概率统计模拟题一

合集下载

考研数学一(概率统计)模拟试卷1(题后含答案及解析)

考研数学一(概率统计)模拟试卷1(题后含答案及解析)

考研数学一(概率统计)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.对任意两个事件A和B,若P(AB)=0,则( ).A.AB=B.C.P(A)P(B)=0D.P(A—B)=P(A)正确答案:D解析:选(D),因为P(A—B)=P(A)一P(AB).知识模块:概率统计部分2.在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于( ).A.{T(1)≥t0}B.{T(2)≥t0)C.(T(3)≥t0)D.{T(4)≥t0}正确答案:C解析:{T(1)≥t0)表示四个温控器温度都不低于临界温度t0,而E发生只要两个温控器温度不低于临界温度t0,所以E={T(3)≥t0},选(C).知识模块:概率统计部分3.设A,B为任意两个不相容的事件且P(A)>0,P(B)>0,则下列结论正确的是( ).A.B.C.P(AB)=P(A)P(B)D.P(A-B)=P(A)正确答案:D解析:因为A,B不相容,所以P(AB)=0,又P(A-B)=P(A)-P(AB),所以P(A-B)=P(A),选(D).知识模块:概率统计部分4.设A,B为两个随机事件,其中00且P(B|A)=,下列结论正确的是( ).A.P(A|B)=B.P(A|B)≠C.P(AB)=P(A)P(B)D.P(AB)≠P(A)P(B)正确答案:C解析:知识模块:概率统计部分5.设0,则下列结论正确的是( ).A.事件A,B互斥B.事件A,B独立C.事件A,B不独立D.事件A,B对立正确答案:B解析:知识模块:概率统计部分6.设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则( ).A.f1(x)+f2(x)为某一随机变量的密度函数B.f1(x)f2(x)为某一随机变量的密度函数C.F1(x)+F2(x)为某一随机变量的分布函数D.F1(x)F2(x)为某一随机变量的分布函数正确答案:D解析:可积函数f(x)为随机变量的密度函数,则f(x)≥0且,显然(A)不对,取两个服从均匀分布的连续型随机变量的密度函数验证,(B)显然不对,又函数F(x)为分布函数必须满足:(1)0≤F(x)≤1;(2)F(x)单调不减;(3)F(x)右连续;(4)F(-∞)=0,F(+∞)=1,显然选择(D).知识模块:概率统计部分7.设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与一X分布函数相同,则( ).A.F(x)=F(一x)B.F(x)=一F(一x)C.f(x)=f(一x)D.f(x)=一f(一x)正确答案:C解析:知识模块:概率统计部分8.设随机变量X的密度函数为,则P{a 知识模块:概率统计部分9.设随机变量X~N(μ,σ2),则P(|X一μ|<2σ)( ).A.与μ及σ2都无关B.与μ有关,与σ2无关C.与μ无关,与σ2有关D.与μ及σ2都有关.正确答案:A解析:知识模块:概率统计部分10.设X~N(μ,42),Y~N(μ,52),令p=P(X≤μ一4),q=P(Y≥μ+5),则( ).A.p>qB.p<qC.p=qD.p,q的大小由μ的取值确定正确答案:C解析:知识模块:概率统计部分11.设随机变量X~N(μ,σ2),其分布函数为F(x),则对任意常数a,有( ).A.F(a+μ)+F(a一μ)=1B.F(μ+a)+F(μ一a)=1C.F(a)+F(一a)=1D.F(a一μ)+F(μ一a)=1正确答案:B解析:知识模块:概率统计部分12.设随机变量X~U[1,7],则方程x2+2Xx+9=0有实根的概率为( ).A.B.C.D.正确答案:C解析:知识模块:概率统计部分填空题13.设P(B)=0.5,P(A—B)=0.3,则P(A+B)=__________.正确答案:0.8解析:因为P(A—B)=P(A)一P(AB),所以P(A+B)=P(A—B)+P(B)=0.8.知识模块:概率统计部分14.设P(A)=0.6,P(B)=0.5,P(A—B)=0.4,则P(B—A)=_________,P(A+B)=__________.正确答案:0.9解析:因为P(A—B)=P(A)一P(AB),所以P(AB)=0.2,于是P(B—A)=P(B)一P(AB)=0.5—0.2=0.3,P(A+B)=P(A)+P(B)一P(AB)=0.6+0.5一0.2=0.9.知识模块:概率统计部分15.设事件A,B相互独立,P(A)=0.3,且,则P(B)=___________.正确答案:解析:知识模块:概率统计部分16.设A,B为两个随机事件,且P(A)=0.7,P(A—B)=0.3,则=_________.正确答案:0.6解析:由P(A—B)=P(A)一P(AB)=0.3及P(A)=0.7,得P(AB)=0.4,则=1一P(AB)=0.6.知识模块:概率统计部分17.设P(A)=0.4,且P(AB)=P(AB),则P(B)=____________.正确答案:0.6解析:因为P(AB)=P(A+B)=1一P(A+B),所以P(AB)=1一P(A+B)=1一P(A)一P(B)+P(AB),从而P(B)=1一P(A)=0.6.知识模块:概率统计部分18.设A,B为两个随机事件,则=_________.正确答案:0解析:知识模块:概率统计部分19.设P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=,则A,B,C都不发生的概率为___________.正确答案:解析:A,B,C都不发生的概率为=1一P(A+B+C),而ABCAB且P(AB)=0,所以P(ABC)=0,于是P(A+B+C)=P(A)+P(B)+P(C)一P(AB)一P(AC)一P(BC)+P(ABC)=,故A,B,C都不发生的概率为.知识模块:概率统计部分20.设事件A,B,C两两独立,满足ABC=,P(A)=P(B)=P(C),且P(A+B+c)=,则P(A)=__________.正确答案:解析:由P(A+B+C)=P(A)+P(B)+P(C)一P(AB)一P(AC)一P(BC)+P(ABC)且ABC=,P(A)=P(B)=P(C),得知识模块:概率统计部分21.有16件产品,12个一等品,4个二等品.从中任取3个,至少有一个是一等品的概率为_________正确答案:解析:设A={抽取3个产品,其中至少有一个是一等品},.知识模块:概率统计部分22.设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为__________.正确答案:解析:设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),知识模块:概率统计部分23.从n阶行列式的展开式中任取一项,此项不含a11的概率为,则n=_________.正确答案:9解析:n阶行列式有n!项,不含a11的项有(n一1)(n一1)!个,则=,则n=9.知识模块:概率统计部分24.设一次试验中,出现事件A的概率为P,则n次试验中A至少发生一次的概率为___________,A至多发生一次的概率为___________.正确答案:解析:知识模块:概率统计部分25.正确答案:解析:知识模块:概率统计部分26.正确答案:4解析:知识模块:概率统计部分27.设X~B(2,p),Y~B(3,p),且P(X≥1)=,则P(Y≥1)=_________.正确答案:解析:知识模块:概率统计部分28.设X~N(2,σ2),且P(2≤X≤4)=0.4,则P(X<0)=__________.正确答案:0.1解析:知识模块:概率统计部分29.设随机变量X服从参数为λ的泊松分布,且P(X=0)=,则P(X≥1)=_________正确答案:1-e-2解析:知识模块:概率统计部分30.设随机变量X服从参数为λ的指数分布,且E[(X一1)(X+2)]=8,则λ=__________.正确答案:解析:知识模块:概率统计部分31.正确答案:2解析:知识模块:概率统计部分32.一工人同时独立制造三个零件,第k个零件不合格的概率为,以随机变量X表示三个零件中不合格的零件个数,则P(X=2)=__________.正确答案:解析:知识模块:概率统计部分33.正确答案:解析:Y的可能取值为2,3,6,知识模块:概率统计部分34.设随机变量X~N(0,1),且Y=9X2,则Y的密度函数为__________.正确答案:解析:知识模块:概率统计部分35.设随机变量X的概率密度函数为,则Y=2X的密度函数为fY(y)=_________正确答案:解析:知识模块:概率统计部分36.设离散型随机变量X的分布函数为则Y=X2+1的分布函数为_________.正确答案:解析:知识模块:概率统计部分解答题解答应写出文字说明、证明过程或演算步骤。

概率统计测验题一答案

概率统计测验题一答案
概率论与数理统计测验试题(一)参考答案
一、单项选择题(15分,每小题5分)
1、某人射击中靶的概率为 ,则在第二次中靶之前已经失败3次的概率为(A).
(A) ;(B) ;(C) ;(D)
2、设随机变量 只能取 这四个值,其相应的概率依次为 ,则常数 (B).
(A)1;(B)2;(C)3;(D)4.
3、设随机变量 ,且 ,则 =(A).
三、(10分)10把钥匙中有(取出的这两把钥匙能打开门)= (取出的这两把钥匙至少有一把能打
开门)=1- (取出的这两把钥匙都不能打开门)= .
四、(20分)假设同一年级有两个班,一班50名学生,其中20名女生;二班45名
学生,其中15名女生,从中任选一个班,然后从中任选一名学生.(1)试求选出的是
(2)由(1)得 所求概率为
.
六、(10分)设随机变量 ,求随机变量 的概率密度 .
解:因为 ,所以其概率密度为 .
记 的分布函数为 ,故当 时, =0;当 时,有
.
所以 的概率密度为
(A) ;(B) ;(C) ;(D) .
二、填空题(25分,每小题5分)
1、设 为随机事件, , ,则 .
2、一袋中装有4只白球、2只红球,从袋中取球两次,每次取1只,取后不放回,则取到2只球都是白球的概率为 .
3、设事件 相互独立, , ,则 .
4、已知随机变量 ,且 ,则
5、设 的概率密度 = ,则 .
女生的概率;(2)已知选到的是女生,求此女生是一班的概率.
解:设 =“选出一班”, =“选出二班”, =“选出的是女生”,则有
.
(1)由全概率公式,所求概率为
.
(2)由贝叶斯公式,所求概率为 .

概率统计参考答案(习题一)

概率统计参考答案(习题一)

概率统计参考答案(习题一)1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。

解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。

(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。

则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)} A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。

2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。

3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。

解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C);(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生: BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。

4、设P(A)=0.5,P(B)=0.6,问:(1)什么条件下,P(AB)取得最大值,最大值是多少?解:由P(AUB)=P(A)+P(B)-P(AB)得到P(AB)=P(A)+P(B)-P(AUB)<=0.5+0.6-0.6=0.5,此时,P(AUB)=0.6。

概率论与数理统计自测题1

概率论与数理统计自测题1


5
44
43 1
13 4
14
A. ( 5 )
B. ( ) ⋅ 55
C. ( ) ⋅ 55
D. ( ) 5
2.设随机变量 X 服从指数分布,且 DX = 0.25 则 X 的概率密度为

-1-
−2 x
(A)
⎧2e , x>0 ⎨
⎩0 , x≥0
⎧ −1 x
(B)
⎪ ⎨
1 2
e
2
,
x>0

⎩0 , x ≥ 0
(C)

− 4x
4e
,
x>0

⎧1
1 −
x
(D)
⎪ e 4 , x>0 ⎨4
⎩0 , x≥0

⎩0 , x≥0
3.
设随机变量 X
的数学期望
EX
= −2
,方差
DX
=
1
,则
E
(3
2
X
− 2) =

(A)12 (B) 13 (C) 14
(D) 15
2
4. 设 E (X ) = µ ,D( X ) = σ ,其中 µ,σ > 0 为常数,则对于任意常数c ,

3. 有5个人在一座8层大楼的第一层进入电梯。设他们中的每一个人自第二层开始
在每一层离开是等可能的,则5个人在不同层次离开的概率为

1
X−µ
4. 设随机变量 X 服从 N ( µ, ) ,则


2
1
2
5. 设连续型随机变量 X 的概率密度

f ( x)
⎪ cos x =⎨

概率统计期中模拟题(一)

概率统计期中模拟题(一)

概率统计期中考试模拟题(一)(第一章--第三章方差结束)一、填空题(每小题3分,共15分)1.设随机事件A , B , C 的概率均为p ,且A 与B , C 分别相互独立,B 与C 不相容,若A , B , C 中至少有一个发生的概率为97,则A , B , C 中至少有两个发生的概率为 。

2.将一枚均匀硬币掷2n 次,则出现正面次数多于反面次数的概率等于 。

3.设A , B 为两个事件,则{}{}P AB P AB {}{}P A P B (填符号(≥≤=><,,,,)之一)。

4.设随机变量)2()1(),(~===X P X P P X 且λ,则=>}1{X P 。

5.设随机变量)exp(~λX ,则随机变量32+-=X Y 的概率密度是: 。

二、解答下列各题(每小题7分,共42分)1.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,求:(1)常数,a b ; (2)方差)(X D 。

2. 设0()1,0()1P A P B <<<<且(|)(|)1P A B P A B +=,证明事件A 与B 相互独立。

3. 设事件A , B , C 两两独立,其发生的概率均为0.6,若已知A 发生的条件下B , C 至少一个发生的概率为0.2,求A , B , C 最多发生两个的概率。

4.设1(),1,2,33P X i i ===,(|),4,592k i P Y k X i k i-====-,求随机变量Y 的概率分布。

5.设随机变量~(2,1)X U -,随机变量2Y X =,求Y 的概率密度。

6. 设随机变量),(Y X 的概率密度为1,0,1(,)0,x y f x y <<⎧=⎨⎩其他,求),(Y X 的联合分布函数。

三(15分)、设二维随机变量),(Y X 的概率密度为01,1,(,)0,x x x y ae f x y <<<<⎧=⎨⎩其他 试求:(1)常数a ; (2)边缘密度函数()X f x 及()Y f y ;(3)判断Y X 与是否相互独立,为什么? (4)概率{0.5}P X Y +≤。

概率论与数理统计

概率论与数理统计

概率论与数理统计模拟题一、填空题1、已知,7.0)B (P 4.0)A (P ==,B (A P )=0.2,则B)P(A += 0.5 。

2、已知,7.0)(,3.0)(=⋃=B A p B p 则B A P ()= 0.4 。

3、已知随机事件A 的概率0.5P(A)=,随机事件B 的概率P(B)=0.6,及条件概率 P(A|B)=0.8,则事件A B 的概率P(A B)= 0.7 。

4、已知事件A ,B ,C 相互独立,且P(A)=0.5,P(B)=0.9,P(C)=0.4。

则{}B C A )(P += 0.9 。

5、某射手每射击一枪击中目标的概率为0.8,今他对靶独立重复射击10枪,则至少有一枪击中目标的概率是__________________。

6、一口袋中装有4只白球,3只黑球,从中陆续不放回地取出三只球,则取出的三只球恰好有二只黑球的概率是 12/35 。

7、袋中有4个白球,10个红球。

甲先从袋中任取一个球,取后不放回,再放入一个与所取的颜色相反的球,然后乙再从袋中任取一球。

则甲取出的是白球,乙取出的是红球的概率是__________________。

8、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有60%住户至少订甲、乙两种报中的一种,则同时订甲、乙两种报的住户的百分比(概率)是 15% 。

