材料现代研究方法

合集下载

材料与化工现代研究方法

材料与化工现代研究方法

材料与化工现代研究方法
材料与化工现代研究方法包括理论计算化学、实验物理学、实验及模拟技术、分子结构与行为计算技术、界面科学和工程、材料分析技术、测试和数据处理技术等。

其中,理论计算化学是利用计算机软件程序,结合外源物质特性、物质结构及其组合影响的原理,计算出物质的各种性质或过程变化的方法;实验物理学致力于发现、描述和推断物质性质及其在特定温度条件下的变化;实验及模拟技术则是不断改进的实验方法及计算机仿真技术;分子结构与行为计算技术包括分子动力学计算,分子结构分析等,可以帮助我们更好地理解材料分子结构与属性间的联系,并建立精确的建模;界面科学和工程则是研究固体表面和液体界面的性质以及固液界面的形成过程的技术;材料分析技术涉及初级分析、结构分析、表面分析和力学特性测试等技术,以及数据处理和测试技术,可以帮助我们更准确地了解材料的特性及其变化。

《材料现代研究方法》

《材料现代研究方法》

《材料现代研究方法》
课程名称 材料现代研究方法 课程编号 3023008
英文名称 Modern Research Methods of Materials课程类型 本专业推荐选修课 总学时 32 理论学时 30 实验学时 2 实践学时
学分 2 预修课程 材料科学基础、金工实习等 适用对象 材控专业(辅修)
课程简介 《材料现代研究方法》是材料成型及控制工程专业的一门推荐专业选修课。

材料成型及控制工程专业覆盖金属材料、非金属材料、复合材料、粉末冶金、等领域的材料成形,《材料现代研究方法》是介绍光学显微分析、X射线、透射电子显微镜、扫描电子显微镜、热分析、光谱分析等分析仪器与方法的课程;是材料科学研究的重要工具。

