ=12cos 2θ2,再根据题意得到θ∈0°,60° ,进而即可求解.【详解】对于A ,设P x ,y ,-2<x <2,则-3<y <3,且y ≠0,所以S △PF 1F 2=12F 1F 2 ⋅y =c ⋅y =y ,则当P 在短轴的端点时,S △PF 1F 2取得最大,且最大值为3,又S △MF 1F 2=S △IF 1F 2+S △IF 1P +S △IF 2P =12F 1F 2+PF 1+PF 2 r =122a +2c r =3r ,所以当S △PF 1F 2最大时,3r =3,即r =33,故A 正确;对于B ,过点H 作HG ⊥PF 1,垂足为点G ,又点H 为△PF 1F 2外接圆的圆心,即为△PF 1F 2三条边的中垂线的交点,则点G 为PF 1的中点,由PH ⋅PO =12PH ⋅PF 1 +PF 2 =12PH⋅PF 1 +PH ⋅PF 2 ,又PH ⋅PF 1 =PG +GH ⋅PF 1 =PG ⋅PF 1 =12PF 1 2,同理PH ⋅PF 2 =12PF 2 2,所以PH ⋅PO =14PF 1 2+PF 2 2 =14PF 1 2+PF 2 2≥12PF 1 +PF 222=a 22=2,当且仅当PF 1 =PF 2 =a 时等号成立,即PH ⋅PO的最小值为2,故B 正确;对于C ,由△PF 1F 2内切圆的圆心为I ,则IF 1,IF 2分别是∠PF 1F 2,∠PF 2F 1的角平分线,则由角平分线定理可得PI IM =PF 1 F 1M =PF 2 F 2M ,即PI IM =PF 1+ PF 2 F 1M + F 2M =2a 2c =a c =1e ,故C 错误;对于D ,设∠F 1PF 2=θ,PF 1=a 1,PF 2=a 2,由正弦定理可得2R =F 1F 2 sin θ=2c sin θ,即R =c sin θ=1sin θ,则cos θ=a 21+a 22-2c 22a 1⋅a 2=a 1+a 2 2-2a 1⋅a 2-4c 22a 1⋅a 2=4b 2-2a 1⋅a 22a 1⋅a 2,即a 1⋅a 2=2b 2cos θ+1=6cos θ+1,因为S △PF 1F 2=12a 1a 2sin θ=3sin θcos θ+1=3sin θ2cos θ2cos 2θ2=3tanθ2,又结合A 有S △MF 1F 2=3r ,所以3tanθ2=3r ,即r =tan θ2,所以R ⋅r =tan θ2sin θ=12cos 2θ2,又因为当P 在短轴的端点时,θ最大,此时PF 1=PF 2=F 1F 2=2,θ=60°,所以θ∈0°,60° ,即θ2∈0°,30° ,所以cos θ2∈32,1,故R ⋅r =12cos 2θ2∈12,23 ,故D 正确.故选:ABD .【点睛】本题考查了椭圆的定义以及几何性质,明确外心的位置和内角平分线性质,灵活运用正弦定理和等面积法是解答本题关键,考查了推理能力、运算求解能力,属于难题.三、填空题12(22-23高三上·福建泉州·期中)抛物线C 1:y 2=4x 的焦点F ,点P 3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为.【答案】22【分析】焦点F 1,0 ,根据椭圆定义得到c =2,设椭圆和抛物线的交点为Q ,根据抛物线性质得到a =QF +QP2≥2,得到离心率的最大值.【详解】抛物线C 1:y 2=4x 的焦点F 1,0 ,根据题意2c =3-1 2+2-0 2=22,c = 2.设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =QF +QP2=d +QP 2≥3--1 2=2,当PQ 与准线垂直时等号成立,此时e =c a =22.故答案为:2213(2023·广东·一模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,倾斜角为π3的直线PF 2与双曲线C 在第一象限交于点P ,若∠PF 1F 2≥∠F 2PF 1,则双曲线C 的离心率的取值范围为.【答案】1+32,2【分析】利用双曲线的性质及余弦定理计算即可.【详解】因为倾斜角为π3的直线PF 2与双曲线C 在第一象限交于点P ,可知直线PF 2的倾斜角大于双曲线的一条渐近线的倾斜角,即batan60°=3⇒3a 2 b 2=c 2-a 2⇒e <2,设PF 2 =n ,则PF 1 =2a +n ,根据∠PF 1F 2≥∠F 2PF 1可知PF 2 ≥F 1F 2 =2c ,在△PF 1F 2中,由余弦定理可知n 2+4c 2-2a +n 2=2cos120°×2cn ⇒n =2b 22a -c,即2b 22a -c≥2c ⇒b 2≥2ac -c 2⇒2c 2-2ac -a 2≥0,则2e 2-2e -1≥0⇒e ≥1+32,故2>e ≥1+32故答案为:1+32,2 14(23-24高三上·湖南娄底·期末)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),直线l 1和l 2相互平行,直线l 1与双曲线C 交于A ,B 两点,直线l 2与双曲线C 交于D ,E 两点,直线AE 和BD 交于点P (异于坐标原点).若直线l 1的斜率为3,直线OP (O 是坐标原点)的斜率k ≥1,则双曲线C 的离心率的取值范围为.【答案】2,10 ∪10,+∞ 【分析】首先ba≠3,故e =1+b a 2≠10,其次由题意由点差法得y M =b 23a 2x M ①,同理y N =b 23a2x N ②,由P,M,N三点共线,所以y M-y0x M-x0=y N-y0x N-x0,代入得b23a2=y0x0=k≥1,结合离心率公式即可得解.【详解】由题意,ba≠3,故e=1+b a 2≠10,设A x1,y1,B x2,y2,D x3,y3,E x4,y4,P x0,y0,AB的中点M x M,y M,DE的中点N x N,y N,则x21a2-y21b2=1x22a2-y22b2=1,两式相减,得x21-x22a2-y21-y22b2=0,化简得y1+y22x1+x22⋅y1-y2x1-x2=b2a2,所以b2a2⋅x My M=y1-y2x1-x2=3,所以y M=b23a2x M①,同理y N=b23a2x N②,因为AB∥DE,所以P,M,N三点共线,所以y M-y0x M-x0=y N-y0x N-x0,将①②代入得b23a2x M-y0x M-x0=b23a2x N-y0x N-x0,即x M-x Nb23a2x0-y0=0,因为x M≠x N,所以b23a2=y0x0=k≥1,所以b2a2≥3,所以双曲线C的离心率为e=ca=1+b2a2≥2.所以双曲线C的离心率的取值范围为2,10∪10,+∞.故答案为:2,10∪10,+∞.【点睛】关键点睛:关键是用点差法来得到y M=b23a2x M①,同理y N=b23a2x N②,结合P,M,N三点共线以及离心率公式即可顺利得解.四、解答题15(21-22高三上·新疆昌吉·阶段练习)已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上(点P不在x轴上),且PF1=5PF2.(1)用a表示PF1,PF2;(2)若∠F1PF2是钝角,求双曲线离心率e的取值范围.【答案】(1)PF1=52a,PF2=12a(2)264<e <32【分析】(1)直接利用双曲线的定义结合条件求得PF 1 ,PF 2 ;(2)由余弦定理得到cos ∠F 1PF 2=135-85e 2,利用∠F 1PF 2是钝角,则-1<cos ∠F 1PF 2<0,解得离心率e 的取值范围.【详解】(1)因为点P 在双曲线的右支上,所以PF 1 -PF 2 =2a ,又PF 1 =5PF 2 ,联立解得PF 1 =52a ,PF 2 =12a .(2)在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=254a 2+a 24-4c 22×52a ×12a =132a 2-4c 252a 2=135-85e 2,因为-1<cos ∠F 1PF 2<0,所以-1<135-85e 2<0,所以264<e <32.16(2023·上海奉贤·三模)已知双曲线T :x 2a 2-y 2b2=1(a >0,b >0)离心率为e ,圆O :x 2+y 2=R 2R >0 .(1)若e =2,双曲线T 的右焦点为F 2,0 ,求双曲线方程;(2)若圆O 过双曲线T 的右焦点F ,圆O 与双曲线T 的四个交点恰好四等分圆周,求b 2a2的值;(3)若R =1,不垂直于x 轴的直线l :y =kx +m 与圆O 相切,且l 与双曲线T 交于点A ,B 时总有∠AOB =π2,求离心率e 的取值范围.【答案】(1)x 2-y 23=1(2)2+1(3)2,+∞【分析】(1)根据离心率和右焦点即可求出答案.(2)根据对称性分析,∠AOF =45°,则A 22c ,22c,代入曲线方程即可求得结果.(3)根据已知,利用圆心到直线l 距离为m k 2+1=1,得出m 2=k 2+1,再由∠AOB =π2,可得k 2x 1x 2+km x 1+x 2 +m 2x 1x 2=-1,然后联立y =kx +m x 2a 2-y 2b2=1,得出x 1+x 2=2a 2kmb 2-a 2k 2,x 1x 2=-a 2m 2+b 2 b 2-a 2k 2,上式联立化简可得k 2+1 a 2+a 2b 2-b 2 =0,进而利用a ,b ,c 关系,得出ca的范围.【详解】(1)因e =2,双曲线T 的右焦点为F 2,0,则c =2,ca=2,a =1,b 2=c 2-a 2=3,则双曲线方程为x 2-y 23=1.(2)如图所示,因为圆O 与双曲线T 的四个交点恰好四等分圆周,则OA =c ,∠AOF =45°,则A 22c ,22c,代入双曲线方程x 2a 2-y 2b2=1,可得b 2a 2-a 2b 2=2,令x =b 2a2x >0 ,则x -1x =2,解得x =1+2,即b 2a2=2+1.(3)由题知,作图如下,因为直线l :y =kx +m 与圆O 相切,且R =1,则圆心到直线l 距离为mk 2+1=1,化简得m 2=k 2+1,①又∠AOB =π2,设A x 1,y 1 ,B x 2,y 2 ,则k OA ⋅k OB =-1,即y 1x 1⋅y 2x 2=-1,则k 2x 1x 2+km x 1+x 2 +m 2x 1x 2=-1,②联立y =kx +m x 2a2-y 2b2=1得b 2-a 2k 2 x 2-2a 2kmx -a 2m 2-a 2b 2=0,则x 1+x 2=2a 2km b 2-a 2k 2,x 1x 2=-a 2m 2+b 2 b 2-a 2k2,③联立①②③,得k 2+1 a 2+a 2b 2-b 2 =0,则a 2+a 2b 2-b 2=0,又c 2=a 2+b 2,则c 2a2=c 2-a 2+2=b 2+2>2,则e =ca>2,即离心率e 的取值范围为2,+∞ .【点睛】关键点睛:本题考查双曲线的性质,直线与双曲线和圆的位置关系,训练“点差法”的应用,计算量较大,属于中档题.17(23-24高三上·辽宁朝阳·阶段练习)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,a 2+b 2=1,O 为坐标原点,过F 的直线l 与C 的右支相交于A ,B 两点.(1)若b <22,求C 的离心率e 的取值范围;(2)若∠AOB 恒为锐角,求C 的实轴长的取值范围.【答案】(1)1,2 (2)5-1,2【分析】(1)根据已知条件代入离心率公式计算取值范围即可;(2)设直线l 的方程x =my +1,与双曲线方程联立,以双曲线C 的实半轴长a 和m 表示A ,B 两点坐标,根据∠AOB 恒为锐角,转化为OA ⋅OB>0,代入坐标计算,由关于m 的不等式恒成立,求得a 的取值范围.【详解】(1)因为b <22,所以b 2<12,因为a 2+b 2=1,所以c =1,a 2=1-b 2>12,所以a >22,则C 的离心率e =c a =1a<122=2,又e >1,所以C 的离心率的取值范围是1,2 .(2)因为F 1,0 ,直线l 的斜率不为零,所以可设其方程为x =my +1.结合b 2=1-a 2(0<a <1),联立x =my +1,x 2a2-y 21-a2=1,得a 2m 2+1 -m 2 y 2+2m a 2-1 y -a 2-1 2=0,设A x 1,y 1 ,B x 2,y 2 由韦达定理,得y 1+y 2=-2m a 2-1a 2m 2+1 -m 2,y 1y 2=-a 2-1 2a 2m 2+1 -m 2,由于A ,B 两点均在C 的右支上,故y 1y 2<0⇒a 2m 2+1 -m 2>0,即m 2<a 21-a2.则OA ⋅OB=x 1x 2+y 1y 2=my 1+1 my 2+1 +y 1y 2=m 2+1 y 1y 2+m y 1+y 2 +1=m 2+1 ⋅-a 2-1 2a 2m 2+1 -m2+m ⋅-2m a 2-1 a 2m 2+1 -m2+1=m 2a 21-a 2 -a 4+3a 2-1a 2m 2+1 -m 2.由∠AOB 恒为锐角,得对∀m 2<a 21-a 2,均有OA ⋅OB >0,即m 2a 21-a 2 -a 4+3a 2-1>0恒成立.由于a 21-a 2 >0,因此不等号左边是关于m 2的增函数,所以只需m 2=0时,-a 4+3a 2-1>0成立即可,解得5-12<a <5+12,结合0<a <1,可知a 的取值范围是5-12,1.综上所述,C 的实轴长的取值范围是5-1,2 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.18(2023·上海徐汇·一模)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的离心率为e .(1)若e =2,且双曲线E 经过点(2,1),求双曲线E 的方程;(2)若a =2,双曲线E 的左、右焦点分别为F 1、F 2,焦点到双曲线E 的渐近线的距离为3,点M 在第一象限且在双曲线E 上,若MF 1 =8,求cos ∠F 1MF 2的值;(3)设圆O :x 2+y 2=4,k ,m ∈R .若动直线l :y =kx +m 与圆O 相切,且l 与双曲线E 交于A ,B 时,总有∠AOB =π2,求双曲线E 离心率e 的取值范围.【答案】(1)x 2-y 2=1;(2)1316;。