9、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有2%住户同时订两种报纸。

则住户至少订甲、乙两种报纸中的一种报纸的百分比(概率)是____________。

10、若某居民小区有60%住户订甲报,有30%住户订乙报,有25%住户同时订甲、乙两种报纸。

则订甲报而不订乙报的住户的百分比(概率)是________。

11、已知事件A 与B 相互独立,又知A 发生且B 不发生的概率与B 发生且A不发生的概率相等即P(A B )=B)A P(。

又已知95)B A P(=。

则)(A P =__________。

概率论与数理统计试习题与答案

概率论与数理统计试习题与答案
七、(本题满分12分)
设 为来自总体 的一个样本, 服从指数分布,其密度函数为 ,其中 为未知参数,试求 的矩估计量和极大似然估计量。
八、(本题满分12分)
设某市青少年犯罪的年龄构成服从正态分布,今随机抽取9名罪犯,其年龄如下:22,17,19,25,25,18,16,23,24,试以95%的概率判断犯罪青少年的年龄是否为18岁。
概率论与数理统计试题与答案(2012-2013-1)
概率统计模拟题一
一、填空题(本题满分18分,每题3分)
1、设 则 =。
2、设随机变量 ,若 ,则 。
3、设 与 相互独立, ,则 。
4、设随机变量 的方差为2,则根据契比雪夫不等式有 。
5、设 为来自总体 的样本,则统计量 服从
分布。
6、设正态总体 , 未知,则 的置信度为 的置信区间的长度 。(按下侧分位数)
对 求导,得
五、(本题满分10分)解: ;
六、(本题满分13分)矩估计: ,
极大似然估计:似然函数 ,

七、(本题满分12分)解:欲检验假设
因 未知,故采用 检验,取检验统计量 ,今 , , , , ,拒绝域为 ,因 的观察值 ,未落入拒绝域内,故在 下接受原假设。
八、(本题满分8分)因 ,故
概率统计模拟题二
试求: (1)常数 ; (2) 落在 内的概率; (3) 的分布函数 。
五、(本题满分12分)
设随机变量 与 相互独立,下表给出了二维随机变量 的联合分布律及关于 和 边缘分布律中的某些数值,试将其余数值求出。
六、(本题满分10分)设一工厂生产某种设备,其寿命 (以年计)的概率密度函数为:
工厂规定,出售的设备若在售出一年之内损坏可予以调换。若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望。

概率论与数理统计模拟试卷和答案

概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。

一、【单项选择题】(本大题共5小题,每小题3分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、设A,B是两个互不相容的事件,P(A)>0 ,P(B)>0,则()一定成立。

[A]P(A)=1-P(B)[B]P(A│B)=0[C]P(A│B)=1 [D]P(AB)=02、设A,B是两个事件,P(A)>0,P(B)>0,当下面条件()成立时,A 与B一定相互独立。

[A]P( AB)=P(A)P(B)[B]P(AB)=P(A)P(B)[C]P(A│B)=P(B)[D]P(A│B)=P(A)3、若A、B相互独立,则下列式子成立的为()。

[A] P(AB) P(A)P(B) [B] P(AB)0[C] P(AB) P(BA) [D]P(AB) P(B)4、下面的函数中,()可以是离散型随机变量的概率函数。

[A] P 1 k e1(k 0,1,2 ) k![B] P 2 k e1(k 1,2 )k![C]P 3 k 1(k0,1,2 ) 2k[D] P 4 k1(k 1, 2, 3) k25、设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为了使F(x) aF1(x)bF2(x)是某一随机变量的分布函数,则下列个组中应取()。

[A] a 1 3 [B] a2 2 ,b2,b3 2 3[C a 3,b 2[D a 1,b 3] ]5 5 2 2二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T,错误的填F,填在答题卷相应题号处。

考研数学三概率论与数理统计(大数定律和中心极限定理)模拟试卷1

考研数学三概率论与数理统计(大数定律和中心极限定理)模拟试卷1

考研数学三概率论与数理统计(大数定律和中心极限定理)模拟试卷1(总分:86.00,做题时间:90分钟)一、<B>选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

</B>(总题数:10,分数:20.00)1.设随机变量X 1,X 2,…,X n相互独立,S n =X 1 +X 2+…+X N,则根据列维一林德伯格中心极限定理,当n充分大时S N近似服从正态分布,只要X 1,X 2,…,X N(分数:2.00)A.有相同期望和方差.B.服从同一离散型分布.C.服从同一均匀分布.√D.服从同一连续型分布.解析:解析:因为列维一林德伯格中心极限定理的条件是,X 1,X 2,…,X n独立同分布而且各个随机变量的数学期望和方差存在.显然4个选项中只有选项(C)满足此条件:均匀分布的数学期望和方差都存在。

选项(A)不成立,因为X 1,X 2,…,X n有相同期望和方差,但未必有相同的分布,所以不满足列维一林德伯格中心极限定理的条件;而选项(B)和(D)虽然满足同分布,但数学期望和方差未必存在,因此也不满足列维一林德伯格中心极限定理的条件,故选项(B)和(D)一般也不能保证中心极限定理成立.2.假设随机变量X 1,X 2,…相互独立且服从同参数A的泊松分布,则下面随机变量序列中不满足切比雪夫大数定律条件的是(分数:2.00)A.X 1,X 2,…,X n,…B.X 1 +1,X 2 +2,…,X n +n,…C.X 1,2X 2,…nX n,…√解析:解析:切比雪夫大数定律的条件有三个:第一个条件要求构成随机变量序列的各随机变量是相互独立的.显然无论是X 1,…,X n,…,还是X 1 +1,X 2 +2,…,X n +n,…;X 1,2X 2,…,nX n,…以及X 1,都是相互独立的;第二个条件要求各随机变量的期望与方差都存在.由于EX n =λ,DX2λ,.因此四个备选答案都n =λ,E(X n +n)=λ+n,D(X n +n)=λ,E(nX n )=nλ,D(nX n )=n满足第二个条件;第三个条件是方差DX 1,…,DX n,…有公共上界,即DX n<c,c是与n无关的常数.对于(A)=DX n =λ<λ+1;对于(B):D(X n +n)=DX n =λ<λ+1;对于(C):D(nX n )=n 2 DX n =n 2λ没有公共上界;对于(D):综上分析,只有(C)中方差不满足方差一致有界的条件,因此应选(C).3.设随机变量序列X 1,…X n,…相互独立,根据辛钦大数定律,当n→∞时学期望,只要{X n,n≥1}(分数:2.00)A.有相同的数学期望.B.有相同的方差.C.服从同一泊松分布.√D.服从同一连续型分布,一∞<x<+∞).解析:解析:辛钦大数定律要求:{X n,n≥1}独立同分布且数学期望存在.选项(A)、(B)缺少同分布条件,选项(D)虽然服从同一分布但期望不存在,因此选(C).4.设X n表示将一枚匀称的硬币随意投掷n次其“正面”出现的次数,则(分数:2.00)A.B.C. √D.解析:5.设随机变量X服从F(3,4)分布,对给定的α(0<α<1),数F α (3,4)满足P{X>F α (3,4)}=α,若P{X≤x}=1一α,则x=(分数:2.00)√C.F α (4,3).D.F 1-α (4,3).解析:解析:因X~F(3,4),故~F(4,3).又1一α=P{X≤x}=P{X<x}= 所以=F 1-α(4,3),即因此选(A).6.设X 1,X 2,X 3,X 4是来自正态总体N(0,2 2 )的简单随机样本,记Y=a(X 1一2X 2 ) 2 +b(3X 3—4x2,其中a,b为常数.已知Y~χ2 (n),则4 )(分数:2.00)A.n必为2.B.n必为4.C.n为1或2.√D.n为2或4.解析:解析:依题意X i~N(0,2 2 )且相互独立,所以X 1 -2X 2~N(0,20),3X 3—4X 4~N(0,100),且它们相互独立.由χ2分布的典型模式及性质知(1)当时,Y~χ2(2);(2)当b=0,或a=0,时,Y~χ2 (1).由上可知,n=1或2,即应选(C).7.设X 1,X 2,…,X n是来自标准正态总体的简单随机样本,S 2为样本均值和样本方差,则(分数:2.00)服从自由度为n一1的χ2分布.D.(n一1)S 2服从自由度为n一1的χ2分布.√解析:解析:显然,(n一1)S 2服从自由度为n一1的χ2分布,故应选(D).其余选项不成立是明显的:对于服从标准正态分布的总体,由于X 1,X 2,…,X n相互独立并且都服从标准正态分布,可见服从自由度为n的χ2分布.8.设随机变量X~t(n)(n>1),(分数:2.00)A.Y~χ2 (n).B.Y~χ2 (n一1).C.Y~F(n,1).√D.Y~F(1,n).解析:解析:根据t分布的性质,如果随机变量X~t(n),则X 2~F(1,n),又根据F分布的性质,如果X 2~F(1,n),则~F(n,1).因此~F(n,1),故应选(C).9.设随机变量X服从n个自由度的t分布,定义t α满足P{X≤t α }=1一α(0<α<1).若已知P{|X|>x}=b(b>0),则x等于(分数:2.00)A.t 1-b.C.t b.√解析:解析:根据t分布的对称性及b>0,可知x>0.从而P{X≤x}=1一P{X>x}= 根据题设定义P{X≤t α }=1一α,可知应选(D).10.假设总体X的方差DX存在,X 1,…,X n是取自总体X的简单随机样本,其样本均值和样本方差分别为,则EX 2的矩估计量是(分数:2.00)A.B.C.D. √解析:解析:按定义,EX 2的矩估计量是由于所以EX 2的矩估计量,选(D).二、填空题(总题数:20,分数:40.00)11.将一枚骰子重复掷n次,则当n→∞时,n 1。