为今后的研究与实践打下坚实的理论基础。

现代材料分析方法

现代材料分析方法

现代材料分析方法现代材料分析方法包括物理、化学、电子、光学、表面和结构等多个方面的技术手段,具有快速、准确、非破坏性的特点。

下面将针对常用的材料分析技术进行详细介绍。

一、物理分析方法1. 微观结构分析:包括金相显微镜分析、扫描电镜、透射电镜等技术。

通过观察材料的显微结构、晶粒尺寸、相组成等参数,揭示材料的内在性质和形貌特征。

2. 热分析:如热重分析、差示扫描量热仪等。

利用材料在高温下的重量、热容变化,分析材料的热行为和热稳定性。

3. 电学性能测试:包括电导率、介电常数、介电损耗等测试,用于了解材料的电导性和电介质性能。

4. 磁性测试:如霍尔效应测试、磁滞回线测试等,用于研究材料的磁性行为和磁性特性。

二、化学分析方法1. 光谱分析:包括紫外可见光谱、红外光谱、核磁共振等。

通过检测材料对不同波长的光谱的吸收、散射等现象,分析材料的组分和结构。

2. 质谱分析:如质子质谱、电喷雾质谱等。

通过挥发、电离和分离等过程,分析材料中不同元素的存在及其相对含量。

3. 电化学分析:包括电化学阻抗谱、循环伏安法等。

通过测量材料在电场作用下的电流、电压响应,研究材料的电化学性能和反应过程。

4. 色谱分析:如气相色谱、高效液相色谱等。

利用材料在色谱柱上的分离和吸附效果,分析材料中组分的种类、含量和分布。

三、电子分析方法1. 扫描电子显微镜(SEM):通过照射电子束,利用电子和物质的相互作用,获得样品表面的详细形貌和成分信息。

2. 透射电子显微镜(TEM):通过透射电子束,观察材料的细观结构,揭示原子尺度的微观细节。

3. 能谱分析:如能量色散X射线谱(EDX)、电子能量损失谱(EELS)等。

通过分析材料与电子束相互作用时,产生的X射线和能量损失,来确定样品的元素组成和化学状态。

四、光学分析方法1. X射线衍射:通过物质对入射的X射线束的衍射现象,分析材料的晶体结构和晶格参数。

2. 红外光谱:通过对材料在红外辐射下的吸收和散射特性进行分析,确定材料的分子结构和化学键。

材料现代分析方法

材料现代分析方法

材料现代分析方法现代分析方法是指在化学、物理、生物等科学领域中广泛应用的一种分析技术。

它通过使用先进的仪器设备和相关的算法,能够快速、准确地对物质的成分、结构以及性质进行分析和表征。

本文将介绍几种常见的材料现代分析方法。

一、质谱分析法质谱分析法是一种非常重要的现代分析方法,广泛应用于有机化学、生物化学和环境科学等领域。

它通过将物质分子离子化,并在一个磁场中进行偏转,最后将其质量进行测定,从而确定物质的分子组成和结构。

质谱分析法具有高灵敏度、高分辨率、多组分分析的能力,可以用于确定物质的组成、确认化合物的结构、鉴定杂质等。

二、红外光谱分析法红外光谱分析法是一种基于不同分子振动产生的红外吸收谱谱图,进行物质分析和表征的方法。

该方法的原理是物质在特定波长的红外光照射下,吸收特定的波长,产生特定的振动谱带。

通过对红外光谱的测定和比对,可以确定物质的功能基团、官能团以及化学键的类型和位置,从而研究物质的组成、结构和化学性质。

三、扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种基于电子束显微技术的分析仪器。

其工作原理是在真空环境中,用电子束扫描样品表面,通过检测扫描电子的反射、散射或透射等信号,来获取样品表面的形貌、成分以及晶体结构等信息。

与光学显微镜相比,SEM具有更高的放大倍数、更高的分辨率和更大的深度。

四、X射线衍射(XRD)X射线衍射(XRD)是一种非常常用的材料分析技术,主要用于分析固体材料的结晶结构和晶体学性质。

该方法的原理是通过将物质置于X射线束中,当X射线与样品中的晶体结构相互作用时,会发生衍射现象。

通过测量样品衍射的位置、强度和形状等信息,可以确定样品的晶体结构、晶格参数和晶体定向等。

五、核磁共振(NMR)核磁共振(NMR)是一种通过检测原子核在磁场中的共振信号来进行物质分析的方法。

其工作原理是利用样品中特定原子核的性质,将其置于强大的磁场中,然后通过外加的射频电磁场来激发核自旋共振。

(完整word版)材料现代研究方法课程教学大纲

(完整word版)材料现代研究方法课程教学大纲

材料现代研究方法课程教学大纲课程名称:材料现代研究方法Modern Analysis Methods in Materials Science and Engineering学分学时: 4/54+16°先修课程:物理化学,物理冶金原理,材料工程基础一.课程教学目标本课程是材料科学与工程系的一门必修的专业基础课,目的在于培养学生掌握材料X射线衍射分析、电子显微分析、差热分析技术(DTA)、差示扫描量热技术(DSC)、热重分析技术(TG)、动态力学分析技术(DMA)、动态力学分析技术(DMA)以及红外光谱(IR)和核磁共振波谱(NMR)所必需的基本理论、基本技能。

通过学习本课程,学生应达到如下基本要求:1、了解X射线衍射、电子衍射和电子显微分析在材料科学领域中所能解决的问题及基本原理和方法。

2、读懂一般专业文献中有关X射线衍射、电子显微分析的图象和结论。

3、能与从事X射线、电子衍射工作的专业人员共同制定在材料科学研究方面的实验方案和分析实验结果。

4、为今后从事X射线、电子显微分析工作打下初步基础。

5、了解差热分析技术、差示扫描量热技术、热重分析技术、动态力学分析技术、动态力学分析技术、红外光谱以及核磁共振波谱在材料科学领域中所能解决的问题及基本原理和方法。

二.教学内容及基本要求本课程主要介绍X射线晶体结构分析方法、物相定性和定量分析的方法、内应力的测定方法;电子衍射花样的分析及透射电镜、扫描电镜、电子探针、俄歇电子能谱仪的结构原理及分析方法;差热分析技术、差示扫描量热技术、热重分析技术、动态力学分析技术、动态力学分析技术、红外光谱以及核磁共振波谱的基本原理和方法。

1、电子及X射线的性质(2学时)2、晶体的衍射效应及衍射几何(5学时)2.1可见光的光栅衍射现象2。

2X射线衍射的基本理论(劳埃方程、布拉格方程、倒易点阵、衍射矢量方程及爱瓦尔德图解)2.3薄晶体的电子衍射(单晶体、多晶体电子衍射花样)3、X射线和电子衍射的强度(4学时)3.1一个电子对X射线的散射3。