高中数学高考数学离心率题型总结

F 2P F 1xy OF 2PF 1xy OF 2PF 1xyOQF 2PF 1xyO高中数学 高考数学离心率题型总结 求解含直角三角形的椭圆离心率二.典例剖析:例.若椭圆)0(,12222>>=+b a b y a x 短轴端点为P 满足21PF PF ^,求椭圆离心率。
圆离心率。
分析:利用椭圆半焦距、短半轴长的相等关系即2OF OP =,得到 2221222222=Þ=Þ=+=e e c c b a 的结论。
的结论。
变 式1.在椭圆)0(,12222>>=+b a b y a x 上有一点P (除短轴端点外),若21PF PF ^,求椭圆离心率取值范围。
,求椭圆离心率取值范围。
分析:点P 在椭圆上Þ b OP >;点P 在以O 为圆心,OP 为半径的圆上Þc OF OF OP ===21,所以得到c>b ,进而得到÷÷øöççèæÎÞ>Þ<+=1,2221222222e e c c b a 的结论。
变 式2. 满足21PF PF ^的所有点P 都在椭圆)0(,12222>>=+b a b y a x 内,求椭圆离心率取值范围。
内,求椭圆离心率取值范围。
分析:满足21PF PF ^的所有点P 都在椭圆内Þ以O 为圆心,OP 为半径的圆都在椭圆内Þb c <,进而得到÷÷øöççèæÎÞ<Þ>+=22,021222222e e c c b a 的结论。
的结论。
变 式3.过椭圆)0(,12222>>=+b a b y a x 右焦点2F 的直线交椭圆于QP 、两点且满足PQPF ^1,若135sin 1=ÐQP F ,求该椭圆离心率。
关于高中数学离心率题型解法的有效解决技巧

关于高中数学离心率题型解法的有效解决技巧【摘要】高中数学中,离心率题型是一个常见但也容易出错的题目。
本文将介绍关于高中数学离心率题型的解法技巧。
在我们将介绍离心率的定义和背景知识。
在我们将详细讲解离心率的性质、解题步骤,并举例说明常见的题型。
我们会提醒大家在解题时需要注意的事项,并进行实战演练。
在我们将总结本文的内容,并探讨离心率在实际生活中的拓展应用,以及如何进一步提升解题能力。
通过本文的学习,读者将能够更加熟练地解决高中数学中关于离心率的题目。
【关键词】高中数学、离心率、题型、解法、有效技巧、引言、定义与性质、解题步骤、常见题型举例、注意事项、实战演练、结论、总结、拓展应用、思考提升。
1. 引言1.1 介绍高中数学中的离心率题型是一种常见而重要的题型,涉及到椭圆、双曲线和抛物线等几何图形的特性和性质。
理解和掌握离心率的计算方法对于解题十分重要,而有效的解决技巧可以帮助学生提高解题效率,提升数学成绩。
在本文中,我们将介绍关于高中数学离心率题型的解题技巧,希望能够为学生们在学习和应试过程中提供指导和帮助。
在接下来的我们将详细介绍离心率的定义和性质,解题步骤以及常见题型举例,同时给出一些注意事项和实战演练,希望能够帮助学生们全面深入地理解和掌握离心率这一重要的数学知识。
通过不断的学习和练习,我们相信每位学生都能够在离心率题型上取得更好的成绩。
1.2 背景知识高中数学中,离心率是一个重要且常见的概念。
在几何学和代数学中,离心率通常用来描述椭圆、双曲线和抛物线等二次曲线的形状。
理解离心率的概念对于解决与二次曲线相关的数学问题非常重要。
离心率的定义是一个数值,用来衡量一个二次曲线的“扁平”程度。
在椭圆和双曲线中,离心率的取值范围是0到1,越接近1表示曲线越扁平;在抛物线中,离心率为1,表示曲线为对称。
在解决与离心率相关的数学题目时,首先要掌握离心率的定义及其性质。
需要了解解题的基本步骤,包括求解离心率、判断曲线类型、求解焦点、导线等。
高考数学二轮复习专题11 离心率问题速解(精讲精练)(解析版)

专题11离心率问题速解【命题规律】求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.【核心考点目录】核心考点一:顶角为直角的焦点三角形求解离心率的取值范围问题核心考点二:焦点三角形顶角范围与离心率核心考点三:共焦点的椭圆与双曲线问题核心考点四:椭圆与双曲线的4a 通径体核心考点五:椭圆与双曲线的4a 直角体核心考点六:椭圆与双曲线的等腰三角形问题核心考点七:双曲线的4a 底边等腰三角形核心考点八:焦点到渐近线距离为b核心考点九:焦点到渐近线垂线构造的直角三角形核心考点十:以两焦点为直径的圆与渐近线相交问题核心考点十一:渐近线平行线与面积问题【真题回归】1.(2022·全国·统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为()A2B.2C .12D .13【答案】A【解析】[方法一]:设而不求设()11,P x y ,则()11,Q x y -则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+,由2211221x y a b +=,得()2221212b a x y a -=,所以()2221222114b a x ax a -=-+,即2214b a =,所以椭圆C 的离心率c e a = A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQk k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a =所以椭圆C 的离心率c e a = A.2.(2021·天津·统考高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为()A BC .2D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22b AB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.3.(2021·全国·统考高考真题)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C【解析】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32bb c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤;当32b b c ->-,即22b c <时,42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .4.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C .2D .2【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==选C[方法二]:答案回代法A e =选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =+,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e =选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率c e a ==若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF c βαβα-=-+即sin sin cos cos sin sin a cβαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故2e ==,故选:AC.5.(2022·全国·统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.【答案】13【解析】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为3,斜率直线DE 的方程:x c -,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴122264613cDE y =-=⨯⨯⨯⨯=,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为22221121222413DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.6.(2022·浙江·统考高考真题)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,过F 且斜率为4ba的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.【解析】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率e 4=.故答案为:4.7.(2022·全国·统考高考真题)记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.【答案】2(满足1e <≤【解析】2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以==c e a 又因为1e >,所以1e <≤故答案为:2(满足1e <≤皆可)【方法技巧与总结】求离心率范围的方法一、建立不等式法:1、利用曲线的范围建立不等关系.2、利用线段长度的大小建立不等关系.12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,P 为椭圆上的任意一点,[]1,PF a c a c ∈-+;12,F F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线上的任一点,1PF c a ≥-.3、利用角度长度的大小建立不等关系.12,F F 为椭圆22221x y a b +=的左、右焦点,P 为椭圆上的动点,若12F PF θ∠=,则椭圆离心率e 的取值范围为sin12e θ≤<.4、利用题目不等关系建立不等关系.5、利用判别式建立不等关系.6、利用与双曲线渐近线的斜率比较建立不等关系.7、利用基本不等式,建立不等关系.【核心考点】核心考点一:顶角为直角的焦点三角形求解离心率的取值范围问题【典型例题】例1.(2022·全国·高二专题练习)已知椭圆()222210x y a b a b +=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是()A .12,23⎛⎫ ⎪⎝⎭B .2⎝⎭C .,23⎛ ⎝⎭D .23⎫⎪⎪⎝⎭【答案】B【解析】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α,所以22cos 2sin a c c αα+=,利用2112sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭,∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<14πα<⎛⎫+ ⎪⎝⎭,即椭圆离心率e 的取值范围是23⎛⎫⎪ ⎪⎝⎭,故选B .例2.(2022春·辽宁葫芦岛·高二统考期中)已知点12F F ,分别是椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 12PF F ∆是直角三角形的动点P 恰好有6个,则该椭圆的离心率为()A .12BC.2D【答案】C【解析】由题意知,椭圆的最大张角为090,所以b c =,所以a =,所以c e a ===,故应选C .