概率论与数理统计-模拟题

概率论与数理统计-模拟题

《概率论与数理统计》模拟题一.单选题1.对于事件A,B,下列命题正确的是().A.若A,B 互不相容,则A 与B̅也互不相容. B.若A,B 相容,那么A 与B̅也相容. C.若A,B 互不相容,且概率都大于零,则A,B 也相互独立.D.若A,B 相互独立,那么A 与B̅也相互独立. [答案]:D2.在一次假设检验中,下列说法正确的是(). A.既可能犯第一类错误也可能犯第二类错误B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都不变D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:A3.对总体X~N(μ,σ²)的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间().A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含样本的值D.有95%的机会的机会含μ的值 [答案]:D4.在假设检验问题中,犯第一类错误的概率α的意义是(). A.在H 0不成立的条件下,经检验H 0被拒绝的概率 B.在H 0不成立的条件下,经检验H 0被接受的概率 C.在H 0成立的条件下,经检验H 0被拒绝的概率 D.在H 0成立的条件下,经检验H 0被接受的概率 [答案]:C5.在一次假设检验中,下列说法正确的是(). A.第一类错误和第二类错误同时都要犯B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都要变小D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:C6.设θ 是未知参数θ的一个估计量,若θθ≠ E 则θ是θ的(). A.极大似然估计 B.矩法估计 C.相合估计D.有偏估计[答案]:B7.在对单个正态总体均值的假设检验中,当总体方差已知时,选用().A.t检验法B.u检验法C.F检验法D.σ2检验法[答案]:B8.在一个确定的假设检验中,与判断结果相关的因素有().A.样本值与样本容量B.显著性水平C.检验统计量D.A,B,C同时成立[答案]:D9.对正态总体的数学期望进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是().A.必须接受H0B.可能接受,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0[答案]:A10.设A和B为两个任意事件,且A⊂B,P(B)>0,则必有().A.P(A)<P(A|B)B.P(A)≤P(A|B)C.P(A)>(A|B)D.P(A)≥P(A|B)[答案]:B11.已知P(A)=0.4,P(B)=0.6,P(B|A)=0.5,则P(A|B)=().A.1/2B.1/3C.10/3D.1/5[答案]:B12.甲.乙两人独立的对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是乙命中的概率是().A.3/5B.5/11C.5/8B.6/11 [答案]:C13.设A 和B 为两个任意事件,则下列关系成立的是(). A.(A ∪B )−B =A B.(A ∪B )−B ⊃A C.(A ∪B )−B ⊂A D.(A −B )∪B =A [答案]:C14.设A 和B 为两个任意事件,且A ⊂B ,则必有(). A.P (A )<P(AB) B.P (A )≤P(AB) C.P (A )>P(AB) D.P (A )≥P(AB) [答案]:D15.设每次实验成功的概率为p(0<p<1)则在三次独立重复试验中至少一次成功的概率为(). A.p 3 B.1-p 3 C.(1-p)3 D.1-(1-p)3 [答案]:B16.某人射击时,中靶的概率为2/3,如果射击直到中靶子为止,则射击次数为3的概率(). A. 2/27 B.2/9 C.8/27 D.1/27 [答案]:A17.设随机事件A 和B 满足P (B |A )=1,则(). A.为必然事件 B.P (B |A )=0 C.B ⊂A D.B ⊃A [答案]:C18.设一随机变量X 的密度函数φ(−x )=φ(x ),F(x)是X的分布函数,则对任意实数a 有(). A.F (−a )=1−∫φ(x )a0dx B.F (−a )=12−∫φ(x )a 0dx C.F (−a )=1−F(a)D.F (−a )=2F (a )−1 [答案]:B19.变量X 的密度函数为f (x )={Cx 30<x <10其它,则常数C=().A.3B.4C.1/4D.1/3 [答案]:B20.设X 和Y 相互独立,且分别服从N(0,1)和N(1,1)则(). A.P {X +Y ≤0}=12 B.P {X +Y ≤1}=12C.P {X −Y ≤0}=12D.P {X −Y ≤1}=12[答案]:B21.设X和Y独立同分布,且P {X =1}=P {Y =1}=12,P {X =−1}=P {Y =−1}=12,则下列各式成立的是(). A.P {X =Y }=12 B.P {X =Y }=1 C.P {X +Y =0}=14D.P {XY =1}=14 [答案]:A22.总体方差D 等于(). A.1n ∑(X i −X ̅)2n i=1B.1n−1∑(X i −X ̅)2n i=1 C.1n ∑X i 2−(EX)2n i=1 D.1n−1∑(X i −EX)2n i=1 [答案]:C23.设随机变量X~N(μ,σ²),则随着σ的增大,概率P{|X−μ|<σ}为().A.单调增加B.单调减少C.保持不变D.增减不定[答案]:C24.设随机变量X和Y均服从正态分布X~N(μ,4²),Y~N(μ,5²),记p1=P{X<μ−4},p2= P{Y≥μ+5},则().A.对任何实数μ都有p1=p2B.对任何实数μ都有p1<p2C.仅对个别值有p1=p2D.对任何实数μ都有p1>p2[答案]:A25.设X1,X2,…,X n为来自总体的一个样本,X̅为样本均值,EX未知,则总体方差DX的无偏估计量为().A.1n ∑(X i−X̅)2 ni=1B.1n−1∑(X i−X̅)2 ni=1C.1n ∑(X i−EX)2 ni=1D.1n−1∑(X i−EX)2 ni=1[答案]:B26.设总体X~f(x,θ),θ为未知参数,X1,X2,…,X n为X的一个样本,θ1(X1,X2,…,X n).θ2(X1,X2,…,X n)为两个通缉量(θ1,θ2)为θ的置信度为1-α的置信区间,则应有().A.P{θ1<θ<θ2}=αB.P{θ<θ2}=1-αC.P{θ1<θ<θ2}=1-αD.P{θ<θ1}=α[答案]:C27.在假设建设检验中,记H0为检验假设,则所谓犯第一类错误的是().A.H0为真时,接受H0B.H0不真时,接受H0C.H0不真时,拒绝H0D.H0为真时,拒绝H0[答案]:D28.袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是().A.1/5B.2/5C.3/5D.4/5[答案]:B29.事件”甲种产品畅销,乙种产品滞销”,则其对立事件A为().A.”甲种产品滞销,乙种产品畅销”B.”甲.乙两种产品均畅销”C.”甲种产品滞销”D.”甲种产品滞销或乙种产品畅销”[答案]:D30.设A,B,C表示三个随机事件,则A⋃B⋃C表示A.A,B,C中至少有一个发生;B.A,B,C都同时发生;C.A,B,C中至少有两个发生;D.A,B,C都不发生.[答案]:A31.已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A⋃B)=()A.0.65;B.1.3;C.0.9;D.0.3.[答案]:C32.设X~B(n,p),则有()A.E(2X-1)=2np;B.E(2X+1)=4np+1;C.D(2X+1)=4np(1-p)+1A.;D.D(2X-1)=4np(1-p).[答案]:D33.X则a=()A.1/3;B.0;C.5/12;D.1/4.[答案]:A34.常见随机变量的分布中,数学期望和方差一定相等的分布是() A.二项分布; B.标准正态分布; C.指数分布; D.泊松分布. [答案]:D35.在n 次独立重复的贝努利试验中,设P (A )=p,那么A 事件恰好发生k 次的概率为(). A.p k ;B.(nk )p k (1-p)n-k ;C.p n-k (1-p)k ;D.p k (1-p)n-k . [答案]:B36.设X则它的数学期望E(X)和方差D(X )分别是 A.1/4,1/16; B.1/2,3/4; C.1/4,11/16; D.1/2,11/16. [答案]:C37.设随机变量X 的密度函数f (x )={2x x ∈[0,A]0 其他,则常数A=().A.1;B.1/2;C.1/2;D.2.[答案]:A38.若T ~t(n),下列等式中错误的是(). A.P{T>0}=P{T ≤0}; B.P{T ≥1}=P{T>1}; C.P{T=0}=0.5;D.P{T>t α}=P{T<-t α}. [答案]:C39.设X ~N(μ1,σ12),它有容量为n 1的样本X i ,i =1,2,…n 1;Y ~N(μ2,σ22),它有容量为n 2的样本Y j ,j=1,2,…n 2.它们均相互独立,X 和Y 分别是它们样本平均值,s 12和s 22分别是它们样本方差,σ12,σ22未知但是相等.则统计量212121221121)2()()(n n n n n n s n s n Y X +-++---μμ应该服从的分布是().A.t(n 1+n 2);B.t(n 1+n 2-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:C40.设X ~N(μ1,σ2),它有容量为n 1的样本X i i=1,2,…n 1;Y ~N(μ2,σ2),它有容量为n 2的样本Y j j=1,2,…n 2.均相互独立,s 12和s 22分别是它们样本方差.则统计量1122221211--n s n n s n 应该服从的分布是().A.χ2(n 1+n 2-2);B.F(n 2-1,n 1-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:D41.若μˆ1和μˆ2同是总体平均数μ的无偏估计,则下面叙述中,不正确的是(). A.2μˆ1-μˆ2仍是总体平均数μ的无偏估计; B.21μˆ1-21μˆ2仍是总体平均数μ的无偏估计; C.21μˆ1+21μˆ2仍是总体平均数μ的无偏估计 D.32μˆ1+31μˆ2仍是总体平均数μ的无偏估计. [答案]:B42.假设检验时,当样本容量n 固定时,缩小犯第Ⅰ类错误的概率α,则犯第Ⅱ类错误的概率β().A.一般要变小;B.一般要变大;C.可能变大也可能变小;D.肯定不变. [答案]:B43.设X ~N(μ,σ2),μ和σ2均未知,X 是样本平均值,s 2是样本方差,则(X -t 0.051-n s ,X +t 0.051-n s )作为的置信区间时,其置信水平为().A.0.1;B.0.2;C.0.9;D.0.8. [答案]:C44.已知一元线性回归直线方程为yˆ=a +4x,且x =3,y =6.则a=(). A.0;B.6;C.2;D.-6. [答案]:D45.设(x 1,y 1),(x 2,y 2),...(x n ,y n )是对总体(X,Y)的n 次观测值,l YY =∑=-ni iy y12)(,l XX =∑=-ni ix x12)(分别是关于Y,关于X 的校正平方和及l XY =∑=--ni i i y y x x 1))((是关于X 和Y的校正交叉乘积和,则它们的一元回归直线的回归系数b=().A.XX XYl l ; B.XXXYl l ; C.YYXX XY l l l 2; D.YYXX XY l l l .[答案]:A46.设A,B为两个事件,则AB=().A.A B;B.A B;C.A B;D.A⋃B.[答案]:D47.若X~N(0,1),ϕ(x)是它的密度函数,Φ(x)是它的分布函数,则下面叙述中不正确的是().A.Φ(-x)=-Φ(x);B.ϕ(x)关于纵轴对称;C.Φ(0)=0.5;D.Φ(-x)=1-Φ(x).[答案]:A48.对单个总体X~N(μ,σ2)假设检验,σ2未知,H0:μ≥μ0.在显著水平α下,应该选().A.t检验;B.F检验;C.χ2检验;D.u检验.[答案]:A49.甲乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,则恰有一人击中敌机的概率().A.0.8B.0.5C.0.4D.0.6[答案]:B=,则未知参数μ的置信度为0.95的置信区间是.(查表50.设X~N(μ,0.3²),容量n=9,均值X5Z0.025=1.96)A.(4.808,6.96)B.(3.04,5.19)C.(4.808,5.19)D.(3.04,6.96)[答案]:C二.填空题1.设X 1,X 2,…,X 16是来自总体X~(4,σ2)的简单随机样本,2σ已知,令1611X 16i i X==∑则统计量4X-16σ服从分布###(必须写出分布的参数). [答案]:N(0,1)2.设2X~μσ(,),而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为###. [答案]:71.111=∑=ni i X n3.设X~U[a,1],X 1,…,X n 是从总体X 中抽取的样本,求a 的矩估计为###.[答案]:121-∑=ni i X n4.已知F 0.1(8,20)=2,则F 0.9(20,8)=###.[答案]:0.55.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为###.[答案]:0.156.设样本的频数分布为X0 1 2 3 4 频数 1 3 2 1 2则样本方差s 2=###.[答案]:27.设X1,X2,,Xn 为来自正态总体N(μ,σ²)的一个简单随机样本,其中参数μ和σ²均未知,记,221Q )n i i X X ==-∑(,则假设H 0:μ=0的t 检验使用的统计量是###.(用X 和Q 表示)[答案]:Xt (1)n n Q =-8.设总体X~N(μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,则样本均值X =###.[答案]:n 2σ9.设总体X ~b,(np),0<p<1,X 1,X 2,…,X n 为其样本,则n 的矩估计是###.[答案]:X n p =10.设总体X ~[U,θ],(X 1,X 2,…,X n )是来自X 的样本,则θ的最大似然估计量是###.[答案]:{}12max X X X n θ=,,11.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4.则零件尺寸偏差的数学期望的无偏估计量###.[答案]:212.设X 1,X 2,X 3,X 4是来自正态总体N(0,2)2的样本,令Y=(X 1+X 2)2+(X 3-X 4)2,则当C=###时CY ~x 2(2).[答案]:1/813.设容量n=10的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值样本方差###.[答案]:s 2=214.设A.B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(B|A)=###.[答案]:0.715.若事件A 和事件B 相互独立,P(A)=α,P(B)=0.3,P (A⋃B )=0.7,则α=###.[答案]:3/716.设X ~N(2,σ²),且P{2<x<4}=0.3,则P{x<0}=###.[答案]:217.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为###.[答案]:2/318.三个人独立地解答一道难题,他们能单独正确解答的概率分别为1/5.1/3.1/4,则此难题被正确解答的概率为###.[答案]:3/519.设有一箱产品由三家工厂生产的其中1/2是第一加工厂生产的,其余两家工厂各生产1/4,又知第一.第二工厂生产的产品有2%的次品,第三工厂生产的产品有4%的次品,现从箱中任取一只,则取到的次品的概率为###.[答案]:2.5%20.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(有放回)则:第二次取到黑球的概率为###.[答案]:0.221.由长期统计资料得知,某一地区在4月下雨(记事件A)的概率为4/15,刮风(记作事件B)概率为7/15,刮风又下雨(记作事件C)概率为1/10则:p(B|A)=###.[答案]:3/822.一盒子中黑球.红球.白球各占50%,30%,20%,从中任取一球,结果不是红球,则取到的是白球的概率为###.[答案]:2/723.某公共汽车站甲.乙丙动人分别独立地等1.2.3路汽车,设每个人等车时间(单位分钟)均服从[0,5]上的均匀分布,则三人中至少有两个人等车时间不超过2分钟的概率为###.[答案]:0.35224.若随机变量X ~(2,σ²)且p{2<X<4}=0.3,则p{X<2}=###.[答案]:0.525.若随机变量X ~N(-1,1),Y ~N(3,1)且X 和Y 相互独立,设随机变量Z=X-2Y+7,则Z ~###.[答案]:N(0,5)26.设随机变量X ~N(1,22),则EX 2=###.[答案]:5三.计算题1.已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.007125.0)95.0()05.0(}2{223===C X P2.某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率.[答案]:).02.0,400(~b XX 的分布律为,)98.0()02.0(400}{400k k k k X P -⎪⎪⎭⎫ ⎝⎛==0,1,,400.k = 于是所求概率为}1{}0{1}2{=-=-=≥X P X P X P 399400)98.0)(02.0(400)98.0(1--=.9972.0=3.已知100个产品中有5个次品,现从中无放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.00618.0}2{310025195≈==C C C X P4.某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布,求该城市一天内发生3次或3次以上火灾的概率.[答案]:由概率的性质,得}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P⎪⎪⎭⎫ ⎝⎛++-=-!28.0!18.0!08.012108.0e .0474.0≈5.某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率.[答案]:以7:00为起点0,以分为单位,依题意~X ),30,0(U ⎪⎩⎪⎨⎧<<=其它,0300,301)(x x f 为使候车时间X 少于5分钟,乘客必须在7:10到7:15之间,或在7:25到7:30之间到达车站,故所求概率为}3025{}1510{<<+<<X P X P 3130130130251510=+=⎰⎰dx dx6.某元件的寿命X 服从指数分布,已知其平均寿命为1000小时,求3个这样的元件使用1000小时,至少已有一个损坏的概率.[答案]:由题设知,X 的分布函数为.0,00,1)(1000⎪⎩⎪⎨⎧<≥-=-x x ex F x 由此得到}1000{1}1000{≤-=>X P X P .)1000(11-=-=e F各元件的寿命是否超过1000小时是独立的,用Y 表示三个元件中使用1000小时损坏的元件数,则).1,3(~1--e b Y所求概率为}0{1}1{=-=≥Y P Y P .1)()1(13310103----=--=e e e C7.设某项竞赛成绩N X ~(65,100),若按参赛人数的10%发奖,问获奖分数线应定为多少?[答案]:设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x)(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫ ⎝⎛-Φ-=x 即,9.010650=⎪⎭⎫ ⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78.8.设随机变量X 具有以下的分布律,试求2)1(-=X Y 的分布律. 4.01.03.02.02101i p X-[答案]:Y 所有可能的取值0,1,4,由,2.0}1{}4{,7.0}2{}0{}1{,1.0}1{}0)1{(}0{2=-=====+=======-==X P Y P X P X P Y P X P X P Y P即得Y 的分布律为9.已知随机变量X 的分布函数⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F ,求).(X E[答案]:随机变量X 的分布密度为,,040,4/1)()(⎩⎨⎧≤<='=其它x x F x f故.2841)()(40240==⋅==⎰⎰∞+∞-x dx x dx x xf X E 10.设05.0=α,求标准正态分布的水平0.05的上侧分位数和双侧分位数.[答案]:由于,95.005.01)(05.0=-=Φu 查标准正态分布函数值表可得,645.105.0=u 而水平0.05的双侧分位数为,025.0u 它满足:,975.0025.01)(025.0=-=Φu 查标准正态分布函数值表可得.96.1025.0=u 2χ分布.11.设),2,21(~2N X 2521,,,X X X 为X 的一个样本,求:(1)样本均值X 的数学期望与方差;(2)}.24.0|21{|≤-X P[答案]:)1(由于),2,21(~2N X 样本容量,25=n 所以,252,21~2⎪⎪⎭⎫⎝⎛N X 于是,21)(=X E .4.0252)(22==X D)2(由),4.0,21(~2N X 得),1,0(~4.021N X - 故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-6.04.021}24.0|21{|X P X P .4514.01)6.0(2=-Φ=12.⎪⎩⎪⎨⎧≤<≤≤--+=其它100101)(x x x A x x f ,则求常数A.期望EX 及方差DX. [答案]:011(1)x dx -=++⎰10()A x dx -⎰,得A=1()EX xf x dx +∞-∞==⎰01(1)x x dx -++⎰10(1)0x x dx -=⎰ 22()EX x f x dx +∞-∞==⎰021(1)x x dx -++⎰120(1)1/6x x dx -=⎰ 61)D(x)22=-=EX EX (。

概率论与数理统计试题与答案完整版

概率论与数理统计试题与答案完整版

概率论与数理统计试题与答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。

2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。

3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。

4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。

5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。

6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。

(按下侧分位数)二、选择题(本题满分15分,每题3分)1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=-(C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。

(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。

概率论与数理统计模拟试题集(6套,含详细答案)