材料现代分析方法

材料现代分析方法

材料现代分析方法材料现代分析方法是指利用现代科学技术手段对材料进行分析和研究的方法。

随着科学技术的不断发展,材料分析方法也在不断更新和完善。

现代材料分析方法的发展,为材料科学研究提供了更加精准、快速和全面的手段,对于材料的研究和应用具有重要的意义。

首先,光谱分析是材料现代分析方法中的重要手段之一。

光谱分析是利用物质对电磁波的吸收、发射、散射等现象进行分析的方法。

常见的光谱分析方法包括紫外可见吸收光谱、红外光谱、拉曼光谱等。

通过光谱分析,可以对材料的结构、成分、性质等进行研究和分析,为材料的研究和应用提供重要的信息。

其次,电子显微镜分析也是材料现代分析方法中的重要手段之一。

电子显微镜是利用电子束来照射样品,通过电子与样品相互作用产生的信号来获取样品的显微结构和成分信息的一种显微镜。

通过电子显微镜分析,可以对材料的微观形貌、晶体结构、成分分布等进行研究和分析,为材料的结构性能和应用提供重要的参考。

此外,质谱分析也是材料现代分析方法中的重要手段之一。

质谱分析是利用质谱仪对物质进行分析的方法,通过对物质中离子的质量和相对丰度进行检测和分析,来确定物质的分子结构和成分。

质谱分析可以对材料的组成、纯度、分子量等进行研究和分析,为材料的质量控制和应用提供重要的支持。

综上所述,材料现代分析方法是利用现代科学技术手段对材料进行分析和研究的方法。

光谱分析、电子显微镜分析、质谱分析等都是材料现代分析方法中的重要手段,通过这些方法可以对材料的结构、成分、性能等进行全面的研究和分析,为材料的研究和应用提供重要的支持。

随着科学技术的不断发展,相信材料现代分析方法将会更加完善和精准,为材料科学研究和应用带来更多的新突破。

材料现代研究方法

材料现代研究方法

仪器性能及其表征 判 据 性能表征 (Criterion) (Figures of Merit) 精密度 标准偏差;相对标准偏差; 变异系数;方差 误差 绝对误差;相对误差 灵敏度 校正灵敏度;分析灵敏度 检测限 空白加 3 倍的空白标准偏差 线性范围 可以分析的浓度范围 选择性 选择性系数 其它原则: 分析速度; 分析难度或方便性; 对操作者的技能要求; 仪器维护及实用性; 分析测试费用。
仪器分析校正方法
所谓校正(Calibration),就是将仪器分析产生的各 种信号与待测物浓度联系起来的过程。除重量法 和库仑法之外,所有仪器分析方法都要进行“校 正”。 校正方法有三: 标准曲线法;
标准加入法;
内标法。
1) 标准曲线法(Calibration curve,Working curve, Analytical curve) 具体做法: 准确配制已知标准物浓度的系列: 0(空白),c1,c2, c3,c4……..; 通过仪器分别测量以上各标准物的响应值S0,S1, S2,S3,S4……及待测物的响应值Sx; 以浓度c对响应信号S作图得到标准曲线,然后通 过测得的Sx从下图中求得cx;或者通过最小二乘法 获得其线性方程再直接进行计算。
l 校正曲线的斜率; l 分析的重现性或精密度。
International Union of Pure & Applied Chemistry,即
IUPAC推荐使用“校正灵敏度”或者“校正曲线斜
率”作为衡量灵敏度高低的标准。
60
50
40
S
30 20 10
0
0 0.1 0.2 0.3 0.4 0.5 0.6
SDL=Sb +k1 sb
S
sb

材料现代分析方法

材料现代分析方法

材料现代分析方法
现代分析方法是指在分析过程中所采用的一系列科学技术和方法,以获得对于材料组成、结构、性质以及处理质量等方面的准确评估和分析。

现代分析方法是材料科学和工程技术领域中的一个重要研究方向,其涉及的技术和方法包括光学显微镜、扫描电子显微镜、X射线衍射、电子能谱、紫外-可见光谱、
红外光谱、质谱等。

光学显微镜是一种常用的现代分析方法,通过观察和记录材料样本的显微结构,可以了解材料的组成、形貌以及微观缺陷等信息。

扫描电子显微镜能够以非常高的分辨率观察到材料表面的微观形貌,通过扫描电子显微镜还可以进行能谱分析,得到材料的元素组成信息。

X射线衍射是一种常用的结构表征方法,通过射线在材料中的衍射现象,可以确定材料的晶体结构和晶格常数。

通过X射
线衍射还可以对材料的晶体缺陷和残余应力进行表征。

电子能谱是用来分析材料表面化学元素和化学结构的方法,通过测量材料在电子束照射下,产生的电子能量损失的谱线,可以获取材料的元素组成和化学结构信息。

紫外-可见光谱和红外光谱是用来分析材料的光学性质的方法,通过测量材料对于不同波长的紫外-可见光和红外光的吸收和
反射,可以了解材料的能带结构、能级布局以及化学键的类型和强度等。