例3.(2022秋·安徽·高二校联考开学考试)若P 是以1F ,2F 为焦点的椭圆22221(0)x y a b a b +=>>上的一点,且120PF PF ⋅= ,125tan 12PF F ∠=,则此椭圆的离心率为()AB .1517C .1315D .1317【答案】D【解析】因为120PF PF ⋅=,所以12PF PF ⊥,在12Rt PF F 中,设25PF m =(0m >),则112PF m =,1213F F m ==,所以213c m =,12217a PF PF m =+=,所以213217c e a ==.故选:D.核心考点二:焦点三角形顶角范围与离心率【典型例题】例4.(2022春·福建漳州·高二校联考期中)已知椭圆2222:1x y C a b+=(0a b >>),椭圆的左、右焦点分别为1F ,2F ,P 是椭圆C 上的任意一点,且满足120PF PF ⋅>,则椭圆C 的离心率e 的取值范围是()A .10,2⎛⎫ ⎪⎝⎭B .2⎛⎫ ⎪ ⎪⎝⎭C .122⎛⎫⎪ ⎪⎝⎭D .,12⎛⎫⎪ ⎪⎝⎭【答案】B【解析】由已知得1(,0)F c -,2(,0)F c ,设()00,P x y ,则()100,PF c x y =--- ,()200,PF c x y =--,因为120PF PF ⋅> ,所以()()0000,,0c x y c x y ---⋅-->,即222000c x y -++>,即22200x y c +>,因为点P 是椭圆上的任意一点,所以2200x y +表示椭圆上的点到原点的距离的平方,因为()22200minx y b +=,所以22b c >,所以222a c c ->,即2212c a <,所以2c e a ⎛⎫=∈ ⎪ ⎪⎝⎭,故选:B .例5.(2022春·北京·高二人大附中校考期末)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是()A .⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .311212⎫⎪⎢⎣⎭D .11,112⎛⎫⎪⎝⎭【答案】C【解析】设12||2=F F c ,12F PF △内切圆的半径为r .因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又12r a >故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则c a ≥11212e ≤<.故选:C例6.(2022春·新疆乌鲁木齐·高二乌市八中校考阶段练习)已知1F ,2F 是椭圆()222210x y a b a b+=>>的两个焦点,若存在点P 为椭圆上一点,使得1260F PF ∠=︒,则椭圆离心率e 的取值范围是().A .,12⎫⎪⎪⎣⎭B .2⎛⎫⎪ ⎪⎝⎭C .1,12⎡⎫⎪⎢⎣⎭D .122⎡⎫⎢⎣⎭【答案】C 【解析】如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.由此可得:存在点P 为椭圆上一点,使得1260F PF ∠=︒,012P F F ∴△中,10260F P F ∠≥︒,可得02Rt P OF △中,0230OP F ∠≥︒,所以02P O ,即b ≤,其中c =2223a c c ∴-≤,可得224a c ≤,即2214c a ≥椭圆离心率ce a=,且0a c >>112e ∴≤<故选:C例7.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且ππ[,]64α∈,则该椭圆离心率e 的最大值为___________.1-【解析】已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B 、F 为其右焦点,设椭圆的左焦点为N ,连接,,,AF AN BF BN ,所以四边形AFBN为长方形,根据椭圆的定义2AF AN a +=,且ABF α∠=,则ANF α∠=,所以22cos 2sin a c c αα=+,又由离心率的公式得211π2sin cos )4c e a ααα==++,由ππ[,]64α∈,则5πππ1242α≤+≤,所以112)π4α≤≤+1-.1例8.(2022春·黑龙江佳木斯·高二建三江分局第一中学校考期中)已知椭圆22221(0)x y a b a b +=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,63ππα⎡⎤∈⎢⎣⎦,则该椭圆的离心率e 的取值范围是___________.【答案】2,312⎡⎤-⎢⎥⎣⎦【解析】椭圆上点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为1F ,连接11AF AF BF BF ,,,,则四边形1AFF B 为矩形.根据椭圆的定义:12AF AF a ABF α+=∠=,,则1BAF α∠=.∴1||2c sin ||2cos 22cos 2AF AF c a c c sin αααα=⋅=⋅=⋅+⋅,,椭圆的离心率2112sin cos 2sin 4c e a πααα===+⎛⎫+ ⎪⎝⎭,64ππα⎡⎤∈⎢⎥⎣⎦,∴51242πππα≤+≤,则2(31)sin 144πα+⎛⎫≤+≤ ⎪⎝⎭,∴213122sin()4πα≤≤-+,∴椭圆离心率e 的取值范围2312⎡⎤-⎢⎥⎣⎦,.故答案为:2312⎡⎤-⎢⎥⎣⎦,例9.(2022·高二单元测试)椭圆2222:1(0)x y C a b a b +=>>上一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF θ∠=,且5,412ππθ⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的取值范围为________.【答案】2623⎢⎣⎦【解析】记椭圆C 的左焦点为F ',连AF ',BF ',由椭圆的对称性和性质知BF AF '=,2AF B AFB π∠∠==',由2AF BF a +=,可得2cos 2sin 2c c a θθ+=,得11sin cos 4c e a πθθθ===+⎛⎫+ ⎪⎝⎭,由5,412ππθ⎡⎤∈⎢⎥⎣⎦,可得2,423πππθ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦sin 14πθ⎛⎫≤+≤ ⎪⎝⎭,所以23e ≤≤.故答案为:2⎢⎣⎦.核心考点三:共焦点的椭圆与双曲线问题【典型例题】例10.(2022春·江苏苏州·高二江苏省苏州第十中学校校考阶段练习)已知椭圆和双曲线有共同的焦点12,,,F F P Q 分别是它们在第一象限和第三象限的交点,且260QF P ∠=,记椭圆和双曲线的离心率分别为12,e e ,则221231e e +等于_______.【答案】4【解析】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,()1,0F c -,()2,0F c ,P 为两曲线在第一象限的交点,Q 为两曲线在第三象限的交点.由椭圆和双曲线定义知:1212+=PF PF a ,1222-=PF PF a ,112PF a a ∴=+,212=-PF a a ,由椭圆和双曲线对称性可知:四边形12PF QF 为平行四边形,260QF P ∠= ,12120F PF ∴∠= ,222121212122cos F F PF PF PF PF F PF ∴=+-∠,即()()()()22222121212121243c a a a a a a a a a a =++-++-=+,22122222123314a a e e c c∴+=+=.故答案为:4.例11.(2022春·山东青岛·高二统考期末)已知椭圆1C 和双曲线2C 有共同的焦点1F ,2F ,P 是它们的一个交点,且1223F PF π∠=,记椭圆1C 和双曲线2C 的离心率分别为1e ,2e ,则2212484w e e =+的最小值为()A .24B .37C .49D .52【答案】C【解析】设椭圆的长半轴长为1a ,双曲线的实半轴长2a ,焦距2c ,则1212+=PF PF a ,1222-=PF PF a ,解得112=+PF a a ,212=-PF a a,如图在△F1PF2中,根据余弦定理可得:()()()22212121222cos3F F PF PF PF PF π=+-⋅,整理得2221243c a a =+,即2212314e e +=,所以()2222222112122222121231213148448437494e e w e e e e e e e e ⎛⎫=+=⨯+⨯+=++≥ ⎪⎝⎭,当且仅当1242e e ==时,取等号.故选:C.例12.(2022春·广西·高三校联考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且12π3F PF ∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则12e e ⋅的最小值为()A2B .34CD .3【答案】A【解析】如图,设椭圆的长半轴为1a ,双曲线的实半轴长为2a ,则根据椭圆及双曲线的定义:1211222,2PF PF a PF PF a +=-=,所以112212,PF a a PF a a =+=-,设122F F c =,因为12π3F PF ∠=,则在12PF F △中,由余弦定理得:22212121212π4()()2()()cos3c a a a a a a a a =++--+-,化简得:2221234a a c +=,即2212134e e +=,从而有2212134e e =+≥整理得12e e ⋅≥=(当且仅当122e e =时等号成立)故选:A.例13.(2022春·辽宁沈阳·高二沈阳市第三十一中学校考阶段练习)已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则当121e e 取最大值时,1e ,2e 的值分别是()A2,2B .12C.3D.4【答案】A【解析】不妨设椭圆与双曲线的标准方程分别为:()222210x y a b a b+=>>,c =2222111x y a b -=,c =设1PF m =,2PF n =.m n >.则2m n a +=,12m n a -=,∴1m a a =+,1n a a =-.因为123F PF π∠=,所以()22221cos322m n c mnπ+-==,即()()()()22211114a a a a c a a a a ++--=+-.∴2221340a a c +-=,∴2221314e e +=,∴4≥,则121e e ≤12e =2e =时取等号.故选:A .例14.(2022·河南洛阳·校联考模拟预测)已知椭圆1C :()222210x y a b a b +=>>和双曲线2C :()222210,0x y m n m n-=>>有共同的焦点1F ,2F ,P 是它们在第一象限的交点,当1260F PF ∠=︒时,1C 与2C 的离心率互为倒数,则双曲线2C 的离心率是()ABC .2D【答案】B【解析】设1C ,2C 的离心率分别为1e ,2e ,焦距为2c ,因为122PF PF a +=,122PF PF m -=,所以1PF a m =+,2PF a m =-,由余弦定理,得222121212122cos F F PF PF PF PF F PF =+-⋅∠,即()()()()22242cos 60c a m a m a m a m =++--+-︒,化简,得22243c a m =+,两边同除以2c ,得2212134e e =+.又121e e =,所以222234=+e e .又21e >,所以2e =.故选:B核心考点四:椭圆与双曲线的4a 通径体【典型例题】例15.(2022·广西南宁·南宁市第八中学校考一模)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若222=AF F C ,则椭圆的离心率为()ABCD【答案】A【解析】过点C 作CD x ⊥轴于D ,则122~ AF F CDF ,由222=AF F C ,则122||2||=F F F D ,12AF CD =,所以点22,2⎛⎫⎪⎝⎭b C c a ,由点C 在椭圆上,所以有222222(2)1b ac a b ⎛⎫⎪⎝⎭+=,即225c a =,所以e ==c a 故选:A.例16.