概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。

概率论与数理统计模拟题

概率论与数理统计模拟题

《概率论与数理统计》模拟题一.单选题1.对于事件A,B,下列命题正确的是( D ).A.若A,B 互不相容,则A 与B ̅也互不相容.B.若A,B 相容,那么A 与B̅也相容. C.若A,B 互不相容,且概率都大于零,则A,B 也相互独立. D.若A,B 相互独立,那么A 与B ̅也相互独立.2.在一次假设检验中,下列说法正确的是( A ). A.既可能犯第一类错误也可能犯第二类错误B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都不变D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误3.对总体X~N(μ,σ²)的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间( D ).A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含样本的值D.有95%的机会的机会含μ的值4.在假设检验问题中,犯第一类错误的概率α的意义是( C ). A.在H 0不成立的条件下,经检验H 0被拒绝的概率 B.在H 0不成立的条件下,经检验H 0被接受的概率 C.在H 0成立的条件下,经检验H 0被拒绝的概率 D.在H 0成立的条件下,经检验H 0被接受的概率5.在一次假设检验中,下列说法正确的是( C ). A.第一类错误和第二类错误同时都要犯B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都要变小D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误6.设θ 是未知参数θ的一个估计量,若θθ≠ E 则θ是θ的( B ).A.极大似然估计B.矩法估计C.相合估计D.有偏估计7.在对单个正态总体均值的假设检验中,当总体方差已知时,选用( B ).A.t 检验法B.u 检验法C.F 检验法D.σ2检验法8.在一个确定的假设检验中,与判断结果相关的因素有( D ).A.样本值与样本容量B.显著性水平C.检验统计量D.A,B,C 同时成立9.对正态总体的数学期望进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( A ).A.必须接受H0B.可能接受,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H010.设A 和B 为两个任意事件,且A ⊂B ,P(B)>0,则必有( B ).A.P (A )<P (A |B )B.P (A )≤P (A |B )C.P (A )>(A |B )D.P (A )≥P (A |B )11.已知P(A)=0.4,P(B)=0.6,P(B|A)=0.5,则P(A|B)=( B ).A.1/2B.1/3C.10/3D.1/512.甲.乙两人独立的对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是乙命中的概率是( C ).A.3/5B.5/11C.5/8 B.6/1113.设A 和B 为两个任意事件,则下列关系成立的是( C ).A.(A ∪B )−B =AB.(A ∪B )−B ⊃AC.(A ∪B )−B ⊂AD.(A −B )∪B =A14.设A 和B 为两个任意事件,且A ⊂B ,则必有( D ).A.P (A )<P(AB)B.P (A )≤P(AB)C.P (A )>P(AB)D.P (A )≥P(AB)15.设每次实验成功的概率为p(0<p<1)则在三次独立重复试验中至少一次成功的概率为( B ).A.p 3B.1-p 3C.(1-p)3D.1-(1-p)316.某人射击时,中靶的概率为2/3,如果射击直到中靶子为止,则射击次数为3的概率( A ). A. 2/27 B.2/9 C.8/27 D.1/2717.设随机事件A 和B 满足P (B |A )=1,则( C ).A.为必然事件B.P (B |A )=0C.B ⊂AD.B ⊃A18.设一随机变量X 的密度函数φ(−x )=φ(x ),F(x)是X的分布函数,则对任意实数a 有( B ). A.F (−a )=1−∫φ(x )a0dx B.F (−a )=12−∫φ(x )a0dx C.F (−a )=1−F(a) D.F (−a )=2F (a )−119.变量X 的密度函数为f (x )={Cx 30<x <10其它,则常数C=( B ).A.3B.4C.1/4D.1/320.设X和Y相互独立,且分别服从N(0,1)和N(1,1)则( B ).A.P{X+Y≤0}=12B.P{X+Y≤1}=12C.P{X−Y≤0}=12D.P{X−Y≤1}=1221.设X和Y独立同分布,且P{X=1}=P{Y=1}=12,P{X=−1}=P{Y=−1}=12,则下列各式成立的是( A ).A.P{X=Y}=12B.P{X=Y}=1 C.P{X+Y=0}=14D.P{XY=1}=1422.总体方差D等于( C ).A.1n ∑(X i−X̅)2ni=1B.1n−1∑(X i−X̅)2ni=1C.1n∑X i2−(EX)2ni=1D.1n−1∑(X i−EX)2ni=123.设随机变量X~N(μ,σ²),则随着σ的增大,概率P{|X−μ|<σ}为( C ).A.单调增加B.单调减少C.保持不变D.增减不定24.设随机变量X和Y均服从正态分布X~N(μ,4²),Y~N(μ,5²),记p1=P{X<μ−4},p2= P{Y≥μ+5},则( A ).A.对任何实数μ都有p1=p2B.对任何实数μ都有p1<p2C.仅对个别值有p1=p2D.对任何实数μ都有p1>p225.设X1,X2,…,X n为来自总体的一个样本,X̅为样本均值,EX未知,则总体方差DX的无偏估计量为( B ).A.1n ∑(X i−X̅)2ni=1B.1n−1∑(X i−X̅)2ni=1C.1n ∑(X i−EX)2ni=1D.1n−1∑(X i−EX)2ni=126.设总体X~f(x,θ),θ为未知参数,X1,X2,…,X n为X的一个样本,θ1(X1,X2,…,X n).θ2(X1,X2,…,X n)为两个通缉量(θ1,θ2)为θ的置信度为1-α的置信区间,则应有( C ).A.P{θ1<θ<θ2}=αB.P{θ<θ2}=1-αC.P{θ1<θ<θ2}=1-αD.P{θ<θ1}=α27.在假设建设检验中,记H0为检验假设,则所谓犯第一类错误的是( D ).A.H0为真时,接受H0B.H0不真时,接受H0C.H0不真时,拒绝H0D.H0为真时,拒绝H028.袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是( B ).A.1/5B.2/5C.3/5D.4/529.事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D ). A.“甲种产品滞销,乙种产品畅销” B.“甲.乙两种产品均畅销”C.“甲种产品滞销”D.“甲种产品滞销或乙种产品畅销”30.设A,B,C 表示三个随机事件,则A ⋃B ⋃C 表示( A ) A.A,B,C 中至少有一个发生; B.A,B,C 都同时发生; C.A,B,C 中至少有两个发生; D.A,B,C 都不发生.31.已知事件A,B 相互独立,且P(A)=0.5,P(B)=0.8,则P (A ⋃B )=( C ) A.0.65 B.1.3 C.0.9 D.0.332.设X ~B (n,p ),则有( D )A.E (2X -1)=2np;B.E (2X +1)=4np +1;C.D (2X +1)=4np (1-p )+1A.;D.D (2X -1)=4np (1-p )33.X则a =( A )A.1/3B.0C.5/12D.1/434.常见随机变量的分布中,数学期望和方差一定相等的分布是( D ) A.二项分布; B.标准正态分布; C.指数分布; D.泊松分布.35.在n 次独立重复的贝努利试验中,设P (A )=p,那么A 事件恰好发生k 次的概率为( B ). A.p k ; B.(nk )p k (1-p)n-k ; C.p n-k (1-p)k ; D.p k (1-p)n-k .36.设X A.1/4,1/16; B.1/2,3/4; C.1/4,11/16; D.1/2,11/16.37.设随机变量X 的密度函数f (x )={2x x ∈[0,A]0 其他,则常数A=( A ).A.1;B.1/2;C.1/2;D.2.38.若T ~t(n),下列等式中错误的是( C ).A.P{T>0}=P{T ≤0};B.P{T ≥1}=P{T>1};C.P{T=0}=0.5;D.P{T>t α}=P{T<-t α}.39.设X ~N(μ1,σ12),它有容量为n 1的样本X i ,i=1,2,…n 1;Y ~N(μ2,σ22),它有容量为n 2的样本Y j ,j=1,2,…n 2.它们均相互独立,X 和Y 分别是它们样本平均值,s 12和s 22分别是它们样本方差,σ12,σ22未知但是相等.则统计量212121221121)2()()(n n n n n n s n s n Y X +-++---μμ应该服从的分布是( C ).A.t(n 1+n 2);B.t(n 1+n 2-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1).40.设X ~N(μ1,σ2),它有容量为n 1的样本X i i=1,2,…n 1;Y ~N(μ2,σ2),它有容量为n 2的样本Y j j=1,2,…n 2.均相互独立,s 12和s 22分别是它们样本方差.则统计量1122221211--n s n n s n 应该服从的分布是( D ).A.χ2(n 1+n 2-2);B.F(n 2-1,n 1-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1).41.若μˆ1和μˆ2同是总体平均数μ的无偏估计,则下面叙述中,不正确的是( B ). A.2μˆ1-μˆ2仍是总体平均数μ的无偏估计; B.21μˆ1-21μˆ2仍是总体平均数μ的无偏估计; C.21μˆ1+21μˆ2仍是总体平均数μ的无偏估计 D.32μˆ1+31μˆ2仍是总体平均数μ的无偏估计.42.假设检验时,当样本容量n 固定时,缩小犯第Ⅰ类错误的概率α,则犯第Ⅱ类错误的概率β( B ).A.一般要变小;B.一般要变大;C.可能变大也可能变小;D.肯定不变.43.设X ~N(μ,σ2),μ和σ2均未知,X 是样本平均值,s 2是样本方差,则(X -t 0.051-n s ,X +t 0.051-n s )作为的置信区间时,其置信水平为( C ).A.0.1;B.0.2;C.0.9;D.0.8.44.已知一元线性回归直线方程为yˆ=a +4x,且x =3,y =6.则a=( D ). A.0; B.6; C.2; D.-6.45.设(x 1,y 1),(x 2,y 2),...(x n ,y n )是对总体(X,Y)的n 次观测值,l YY =∑=-ni iy y12)(,l XX =∑=-n i ix x12)(分别是关于Y,关于X 的校正平方和及l XY =∑=--ni i i y y x x 1))((是关于X 和Y的校正交叉乘积和,则它们的一元回归直线的回归系数b=( A ).A.XX XY l l ;B.XX XY l l ;C.YY XX XY l l l 2; D.YYXX XY l l l .46.设A,B 为两个事件,则AB =( D ).A.A B ;B.A B;C.A B ;D.A ∪B .47.若X ~N(0,1),ϕ(x)是它的密度函数,Φ(x)是它的分布函数,则下面叙述中不正确的是( A ). A.Φ(-x)=-Φ(x); B.ϕ(x)关于纵轴对称; C.Φ(0)=0.5; D.Φ(-x)=1-Φ(x).48.对单个总体X ~N(μ,σ2)假设检验,σ2未知,H 0:μ≥μ0.在显著水平α下,应该选( A ). A.t 检验; B.F 检验; C.χ2检验; D.u 检验.49.甲乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,则恰有一人击中敌机的概率( B ).A.0.8B.0.5C.0.4D.0.650.设X~N(μ,0.3²),容量n=9,均值X 5=,则未知参数μ的置信度为0.95的置信区间是( C ).(查表Z 0.025=1.96)A.(4.808,6.96)B.(3.04,5.19)C.(4.808,5.19)D.(3.04,6.96)二.填空题 1.设X 1,X 2,…,X 16是来自总体X~(4,σ2)的简单随机样本,2σ已知,令1611X 16ii X==∑则统计量4X-16σ服从分布 N(0,1) (必须写出分布的参数).2.设2X~μσ(,),而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为71.111=∑=ni i X n3. 设X~U[a,1],X 1,…,X n 是从总体X 中抽取的样本,求a 的矩估计为 121-∑=ni i X n4.已知F 0.1(8,20)=2,则F 0.9(20,8)= 0.55、设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为 0.156.设样本的频数分布为X 0 1 2 3 4 频数 13212则样本方差s 2= 27.设X1,X2,,Xn 为来自正态总体N(μ,σ²)的一个简单随机样本,其中参数μ和σ²均未知,记,221Q )ni i X X ==-∑(,则假设H 0:μ=0的t 检验使用的统计量是X t (1)n n Q=- (用X 和Q表示)8. 设总体X~N(μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,则样本均值X = n 2σ9. 设总体X ~b,(np),0<p<1,X 1,X 2,…,X n 为其样本,则n 的矩估计是 X n p =10.设总体X ~[U,θ],(X 1,X 2,…,X n )是来自X 的样本,则θ的最大似然估计量是{}12max X X X n θ=,,11.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4.则零件尺寸偏差的数学期望的无偏估计量 212.设X 1,X 2,X 3,X 4是来自正态总体N(0,2)2的样本,令Y=(X 1+X 2)2+(X 3-X 4)2,则当C= 1/8 时CY ~x 2(2).13.设容量n=10的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值样本方差 s 2=214.设A.B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(B|A)= 0.715. 若事件A 和事件B 相互独立,P(A)=α,P(B)=0.3,P (A⋃B )=0.7,则α= 3/716.设X ~N(2,σ²),且P{2<x<4}=0.3,则P{x<0}= 217.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为 2/318. 三个人独立地解答一道难题,他们能单独正确解答的概率分别为1/5.1/3.1/4,则此难题被正确解答的概率为 3/519.设有一箱产品由三家工厂生产的其中1/2是第一加工厂生产的,其余两家工厂各生产1/4,又知第一.第二工厂生产的产品有2%的次品,第三工厂生产的产品有4%的次品,现从箱中任取一只,则取到的次品的概率为 2.5%20.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(有放回)则:第二次取到黑球的概率为 0.221. 由长期统计资料得知,某一地区在4月下雨(记事件A)的概率为4/15,刮风(记作事件B)概率为7/15,刮风又下雨(记作事件C)概率为1/10则:p(B|A)= 3/822.一盒子中黑球.红球.白球各占50%,30%,20%,从中任取一球,结果不是红球,则取到的是白球的概率为 2/723.某公共汽车站甲.乙丙动人分别独立地等1.2.3路汽车,设每个人等车时间(单位分钟)均服从[0,5]上的均匀分布,则三人中至少有两个人等车时间不超过2分钟的概率为 0.35224. 若随机变量X ~(2,σ²)且p{2<X<4}=0.3,则p{X<2}= 0.525. 若随机变量X ~N(-1,1),Y ~N(3,1)且X 和Y 相互独立,设随机变量Z=X-2Y+7,则Z ~ N(0,5)26.设随机变量X ~N(1,22),则EX 2= 5三.计算题1.已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.007125.0)95.0()05.0(}2{223===C X P2.某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率. [答案]:).02.0,400(~b XX 的分布律为,)98.0()02.0(400}{400kk k k XP -⎪⎪⎭⎫ ⎝⎛==0,1,,400.k = 于是所求概率为 }1{}0{1}2{=-=-=≥X P X P X P 399400)98.0)(02.0(400)98.0(1--=.9972.0=3.已知100个产品中有5个次品,现从中无放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率. [答案]:.00618.0}2{310025195≈==C C C X P4.某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布,求该城市一天内发生3次或3次以上火灾的概率. [答案]:由概率的性质,得}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P⎪⎪⎭⎫ ⎝⎛++-=-!28.0!18.0!08.012108.0e.0474.0≈5.某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率.[答案]:以7:00为起点0,以分为单位,依题意 ~X ),30,0(U ⎪⎩⎪⎨⎧<<=其它,0300,301)(x x f为使候车时间X 少于5分钟,乘客必须在7:10到7:15之间,或在7:25到7:30之间到达车站,故所求概率为}3025{}1510{<<+<<X P X P 3130130130251510=+=⎰⎰dx dx6.某元件的寿命X 服从指数分布,已知其平均寿命为1000小时,求3个这样的元件使用1000小时,至少已有一个损坏的概率.[答案]:由题设知,X 的分布函数为.0,00,1)(1000⎪⎩⎪⎨⎧<≥-=-x x e x F x 由此得到}1000{1}1000{≤-=>X P X P .)1000(11-=-=e F各元件的寿命是否超过1000小时是独立的,用Y 表示三个元件中使用1000小时损坏的元件数,则).1,3(~1--e b Y所求概率为}0{1}1{=-=≥Y P Y P .1)()1(13310103----=--=e e e C7.设某项竞赛成绩N X~(65,100),若按参赛人数的10%发奖,问获奖分数线应定为多少?[答案]:设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x )(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫⎝⎛-Φ-=x即,9.010650=⎪⎭⎫⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78.8.设随机变量X 具有以下的分布律,试求2)1(-=X Y 的分布律.4.01.03.02.02101i p X -[答案]:Y 所有可能的取值0,1,4,由,2.0}1{}4{,7.0}2{}0{}1{,1.0}1{}0)1{(}0{2=-=====+=======-==X P Y P X P X P Y P X P X P Y P9.已知随机变量X 的分布函数⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F ,求).(X E[答案]:随机变量X 的分布密度为,,040,4/1)()(⎩⎨⎧≤<='=其它x x F x f故.2841)()(424==⋅==⎰⎰∞+∞-x dx x dx x xf X E10.设05.0=α,求标准正态分布的水平0.05的上侧分位数和双侧分位数. [答案]:由于,95.005.01)(05.0=-=Φu 查标准正态分布函数值表可得,645.105.0=u 而水平0.05的双侧分位数为,025.0u 它满足:,975.0025.01)(025.0=-=Φu 查标准正态分布函数值表可得.96.1025.0=u 2χ分布.11.设),2,21(~2N X 2521,,,X X X 为X 的一个样本,求:(1)样本均值X 的数学期望与方差;(2)}.24.0|21{|≤-X P[答案]:)1(由于),2,21(~2N X 样本容量,25=n所以,252,21~2⎪⎪⎭⎫ ⎝⎛N X 于是,21)(=X E .4.0252)(22==X D)2(由),4.0,21(~2N X 得),1,0(~4.021N X - 故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-6.04.021}24.0|21{|X P X P .4514.01)6.0(2=-Φ=12.⎪⎩⎪⎨⎧≤<≤≤--+=其它100101)(x x xA x x f ,则求常数A.期望EX 及方差DX. [答案]:011(1)x dx -=++⎰10()A x dx -⎰,得A=1 ()EX xf x dx +∞-∞==⎰01(1)x x dx -++⎰10(1)0x x dx -=⎰22()EX x f x dx +∞-∞==⎰021(1)x x dx -++⎰120(1)1/6x x dx -=⎰ 61)D(x)22=-=EX EX (。