质谱是分析材料中存在的各种离子和分子的方法,通过将材料样品分子或离子化,然后用质谱仪测量其质量-荷质比,可以确定材料中存在的化合物的分子量和组成。

综上所述,现代分析方法为材料科学的发展和应用提供了强大的工具和技术支持。

通过这些方法,科学家们可以深入了解材料的组成、结构和性质,为新材料的合成和应用提供指导和参考,并促进材料科学的发展和创新。

材料现代研究方法 PPT

材料现代研究方法 PPT

2.2 X射线的本质、能量
X射线本质上和无线电波、可见光、射线一样,也是 一种电磁波,具有波粒二象性。其波长在0.01~10nm之 间,介于紫外线和射线之间,但没有明显的界限。其 短波段与射线长波段相重叠,其长波段则与紫外线的 短波段相重叠。
γ射线
X射线
UV
IR
可见光
微波
无线电波
10-15
10-10
材料现代研究方法
第1章 绪论
1.1 材料研究的意义和内容
什么是材料?
材料是指将原料通过物理或者化学的方法加工制成的金属、 无机非金属、有机高分子和复合材料的固体物质。
金属材料:导电性、塑性和韧性好。 无机非金属材料:硬度高,韧性差。
高分子材料:强度、弹性模量低。 造成这些材料不同性能的原因就是因为材料的物质组成和 结构不同。从原子结构来讲,就是化学键不同。比如金属材 料是由金属键结合的,无机非金属材料主要是由离子键和共 Hale Waihona Puke 键结合的。2.3 X射线的产生
目前,衍射实验使用的X射线,都是以阴极射线 (即高速度的电子流轰击金属靶)的方式获得的,所 以要获得X射线必须具备如下条件: 1.电子源(阴极): 产生自由电子,加热钨丝发射热电子。 2.靶材(阳极): 设置自由电子撞击的靶子,如阳极靶, 用以产生X射线。 3.高压发生器: 用以加速自由电子朝阳极靶方向加速运 动。 4.真空: 将阴阳极封闭于小于133.310-6 Pa的高真空中, 保持两极洁净,促使加速电子无阻挡地撞击到阳极靶 上。
X射线管-产生X射线的核心装置
(1)阴极 阴极的功能是发射电子。它由钨丝制成,在 通以一定的电流加热后便能释放出热辐射电子。
为使电子束集中,在阴极灯丝外加上聚焦罩,并使灯 丝与聚焦罩之间始终保持100-400V的电位差。

材料现代研究方法(定性物相分析)

材料现代研究方法(定性物相分析)


38.05 43.28 44.28 50.40 64.38 74.09 77.34 81.45 90.86 95.10 97.80 110.45 114.90 134.85 136.82
d (A)
I/I0
2.3649
100
2.0905
80
2.0456
31
1.8106
28
1.4459
18
1.2786
2.355
100
2
43.28
2.0905
80
3
44.28
2.0456
31
2.044
40
2.039
52
4
50.40
1.8106
28
5
64.38
1.4459
18
1.445
25
1.442
32
6
74.09
1.2786
11
7
77.34
1.2328
16
1.231
26
1.230
36
8
81.45
1.1806
6
1.1796
因为衍射角与X射线的波长和晶体的晶面间距有关, 为了消除波长的影响,通常利用布拉格公式计算出反 射晶面的面间距,这些面间距是物相的特征值。
为了确定试样中含有什么相: 首先拍摄X射线衍射花样, 计算出各反射面的面间距,测量衍射线的强度, 与已知物相的标准数据(晶面间距和强度)比较, 如果能找到这样的物相,它与被测物相的数据相符
多项混合物 不同物相的某些衍射线有可能重叠
应用举例
Intensity
20
40
60
80
100

材料现代研究方法ModernMethodsofMaterialsAnalysis

材料现代研究方法ModernMethodsofMaterialsAnalysis

EPMA
島津EPMA-1600
EDS应用举例
不良品 良 品

浸炭不 良部
不良品
齿轮疲劳失效,是由于 渗碳处理不均匀,根本 原因在于硅的偏聚。
良 品
Si
XPS
3. 4 分子结构分析

利用电磁波与分子键和原子核的作用,获 得分子结构信息。红外光谱(IR)、拉曼 光谱(Raman)、 荧光光谱(PL)等是 利用电磁波与分子键作用时的吸收或发射 效应,而核磁共振(NMR)则是利用原 子核与电磁波的作用来获得分子结构信息 的。
3.1组织形貌分析

微观结构的观察和分析对于理解材料的本 质至关重要,组织形貌分析借助各种显微 技术,认识材料的微观结构。表面形貌分 析技术经历了光学显微镜(OM)、电子显 微镜(SEM)、扫描探针显微镜(SPM)的发 展过程,现在已经可以直接观测到原子的 图像。
三种组织分析手段的比较
扫描探针显微镜 观察倍率



利用衍射分析的方法探测晶格类型和晶胞常数, 确定物质的相结构。 主要的物相分析的手段有三种:x射线衍射 (XRD)、电子衍射(ED)及中子衍射(ND)。 其共同的原理是: 利用电磁波或运动电子束、 中子束等与材料内部规则排列的原子作用产生 相干散射,获得材料内部原子排列的信息,从 而重组出物质的结构。
1.材料现代分析方法
材料现代分析方法是关于材料分析测试技术及其有关理论的 一门课程。 成分、结构、加工和性能是材料科学与工程的四个基本要素, 成分和结构从根本上决定了材料的性能,对材料的成分和结 构的进行精确表征是材料研究的基本要求,也是实现性能控 制的前提。
2.材料分析的内容