(2022·全国·高三专题练习)已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF,则椭圆C 的离心率为()A .13BC .12D【答案】B【解析】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =,因为12//MF DF,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴,设2MF m =,则12MF m =,1232MF MF m a +==,23a m =,在12MF F △中,由勾股定理得22242(((2)33m m c +=,变形可得3c e a ==.故选:B .例17.(2022春·云南·高三校联考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点为1F ,2F ,过1F 且垂直于x 轴的直线交C 于M ,N 两点,若22MF NF ⊥,则C 的离心率为()A 1+B .2CD【答案】A【解析】由题可得:MN x c =-,代入双曲线2222:1(0,0)x y C a b a b -=>>,解得2b y a=±,又22MF NF ⊥,∴112F M F F =,即22bc a=,222c a ac ∴-=,2210e e ∴--=,1e ∴=1e > ,1e ∴.故选:A例18.(2022春·江苏宿迁·高三校考阶段练习)如图,已知A ,B ,C 是双曲线22221(0,0)x y a b a b -=>>上的三个点,AB 经过原点O ,AC 经过右焦距F ,若BF AC ⊥且2CF FA =,则该双曲线的离心率等于_____.【答案】3【解析】若E 是左焦点,连接,,AE BE EC ,设||BF m =,||AF n =,∴由双曲线的对称性且BF AC ⊥知:AEBF 是矩形,则||AE m =,||BE n =,又2CF FA =,即||2FC n =,则||2||22EC a FC a n =+=+,∴在Rt EAC △中,222||||||AE AC EC +=,即22294()m n a n +=+,而2m n a -=,∴23an =,83a m =,∵在Rt EAF V 中,2224m n c +=,即226849a c =,可得3e =..核心考点五:椭圆与双曲线的4a 直角体【典型例题】例19.(2022春·福建福州·高二福建省福州格致中学校考阶段练习)已知1F ,2F 是双曲线()2222:10,0x y E a b a b-=>>的左、右焦点,过1F l ,l 分别交y 轴和双曲线右支于点M ,P ,且212F F PM F M -=uuu u r uuu r uuuu r,则E 的离心率为______.【答案】2【解析】因为212F F PM F M -=uuu u r uuu r uuuu r ,所以1MF PM =uuu r uuu r,即M 为1PF 的中点.又O 为1F 2F 的中点,所以OM 为中位线.所以2//OM PF ,即2PF x ⊥轴.因为直线l 过1F 122F F c =,所以212PF F ==,11224PF F F c ==.由双曲线的定义可得:122PF PF a -=,即42c a -=,解得:2c a ==心率为2e =故答案为:2例20.(2022·全国·高三专题练习)如图所示,双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,过1F 的直线与双曲线C 的两条渐近线分别交于A 、B 两点,A 是1F B 的中点,且12F B F B ⊥,则双曲线C 的离心率e =()AB .2CD1【答案】B【解析】 A 是1F B 的中点,AO ∴为△12F F B 的中位线,12F B F B ⊥,所以1OA F B ⊥,所以1OB F O c ==.设1(B x ,1)y ,2(A x ,2)y ,点B 在渐近线by x a=上,∴2221111x y c b y x a ⎧+=⎪⎪⎨⎪=⎪⎩,得11x a y b =⎧⎨=⎩.又A 为1F B 的中点,∴2222c a x b y -+⎧=⎪⎪⎨⎪=⎪⎩,A 在渐近线by x a=-上,∴22b b a c a -=-⋅,得2c a =,则双曲线的离心率2c e a==.故选:B例21.(2022·天津·统考一模)设12,F F 分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,O 为坐标原点,过左焦点1F 作直线1F P 与圆222x y a +=切于点E ,与双曲线右支交于点P ,且满足()112OE OP OF =+,OE =()A .221612x y -=B .22169x y -=C .22136x y -=D .221312x y -=【答案】D【解析】∵E 为圆222x y a +=上的点,OE a ∴==()112OE OP OF =+,∴E 是1PF 的中点,又O 是12F F 的中点,222PF OE a ∴===,且2//PF OE ,又12124PF PF a PF a -==∴==1PF 是圆的切线,121,OE PF PF PF ∴⊥∴⊥,又222222212122460,15,12F F c c PF PF c b c a =∴=+=∴=∴=-=,,∴双曲线方程为221312x y -=.故选:D例22.(2022·四川广元·统考三模)设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅= ,222AF F B =,则椭圆E 的离心率为()A .23B .34C D 【答案】C【解析】因为222AF F B =,不妨令()22220B AF F m m ==>,过2F 的直线交椭圆于A ,B 两点,由椭圆的定义可得,122AF AF a +=,122BF BF a +=,则12BF a m =-,122AF a m =-,又120AF AF ⋅=,所以12AF AF ⊥,则12AF F △和1AF B △都是直角三角形,则22211AF AB BF +=,即()()2222292a m m a m -+=-,解得3a m =,所以143AF a =,223AF a =,又122F F c =,2221212AF AF F F +=,所以222164499a a c +=,因此2259c a =,所以椭圆E 的离心率为c a =故选:C.例23.(2022春·江西抚州·高二江西省临川第二中学校考阶段练习)如图,已知1F ,2F 为双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点,过点1F ,2F 分别作直线1l ,2l 交双曲线E 于A ,B ,C ,D 四点,使得四边形ABCD 为平行四边形,且以AD 为直径的圆过1F ,11DF AF =,则双曲线E 的离心率为()A BC .52D .2【答案】D【解析】设11DF AF x ==,则22DF x a =-,由双曲线的对称性和平行四边形的对称性可知:21CF AF x ==,连接1CF ,则有1222CF CF x a =+=+,2222DC DF CF x a=+=-由于1F 在以AD 为直径的圆周上,11DF AF ∴⊥,∵ABCD 为平行四边形,//AB CD ,1DF DC ∴⊥,在直角三角形1CDF 中,22211CF DF CD =+,()()222222x a x x a +=+-,解得:3x a =,123,DF a DF a ==;在直角三角形12F F D 中,2221212DF DF F F +=,()()22232a a c +=,得2252a c =,c e a =,故选:D.核心考点六:椭圆与双曲线的等腰三角形问题【典型例题】例24.(2022春·陕西西安·高二期末)设1F ,2F 是椭圆E :()222210x y a b a b+=>>的左、右焦点,过点()2,0F c 且倾斜角为60°的直线l 与直线2a x c=相交于点P ,若12PF F △为等腰三角形,则椭圆E 的离心率e 的值是()A2B .13C.3D.2【答案】A【解析】直线l的方程为)y x c =-,由)2y x c a x c ⎧=-⎪⎨=⎪⎩解得2y c =,则2a P c ⎛ ⎝⎭,由于12PF F △为等腰三角形,所以21cos 6022a c c c -︒==,222212,,22c c a c a a ===.故选:A例25.(2022·全国·高三专题练习)已知双曲线22221x y a b-=的左焦点为1F ,过1F 作一倾斜角为15 的直线交双曲线右支于P 点,且满足1POF △(O 为原点)为等腰三角形,则该双曲线离心率e 为()A.e =B .2e =C.e =D.12e =【答案】C【解析】记右焦点为2F ,由题意知,1215PF F ∠=,且1POF △为等腰三角形,则只能是1OF OP =,所以212230POF PF F ∠∠==,OP c =,所以直线OP的方程为y x =,由2222331y x x y a b ⎧=⎪⎪⎨⎪-=⎪⎩,得2222222222333P Pa b x b a a b y b a ⎧=⎪⎪-⎨⎪=⎪-⎩所以222222222333a b a b c b a b a+=--,整理,得42243840c a c a -+=,即423840e e -+=,解得22e =或23(舍去),所以2e =.故选:C .例26.(2022·河南鹤壁·鹤壁高中校考模拟预测)已知12F F 、是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 为抛物线28(0)y ax a =->准线上一点,若12F PF △是底角为15︒的等腰三角形,则椭圆的离心率为()A .31-B .21-C .312-D .212-【答案】A【解析】如图,抛物线的准线与x 轴的交点为M因为12,F F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,所以12(,0),(,0)F c F c -抛物线28(0)y ax a =->准线为:直线2x a =,所以(2,0)M a 因为12F PF △是底角为15︒的等腰三角形,则1212==15PF F F PF ∠∠︒则22122=30,==2PF M F F PF c ∠︒则222223cos ===22F M a c PF M PF c -∠,整理得:2=(3+1)a c 所以离心率23131c e a==+.故答案为:A.例27.(2022·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P 为等腰三角形,则椭圆C 的离心率的取值范围是()A .111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭B .110,,132⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A【解析】法一:显然,P 是短轴端点时,12PF PF =,满足12F F P 为等腰三角形,因此由对称性,还有四个点在四个象限内各有一个,设(,)P x y 是第一象限内使得12F F P 为等腰三角形的点,若112PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+,消去y 整理得:222224240c x a cx a c a +-+=,解得22a ac x c --=(舍去)或22a acx c -+=,由0x a <<得220a aca c-+<<,所以112c a <<,即112e <<,若212PF F F =,则222212x y a b c ⎧+=⎪=,又222a b c =+,消去y 整理得:222224240c x a cx a c a --+=,解得22a ac x c -=或22a ac x c +=,22a aca c +>舍去.所以220a aca c-<<,所以1132c a <<,即1132e <<,12e =时,2a c =,12PF F △是等边三角形,P 只能是短轴端点,只有2个,不合题意.综上,e 的范围是111(,)(,1)322⋃.法二:①当点P 与短轴的顶点重合时,12F F P 构成以12F F 为底边的等腰三角形,此种情况有2个满足条件的12F F P ;②当12F F P 构成以12F F 为一腰的等腰三角形时,根据椭圆的对称性,只要在第一象限内的椭圆上恰好有一点P 满足12F F P 为等腰三角形即可,则1122PF F F c ==或2122PF F F c ==当12PF c =时,则2c a >,即12c e a =>,则112e <<,当22PF c =时,则有22c a c c a>-⎧⎨<⎩,则1132e <<,综上所述,椭圆的离心率取值范围是111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:A.核心考点七:双曲线的4a 底边等腰三角形【典型例题】例28.