线性代数与概率统计模拟题

线性代数与概率统计模拟题

一.问答题(共4题,每题5分,共计20分)1.什么叫随机试验?什么叫基本事件?什么叫样本空间?什么叫事件?2.试写出随机变量X的定义.3.试写出贝叶斯公式.4.试写出连续型随机变量的数学期望和方差的定义.二.填空题(共6题,每题5分,共计30分)1.设有N件产品,其中有M件次品,若从N件产品中任意抽取n件,则抽到的n件中检有m(m≤M)件次品的概率为2.设P(B)=0.8,P(A|B)=0.75,则由概率的乘法公式知,P(AB)= 0.6.3.(泊松分布定义)若随变量X的分布列为,k=0,1,2…,其中λ为正常数,则称X服从参数为λ的泊松分布,记作X~P( λ )。

4.(正态分布定义)若连续型随机变量X的密度函数为,(-∞<x<+∞),其中μ,σ为常数,且σ>0,则称X服从参数为μ,σ的正态分布(或高斯分布),记作。

5.设(X1,X2,…X n)为总体X的一个容量为n的样本,则称统计量(1)为样本均值;(2)为样本方差;(3)为修正样本方差.6.设P(B)=0.8,P(AB)=0.6,则由条件概率知,P(A|B)=().三.计算题(共6题,每题6分,共计36分)1.一批产品有10件,其中4件为次品,现从中任取3件,求取出的3件产品中有次品的概率。

解:样本点总数. 设A={取出的3件产品中有次品}..2、设A,B为随机事件,P(A)=0.2,P(B)=0.45,P(AB)=0.15,求:P(A|B);P(B|A);。

解:3、一袋中有m个白球,n个黑球,无放回地抽取两次,每次取一球,求:(1)在第一次取到白球的条件下,第二次取到白球的条件概率;(2)在第一次取到黑球的条件下,第二次取到白球的条件概率。