表面和内部组织形貌。包括材料的外观形貌(如纳米 线、断口、裂纹等)、晶粒大小与形态、各种相的尺 寸与形态、含量与分布、界面(表面、相界、晶界)、 位向关系(新相与母相、孪生相)、晶体缺陷(点缺 陷、位错、层错)、夹杂物、内应力。 晶体的相结构。各种相的结构,即晶体结构类型和晶 体常数,和相组成。 化学成分和价键(电子)结构。包括宏观和微区化学 成份(不同相的成份、基体与析出相的成份)、同种 元素的不同价键类型和化学环境。 有机物的分子结构和官能团。

现代材料研究方法课程设计

现代材料研究方法课程设计

现代材料研究方法课程设计一、课程目标知识目标:1. 学生能理解并掌握现代材料研究的基本方法,包括材料制备、结构表征、性能测试等。

2. 学生能了解不同研究方法在材料科学领域的应用和优缺点。

3. 学生能掌握材料研究中常用的数据分析与处理技巧。

技能目标:1. 学生具备运用现代研究方法进行材料实验设计和实施的能力。

2. 学生能够独立操作相关实验设备,进行材料制备和性能测试。

3. 学生能够运用数据分析软件对实验数据进行处理和分析,撰写规范的实验报告。

情感态度价值观目标:1. 学生培养对材料科学的热爱和探究精神,增强对科技创新的责任感和使命感。

2. 学生树立正确的科研态度,严谨、务实,注重团队合作与交流。

3. 学生能够关注材料研究在环保、可持续发展等方面的意义,培养社会责任感。

课程性质分析:本课程为高中年级的选修课程,旨在拓展学生对现代材料研究的认识,提高科学素养。

课程内容紧密联系实际,注重培养学生的实践操作能力和创新思维。

学生特点分析:高中年级学生具备一定的物理、化学基础知识,对现代科技充满好奇心,具有较强的求知欲和动手能力。

学生在学习过程中需要引导他们结合已有知识,探索新材料领域。

教学要求:1. 教师应注重理论与实践相结合,提高课程的趣味性和实用性。

2. 教学过程中要关注学生的个体差异,激发学生的学习兴趣和积极性。

3. 教学评价要全面,既要关注学生的知识掌握程度,也要关注学生的技能和情感态度价值观的培养。

二、教学内容1. 现代材料研究方法概述- 材料研究方法的分类与发展趋势- 常用研究方法的原理及其在材料科学中的应用2. 材料制备技术- 气相沉积法、溶胶-凝胶法、水热合成法等制备技术- 各类制备技术的优缺点及适用范围3. 结构表征技术- X射线衍射、扫描电镜、透射电镜等表征技术- 各类表征技术的原理及其在材料结构分析中的应用4. 性能测试方法- 电学、磁学、光学性能测试- 力学、热学性能测试- 各类性能测试方法的原理及其在材料研究中的应用5. 数据分析与处理- 实验数据的收集、整理和表达- 常用数据分析方法与软件应用- 实验报告的撰写规范6. 实践操作与案例分析- 设计并实施简单的材料制备与性能测试实验- 分析实际案例,了解现代材料研究方法在实际科研中的应用教学内容安排与进度:本课程共安排12个课时,具体教学内容与进度如下:1-2课时:现代材料研究方法概述3-4课时:材料制备技术5-6课时:结构表征技术7-8课时:性能测试方法9-10课时:数据分析与处理11-12课时:实践操作与案例分析教学内容与教材关联性:本教学内容与教材《新材料技术》的第三章“材料的制备与表征”和第四章“材料性能测试与分析”紧密相关,确保学生能够在掌握基础知识的同时,拓展现代材料研究方法的学习。