(2022·全国·高三专题练习)已知1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,过点1F作斜率为2的直线l 与双曲线的左,右两支分别交于M ,N 两点,以2F 为圆心的圆过M ,N ,则双曲线C 的离心率为()ABC .2D【答案】B【解析】取MN 中点A ,连AF 2,由已知令22||||MF NF m ==,则2AF MN ⊥,如图:因点M ,N 为双曲线左右两支上的点,由双曲线定义得12||||22MF MF a m a =-=-,12||||22NF NF a m a =+=+,则11||||||4,||2MN NF MF a MA a =-==,令双曲线半焦距为c ,12Rt AF F △中,12||,||AF m AF =2Rt AMF中,2||AF=22222m a c =+,因直线l的斜率为2,即12tan 2AF F ∠=,而2121||tan ||AF AF F AF ∠=,即21||||AF AF =,2221||1||2AF AF =,于是有2222221222c a c a -=+,c =,==c e a ,所以双曲线C故选:B例29.(2022·全国·高三专题练习)设双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过点1Fl 与双曲线C 的左、右两支分别交于,M N 两点,且()220F M F N MN +⋅=,则双曲线C 的离心率为()ABCD .2【答案】A【解析】如图,设D 为MN 的中点,连接2F D .易知2222F M F N F D +=,所以()22220F M F N MN F D MN +⋅=⋅= ,所以2F D MN ⊥.因为D 为MN 的中点,所以22F M F N =.设22F M F N t ==,因为212MF MF a -=,所以12MF t a =-.因为122NF NF a -=,所以12NF t a =+.所以114MN NF MF a =-=.因为D 是MN 的中点,11F D F M MD =+,所以12,MD ND a F D t ===.在Rt 12F F D中,2F D =;在Rt 2MF D中,2F D ==22222t a c =+.所以21F D F D t ===因为直线l所以2121tan F D DF F F D ∠===,所以2222221,23c a c a a c -==+,c =,所以离心率为ca=故选:A核心考点八:焦点到渐近线距离为b 【典型例题】例30.(2022·全国·模拟预测)设1F ,2F 分别是双曲线C :()222210,0x ya b a b-=>>的左、右焦点,O 为坐标原点,过右焦点2F 作双曲线的一条渐近线的垂线,垂足为A .若12212AF F S OF =△,则双曲线C 的离心率为()AB .2C D 【答案】D【解析】根据对称性,不妨取双曲线C 的一条渐近线的方程为by x a=,即0bx ay -=,点()2,0F c b =.因为2OF c =,所以AO a =,所以122124422AF F AOF S S ab ab ==⨯=△△.由题意知2222ab c a b ==+,所以a b =,离心率e ==,故选:D.例31.(2022·全国·高三专题练习)设1F ,2F 是双曲线2222:1(0,0)x yC a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||||PF OP ,则C 的离心率为()AB .2CD【答案】B【解析】不妨设双曲线的一条渐近线方程为b y x a=,则2b c a PF b ⨯==,2OF c =,PO a ∴=,1|||PF OP ==在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F 中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即224c a =,e=2,故选:B .例32.(2022·全国·高三专题练习)设1F ,2F 是双曲线2222:1(0,0)x y C a b u b -=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P,若1PF ,则C 的离心率为()A.B .2CD【答案】C【解析】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,焦点()2,0F c 到直线b y x a=的距离d b ==,所以2PF b =,由勾股定理得OP a =,所以2cos a POF c ∠=,在1POF △中,()122cos cos cos aPOF POF POF cπ∠=-∠=-∠=-,因为1PF 由余弦定理可得22211112cos PF OP OF OP OF POF =+-⋅∠,即)2222a a c ac c ⎛⎫=+-- ⎪⎝⎭,即222a c =,所以离心率c e a ==故选:C例33.(多选题)(2022秋·广东·高二校联考阶段练习)过双曲线2222:1x y C a b-=(0a >,0b >)的右焦点F 引C 的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若FB AF λ=,23λ≤≤,则C 的离心率可以是()A B C .2D .2【答案】BC【解析】右焦点(c,0)F ,设一渐近线OA 的方程为b y x a=,则另一渐近线OB 的方程为b y x a=-,由FA 与OA 垂直可得FA 的方程为()a y x c b=--,联立方程2222()b y x a c a ax a a b c y x c b ⎧=⎪⎪⇒==⎨+⎪=--⎪⎩,可得A 的横坐标为2a c,联立方程()2222222b y x a c ca ax a a b a c y x c b ⎧=-⎪⎪⇒==⎨--⎪=--⎪⎩可得B 的横坐标为2222ca a c-.因为FB AF λ= ,所以()2222222222()22c c a ca a c a c c a c c a c cλλ---=-⇒=⨯--,可得2222222c e a c e λ==--,因为23λ≤≤,所以22322e e ≤-≤,即22222340432*******2e e e e e e ⎧-≥⎪⎪-⇒≤≤⇒≤⎨-⎪≤⎪-⎩,BC 满足题意,AD 不合题意,故选:BC.核心考点九:焦点到渐近线垂线构造的直角三角形【典型例题】例34.(2022·陕西西安·西安中学校考模拟预测)已知双曲线:C 22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,过2F 作双曲线C 的一条渐近线的垂线l ,垂足为H ,直线l 与双曲线C 的左支交于E 点,且H 恰为线段2EF 的中点,则双曲线C 的离心率为()ABC .2D【答案】D【解析】连结1EF ,因为点,O H 分别为12F F 和2EF 的中点,所以1//OH EF ,且12EF EF ⊥设点()2,0F c 到一条渐近线by x a=的距离d b ==,所以22EF b =,又212EF EF a -=,所以122EF b a =-,12Rt EF F 中,满足()2222244b a b c -+=,整理为:2b a =,双曲线的离心率ce a===故选:D例35.(2022秋·安徽·高二校联考期中)已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,以1OF 为直径的圆与双曲线的一条渐近线交于点M (异于坐标原点O ),若线段1MF 交双曲线于点P ,且2//MF OP 则该双曲线的离心率为()ABCD【答案】A【解析】不妨设渐近线的方程为by x a=-,因为2//MF OP ,O 为12F F 的中点,所以P 为1MF 的中点,将直线OM ,1MF 的方程联立()b y x aa y x cb ⎧=-⎪⎪⎨⎪=+⎪⎩,可得2,a ab M c c ⎛⎫- ⎪⎝⎭,又()1,0F c -,所以2,22a c cab P c ⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎪ ⎪ ⎪⎝⎭即22,22a c ab P c c ⎛⎫+- ⎪⎝⎭,又P 点在双曲线上,所以()2222222144c ac a a c+-=,解得c a =故选:A.例36.(2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y E a b a b-=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M N 、两点(点1F 位于点M 与点N 之间),且112MF F N =,又过点1F 作1F P OM ⊥于P (点O 为坐标原点),且||||ON OP =,则双曲线E 的离心率e =()ABCD .62【答案】C【解析】不妨设M 在第二象限,N在第三象限,如下图所示:因为ON OP =,11F OP F ON ∠=∠,所以11F OP F ON ≅ ,所以1190F PO F NO ∠=∠=︒,11F P F N =,又()1:,,0OM bl y x F c a=--,所以11F F N b ==,所以ON OP a ==,所以1122MF F N b ==,因为113tan ,tan tan 2b b F OP MON F OP a a∠=∠=∠=,所以22231bba b a a =-,所以222222113b c a e a a -==-=,所以e =故选:C.例37.(2022·全国·统考模拟预测)设F 是双曲线22221(0)x y b a a b-=>>的一个焦点,过F 作双曲线的一条渐近线的垂线,与两条渐近线分别交于,P Q 两点.若2FP FQ =,则双曲线的离心率为()A BC .2D .5【答案】C【解析】不妨设(,0)F c -,过F 作双曲线一条渐近线的垂线方程为()ay x c b=+,与b y x a =-联立可得2a x c =-;与b y x a =联立可得222a cx b a=-,∵2FP FQ = ,∴22222a ca c cb ac ⎛⎫+=-+ ⎪-⎝⎭,整理得,22222c b a =-,即224c a =,∵1e >,∴2e =.故选:C .核心考点十:以两焦点为直径的圆与渐近线相交问题【典型例题】例38.(2022春·四川宜宾·高二四川省宜宾市第四中学校校考阶段练习)已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若0OM MF ⋅= ,||MN b =,则C 的离心率为________.【答案】2【解析】因为0OM MF ⋅= ,所以OM MF ⊥,即⊥OM MF所以MF 为点(),0F c 到渐近线0bx ay -=的距离,bcMF b c===,所以MF MN b ==,可得点M 为NF 的中点,又因为⊥OM MF ,所以ON OF c ==,所以222OM c b a =-=,设双曲线的左焦点为1F ,1F ON θ∠=,(),N x y 则()tan tan tan b FON FON aθπ=-∠=-∠=,因为222c a b =+,所以cos a c θ=,sin b cθ=所以cos a x ON c a c θ=-=-⋅=-,sin by ON c b cθ==⋅=,所以(),N a b -,因为M 为NF 中点,所以,22a M c b -⎛⎫⎪⎝⎭,222222c a b OMa -⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,将222b c a =-代入整理可得:()22224c a c a a -+-=即222240c ac a --=,所以220e e --=,可得()()210e e -+=,解得:2e =或1e =-(舍),故答案为:2例39.(2022·山西运城·统考模拟预测)已知双曲线E :()222210,0x y a b a b-=>>的左焦点为1F ,过点1F 的直线与两条渐近线的交点分别为M ,N 两点(点1F 位于点M 与点N 之间),且13MN F N =,又过点1F 作1F P OM ⊥于P (点О为坐标原点),且ON OP =,则双曲线E 的离心率e 为__________.【解析】双曲线E :()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,如图所示,设11,b M x x a ⎛⎫- ⎪⎝⎭,22,b N x x a ⎛⎫⎪⎝⎭,()1,0F c -,。
圆锥曲线:离心率问题 高考数学

C. 2
√
B. 3
1
2
3
4
5
6
D. 5 − 1
7
8
9
10
)
试卷讲评课件
【详解】令双曲线的焦距为,依题意,
∣ ∣−∣ ∣=
,解得
∣ ∣+∣ ∣= −
∣ ∣= −
,
∣ ∣= −
在△ 中,∠ = ∘ ,由余弦定理得
故 ⋅ =
⋅
= = ①,
+ −
−
−
∵ + = ,即 =
②,
②代入①整理得:
= =
−
=
=
,
.