解:用A表示“第一次取到白球”,B表示“第二次取到白球”。

(1)袋中原有m+n个球,其中m个白球。

第一次取到白球后,袋中还有m+n-1球,其中m-1个为白球。

故;(2)袋中原有m+n个球,其中m个白球,第一次取到黑球后,袋中还有m+n-1个球,其中m个为白球。

概率论与数理统计模拟试题及解答

概率论与数理统计模拟试题及解答

模拟试题(一)参考答案一.单项选择题(每小题2分,共16分)1、设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立(C) 0)(0)(==B P A P 或(D) AB 未必是不可能事件解 若AB 为零概率事件,其未必为不可能事件.本题应选D.2、设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( )(A) )1(3p - (B) 3)1(p - (C) 31p - (D) 213)1(p p C -解 所求事件的对立事件为“3次都不成功”,其概率为3p ,故所求概率为31p -.若直接从正面去求较为麻烦.本题应选C.3、若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续解 由连续型随机变量概率密度的定义可知,)(x f 是定义在),(+∞-∞上的非负函数,且满足⎰∞+∞-=1d )(x x f ,所以A 一定成立.而其它选项不一定成立.例如服从]21,31[上的均匀分布的随机变量的概率密度⎪⎩⎪⎨⎧≤≤=其他,0,2131,6)(x x f在31=x 与21=x 处不连续,且在这两点的函数值大于1.因而本题应选A. 4、若随机变量X 的概率密度为)( e21)(4)3(2+∞<<-∞=+-x x f x π,则=Y ( ))1,0(~N(A)23+X (B)23+X (C)23-X (D)23-X 解 X 的数学期望3-=EX ,方差2=DX ,令23+=X Y ,则其服从标准正态分布.故本题应选A.5、若随机变量Y X ,不相关,则下列等式中不成立的是( ) (A) 0),cov(=Y X (B) DY DX Y X D +=+)((C) DY DX DXY ⋅=(D) EY EX EXY ⋅=解 因为0=ρ,故0),cov(=⋅=DY DX Y X ρ,DY DX Y X DY DX Y X D +=++=+),cov(2)(, 但无论如何,都不成立DY DX DXY ⋅=.故本题应选C.6、设样本n X X X ,,,21⋅⋅⋅取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X(B) )1,0(~N Xn(C))(~212n X ni i χ∑=(D))1(~-n t SX解 )1,0(~nN X ,),0(~n N X n ,)1(~-⋅n t S X n ,只有C 选项成立.本题应选C. 7、样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量(A)∑=ni iX1(B) X(C) )46(1.01n X X +(D) 321X X X -+解 由无偏估计量的定义计算可知,∑=ni iX1不是无偏估计量,本题应选A.8、在假设检验中,记0H 为待检假设,则犯第一类错误指的是( ) (A) 0H 成立,经检验接受0H (B) 0H 成立,经检验拒绝0H (C) 0H 不成立,经检验接受0H (D) 0H 不成立,经检验拒绝0H解 弃真错误为第一类错误,本题应选B.二.填空题(每空2分,共14分)1、同时掷三个均匀的硬币,出现三个正面的概率是________,恰好出现一个正面的概率是________. 解81;83. 2、设随机变量X 服从一区间上的均匀分布,且31,3==DX EX ,则X 的概率密度为________. 解 设],[~b a X ,则,3112)( ,322=-==+=a b DX b a EX 解得2=a , 4=b , 所以X 的概率密度为⎪⎩⎪⎨⎧≤≤=.0,42,21)(其他x x f3、设随机变量X 服从参数为2的指数分布, Y 服从参数为4的指数分布,则=+)32(2Y X E ________. 解 473])([232)32(222=++=+=+EY EX DX EY EX Y X E . 4、设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+}6||{Y X P ________.解 根据切比雪夫不等式,12136),cov(26)(}6||{2=++=+≤≥+Y X DY DX Y X D Y X P . 5、假设随机变量X 服从分布)(n t ,则21X 服从分布________(并写出其参数).解 设)(~n t nZY X =,其中)1,0(~N Y ,)(~2n Z χ,且)1(~22χY ,从而)1,(~122n F Y n ZX =. 6、设n X X X ,,,21 )1(>n 为来自总体X 的一个样本,对总体方差DX 进行估计时,常用的无偏估计量是________.解 ∑=--=ni i X X n S 122)(11. 三.(本题6分)设1.0)(=A P ,9.0)|(=A B P ,2.0)|(=A B P ,求)|(B A P . 解 由全概率公式可得27.02.09.09.01.0)|()()|()()(=⋅+⋅=+=A B P A P A B P A P B P .31)()|()()()()|(===B P A B P A P B P AB P B A P .四.(本题8分)两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02.加工出来的零件放在一起.又知第一台加工的零件数是第二台加工的零件数的2倍.求:(1) 任取一个零件是合格品的概率,(2) 若任取一个零件是废品,它为第二台车床加工的概率.解 设21,A A 分别表示第一台,第二台车床加工的零件的事件.B 表示产品是合格品的事件. (1) 由全概率公式可得973.098.03197.032)|()()|()()(2211≈⋅+⋅=+=A B P A P A B P A P B P . (2) 247.0973.0102.031)()|()()()()|(2222≈-⋅===B P A B P A P B P B A P B A P . 五.(本题14分)袋中有4个球分别标有数字1,2,2,3,从袋中任取一球后,不放回再取一球,分别以Y X ,记第一次,第二次取得球上标有的数字,求:(1) ) ,(Y X 的联合分布; (2) Y X ,的边缘分布; (3) Y X ,是否独立;(4) )(XY E .解 (1) YX 1 2 3 1 061 121 2 61 61 613 121 61(2)41)1(==X P ,21)2(==X P ,41)3(==X P .41)1(==Y P ,21)2(==Y P ,41)3(==Y P .(3)因为)1()1(1610)1,1(===≠===Y P X P Y X P ,故Y X ,不独立. (4)613261226112121316121)(⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=XY E 612312113⋅⋅+⋅⋅+623=.六.(本题12分)设随机变量X 的密度函数为)( e )(||2+∞<<-∞=-x Ax x f x ,试求:(1) A 的值; (2) )21(≤<-X P ; (3) 2X Y =的密度函数. 解 (1) 因⎰∞+∞-x x f d )(⎰∞+-===0214d e 2A x x A x ,从而41=A ; (2) ⎰⎰⎰---+==≤<-20201221d e 41d e 41d )(}21{x x x x x x f X P xx 12e 45e 251----=;(3) 当0≤y 时,0)(=y F Y ;当0>y 时,)()()()(2y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,所以,两边关于y 求导可得,.e 4121e 4121e 41)(yyyY y yy yy y f ---⋅=-⋅⋅-⋅⋅=故Y 的密度函数为⎪⎩⎪⎨⎧>⋅≤=-.0,e 41,0,0)(y y y y f yY七.(本题6分)某商店负责供应某地区1000人商品,某种产品在一段时间内每人需用一件的概率为0.6.假定在这段时间,各人购买与否彼此无关,问商店应预备多少件这种商品,才能以%7.99的概率保证不会脱销?(假定该商品在某一段时间内每人最多买一件).解 设⎩⎨⎧=人购买该种商品第人不购买该种商品第i i X i ,1,,0(1000,,2,1 =i ),X 表示购买该种商品的人数,则)6.0,1000(~B X .又设商品预备n 件该种商品,依题意,由中心极限定理可得)240600240600()()(-≤-=-≤-=≤n X P DXEX n DX EX X P n X P997.0)240600(=-Φ≈n .查正态分布表得75.2240600=-n ,解得6436.642≈=n 件.八.(本题10分)一个罐内装有黑球和白球,黑球数与白球数之比为R .(1) 从罐内任取一球,取得黑球的个数X 为总体,即⎩⎨⎧=白球,,黑球,,01X 求总体X 的分布;(2) 从罐内有放回的抽取一个容量为n 的样本n X X X ,,,21 ,其中有m 个白球,求比数R 的最大似然估计值.解(1) X 1 0 PR R +1 R+11即R R R R R x X P xxx+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+==-1111)(1 )1,0(=x ; (2)nx ni i iR R x XP R L i)1()()(1+∑===∏=,两边取对数,)1ln()(ln R n x R R L i +-∑=,两边再关于R 求导,并令其为0,得011=+-∑R nx i , 从而∑∑-=ii x n xR ˆ,又由样本值知,m n x i-=∑,故估计值为1ˆ-=m n R . 九.(本题14分)对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω):A 批:0.140,0.138,0.143,0.141,0.144,0.137;B 批:0.135,0.140,0.142,0.136,0.138,0.141. 已知元件电阻服从正态分布,设05.0=α,问:(1) 两批电子元件的电阻的方差是否相等? (2) 两批电子元件的平均电阻是否有显著差异? (2281.2)10(025.0=t ,15.7)5,5(025.0=F )解 (1) 2221122210 σσσσ≠=:,:H H .检验统计量为2221S S F =)5 ,5(~F (在0H 成立时),由05.0=α,查得临界值15.7)5 ,5(025.02/==F F α,15.712/1=-αF . 由样本值算得962.00000078.00000075.0==F ,由于2/2/1ααF F F <<-,故不能拒绝10H ,即认为两批电子元件的电阻的方差相等.(2) 211210 μμμμ==:,:H H . 统计量2)1()1()11(2122221121-+-+-+-=n n sn s n n n YX T )10(~t (在0H 成立时),查表得临界值228.2)10(025.02/==t t α.再由样本值算得005.2120000078.00000075.0139.01405.0=+-=T ,因为2/||αt T <,故接收0H .即认为两批电子元件的平均电阻无显著差异.模拟试题(二)参考答案一.单项选择题(每小题2分,共16分)1.设C , ,B A 表示3个事件,则C B A 表示( ). (A) C , ,B A 中有一个发生(B) C , ,B A 中不多于一个发生(C) C , ,B A 都不发生 (D) C , ,B A 中恰有两个发生 解 本题应选C. 2.已知)(,61)|(,31)()(B A P B A P B P A P 则====( ). (A) 187 (B) 1811 (C) 31 (D) 41解 181)|()()(==A B P A P AB P ,187)()()(1)(1)()(=+--=-==AB P B P A P B A P B A P B A P . 故本题应选A.3.设两个相互独立的随机变量X 与Y 分别服从正态分布)1,0(N 和)1,1(N ,则( )(A) 21}0{=≤+Y X P (B) 21}1{=≤+Y X P (C) 21}0{=≤-Y X P (D) 21}1{=≤-Y X P解 )2,1(~N Y X +,)2,1(~--N Y X ,故本题应选B.4.设X 与Y 为两随机变量,且6.0,1,4===XY DY DX ρ,则=-)23(Y X D ( ) (A) 40 (B) 34 (C) 25.6 (D) 17.6解 2.1),cov(=⋅=DY DX Y X XY ρ,6.25),cov(1249)23(=-+=-Y X DY DX Y X D .故本题应选C.5.若随机变量X 服从参数为λ的泊松分布,则2X 的数学期望是( )(A) λ(B)λ1 (C) 2λ (D) λλ+2 解 222)(λλ+=+=EX DX EX ,本题应选D.6.设n X X X ,,,21 是来自于正态总体),(2σμN 的简单随机样本,X 为样本方差,记∑=--=n i i X X n S 122)(111 ∑=-=n i i X X n S 1222)(1 ∑=--=n i i X n S 1223)(11μ ∑=-=n i i X n S 1224)(1μ 则服从自由度为1-n 的t 分布的随机变量是( )(A) 1/1--=n S X t μ(B) 1/2--=n S X t μ(C) 1/3--=n S X t μ(D) 1/4--=n S X t μ解 ),(~2nN X σμ,)1(~)(1122--∑=n t X Xni iσ,再由t 分布的定义知,本题应选B.7.设总体X 均值μ与方差2σ都存在,且均为未知参数,而,,,21 X X n X 是该总体的一个样本,X 为样本方差,则总体方差2σ的矩估计量是( )(A) X (B) ∑=-n i i X n 12)(1μ(C) ∑=--n i i X X n 12)(11 (D) ∑=-n i i X X n 12)(1 解 本题应选D.8.在假设检验时,若增大样本容量,则犯两类错误的概率( ) (A) 都增大 (B) 都减小(C) 都不变 (D) 一个增大一个减小 解 本题应选B.二.填空题(每空2分,共14分)1.设10件产品中有4件不合格品,从中任取2件,已知所取2件中有1件是不合格品,则另外1件也是不合格品的概率为________.解 设A 表示两件中有一件不合格品,B 表示两件都是不合格品.则所求的极限为51)()()()()|(===A PB P A P AB P A B P2.设随机变量X 服从)8.0 ,1(B 分布,则X 的分布函数为________.解 X 服从0-1分布,其分布函数为⎪⎩⎪⎨⎧≥<≤<=.11,10,2.0,0,0)(x x x x f3.若随机变量X 服从均值为2,方差为2σ的正态分布,且6.0}40{=<<X P ,则}0{<X P =________.解 2=μ,即其密度函数关于2=x 对称.由对称性知2.026.01}0{=-=<X P . 4.设总体X 服从参数为p 的0-1分布,其中)10(<<p p 未知.现得一样本容量为8的样本值:0,1,0,1,1,0,1,1,则样本均值是________,样本方差是________.解 由定义计算知85=X ;56152=S . 5.设总体X 服从参数为λ的指数分布,现从X 中随机抽取10个样本,根据测得的结果计算知27101=∑=i ix,那么λ的矩估计值为________.解 27101ˆ==X λ.6.设总体) ,(~2σμN X ,且2σ未知,用样本检验假设00μμ=:H 时,采用的统计量是________. 解 )1(~0--=n t nSX T μ (0H 为真时).三.(本题8分)设有三只外形完全相同的盒子,Ⅰ号盒中装有14个黑球,6个白球;Ⅱ号盒中装有5个黑球,25个白球;Ⅲ号盒中装有8个黑球,42个白球.现在从三个盒子中任取一盒,再从中任取一球,求:(1)取到的球是黑球的概率;(2)若取到的是黑球,它是取自Ⅰ号盒中的概率.解 设321,,A A A 分别表示从第Ⅰ,Ⅱ,Ⅲ号盒中取球,B 表示取到黑球. (1) 由全概公式可得≈⋅+⋅+⋅==∑=5083130531201431)|()()(31i i i A B P A P B P 0.342; (2) 由贝叶斯公式得≈=)()|()()|(111B P A B P A P B A P 0.682.四.(本题6分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,,,,002cos 21)(πx x x f , 对X 独立地重复观察4次,用Y 表示观察值大于3π地次数,求2Y 的数学期望. 解 21d 2c o s 21)3(3==>⎰πππx x X P ,)21,4(~B Y ,从而 5)(22=+=EY DY EY .五.(本题12分) 设),(Y X 的联合分布律为YX 0 1 2 1 0.1 0.05 0.35 2 0.3 0.1 0.1 问:(1) Y X ,是否独立;(2) 计算)(Y X P =的值;(3) 在2=Y 的条件下X 的条件分布律. 解 (1) 因为)0()1(4.05.02.01.0)0,1(===⋅=≠===Y P X P Y X P , 所以Y X ,不独立; (2) 15.01.005.0)2,2()1,1()(=+===+====Y X P Y X P Y X P ;(3) 9745.035.0)2()2,1()2|1(========Y P Y X P Y X P ,92971)2|2(=-===Y X P .六.(本题12分)设二维随机变量) ,(Y X 的概率密度为⎩⎨⎧≤≤≤=,,0,10,12),(2其他x y y y x f 求:(1) X 的边缘密度函数)(x f X ;(2) )(XY E ; (3) )1(>+Y X P . 解 (1)⎩⎨⎧≤≤⎪⎩⎪⎨⎧=≤≤==⎰⎰∞+∞-.,0,104,0,10,d 12d ),()(302其他其他x xx y y y y x f x f x X(2) 21d 12d )(0310==⎰⎰y xy x XY E x ;(3) ==>+⎰⎰-y y x Y X P x x d 12d )1(1212187.七.(本题6分)一部件包括10部分,每部分的长度是一个随机变量,它们相互独立,且服从同一均匀分布,其数学期望为2mm,均方差为0.05,规定总长度为)1.020(±mm 时产品合格,试求产品合格的概率.解 设i X 表示第i 部分的长度,10,,2,1 =i ,X 表示部件的长度.由题意知2=i EX ,0025.0=i DX ,且∑==101i i X X ,20=EX ,025.0=DX .由独立同分布的中心极限定理知,产品为合格品的概率为)025.01.0|025.020(|)1.0|20(|≤-=≤-X P X P4714.01)025.01.0(2=-Φ=. 八.(本题7分)设总体X 具有概率密度为⎪⎩⎪⎨⎧>-=--,,0,0,e )!1()(1其他x x k x f x k k θθ 其中k 为已知正整数,求θ的极大似然估计.解 设n X X X ,,,21 是来自总体X 的样本,当0,,,21>n x x x 时,似然函数∑-===-=-=∑∏ni ix ni k innkni i xk x f L 1e])!1[()()(111θθθ,两边取对数,∑-+--===-∑ni i ni k ix x k n nk L 111ln )!1ln(ln )(ln θθθ,关于θ求导,并令其为0,得0)(ln 1=∑-==ni i x nkL θθ,从而解得θ的极大似然估计为XkX nkni i=∑==1ˆθ. 九.