材料现代研究方法讲义5

材料现代研究方法讲义5
试样的线吸收系数
材料现代研究方法讲义
含有n个相的多相混和物中, 相的( ) 含有 个相的多相混和物中,i 相的(hkl)晶面的衍射 个相的多相混和物中 线强度: 线强度:
e4 λ 3 Vi 2 1 + cos 2 2θi e −2 M i Ii = I 0 2 4 ⋅ ⋅ 2 Fi Pi 2 m c 32π R vi sin θi cos θ i 2ul
V --R --V0--P ---
试样受X射线照射的体积, 试样至衍射线接受器之间距, 单胞体积, 多重性因数, --- 罗伦兹-偏振因数,
1 + cos 2 2θ sin 2 θ cos θ
e −2 M --- 温度因数,
A(θ )
--- 吸收因数。
材料现代研究方法讲义
粉末多晶体衍射强度公式
1 1 + cos 2 2θ − 2 M e 4 λ3 2 I = I0 VF hkl P e · A (θ ) … 2 4 2 2 32 πR m C V 0 sin θ cos θ
材料现代研究方法讲义
内标法〈粉末试样〉
往试样中掺入另一种粉末状的标准物质,搅匀,摄取 射 往试样中掺入另一种粉末状的标准物质,搅匀,摄取x射 粉末状的标准物质 衍射线强度比, 线衍射花样,利用待测相和标准相的某一衍射线强度比 线衍射花样,利用待测相和标准相的某一衍射线强度比, 来测定物相含量。 来测定物相含量。 基本公式
X射线物相定量分析 射线物相定量分析
材料现代研究方法讲义
一.基本原理
内容——物相定量分析,即分析多相混和物中 内容 某一相的含量 原理——试样中某一相产生的衍射线的强度与该相 原理 在试样中的含量成比例(不是正比关系) 仪器——x射线衍射仪 仪器 任务:通过 射线衍射 射线衍射, 任务:通过X射线衍射,获得多相样品中每一相的 衍射强度,对衍射强度进行分析, 衍射强度,对衍射强度进行分析,根据上述 原理,进行定量分析。 原理,进行定量分析。

现代材料研究方法

现代材料研究方法

现代材料研究方法一、热分析20分1、热重分析法:控制温度,测量物质重量对温度的关系,随温度的变化,物质发生各种物理化学变化,通过测量其重量随温度的改变,确定受热过程中物质发生的变化类型。

差分热重法:是热重曲线的一次微分曲线,如果失重温度很接近,在热重曲线上的台阶不易区分,做差分热重曲线可以看到明显的温度。

2、DTA与DSC区别:DTA记录的是同一热源加热标样与待测物质,待测物质因受热变化而与标样产生温度差,获得以温度(时间)为横坐标,温差为纵坐标的曲线。

DSC记录的是不同热源加热下的标样与待测物质,保持其温度相同,两者之间存在的功率差,获得以温度(时间)为横坐标,功率差为纵坐标的曲线。

3、吸热反应:熔化、汽化、升华、脱水、分解、去溶剂、还原;放热反应:吸附、结晶、氧化;吸热/放热:多形性转变。

二、光谱45分1、红外光谱原理:分子正、负电荷中心间的距离r和电荷中心所带电量q的乘积,叫做分子的偶极矩μ=r×q,是分子极性大小的表征。

原子以红外频率振动(有公式),其中振动频率与折合质量,化学键力常数有关,反映物质的组成和结构。

若电磁波的交变电场与偶极矩发生变化了的分子振动相互作用,导致与分子振动频率相同的电磁波的吸收,产生红外光谱。

拉曼光谱原理:单一波长的电磁波与物质相互作用,由于原子振动,发生弹性散射与非弹性散射,弹性散射的频率与入射电磁波频率相同,称为瑞利散射,非弹性散射的频率与入射电磁波频率不相同,称为拉曼散射,显示拉曼光谱。

光致发光原理:入射光与物质相互作用,引起基态能级跃迁,若从高能级向低能级复合时能够发光,能量以光子的形式辐射出来,则可被检测到。

这种复合包括能带间的复合、激子间的复合、能带与激子的复合、施主与受主能级的复合。

以此可测出较微量的掺杂,而且显示掺杂物在能带中的位置。

2、红外活性:偶极矩发生变化的振动;拉曼活性:极化率发生变化的振动,对称分子的对称振动显示拉曼活性。

3、拉曼光谱测量应力原理:当材料中引入应变时,晶格常数变大,键长变长,相互作用力减弱,则化学键力常数变小,由原子振动频率公式,可知原子振动频率减小,拉曼光谱中峰向波数小的一侧偏移,其迁移方向显示应力方向,迁移程度显示应力大小。