故选:.
【点评】本题考查椭圆的简单几何性质,是基础题.
1
2
3
4
5
6
(1)表示边:圆锥曲线的定义、正弦定理、余弦定理、勾股定理、成比
例线段.
(2)表示坐标的方法:向量、函数解析式、曲线解析式,点差法.
(3)常见角度关系:公共角、补角、余角.
【例题分析】
考向一 直接求、的值或利用、的关系求离心率
试卷讲评课件
x2
例1.( ⋅湖北·二模)已知椭圆C:
m
2
试卷讲评课件
2.双曲线
(1)
x2
双曲线的标准方程: 2
a
y2
− 2
b
=
y2
1或 2
a
−
x2
高考数学一轮复习专题10.6椭圆双曲线抛物线的离心率与渐进线练习(含解析)

第六讲 椭圆双曲线抛物线的离心率与渐进线求离心率的三种方法(1)直接求出a ,c 来求解e .通过已知条件列方程组,解出a ,c 的值.(2)构造a ,c 的齐次式,解出e .由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.注意:在解关于离心率e 的二次方程时,要注意利用不同曲线的离心率范围进行根的取舍,否则将产生增根.考向一 椭圆的离心率【例1】(1)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为 。
(2)若将(1)中“PF 2⊥F 1F 2,∠PF 1F 2=30°”改为“∠PF 2F 1=75°,∠PF 1F 2=45°”,求C 的离心率. (3)若将(1)中“PF 2⊥F 1F 2,∠PF 1F 2=30°”改为“C 上存在点P ,使∠F 1PF 2为钝角”,求C 的离心率的取值范围.【答案】(1)33 (2)6-22 (3)⎝ ⎛⎭⎪⎫22,1 【解析】解法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c 2a =|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33.解法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). (2)在△PF 1F 2中,∵∠PF 1F 2=45°,∠PF 2F 1=75°,∴∠F 1PF 2=60°,设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c ,椭圆的长轴长为2a ,则在△PF 1F 2中,有m sin 75°=n sin 45°=2csin 60°,∴m +nsin 75°+sin 45°=2c sin 60°,∴e =c a =2c 2a =sin 60°sin 75°+sin 45°=6-22.(3)由题意,知c >b ,∴c 2>b 2.又b 2=a 2-c 2,∴c 2>a 2-c 2,即2c 2>a 2.∴e 2=c 2a 2>12,∴e >22.故C 的离心率的取值范围为⎝ ⎛⎭⎪⎫22,1.【举一反三】1. 设F 1,F 2是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,P 为直线32a x =上一点,21F PF △ 是底角为30︒的等腰三角形,则椭圆E 的离心率为___________; 【答案】34【解析】如图,设直线32ax =交x 轴于D 点,因为21F PF △是底角为30︒的等腰三角形,则有122F F F P =,因为1230PF F ∠=︒,所以260PF D ∠=︒,230DPF ∠=︒,所以22121122DF F P F F ==,即31222a c c c -=⨯=,即322a c =,即34c a =,所以椭圆E 的离心率34c e a ==2. 如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆22221(0)x y a b a b+=>>的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为___________.【答案】5【解析】设F (c ,0),则222c a b =- 由题意,易得直线A 1B 2,B 1F 的方程分别为1x y a b +=-,1x yc b+=- 将上述两个方程联立,求解可得点T 的坐标为T 2()(,)ac b a c a c a c+--,则M ()(,)2()ac b a c a c a c +-- 又点M 在椭圆上,所以2222()1()4()c a c a c a c ++=--,整理得221030c ac a +-= 两边同时除以2a ,可得21030e e +-=,解得5e =或5e =-(舍去)3.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 。
专题 求双曲线的离心率(解析版)高考数学专题复习

03 求双曲线的离心率典例分析一、求离心率的值1.在直角坐标系xOy 中,设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,P 为双曲线C 的右支上一点,且OPF △为正三角形,则双曲线C 的离心率为( )A .43B .13+C 23D 3【答案】B 【分析】根据OPF △为正三角形求出P 的坐标,代入双曲线方程,根据离心率公式化为关于e 的方程,可求出结果, 【详解】不妨设P 在第一象限,因为OPF △为正三角形,||OF c =,所以13()2P c ,又P 在双曲线上,所以22223121c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,所以22213144c e b-=,所以222213144()c e c a -=-,所以222131444e a c -=-, 所以22131444e e-=-,化简得42840e e -+=,解得2423e =+13e = 2.如图为陕西博物馆收藏的国宝-唐-金筐宝钿团化纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐朝金银细作的典范之作.该杯的主体部分可以近似看作是双曲线C :()222210,0x y a b a b -=>>的右支与直线0x =,6y =,3y =-围成的曲边四边形ABMN 绕y 轴旋转一周得到的几何体,若该金杯主体部分的上口外直径为4526C 的离心率为( )A .2B 2C 3D .3【答案】C【分析】根据题意可知点()25,6M ,点263N ⎫-⎪⎪⎝⎭,将其代入双曲线方程,即可求出a ,b 的值,再根221b a+.【详解】由题意上口外直径为4526()25,6M ,点263N ⎫-⎪⎪⎝⎭, 将点M ,点N 的坐标代入双曲线的方程()222210,0x y a b a b -=>>可得22222036126914a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得2a =2b =,所以双曲线C 2213b a+3.(多选题)已知椭圆()22122:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为1e ,椭圆1C 的上顶点为M ,且120MF MF ⋅=.双曲线2C 和椭圆1C 有相同焦点,且双曲线2C 的离心率为2e ,P 为曲线1C 与2C 的一个公共点,若123F PF π∠=,则( )A .213e e =B .123e e ⋅=C .221252e e += D .22212e e += 【答案】ABD【分析】由三角形的面积公式可得b c =,由椭圆的离心率公式可得1e ,设双曲线的方程为22221(0,0)x y m n m n-=>>,设P 在第一象限,且1||PF s =,2||PF t =,运用椭圆和双曲线的定义,可得s ,t ,(用a ,m 表示),再在△12PF F 中,运用余弦定理,求得2212134e e +=,进而得到2e ,检验即可得到结论.【详解】由题意120MF MF ⋅=,所以12MF MF ⊥,可得△12MF F 的面积为11222b c a a ⋅⋅=⋅⋅,所以22222222a b c bc b c bc +==⇒+=,即有b c =,则122c e a c =22221(0,0)x y m n m n-=>>,设P 在第一象限,如图:令1||PF s =,2||PF t =,由椭圆的定义可得2s t a +=,由双曲线的定义可得2s t m -=,解得s a m =+,t a m =-,在△12PF F 中,2221241cos 22s t c F PF st +-∠==,则2224s t st c +-=,可得22222()()()()34a m a m a m a m a m c ++--+-=+=,则222234a m c c +=,即有2212134e e +=,由12e =可得26e =,则123e e =,213e e =,221213222e e +=+=,∴选项ABD 正确;C 错误.4.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的两个焦点,曲线上的点P 到原点的距离为b ,且2112sin 2sin PF F PF F ∠=∠,则该双曲线的离心率为______.22【分析】由等面积法结合定义得出212,4PF a PF a ==,由12180POF POF ︒∠+∠=结合余弦定理得出该双曲线的离心率.【详解】设焦距为2c ,因为2112sin 2sin PF F PF F ∠=∠,1121sin 2c PF PF F ⋅∠2211sin 2c PF PF F =⋅∠,所以122PF PF =,又122PF PF a -=,所以212,4PF a PF a ==,因为22222212164cos ,cos 22b c a b c a POF POF bc bc+-+-∠=∠=,12180POF POF ︒∠+∠=, 所以22222216422b c a b c a bc bc +-+-=-,结合222b c a =-整理得22112c a =,即22c e a ==二、求离心率的取值范围1.(多选题)已知双曲线22221x y a b -=(a >0,b >0)的左、右焦点为F 1,F 2,过F 1的直线l 与双曲线右支交于点P .若12||2||PF PF =,且12PF F △有一个内角为120,则双曲线的离心率可能是( )A 131- B .2 C 131+D 7【答案】AD【分析】当12120F PF ∠=时,由122PF PF a -=,122PF PF =,求得2PF ,1PF ,12F F ,利用余弦定理可得答案;当21120PF F ∠=时, 122PF PF a -=,122PF PF =,求出2PF ,1PF ,12F F ,由余弦定理可得答案.