(本题14分)从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:东支:230.01=x ,1337.021=n s , )9(1=n 西支:269.02=x ,1736.022=n s , )8(2=n 若东、西两支矿脉的含锌量都服从正态分布,问东、西两支矿脉含锌量的平均值是否可以看作一样?)05.0(=α53.4)7 ,8( (025.0=F ,90.4)8 ,7(025.0=F ,) 1315.2)15(0025.0=t解 本题是在未知方差,又没有说明方差是否相等的情况下,要求检验两总体均值是否相等的问题,故首先必须检验方差是否相等,在相等的条件下,检验总体均值是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,接受0H ,即可认为东、西两支矿脉含锌量的平均值相等.(请参见模拟试题(一)第九大题)十.(本题5分) 设总体X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,0,3)(23其它θθx x x f其中θ为未知参数,n X X X ,,,21 为来自总体X 的样本,证明:X 34是θ的无偏估计量.证明 ⎰∞+∞-===x x xf EX X E X E d )(343434)34(θθθ==⎰033d 334x x , 故X 34是θ的无偏估计量.模拟试题(三)参考答案一.填空题(每小题2分,共14分)1.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8180,则该射手的命中率为 .解 设A 表示一次射击中击中目标,依题意,四次都没击中的概率为81801)(4-=A P ,解得31)(=A P ,从而射手的命中率为32)(=A P . 2.若事件A ,B 独立,且p A P =)(,q B P =)(则=+)(B A P . 解 pq p B P A P B P A P B A P +-=-+=1)()()()()( .3.设离散型随机变量X 服从参数为λ(0>λ)的泊松分布,已知==)1(X P )2(=X P ,则λ= .解 )2(e 2e)1(2=====--X P X P λλλλ,从而解得2=λ.4.设相互独立的两个随机变量X ,Y 具有同一分布律,且X 的分布律为:X 0 1P 21 21则随机变量},max{Y X Z =的分布律为 . 解 Z 的可能取值为0,1.412121)0()0()0,0()0(=⋅========Y P X P Y X P Z P .43411)1(=-==Z P .5.设随机变量X ,Y 的方差分别为25=DX ,36=DY ,相关系数4.0=XY ρ,则),(Y X Cov = .解 12),cov(=⋅=DY DX Y X XYρ.6.设总体X 的期望值μ和方差2σ都存在,总体方差2σ的无偏估计量是21)(∑=-n i i X X n k ,则=k .解 1-=n n k . 7.设总体),(~2σμN X ,μ未知,检验2020σσ=H :,应选用的统计量是 .解)1(~)(2212--∑=n X Xni iχσ (0H 为真时)二 .单项选择题(每小题2分,共16分)1.6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起的概率为( )(A)!10!6!4 (B)107 (C)!10!7!4 (D)104 解 本题应选C.2.若事件B A ,相互独立,则下列正确的是( ) (A) =)|(A B P )|(B A P (B) =)|(A B P )(A P (C) )|(B A P )(B P =(D) =)|(B A P )(1A P -解 由独立性的定义知,==)()|(A P B A P )(1A P -,故本题应选D.3.设随机变量X 服从参数为n ,p 的二项分布,且6.1=EX ,28.1=DX ,则n ,p 的值为( ) (A) n =8,p =2.0 (B) n =4,p =4.0 (C) n =5,p =32.0(D) n =6,p =3.0解 由6.1=np ,28.1)1(=-p np ,解得n =8,p =2.0,本题应选A.4.设随机变量X 服从正态分布)1,2(N ,其概率密度函数为)(x f ,分布函数为)(x F ,则有( ) (A) =≥)0(X P =≤)0(X P5.0 (B) =≥)2(X P =≤)2(X P 5.0 (C) )(x f =)(x f -,),(∞+-∞∈x (D) =-)(x F -1)(x F , ),(∞+-∞∈x解 2=EX ,故其密度函数关于2=x 对称,故本题应选B.5.如果随机变量X 与Y 满足:)(Y X D +)(Y X D -=,则下列式子正确的是( ) (A) X 与Y 相互独立 (B) X 与Y 不相关 (C) 0=DY(D) 0=⋅DY DX解 由)(Y X D +)(Y X D -=,可得0),cov(=Y X ,从而可知X 与Y 不相关,故本题应选B.6.设n X X X ,,,21 是来自总体),(~2σμN X 的样本,X 为样本均值,令=Y 212)(σ∑=-ni iX X,则~Y ( )(A) )1(2-n χ (B) )(2n χ (C) ),(2σμN (D)),(2nN σμ解 本题应选A.7.设n X X X ,,,21 是取自总体),0(2σN 的样本,可以作为2σ的无偏估计量的统计量是( )(A) ∑=n i i X n 121 (B) ∑=-n i i X n 1211 (C) ∑=n i i X n 11 (D)∑=-ni i X n 111 解 由无偏估计的定义及期望的性质知,2221212)(1)1(σ==+===∑∑==DX EX DX EX EX n X n E ni i n i i ,故A 选择正确,同理验算其他选项,B,C,D 均不正确.故本题应选A.8.样本n X X X ,,,21 来自正态总体),(2σμN ,若进行假设检验,当( )时,一般采用统计量nS X t /0μ-=(A) μ未知,检验2σ=20σ(B) μ已知,检验2σ=20σ(C) 2σ未知,检验 μ=0μ(D) 2σ已知,检验μ=0μ解 本题应选C. 三.(本题8分)有两台车床生产同一型号螺杆,甲车床的产量是乙车床的5.1倍,甲车床的废品率为%2,乙车床的废品率为%1,现随机抽取一根螺杆检查,发现是废品,问该废品是由甲车床生产的概率是多少?解 设21,A A 分别表示螺杆由甲,乙车床生产的事件.B 表示螺杆是废品的事件.由贝叶斯公式可得)|()()|()()|()()|(2211111A B P A P A B P A P A B P A P B A P +=75.001.05202.05302.053=⋅+⋅⋅=. 四.(本题8分)假设一部机器在一天内发生故障的概率为2.0,机器发生故障时全天停止工作.若一周五个工作日里无故障,可获利润10万元,发生一次故障获利润5万元,发生两次故障获利润0万元,发生三次或三次以上故障就要亏损2万元,问一周内期望利润是多少?解 设X 表示一周中所获的利润,其分布律为:X 0 5 10 P 548.08.02.051-⋅⋅- 48.02.05⋅⋅ 58.0从而由期望的定义计算可得216.5=EX .五.(本题12分)1.设随机向量X ,Y 的联合分布为:X Y 1 2 31 0 61 1212 61 61 613 121 61(1) 求X ,Y 的边际分布;(2) 判断X ,Y 是否独立. 解 (1) X 的边际分布为: Y 的边际分布为:X 1 2 3 Y 1 2 3P 41 21 41 P 41 21 41(2) X 与Y 不相互独立.2.设随机变量),(Y X 的联合密度函数为:),(y x f =⎩⎨⎧<<-其他,,,,00e y x y求概率)1(≤+Y X P .解 ==≤+⎰⎰--y x Y X P x xy d e d )1(1210211e2e 1---+.六.(本题8分)设连续型随机变量X 的分布函数为:=)(x F ⎪⎩⎪⎨⎧≤>+-,,,,000e 22x x B A x 求: (1) 系数A 及B ;(2) 随机变量X 的概率密度; (3) )9ln 4ln (≤≤X P .解 (1) 由分布函数的性质知1)e(lim )(22==+=+∞-+∞→A B A F x x ,)0(0)e(lim )(lim 202F B A B A x F x x x ==+=+=-→→++,从而1-=B ;(2) 分布函数的导数即为其概率密度,即)(x f =⎪⎩⎪⎨⎧≤>-000e 22x x x x ,,,(3) 61)4ln ()9ln ()9ln 4ln (=-=≤≤F F X P . 七.(本题8分)设n X X X ,,,21 为总体X 的一个样本,X 的概率密度为:)(x f =⎪⎩⎪⎨⎧≤≤-其他,,,,0101x x θθ其中0>θ,求未知参数θ的矩估计量与极大似然估计量.解 令X x x EX =+==⎰1d 10θθθθ,从而解得θ的矩估计量为2)1(XX -=θ. 极大似然估计为:∑∑==+=ni ini iXX n 11ln ln θ.(具体做法类似与模拟试卷二第八题)八.(本题10分)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为5.66分,标准差为15分,问在显著水平05.0下,是否可认为全体考生的平均成绩为70分?解 假设0H :70=μ,选取统计量ns X T /μ-=)1(~-n t , (0H 为真时)在05.0=α下,查t 分布的双侧临界值表知0301.2025.0=t . 另一方面,计算统计量的值0301.24.136/15705.66||<=-=T ,从而接受原假设,即可认为全体考生的平均成绩为70分.九.(本题12分)两家银行分别对21个储户和16个储户的年存款余额进行抽样调查,测得其平均年存款余额分别为x =2600元和y =2700元,样本标准差相应地为811=S 元和1052=S 元,假设年存款余额服从正态分布,试比较两家银行的储户的平均年存款余额有无显著差异?(10.0=α)解 此题要求检验21μμ=,由于t 检验必须在方差相等的条件下进行,因此必须先检验21σ与22σ是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,拒绝0H ,即两家银行的储户的平均年存款余额有显著差异.(请参见模拟试题(一)第九大题)十.(本题4分)设总体X 服从参数为λ的泊松分布,λ为未知参数,⎩⎨⎧-=为偶数,,为奇数,,X X X T 11)(证明:)(X T 是λ2-e的一个无偏估计量.证明 ∑∞===)()()]([x x X P x T X T E∑∞=-=0!)(x xex x T λλ=-=∑∞=-0!)1(n nne n λλλ2-e ,所以)(X T 是λ2-e的一个无偏估计量.模拟试题(四)参考答案一.填空题(每小题2分,共20分)1.设)(A P =0.4,)(B P =0.5.若,7.0)(=B A P 则=+)(B A P . 解 55.0)|()()()()(=-+=+B A P B P B P A P B A P2.若随机变量X 服从二项分布,即)1.0,5(~B X ,则=-)21(X D .解 8.19.01.0544)21(=⋅⋅⋅==-DX X D . 3.三次独立重复射击中,若至少有一次击中的概率为6437,则每次击中的概率为 . 解43. 4.设随机变量X 的概率密度是:⎩⎨⎧<<=,,0,10,3)(2其他x x x f 且,784.0)(=≥a X P 则=a .解 由784.0)(=≥a X P 知,10<<α.故,784.01d 3)(132⎰=-==≥ααx x a X P 从而6.0=α. 5.利用正态分布的结论,有:=+-⎰∞+∞---x x x x d e )44(212)2(22π .解 令t x =-2,则原式1)(d e212222=+==⎰∞+∞--EX DX t t t π,这里)1,0(~N X .6.设总体X 的密度函数为:⎩⎨⎧<<=-,,0,10,)(1其他x x x f αα)0(>αα为参数其中,n x x x ,,,21 是来自总体X 的样本观测值,则样本的似然函数=);,,,(21αn x x x L .解 ∏=-ni i nx 11αα.7.设X ,Y 是二维随机向量,DX ,DY 都不为零,若有常数0>a 与b 使1)(=+-=b aX Y P ,这时X 与Y 是 关系.解 完全相关.8.若),(~2σμN X ,n X X X ,,,21 是来自总体X 的样本,2,S X 分别为样本均值和方差,则SnX )(μ-服从 分布.解 )1(-n t .9.设),(~211σμN X ,),(~222σμN Y ,X 与Y 相互独立.从X ,Y 中分别抽取容量为21,n n 的样本,样本均值分别为Y X ,,则Y X -服从分布 .解 ),(22212121n n N σσμμ+-.10.设随机变量X 和Y 的相关系数为0.9,若4.0-=X Z ,则Y 与Z 的相关系数为____________. 解 9.0),cov()4.0,cov(),cov(==-=X Y X Y Z Y . 二.单项选择题(每小题2分,共12分)1. 设随机变量X 的数学期望EX 与2σ=DX 均存在,由切比雪夫不等式估计概率}4{σ<-EX X P 为( )(A) 161≥(B) 161≤(C) 1615≥(D) 1615≤解 本题应选C.2.B A ,为随机随机事件,且A B ⊂,则下列式子正确的是( ). (A) )()(A P B A P =(B) )()()(A P B P A B P -=-(C) )()(A P AB P = (D) )()(B P A B P =解 本题应选A.3. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其他,,,,010)(x B Ax x f 且127=EX ,则( ).(A) 5.0,1-==B A(B) 1,5.0=-=B A(C) 1,5.0==B A (D) 5.0,1==B A 解 令1d )(10=+⎰x B Ax ,127d )(1=+⎰x x B Ax ,解得5.0,1==B A ,故本题应选D. 4.若随机变量X 与Y 不相关,则有( ). (A) )(9)()3(Y D X D Y X D -=- (B) )()()(Y D X D XY D ⨯= (C) 0)]}()][({[=--Y E Y X E X E(D) 1)(=+=b aX Y P 解 本题应选C.5.已知随机变量),(~21n n F F ,且αα=>)},({21n n F F P ,则=-),(211n n F α( ).(A) ),(121n n F α(B)),(1121n n F α-(C)),(112n n F α(D) ),(1211n n F α-解6.将一枚硬币独立地掷两次,记事件:=1A {掷第一次出现正面},=2A {掷第二次出现正面},=3A {正、反面各出现一次},=4A {正面出现两次},则事件( ).(A) 321,,A A A 相互独立 (B) 432,,A A A 相互独立 (C) 321,,A A A 两两独立(D) 432,,A A A 两两独立解 21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,再由事件独立的充分必要条件可知321,,A A A 两两独立,本题应选C.三.计算题(每小题8分,共48分)1.某厂由甲,乙,丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%,12%.现从该厂产品中任意抽取一件,求:(1) 取到不合格产品的概率;(2) 若取到的是不合格品,求它是由甲厂生产的概率. 解 (1) 运用全概率公式, 0.09;(2) 运用贝叶斯公式, 0.44.(具体做法参见模拟试卷(一)第四题)2.一实习生用一台机器接连独立地制造三个同样的零件,第i 个零件是不合格品的概率为)3,2,1(11=+=i ip i ,以X 表示三个零件中合格品的个数,求:(1) X 的概率分布; (2) X 的方差DX .解 (1)12234132411241=⋅+⋅+=EX , (2)2741924114412=⋅+⋅+=EX ,故521.0)(22=-=EX EX DX . 3.设总体X ),0(~2σN ,2σ为未知参数,n x x x ,,,21 是来自总体X 的一组样本值,求2σ的最大似然估计.解 似然函数21221222222e )21(e)21()(σσσπσπσ∑=∑===--ni i ni i x nx nL ,两边取对数212222ln 22ln 4)(ln σσπσ∑---==ni ix nn L ,关于2σ求导,并令其为零,得0)(21222122=∑+⋅-=σσni ix n , 从而解得极大似然估计量为∑==n i i x n 1221ˆσ. 4.二维随机变量(X ,Y )的联合概率密度:⎩⎨⎧>>=+-其它,,,,00,0e 2),()2(y x y x f y x求: (1) X 与Y 之间是否相互独立,判断X 与Y 是否线性相关;(2) )1(≤+X Y P . 解 (1) ⎪⎩⎪⎨⎧≤>==⎰⎰∞++-∞+∞-0,0,0,d e 2d ),()(0)2(x x y y y x f x f y x X341⎩⎨⎧≤>=-.0,0,0,e x x x 同理⎩⎨⎧≤>=-.0,0,0,e )(2y y yf y Y 从而)()(),(y f x f y x f Y X =,故X 与Y 相互独立,因而X 与Y 一定不相关.(2) =≤+)1(X Y P =⎰⎰-+-y x x y x d 2e d 10)2(1021)e 1(--.5.某人乘车或步行上班,他等车的时间X (单位:分钟)服从参数为51的指数分布,如果等车时间超过10分钟他就步行上班.若此人一周上班5次,以Y 表示他一周步行上班的次数.求Y 的概率分布;并求他一周内至少有一次步行上班的概率.解 此人每天等车时间超过10分钟也即步行上班的概率为210e d e 51)10(--∞+==>⎰x X P sx. 故)e ,5(~2-B Y .52)e 1(1)1(---=≥Y P .6.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈⋅=其他,,,,0]8,1[31)(32x x x f )(x F 是X 的分布函数.求随机变量)(X F Y =的概率分布.解 ⎪⎪⎩⎪⎪⎨⎧>≤<-≤=.8,1,81,1,1,0)(31x x x x x F(3) 当0<y 时,0)()(=≤=y Y P y F Y ;当10<≤y 时,))1(()1()()(331+≤=≤-=≤=y X P y X P y Y P y F Yy y F X =+=))1((3;当1≥y 时,1)()(=≤=y Y P y F Y . 故对)(y F Y 求导可得Y 的概率密度,⎩⎨⎧<<=其它,,,,0101)(y y f Y 即]10[~,U Y 四.应用题(第1题7分、第2题8分,共15分)21 1.假设对目标独立地发射400发炮弹,已知每一发炮弹的命中率等于0.2,用中心极限定理计算命中60发到100发之间的概率.解 设⎩⎨⎧=发炮弹命中第发炮弹没有命中第i i X i ,1,,0 (400,,2,1 =i ),则 ∑==4001i i X X )2.0,400(~B表示400发炮弹命中的发数,且80=EX ,64=DX ,故由中心极限定理知,)6420|6480(|)20|80(|)10060(<-=<-=<<X P X P X P9876.01)820(2=-Φ=. 2.某厂生产铜丝,生产一向稳定.现从该厂产品中随机抽出10段检查其折断力,测后经计算:5.160)(,5.28712=-=∑=n i i x x x .假定铜丝折断力服从正态分布,问是否可以相信该厂生产的铜丝的折断力方差为16?(1.0=α)解 16162120≠=σσ:,:H H .采用统计量 2221S n σχ-=,在0H 成立时,)9(~22χχ.由1.0=α,查得临界值 325.3)9(295.022/1==-χχα, 919.16)9(205.022/==χχα, 由样本值算得03.10165.1602≈=χ,由于22/222/1ααχχχ<<-,所以不拒绝0H ,即该厂生产的铜丝的折断力方差为16. 五.证明题(5分)若随机变量X 的密度函数)(x f ,对任意的R x ∈,满足:)()(x f x f -=,)(x F 是其分布函数.证明:对任意实数a ,有⎰-=-a x x f a F 0d )(21)(. 证明 ⎰⎰⎰-∞--∞-+==-a ax x f x x f x x f a F 00d )(d )(d )()(⎰-+=a x x f 0d )(21 (令x t -=) ⎰⎰⎰-=-=--=a a a x x f t t f t t f 000d )(21d )(21d )(21.。