现代材料分析技术及应用

现代材料分析技术及应用

现代材料分析技术及应用现代材料分析技术是指利用现代科学技术手段对材料进行全面、准确、细致的研究和分析的方法。

它是材料科学领域研究的基础和支撑,广泛应用于材料的研发、生产和质量控制等方面。

现代材料分析技术包括物理性质测试、化学分析、显微成像、表面分析、光谱分析、电子显微镜等多个方面。

下面将介绍几种常见的现代材料分析技术及其应用。

一、物理性质测试技术物理性质测试技术是对材料的物理性能进行测试和分析的方法。

常见的测试技术有强度测试、硬度测试、韧性测试、热膨胀系数测量等。

这些测试技术可以用于评估材料的强度、硬度、韧性、热稳定性等性能。

例如,在金属材料的研发过程中,可以通过硬度测试来评估其抗拉强度和延展性,进而确定最佳的工艺参数。

二、化学分析技术化学分析技术是对材料中化学成分进行定性和定量分析的方法。

常见的化学分析技术包括光谱分析、质谱分析、原子吸收光谱分析等。

这些技术可以确定材料中元素的种类、含量以及化学结构。

化学分析技术在材料研发过程中起到了重要作用,可以选择最佳的原材料组合,提高材料的性能。

三、显微成像技术显微成像技术是观察和研究材料的微观形貌和结构的方法。

常见的显微成像技术有光学显微镜、电子显微镜和原子力显微镜等。

这些技术可以提供高分辨率的图像,揭示材料的表面形貌、内部结构和缺陷等信息。

显微成像技术广泛应用于材料的质量检测、缺陷分析和外观评估等方面。

四、表面分析技术表面分析技术是研究材料表面性质和表面结构的方法。

常见的表面分析技术有扫描电子显微镜、表面拉曼光谱、X射线光电子能谱等。

这些技术可以提供材料表面的化学组成、成分分布、晶体结构等信息。

表面分析技术对于材料的表面改性、涂层质量控制等有重要意义。

五、光谱分析技术光谱分析技术是研究物质的光学特性和结构的方法。

常见的光谱分析技术有红外光谱、紫外-可见吸收光谱、核磁共振光谱等。

这些技术可以通过分析物质与光的相互作用来判断其分子结构、化学键信息等。

光谱分析技术广泛应用于材料的组分分析、质量控制和性能评估等方面。

材料的现代研究方法

材料的现代研究方法

材料的现代研究方法
现代材料研究方法包括以下几个方面:
1. 材料表征方法:包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X 射线衍射(XRD)、原子力显微镜(AFM)等表征手段,用于分析材料的形貌、结构、晶体学等特征。

2. 热分析方法:包括差示扫描量热法(DSC)、热重分析法(TGA)、热导率测量、热膨胀测量等,用于研究材料的热性质和相变过程。

3. 光谱学方法:包括红外光谱(IR)、拉曼光谱、紫外可见光谱(UV-Vis)、核磁共振(NMR)等方法,用于分析材料的化学组成和分子结构。

4. 表面分析方法:包括X射线光电子能谱(XPS)、扫描隧道显微镜(STM)、原子力显微镜(AFM)等技术,用于表征材料表面的化学组成和形貌。

5. 电化学方法:包括循环伏安法(CV)、电化学阻抗谱(EIS)等,用于研究材料的电化学性质和电化学反应过程。

6. 计算模拟方法:包括分子动力学模拟(MD)、密度泛函理论(DFT)等计算方法,用于预测材料的性质、模拟材料的结构和动力学过程。

这些现代研究方法互相结合,可以全面了解材料的结构、性质和功能,为材料科学的发展提供重要的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中:γ——体膨胀系数;V0——起始温度下的原始体积; △V——试样在温差△T下的体积变化量 △T——试验温度差
17.1.2热机械分析(TMA)
1.定义:在程序控温下,测量物质在非振动负荷下的形变 与温度关系的技术。 负荷方式:拉伸、压缩、弯曲、扭转和针入等 2.测试原理 与线膨胀测量相似,差别在于TMA必须施加或多或少 的静态外力; TMA的响应是膨胀行为和粘弹效应的 加和