【详解】当12120F PF ∠=时,122PF PF a -=,122PF PF =,所以22PF a =,14=PF a ,122F F c =, 所以22121221212cos 2+-∠=⨯PF PF F F F PF PF PF ,即222224c 116411o 62s 0+-==-c a a a ,化简得227c a=,所以7e 当21120PF F ∠=时,122PF PF a -=,122PF PF =,所以22PF a =,14=PF a ,122F F c =,所以221221212221cos 2+-∠=⨯F F PF PF PF F F F PF ,即22224c s 4112810o 6=--+=ac a c a ,化简得2230c ac a +-=,解得131e -=2.在平面直角坐标系xOy 中,已知双曲线()222210,0x y a b a b -=>>的左、右顶点为A 、B ,若该双曲线上存在点P ,使得直线PA 、PB 的斜率之和为1,则该双曲线离心率的取值范围为__________. 【答案】5⎛ ⎝⎭【解析】【分析】求得22PA PBb k k a=,利用基本不等式可求得b a 的取值范围,结合离心率公式可求得结果.【详解】设点()00,P x y ,其中0x a ≠±,易知点(),0A a -、(),0B a ,且有2200221x y a b -=,则2222002a x a y b =+,22200002222200002PA PB y y y y b k k a x a x a x a a y b =⋅===+--,当点P 在第一象限时,0x a >,00y >,则000PA y k x a =>+,000PB y k x a =>-,且PA PB k k ≠,由基本不等式可得22PA PB PA PB b k k k k a+>=,因为存在点P ,使得直线PA 、PB 的斜率之和为1,则21b a <,即102b a <<,251b e a ⎛⎛⎫∴=+ ⎪ ⎝⎭⎝⎭. 3.已知椭圆1C 和双曲线2C 有公共的焦点1F 、2F ,曲线1C 和2C 在第一象限相交于点P .且1260F PF ∠=︒,若椭圆1C 的离心率的取值范围是322⎡⎢⎣⎦,则双曲线2C 的离心率的取值范围是___________.【答案】63⎡⎢⎣ 【分析】设12||,||PF s PF t ==,由椭圆、双曲线的定义可得1s a a =+,1t a a =-,由余弦定理可建立方程,转化为离心率的关系式,根据椭圆离心率范围,计算即可得到双曲线离心率范围.【详解】设椭圆22122:1(0)x y C a b a b+=>>,双曲线:2C 2222111x y a b -=,椭圆与双曲线的半焦距为c ,椭圆离心率ce a=,双曲线离心率11c e a =,12||,||PF s PF t ==,如图,由椭圆定义可得:2s t a +=,由双曲线定义可得:12s t a -=,联立可得1s a a =+,1t a a =-,由余弦定理可得:1222222211111242cos ()()2()()cos 603c s t st a a a a a P a a F a F a a =+-=++--+⋅︒=+∠-,即221134e e =+,解得212314e e=-,因为32e ⎡∈⎢⎣⎦,所以21132e ≤≤,2123e ≤≤,可得21332e ≤≤163e ≤≤ 方法点拨求双曲线的离心率或其范围的方法(1)求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a2直接求e .(2)列出含有a ,b ,c 的齐次方程(或不等式),借助b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解,注意e >1.(3)因为离心率是比值,所以可以利用特殊值法,例如,令a =1,求出相应c 的值,进而求出离心率,能有效简化计算.(4)通过特殊位置求出离心率.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线的斜率k 与离心率e 的关系:当k >0时,k =b a =c 2-a 2a =c 2a 2-1=e 2-1;当k <0时,k =-ba=-e 2-1.巩固练习1.已知双曲线22221(0,0)x y a b a b-=>>3a ,则此双曲线的离心率为( )A 2B 3C .2D .4【答案】C 【解析】【分析】由题列出关于,,a b c 的关系式求解即可.【详解】由题可知渐近线方程by x a =±,即0bx ay ±=,故焦点(),0c ±到渐近线的距离223bc d a a b==+, ∴3b a .,即2222233b a c a a =⇒-=,解得2ca =.故选:C.2.已知1F ,2F 分别是双曲线22221(0,0)x y a b ab-=>>的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2145AF F ∠=︒,则该双曲线的离心率为( )A .12B .13+C .52D 5【答案】A 【解析】【分析】根据所给的条件,分析双曲线内部的几何关系,即可求解.【详解】易知1(,0)F c -,2(,0)F c ,将x c =-代入双曲线的方程,可得2b y a=±,则21bAF a =.又因为2145AF F ∠=︒,12AF F △是等腰直角三角形,所以112AF F F =,即22b c a =,整理得2220c ac a --=,解得12c a = 3.已知曲线C :()222210,0x y a b a b-=>>的左、右顶点分别为1A ,2A ,点P 在双曲线C 上,且直线1PA 与2PA 的斜率之积等于2,则C 的离心率为( )A 2B 3C 6D .3【答案】B 【解析】【分析】设出点P 的坐标,由给定条件列式求出22b a,再利用离心率计算公式求解作答.【详解】依题意,12(,0),(,0)A a A a -,设点(,)P t s ,则22221t s a b-=,有22222()b s t a a =-,由直线1PA 与2PA 的斜率之积等于2得:222222s s s b t a t a t a a ⋅===+--,所以C 的离心率2222213a b b e a a+=+=4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,直线:l x c =与双曲线C 交于,A B 两点,与双曲线C 的渐近线交于,D E 两点,若2DE AB =,则双曲线C 的离心率是( )A .2B 2C .43D 23【答案】D 【解析】【分析】利用双曲线通径长和与渐近线交点情况可得,AB DE ,由2DE AB =和,,a b c 关系可求得2c b =,3ab ,由此可求得离心率.【详解】由双曲线方程可得其渐近线方程为:b y x a =±;:l x c =,AB ∴为双曲线的通径,即22b AB a=;由x cb y x a =⎧⎪⎨=±⎪⎩得:x c bc y a =⎧⎪⎨=±⎪⎩,2bc DE a ∴=,由2DE AB =得:224bc b a a =,即2c b =,223a c b b ∴-,∴离心率23c e a ==. 5.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线上一点,若125PF PF =,则该双曲线的离心率可以是( )A .75B 2C 3D .2【答案】AB 【解析】【分析】依据双曲线定义及几何性质构造不等式,求得双曲线的离心率的取值范围即可解决. 【详解】P 是双曲线右支上一点,125PF PF =则有12224a PF PF PF =-=,又2PF c a ≥-, 则有12a c a ≥-,即32c a ≤,则双曲线的离心率取值范围为31,2⎛⎤⎥⎝⎦,选项AB 正确;选项CD 错误.6.(多选题)已知椭圆2212:1(1)x C y m m+=>与双曲线2222:1(0)x C y n n -=>的焦点重合,12,e e 分别为12,C C 的离心率,则( )A .m n >B .m n <C .121e e >D .121e e <【答案】AC 【解析】【分析】由题可得2211m n -=+,即可得出m n >,进而表示出离心率即可得出答案.【详解】因为12,C C 的焦点重合,所以2211m n -=+,即2220m n -=>,所以m n >,故A 正确;则222212221111111m n m m e e mn m m-+--==>=->,故C 正确. 7.(多选题)已知双曲线2222:1(0,0)x y C a b a b-=>>,点00(,)P x y 是直线20bx ay a -+=上任意一点,若圆2200()()1x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率可能为( )A .32B .2C .3D .5【答案】AB【分析】由题意可得双曲线的一条渐近线与直线20bx ay a -+=,利用平行线间的距离公式求出它们之间的距离d ,则由题意可得1d ≥,从而可求出离心率的范围【详解】双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为b y x a=,即0bx ay -=,则直线20bx ay a -+=与直线0bx ay -=的距离为2222a ad ca b ==+,因为点00(,)P x y 是直线20bx ay a -+=上任意一点,且圆2200()()1x x y y -+-=与双曲线C 的右支没有公共点,所以1d ≥,即21a c≥,得离心率2ce a =≤,因为1e >所以双曲线的离心率的取值范围为(1,2]。
2025高考数学总复习离心率的范围问题

由题意知 a=1,b= 1-m2,c=m,
椭圆E上存在点P满足|OP|=m,等价于以O为原点,以c为半径的圆与
椭圆有交点,得c≥b,
所以
c2≥b2=a2-c2,解得ac22≥12,所以
e=ac≥
2 2.
又
0<e<1,所以椭圆
E
的离心率的取值范围为
22,1.
(2)已知 P 为椭圆ax22+by22=1(a>b>0)上一点,F1,F2 为椭圆焦点,且|PF1|
题型二 利用圆锥曲线的性质求离心率的范围
例 2 (1)(2023·张掖模拟)若椭圆 E:x2+1-y2m2=1(0<m<1)上存在点 P,
满足|OP|=m(O 为坐标原点),则椭圆 E 的离心率的取值范围为
A.0,12
C.0,
2
2
B.12,1
√
D.
22,1
设椭圆E的长半轴长、短半轴长、半焦距分别为a,b,c,
该双曲线的右顶点,过点 F 且垂直于 x 轴的直线与双曲线交于 A,B 两点,
若△ABE 是锐角三角形,则该双曲线的离心率 e 的取值范围是
A.(1,+∞) C.(2,1+ 2)
√B.(1,2)
D.(1,1+ 2)
由题意可知|AE|=|BE|,即△ABE为等腰三角形, ∵△ABE是锐角三角形, ∴∠AEB<90°,∴∠AEF<45°, 将 x=-c 代入ax22-by22=1,可得 y=±ba2, 故在 Rt△AFE 中,|AF|=ba2,|FE|=a+c, ∵∠AEF<45°,
第八章
§8.7 离心率的范围问题
重点解读
圆锥曲线离心率的范围问题是高考的热点题型,对圆锥曲线中已知 特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘 应用也可使问题求解更简洁.
