最新整理初三数学画正多边形(一).docx

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新整理初三数学教案画正多边形(一) 教学目标:

1、使学生了解用量角器等分圆心角来等分圆,从而可以作出圆内接或圆外切正多边形.

2、使学生会用尺规作圆内接正方形和正六边形,在这个基础上能作圆内接正八边形、正三角形、正十二边形.

3、通过画图培养学生的画图能力;

4、通过画正方形到会画正八边形,通过画六边形到画三角形、正十二边形,培养学生观察、抽象、迁移能力.

5、通过画图中需减小积累误差的思考与操作,培养学生解决实际问题的能力.

教学重点:

(1)用量角器等分圆心角来等分圆,然后作出圆内接或圆外切正多边形;(2)用尺规作圆内接正方形和正六边形.

教学难点:

准确作图.

教学过程:

一、新课引入:

前几课我们学习了正多边形的定义、概念、性质、判定,尤其学习了正多边形与圆关系的两个定理,而后我们又学习了正多边形的有关计算,本堂课我们一起学习画正多边形.

二、新课讲解:

由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是

学生必备能力之一,前面已学习了正多边形和圆的关系的第一个定理,即把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形;过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形,所以想到只要知道外接圆半径R或内切圆半径rn,画出圆来,然后n等分圆周就能画出所需的正n边形.

n等分圆周的方法有两种,一种是量角器法,这一种方法简单易学,它是一种常用的方法.其根据是因为相等的圆心角所对弧相等,所以使用量角器等分圆心角,可以达到把圆任意等分的目的,由于学生已具备使用量角器的能力,所以只要讲明根据,让学生动手操作即可.

另一种方法是用尺规等分圆周法,其实质也是等分圆心角,但尺规不能任意等分圆,只适用于一些特殊情况,其中重点是正方形和正六边形的作法,这是因为正八边形、正三角形、正十二边形都是由此作基础而画出来的.由于尺规作图在理论上准确,但在实际操作中有误差积累,如何减少误差使图形趋于准确?这是一个锻炼学生解决问题的好时机,应让学生亲手实验、观察对比,从而得出结论.

(三)重点、难点的学习与目标完成过程

复习提问:1.哪位同学记得正多边形与圆关系的第一个定理?(安排中下生回答)2.哪位同学记得在同圆或等圆中,相等的圆心角所对的弧有什么性质?(安排中下生回答:相等的圆心角所对的弧相等)

现在我们要画半径为R的正n边形,从正多边形与圆关系的第一个定理中,你有什么启发?(安排学生相互讨论后,让中等生回答:只要把半径为R的圆n 等分,依次连结n个等分点就得正n边形)那么怎样把半径为R的圆n等分呢?从刚才复习的第二问题中,你又受到什么启发?大家相互间讨论.(安排中等生

回答:把360°的圆心角n等分)如果要作半径2cm的正九边形,你打算如何作呢?大家互相讨论看看.(安排中等生回答:先画半径2cm的圆,然后把360°的圆心角9等份,每一份40°),用什么工具可得到40°角呢?(安排中下生回答:量角器)我们本堂课所讲画正多边形的第一种方法就是用量角器等分圆,大家用量角器画出半径为2的内接正九边形.

学生在画图实践中必然出现两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个40°的圆心角,然后在圆上依次截取40°圆心角所对弧的等弧,于是得到圆的9等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正九边形的边长误差较大.对此学生必然迷惑不解,在此教师应肯定作法理论上的正确性,然后讲出图形不够准确的原因是由于误差积累的结果,然后引导学生讨论,研究减小误差积累的二个途径:其一,调整圆规两脚间的距离,使之尽可能准确的等于所画正九边形的边长.其二,若有可能,尽可能减少操作次数,减少产生误差的机会.

大家想想如何画一个半径为2cm的正方形呢?(安排中下生回答:先画半径2cm的圆,用量角器作90°的圆心角.)画出∠AOB=90°后,方法1,可依次作90°圆心角;方法2,用圆规依次截取等于AB的弧,大家观察有没有更好的方法?(安排中等生回答:将AO与BO边延长交⊙O于C、D).正方形一边所对的圆心角是90°角,不用量角器用尺规能不能做出90°的圆心角呢?用尺规如何作半径为2cm的正方形?(安排中上等生回答,先作半径2cm的圆,然后画两条互相垂直的直径)

请同学们用尺规画出半径为2cm的正方形.

大家想想看,借助这个图形,能否作出⊙O的内接正八边形?同学们互相研

究研究,(安排中上生回答:能,过圆心O作正方形各边的垂线与圆相交即得⊙O 的八等分点)为什么?根据什么定理?(安排中上等生回答:垂径定理) 还有什么方法?(安排中上等生作各直角的角平分线.)

请同学们用此二法在图上画出正八边形.

照此方法,同学们想想看,你还能画出边数为几的正多边形?(安排中下生回答:16边形等)

综上所述及同学们的画图实践可知:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……

大家再思考一个问题:如何画半径为2cm的正六边形呢?你都有哪些方法?大家讨论.

方法1.画半径2cm的⊙O,然后用量角器画60°的圆心角,依次画下去即六等分圆周.

方法2.画半径2cm的⊙O,然后用量角器画出60°的圆心角,

如果有同学想到方法3更好,若无则提示学生:前面在研究正多边形的有关计算时,得到正六边形的半径与边长有一种什么样的数量关系?(安排中下生回答:相等)那么哪位同学可不用量角器,仅用尺规作出半径2cm的圆内接正六边形?(安排一名中等生到黑板画图,其余在下面画图)

在学生画图完毕后展示两种不同的画法:其一,在⊙O上依次截取AB=BC=CD=DE=EF,由于误差积累AB≠FA,其二,首先画出⊙O的直径AD,然后分别以A、D为圆心,2cm长为半径画弧交⊙O于B、F、C、E.画出图形比较准确.

相关文档
最新文档