t 0G' sin t 0G "cos t
0 其中: G ' cos —储能模量 0
模量是复数,
G* G ' iG " tg G" —损耗因子 G'
G"
0 sin —损耗模量 0
17.2动态力学热分析
动态力学曲线提供了材料的力学状态、力学性能和多 重转变与温度关系等信息。
所需试样量少而获得的信息丰富; 材料结构-分子运动-加工与应用 动态测量结果
17.2 动态力学热分析
17.2.3测试原理
材料的动态力学行为是指材料在交变应力(或应变) 作用下的应变(或应力)响应。 以动态剪切为例: t 0 sin t
对于粘弹性材料
t 0 sin t t 0 cos sin t sin cos t
17.2.4 动态力学试验方法
按形变模式: 拉伸、压缩、扭转、剪切和弯曲等; 按振动模式: 自由衰减振动、强迫共振、强迫非共振和声波传播等
自由衰减振动法:
在扭转力作用下自由振动时振动周期、相邻两振幅间的对数减量 及它们与温度的关系。 扭摆法:适合于能支撑自身重力的试样;(-185~250℃) 对数减量Λ:
17.1.2热机械分析(TMA)
形变-温度曲线测定法(拉伸或收缩热形变试验、切 变模量软化温度试验和针入度试验)、定温下的形变 (或应力)-时间曲线测定法(应力松弛和蠕变试验) 3.热机械曲线
非晶态无定形线型 聚合物的形变-温度曲线
Tg
ε
Tf
T/℃
17.2 动态力学热分析
17.2.1定义(ICTAC) 动态力学热分析(DMTA):在程序控温下,测量物质 在振动负荷下的动态模量和(或)力学损耗与温度关 系的技术。 扭辫分析(TBA):将试样涂覆于一根丝辫上,在程 序控温下,在一种特殊条件下进行测量的动态力学热 分析。 17.2.2特点:
强迫共振法
指强迫试样在一定频率范围内的恒幅力作用下发生振 动,测定共振曲线,从共振曲线上的共振频率与共振 峰宽度得到储能模量与损耗因子的方法。 A 共振峰宽度:共振曲线上 2 处所对应 A 的两个频率之差 f f2 f1 ; 储能模量正比于 f ri2; A 2 损耗因子正比于fi f ri 振簧法 温度范围:-150~300℃; f1 f r f 2
17.1静态力学热分析
17.1.1热膨胀法(TDA) 在程序控温下,测量物质在可忽略负荷时的尺寸与温 度关系的技术。 膨胀或收缩 在仅有自身重力条件下 体积或长度变化 各种类型相变(固1→固2) 线胀系数、玻璃化转变温度、软化温度、热变形温度 -150~2500℃
17.1.1热膨胀法
1.线膨胀系数 ⑴定义:温度升高一度(℃)时,沿试样某一方向上的 相对伸长(或收缩)量, L L0 T ⑵测定方法 无相变时:T1→L1,T2→L2;L0=L1 T1~T2的选择:-30~30℃(美);室温~80℃(日) 0~40℃(中) 有相变时:连续升温;确定不同温区的线膨胀系数
17.1.1热膨胀法
⑶TDA原理示意图 测量试样分子对热能引起的变化的响应; 晶体结构、晶格振动及物理和化学状态 的改变 ⑷热膨胀曲线 △L/μm PS:真空,5℃/minBiblioteka Tg=100℃T/℃
17.1.1热膨胀法
2.体膨胀系数 定义:温度升高一度(℃)时,试样体积膨胀(或收 缩)的相对量,
V = V0 T
P
ln A0 ln A1 ln A1 ln A2 A A ln 0 ln 1 A1 A2
A0
A1
A2
G’由曲线求得,与1/P2成正比;
G" G '
t

tg


扭摆式DMA示意图及自由衰减振动的振幅时间曲线 1.上夹具(固定) 2.试样 3.摆锤 4.下夹具 5.关心摆杆
不同交联度的酚醛树脂的扭摆曲线 图中数字表示固化剂六亚甲基四胺的质量分数;1dyn=10-5N
自由衰减振动法:
扭辫法:基本步骤与扭摆法相同;试样截面不规则 通常以1/P2表征试样的刚度,以Λ表征试样的阻尼; 扭辫法的优点: 试样制备简单; 适用的模量范围更宽; 温度范围:-180~600℃ 自由振动的典型频率范围:10-1~101Hz
材料现代研究方法
材料学院 杨光 主要参考书:
高家武 主编,高分子材料近代测试技术,北京航 空航天大学出版社,1994. 王富耻主编,材料现代分析测试方法,北京理工大 学出版社,2006.
17. 静、动态力学热分析
测量物质在静态或动态负荷作用下,力学量随温度的 变化
按测定时的负荷分类: 近于零负荷:热膨胀法(TDA) 静态力学热分析 静态负荷:热机械分析(TMA) 振动负荷:动态力学热分析(DMTA)和扭辫分析 (TBA)
均相非晶态线形高聚物典型的DMTA温度谱
强迫非共振法
其他试验模式:应力控制下 ⑴多频温度扫描(一次试验得到多个频率下的DMTA谱) ⑵蠕变/热机械分析 ⑶应力松弛(应变控制下的静态模式) 形变模式: ⑴单/双悬臂梁 ⑵三点弯曲 ⑶拉伸 ⑷压缩(软材料) ⑸剪切
共振曲线
强迫共振法中常用的形变模式和试样夹持方式
强迫非共振法
指强迫试样以设定频率振动,测定试样在振动中的应 力与应变幅值以及应力与应变之间的相位差,按定义 直接计算储能模量、损耗因子等参数。 DMTAⅣ型:0.001~318Hz;-150~600℃ 试验模式:应变控制下
⑴单点测定(温度、频率、应变) ⑵应变扫描→试样载荷或应力与应变之间的关系 ⑶温度扫描→试样的特征温度 ⑷频率扫描(最常用的频率范围0.01~100Hz) ⑸频率-温度扫描(时-温叠加TTS软件) ⑹时间扫描→材料的反应动力学
相关文档
最新文档