高考数学中的离心率问题培训资料

高考数学中的离心率问题高考数学中的离心率问题1.双曲线()2222y x 1a 0,b 0a b -=>>的两个焦点为12F ,F ,若P 为其上一点,且12PF 2PF =,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞2.已知双曲线2222y x 1(a 0,b 0)a b-=>>的左、右焦点分别为12F ,F ,点P 在双曲线的右支上,若此双曲线的离心率为e ,且12PF e PF =,则e 的最大值为( )A .53 B . 73C .2D .12+3.如果椭圆()2222y x 1a b 0a b+=>>上存在一点P ,使得点P 到左准线的距离与它到右焦点的距离相等,那么椭圆的离心率的取值范围为 ( )A .(0,21]-B .[21,1)-C .(0,31]-D .[31,1)-4.已知1F 、2F 分别是双曲线2222y x 1(a 0,b 0)a b-=>>的左、右焦点,P 为双曲线右支上任意一点,若212|PF ||PF |的最小值为8a ,则双曲线的离心率的取值范围是( )A .(1,+∞)B .(]0,3C .(]1,3D .(]1,25.已知点F 是双曲线2222y x 1(a 0,b 0)a b-=>>的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A,B 两点,若ABE ∆是锐角三角形,则该双曲线离心率e 的取值范围是 ( )A .(1,+∞)B .(1,2)C .(1,12)+D .(2,12+)6.已知1F 、2F 是椭圆的两个焦点,满足12MF MF 0⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是 ( )A .(0,1)B .1(0,]2C .2(0,)2D .2[,1)2 7.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( )A.3B.2C.5D.61F A2F yxO ()00P x ,y8.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) A .2 B .3 C .5 D .109.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为A .32 B .2 C .52D .3 10.如图,在平面直角坐标系xoy 中,1212,,,A A B B 为椭圆22221(0)x y a b a b+=>>的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 .11.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( )A .2B .3C .5D .1012.设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A. 45B. 5C. 25D.513.过椭圆22221x y a b +=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为A .22 B .33 C .12 D .1314.“0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D) 既不充分也不必要条件15. 函数()sin(),(0,0,)2f x A x A πωϕωϕ=+>><满足(1)0f =则( )A .(1)f x -一定是偶函数B .(1)f x -一定是奇函数C .(1)f x +一定是偶函数 D.(1)f x +一定是奇函数BDBCBCCCB 275e = C D B C.。
2023年高考数学----顶角为直角的焦点三角形求解离心率的取值范围问题典型例题讲解

2023年高考数学----顶角为直角的焦点三角形求解离心率的取值范围问题典型例题讲解【典型例题】例1.(2022·全国·高二专题练习)已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫ ⎪⎝⎭B.⎝⎭C.⎝⎭D.23⎫⎪⎪⎝⎭【答案】B【解析】由题意椭圆22221x y a b +=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α, 所以22cos 2sin a c c αα+=,利用2112sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭,∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<14πα<<⎛⎫+ ⎪⎝⎭即椭圆离心率e的取值范围是⎝⎭,故选B .例2.(2022春·辽宁葫芦岛·高二统考期中)已知点12F F ,分别是椭圆22221(0)x ya b a b+=>>的左、右焦点,点P 是椭圆上的一个动点,若使得满足12PF F ∆是直角三角形的动点P 恰好有6个,则该椭圆的离心率为( )A .12 B C D 【答案】C【解析】由题意知,椭圆的最大张角为090,所以b c =,所以a ,所以c e a ===,故应 选C .例3.(2022秋·安徽·高二校联考开学考试)若P 是以1F ,2F 为焦点的椭圆22221(0)x y a b a b +=>>上的一点,且120PF PF ⋅=,125tan 12PF F ∠=,则此椭圆的离心率为( )A B .1517 C .1315 D .1317【答案】D【解析】因为120PF PF ⋅=,所以12PF PF ⊥,在12Rt PF F 中,设25PF m =(0m >),则112PF m =,1213F F m ==, 所以213c m =,12217a PF PF m =+=, 所以213217c e a ==. 故选:D. 本课结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学离心率离心率历年来是圆锥曲线客观题的考查重点,对于求圆锥曲线离心率的问题,通常有两类:一是求椭圆和双曲线的离心率;二是求椭圆和双曲线离心率的取值范围,属于中低档次的题型,对大多数学生来说是没什么难度的。
一般来说,求椭圆(或双曲线)的离心率,只需要由条件得到一个关于基本量a ,b ,c ,e 的一个方程,就可以从中求出离心率.但如果选择方法不恰当,则极可能“小题”大作,误入歧途。
许多学生认为用一些所谓的“高级”结论可以使结果马上水落石出,一针见血,其实不然,对于这类题,用最淳朴的定义来解题是最好的,此时无招胜有招! 【例1】12212(05,,221A.B. C. 2 2 D. 2122F F F P F PF ∆全国Ⅲ)设椭圆的两个焦点分别为、过作椭圆长轴的垂线交椭圆于点若为等腰直角三角形,则椭圆的离心率是( )---[解法一](大多数学生的解法)解:由于12F PF ∆为等腰直角三角形,故有122F F PF =,而122F F c =,22b PF a =所以22b c a=,整理得2222ac b a c ==-等式两边同时除以2a ,得221e e =-,即2210e e +-=, 解得28122e -±==-±,舍去12e =-- 因此12e =-+,选D[解法二](采用离心率的定义以及椭圆的定义求解) 解:如右图所示,有12222||||212122221c c c ea a PF PF c c c ===+===-++离心率的定义椭圆的定义故选D [评]以上两种方法都是很好的方法,解法一是高手的解法,灵活运用了“通径”这个二级结论,使题目迎刃而解,但计算量偏大,耗时较长;而解法二则是老手,整个过程没有任何高级结论,只运用了最最最简单的、人人皆知的“定义”,通过几个简单的步骤即可。
正所谓此时无法胜有法!一、用定义求离心率问题1. 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )D(A (B (C )2 (D 1- 2.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )AA .33B .32C .22D .23 3.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .384、已知正方形ABCD ,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为_________;解析:设c=1,则121212122222-=+==⇒+=⇒=-⇒=a c e a a c a a b5、已知长方形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为 。
解析:由已知C=2,2142,43433222====⇒=-⇒=⇒=a c e a a a a b a b6.过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=o,则椭圆的离心率为BA B C .12 D .137.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )DA .324+B .13-C .213+ D .13+8.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o 的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )BABCD9、设F 1,F 2分别是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90º,且|AF 1|=3|AF 2|,则双曲线离心率为 (A)52(B)102(C)152(D)5解.设F 1,F 2分别是双曲线22221x y a b-=的左、右焦点。
若双曲线上存在点A ,使∠F 1AF 2=90º,且|AF 1|=3|AF 2|,设|AF 2|=1,|AF 1|=3,双曲线中122||||2a AF AF =-=,22122||||10c AF AF =+=,∴ 离心率102e =,选B 。
10、如图,1F 和2F 分别是双曲线22221(0,0)x y a b a b-=>>的两个焦点,A 和B 是以OAB F 2是等边三角形,为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△则双曲线的离心率为 (A )3(B )5(C )25(D )31+解析:如图,1F 和2F 分别是双曲线22221(0,0)x y a b a b-=>>的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,连接AF 1,∠AF 2F 1=30°,31+,选D 。
|AF 1|=c ,|AF 2|=3c ,∴ 2(31)a c =-,双曲线的离心率为11.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满1122::PF F F PF =4:3:2,则曲线r 的离心率等于AA.1322或B.23或2C.12或2D.2332或二、列方程求离心率问题1.方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 解:方程22520x x -+=的两个根分别为2,12,故选A 2、已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( ) A .13B .33C .12D .32解.已知椭圆的长轴长是短轴长的2倍,∴ 2a b =,椭圆的离心率c e a ==D 。
3、设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为B(A (B (C )2 (D )34.在平面直角坐标系中,椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2c ,以O 为圆心,a 为半径的圆,过点(a 2c ,0)作圆的两切线互相垂直,则离心率e = .e =5.已知双曲线)0,0(12222>>=-b a b y a x 的一条渐近线方程为y =43x ,则双曲线的离心率为 (A )53(B )43 (C )54 (D )32解析:双曲线焦点在x 轴,由渐近线方程可得45,33b c e a a ====可得,故选A 6、在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为20x y -=,则它的离心率为( )A B C D .2 解析:由a b b a 221==得 a b a c 522=+= ,5==ace 选A 7.已知双曲线22212x y a -=(a >2)的两条渐近线的夹角为π3 ,则双曲线的离心率为A.2B. 3C.263D.233解:双曲线22212x y a -=(a >2)的两条渐近线的夹角为π3 ,则2tan 6a π==,∴ a 2=6,双曲线的离心率为233 ,选D .8.已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为( )C(A )22x a -224y a =1 (B)222215x y a a -= (C)222214x y b b -= (D)222215x y b b-=9设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于( )(A (B )2 (C (D解:设切点00(,)P x y ,则切线的斜率为0'0|2x x yx ==.由题意有002y x x =又2001y x =+ 解得: 2201,2,1()5b bx e a a=∴==+=.【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能. 10、设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A )2 (B )3 (C )312+ (D )512+ 解析:选D.不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b -=>>,则一个焦点为(,0),(0,)F c B b 一条渐近线斜率为:b a ,直线FB 的斜率为:b c -,()1b ba c∴⋅-=-,2b ac ∴=222,10c a ac e e e ∴-=∴--=∴=512+ 11.如图,在平面直角坐标系xoy 中,1212,,,A A B B 为椭圆22221(0)x y a b a b+=>>的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 .【解析】 考查椭圆的基本性质,如顶点、焦点坐标,离心率的计算等。
以及直线的方程。
直线12A B 的方程为:1x ya b+=-; 直线1B F 的方程为:1x y c b+=-。
二者联立解得:2()(,)ac b a c T a c a c+--, 则()(,)2()ac b a c M a c a c +--在椭圆22221(0)x y a b a b +=>>上,2222222()1,1030,1030()4()c a c c ac a e e a c a c ++=+-=+-=--,解得:275e =-12已知椭圆C :22221x y a b+=(a>b>0)的离心率为32,过右焦点F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =u u u r u u u r。
则k =(A )1 (B(C(D )2【解析】B :1122(,),(,)A x y B x y ,∵ 3AF FB =u u u r u u u r ,∴ 123y y =-, ∵e =,设2,a t c ==,b t =,∴ 222440x y t +-=,直线AB 方程为x sy =。