概率论与数理统计模拟试卷一 一判断题(10 分,每题 2 分)

概率论与数理统计模拟试卷一 一判断题(10 分,每题 2 分)

概率论与数理统计模拟试卷一一.判断题(10分,每题2分)1. 在古典概型的随机试验中,0)(=A P 当且仅当A 是不可能事件 ( ) 2.连续型随机变量的密度函数与其分布函数相互唯一确定 ( ) )(x f )(x F 3.若随机变量X 与Y 独立,且都服从1.0=p 的 (0,1) 分布,则Y X = ( ) 4.设X 为离散型随机变量, 且存在正数k 使得0)(=>k X P ,则X 的数学期望)(X E 未必存在( )5.在一个确定的假设检验中,当样本容量确定时, 犯第一类错误的概率与犯第二类错误的概率不能同时减少 ( ) 二.选择题(15分,每题3分)1. 设每次试验成功的概率为)10(<<p p ,重复进行试验直到第次才取n 得 次成功的概率为)1(n r r ≤≤ .(a) ; (b) ; r n r r n p p C −−−−)1(11r n rr n p p C −−)1((c) ; (d) . 1111)1(+−−−−−r n r r n p pC r n r p p −−)1(2. 离散型随机变量X 的分布函数为,则)(x F ==)(k x X P . (a) ; (b) )(1k k x X x P ≤≤−)()(11−+−k k x F x F ; (c) ; (d) )(11+−<<k k x X x P )()(1−−k k x F x F .3. 设随机变量X 服从指数分布,则随机变量)2003,(max X Y =的分布函数 .(a) 是连续函数; (b) 恰好有一个间断点; (c) 是阶梯函数; (d) 至少有两个间断点.4. 设随机变量的方差),(Y X ,1)(,4)(==Y D X D 相关系数,6.0=XY ρ则方差=−)23(Y X D .(a) 40; (b) 34; (c) 25.6; (d) 17.6 5. 设为总体的一个样本,),,,(21n X X X ")2,1(2N X 为样本均值,则下列结论中正确的是 .(a) )(~/21n t nX −; (b) )1,(~)1(4112n F X ni i ∑=−;(c) )1,0(~/21N nX −; (d) )(~)1(41212n X ni i χ∑=−.二. 填空题(28分,每题4分)1. 一批电子元件共有100个, 次品率为0.05. 连续两次不放回地从中任取一个, 则第二次才取到正品的概率为2. 设连续随机变量的密度函数为,则随机变量的概率密度函数)(x f X e Y 3=为=)(y f Y3. 设X 为总体中抽取的样本()的均值, 则)4,3(~N X 4321,,,X X X X )51(<<−X P = .4. 设二维随机变量的联合密度函数为),(Y X ⎩⎨⎧<<<=他其,0;10,,1),(x x y y x f 则条件密度函数为,当 时 ,=)(x y f X Y5. 设,则随机变量)(~m t X 2X Y =服从的分布为 ( 需写出自由度 )6. 设某种保险丝熔化时间(单位:秒),取),(~2σμN X 16=n 的样本,得样本均值和方差分别为36.0,152==S X ,则μ的置信度为95%的单侧 置信区间上限为7. 设X 的分布律为XP 2θ)1(2θθ−2)1(θ−已知一个样本值)1,2,1(),,(321=x x x ,则参数的极大似然估计值 为三. 计算题(40分,每题8分)1. 已知一批产品中96 %是合格品. 检查产品时,一合格品被误认为是次品的 概率是0.02;一次品被误认为是合格品的概率是0.05.求在被检查后认 为是合格品的产品确实是合格品的概率2.设随机变量X 与Y 相互独立,X ,Y 分别服从参数为)(,μλμλ≠的指数 分布,试求Y X Z 23+=的密度函数.)(z f Z 3.某商店出售某种贵重商品. 根据经验,该商品每周销售量服从参数为1=λ 的泊松分布. 假定各周的销售量是相互独立的. 用中心极限定理计算该商店一年内(52周)售出该商品件数在50件到70件之间的概率. 4. 总体,为总体),(~2σμN X ),,,(21n X X X "X 的一个样本.求常数 k , 使∑=−ni i X X k 1为σ 的无偏估计量.5.(1) 根据长期的经验,某工厂生产的特种金属丝的折断力),(~2σμN X (单位:kg). 已知8=σ kg, 现从该厂生产的一大批特种金属丝中 随机抽取10个样品,测得样本均值2.575=x kg . 问这批特种金属丝的 平均折断力可否认为是570 kg ? (%5=α)(2) 已知维尼纶纤度在正常条件下服从正态分布. 某日抽取)048.0,(2μN 5个样品,测得其纤度为: 1.31, 1.55, 1.34, 1.40, 1.45 . 问 这天的纤度的总体方差是否正常?试用%10=α作假设检验.四. 证明题(7分)设随机变量相互独立且服从同一贝努利分布. 试证明随机Z Y X ,,),1(p B变量Y X +与Z 相互独立.附表: 标准正态分布数值表 分布数值表 t 分布数值表2χ6103.0)28.0(=Φ 488.9)4(205.0=χ1315.2)15(025.0=t 975.0)96.1(=Φ711.0)4(295.0=χ7531.1)15(05.0=t 9772.0)0.2(=Φ 071.11)5(205.0=χ1199.2)16(025.0=t 9938.0)5.2(=Φ145.1)5(295.0=χ7459.1)16(05.0=t概 率 统 计 试 卷 参 考 答 案一. 判断题(10分,每题2分) 是 非 非 非 是 . 二. 选择题(15分,每题3分) (a)(d)(b)(c)(d). 三. 填空题(28分,每题4分)1.1/22 ;2. ⎩⎨⎧≤>=000)])3/[ln()(1y y y f y f y Y ; 3.0.9772 ; 4. 当时10<<x ⎩⎨⎧<<−=他其0)2/(1)(xy x x x y f XY;5. 6. 上限为 15.263 . 7. 5 / 6 . ),1(m F 四. 计算题(40分,每题8分)1. A 被查后认为是合格品的事件,B 抽查的产品为合格品的事件. (2分)9428.005.004.098.096.0)()()()()(=×+×=+=B A P B P B A P B P A P , (4分).998.09428.0/9408.0)(/)()()(===A P B A P B P A B P (2分) 2. (1分) ⎩⎨⎧>=−其他0)(x e x f x X λλ⎩⎨⎧>=−其他)(y e y f y Y μμ0≤z 时,,从而 0)(=z F Z 0)(=z f Z ; (1分) 0≤z 时, ∫∞+−∞−=dx x z f x f z f Y X Z ]2/)3[()()(21 (2分))(232/3/3/0]2/)[(21z z z x z x e e dx e μλμλλμλμλμ−−−−−−−==∫(2分)所以⎪⎩⎪⎨⎧≤>−−=−−0,00),(23)(2/3/z z e e z f z z Z μλλμλμ[ ⎪⎩⎪⎨⎧≤>−−=−−0,00),(32)(3/2/z z e e z f z z Z μλλμλμ] (2分)3. 设 为第i 周的销售量, i X 52,,2,1"=i (1分)i X )1(~P 则一年的销售量为 ,∑==521i iXY 52)(=Y E , 52)(=Y D . (2分)由独立同分布的中心极限定理,所求概率为1522521852185252522)7050(−⎟⎟⎠⎞⎜⎜⎝⎛Φ+⎟⎟⎠⎞⎜⎜⎝⎛Φ≈⎟⎟⎠⎞⎜⎜⎝⎛<−<−=<<Y P Y P (4分) 6041.016103.09938.01)28.0()50.2(=−+=−Φ+Φ=. (1分)4. 注意到()n i i X X n X X nX X −−−+−−=−"")1(121)2(1)(,0)(2分σnn X X D X X E i i −=−=−)1(1,0~2分⎟⎠⎞⎜⎝⎛−−σn n N X X i dze nn z X X E nn z i 2212121|||)(|σσπ−−∞+∞−∫−=−dz e nn znn z 221201212σσπ−−∞+∫−=)3(122分σπnn −=σπnn kn122−=σ令=⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−∑∑==ni i ni i X X E k X X k E 11||||)分(2)1(2−=n n k π5. (1) 要检验的假设为 570:,570:10≠=μμH H (1分)检验用的统计量 )1,0(~/0N nX U σμ−=,拒绝域为 96.1)1(025.02==−≥z n z U α. (2分)96.106.21065.010/85702.5750>==−=U ,落在拒绝域内,故拒绝原假设,即不能认为平均折断力为570 kg . 0H [ 96.1632.0102.010/92.5695710<==−=U , 落在拒绝域外,故接受原假设,即可以认为平均折断力为571 kg . ] (1分)0H (2) 要检验的假设为 (1分) 221220048.0:,048.0:≠=σσH H []22122079.0:,79.0:≠=σσH H 检验用的统计量 )1(~)(2202512−−=∑=n X Xi iχσχ,拒绝域为 或488.9)4()1(205.022==−>χχχαn711.0)4()1(295.0212==−<−χχχαn (2分)41.1=x [49.1=x ]488.9739.150023.0/0362.020>==χ, 落在拒绝域内,[,落在拒绝域内,]711.0086.06241.0/0538.020<==χ 故拒绝原假设,即认为该天的纤度的总体方差不正常 . (1分) 0H 五、证明题 (7分) 由题设知X 0 1 Y X + 0 1 2P p qP (2分)2q pq 22p )0()0()0,0(3==+====+Z P Y X P q Z Y X P ; )1()0()1,0(2==+====+Z P Y X P pq Z Y X P ;;)0()1(2)0,1(2==+====+Z P Y X P pq Z Y X P ;)1()1(2)1,1(2==+====+Z P Y X P pq Z Y X P;)0()2()0,2(2==+====+Z P Y X P pq Z Y X P . )1()2()1,2(3==+====+Z P Y X P p Z Y X P 所以 Y X +与Z 相互独立. (5分)。

《概率论与数理统计》模拟试卷

《概率论与数理统计》模拟试卷

《概率论与数理统计》模拟试卷一、填空题1.三只考签由三个学生轮流放回抽取一次,每次取一只,设i A 表示第i 只考签被抽到(1,2,3)i =,则“至少有一只考签没有..被抽到〞这一事件可表示为 . 2.设()0.4P A =,()0.3P B =,()0.6P A B =,则()P AB = .3.一袋中装有10个球,其中3个黑球,7个白球,先后两次不放回从袋中各取一球,则第二次取到的是黑球的概率为 .4.随机变量X 的分布函数为0,0()0.4,011,1x F x x x <⎧⎪=≤<⎨⎪≥⎩,则{1}P X == .5.设随机变量~(,25)X N μ,且{5}0.5P X >=,则μ= .6.设随机变量X 的概率密度函数为,01()0,Ax x f x <<⎧=⎨⎩其它,则常数A = .7.设随机变量X 服从参数为,n p 的二项分布,且16n =,()4D X =,则p = . 8.设二维随机变量(,)X Y 的分布律为则{}P X Y == .9.设随机变量X 服从参数为1的泊松分布,则2{()}P X E X == .10.设随机变量~(1,1),~(1,1)X N Y N -,且X 与Y 相互独立,则2[()]E X Y -= . 11.()1D X =,()9D Y =,0.5XY ρ=,则(321)D X Y -+= .12.设X 和Y 的方差DX 和DY 都存在,且满足()()D X Y D X Y +=-,则X 与Y 的相关系数XY ρ= .13.设1210,,,X X X 是来自总体(0,1)X N 的简单随机样本,则统计量2221210X X X +++服从自由度n = 的2χ分布.14.设来自总体~(,1)X N μ的容量为16的样本的样本均值 5.11x =,其未知参数μ的置信水平为1α-的置信区间为(4.62,5.60),则α= .15.设正态总体2~(,)X N μσ,其中2,μσ均未知,12,,,n X X X 为来自总体X 的简单随机样本,记11n i i X X n ==∑,221()ni i Q X X ==-∑,则检验假设01:0,:0H H μμ=≠的t 检验方法使用统计量t = .二、计算题1.设随机变量X 的概率密度函数,01()2,120,x x f x x x <<⎧⎪=-≤<⎨⎪⎩其他 ,求⑴{1}P X ≥;⑵分布函数()F x .2.设随机变量X 的概率密度函数1,01()0,X x f x <<⎧=⎨⎩其他,⑴求XY e =的概率密度函数()Y f y ;⑵求Y 的数学期望()E Y .3.设,X Y 的联合概率密度函数为,01,01(,)0,x y x y f x y +<<<<⎧=⎨⎩其他,⑴求X 和Y 的边缘概率密度函数()X f x 和()Y f y ;⑵推断X 与Y 的是否独立?4.将两封信随意投入3个邮筒,设X 和Y 分别表示投入第1和2号邮筒中信的数目,⑴求X 和Y 的联合分布律;⑵求X 与Y 的协方差(,)Cov X Y .5.设总体X 的概率密度函数22,0(;)0,xx f x θθθ⎧<<⎪=⎨⎪⎩其他,其中0θ>为未知参数,n X X X ,,,21 是来自总体X 的样本.⑴求未知参数θ的矩估量量ˆθ;⑵推断所求的估量量ˆθ是否为θ的无偏估量量.6.设总体X 的概率密度函数||1(;)()2x f x e x θθθ-=-∞<<+∞,其中0θ>为未知参数,6,3,1,2,4,7,8,9---为来自总体的X 样本值,求θ的极大似然估量值.参考答案一、填空题1.123A A A 2.0.3 3.0.3 4.0.6 5.56.2 7.0.5 8.0.4 9.12e10.6 11.27 12.0 13.10 14.0.05 15X三、计算以下概率问题1.解:⑴1{1}1{1}10.5P X P X xdx ≥=-<=-=⎰⑵当0x <时,()0F x =; 当01x ≤<时,2()2xx F x xdt ==⎰;当12x ≤<时,211()(2)212xx F x xdx x dx x =+-=--⎰⎰; 当2x ≥时,()1F x =;所以2200,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪--≤<⎪⎪≥⎩,.2.解:⑴()1,01,0,x f x <<⎧=⎨⎩其他 (){}{}X Y F y P Y y P e y =≤=≤当0y <时,()0Y F y =; 当0,y ≥时,(){ln }(ln )Y X F y P X y F y =≤=,()()Y Y f y F y '=,于是1,1()0,Y y ey f y ⎧<<⎪=⎨⎪⎩其他⑵1()()1XxE Y E e e dx e ===-⎰3.解:⑴当01x <<时,11()(,)()2X f x f x y dy x y dy x +∞-∞==+=+⎰⎰; 当01y <<时,101()(,)()2Y f y f x y dx x y dx y +∞-∞==+=+⎰⎰; ⑵(,)()()X Y f x y f x f y ≠∴X 与Y 不是相互独立的。

概率论与数理统计试题与答案

概率论与数理统计试题与答案

概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分 18分,每题3分)1、设P(A) 0.7,P(A B) 0.3,则P(AB)= ___________________________ 。

52、设随机变量X 〜B(2, p),Y 〜B(3, p),若p(X 1) ,则p(Y 1) _____93、设X 与Y 相互独立,DX 2, DY 1,贝U D(3X 4Y 5) _________________________ 。

4、设随机变量X的方差为2,则根据契比雪夫不等式有P{X -EX 2} _______________n5、设(X「X2, ,X n)为来自总体2(10)的样本,则统计量Y X i服从i 1_______________ 分布。

6、设正态总体N( , 2) , 2未知,贝U 的置信度为1 的置信区间的长度L __________________ 。

(按下侧分位数)二、选择题(本题满分 15分,每题3分)1、若A与自身独立,则( )(A) P(A) 0 ; (B) P(A) 1 ; (C) 0 P(A) 1 ; (D) P(A) 0或P(A) 12、下列数列中,是概率分布的是( )X 5 x2(A) p(x) ,x 0,1,2,3,4 ;(B) p(x) ,x 0,1,2,315 61 x 14 253、设X ~ B( n, p),则有( )(A) E(2X 1) 2np (B) D(2X 1) 4np (1 p)(C) E(2X 1) 4np 1 (D) D(2X 1) 4n p(1 p) 1本方差,则下列结果错误的是( )。

4、设随机变量X ~ N( , 2),则随着的增大,概率P X ()。

(A)单调增大 (B) 单调减小(C)保持不变(D) 增减不定5、设(X1,X2, ,X n)是来自总体X ~ N( , 2)的一个样本,X与S2分别为样本均值与样三、(本题满分12分) 试卷中有一道选择题,共有4个答案可供选择,其中只有1个答案是正确的。

概率统计练习题1

概率统计练习题1
21. 从装有 3 个白球,3 个黑球的甲箱中,随机地取出二个球,放入装有 4 个白球与 4 个黑 球的乙箱中,然后再从乙箱中取出一球,求此球为白球的概率。
22. 不同的两个小麦品种的种子混杂在一起,已知第一个品种的种子发芽率为 90%,第二 个品种的种子发芽率为 96%,并且已知第一个品种的种子比第二个品种的种子多一倍,求: (1)从中任取一粒种子,它能发芽的概率; (2)如果取到的一粒种子能发芽,那么它是第一个品种的概率是多少?
概率统计练习题
第1章
1. 一口袋装有 10 只球,其中 6 只是红球,4 只是白球,今随机地从中同时取出 2 只球,试 求取到二只球颜色相同的概率。
2. 一口袋装有 10 只球,其中 6 只是红球,4 只是白球,今随机地从中同时取出 2 只球,试 求:(1)2 只都是红球的概率;(2)一只是红球一只是白球的概率。
23. 某保险公司把被保险人分成三类:“好的”,“一般的”与“差的”,统计资料表明,对于 上述三种人而言,在一年内出问题的概率依次为 0.05,0.15,和 0.30,如果“好的”被保险 人占总的保险人数的 20%,“一般的”占 50%,“差的”占 30%,试问在固定的一年中出问 题的人在总保险人数中占多大的比例?如某人在这一年内未出问题,他是属于“好的”的概 率为多少?
3. 在 8 件产品中有 5 件是一级品和 3 件是二级品,现从中任取 2 件,求取得的 2 件中只有 一件是一级品的概率. 如果:(1)2 件产品是无放回的逐次抽取;(2)2 件产品是有放回的 逐次抽取。
4. 将 15 名新生平均分配到三个班级中去,新生中有三名是优秀生,问每一个班级各分配到 一名优秀生的概率是多少?
P( AC) 1 ,求 A,B,C 至少有一个发生的概率。 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计模拟题一一、填空题 (每空2分,共16分):1.三个人独立地去破译一个密码, 他们各自能译出密码的概率分别为1/5,1/3,1/4,则三个人至少有一个人不能破译出密码的概率是_______2. 对于随机事件A,B,已知=0.8,P(B)=0.3,P(A|B)=0.4,则P(A B)=________,P()=_______;3.设随机变量X服从正态分布N(2,),已知F(2.5)=0.9938则P(2<X<2.5)=____。

4.已知随机变量X的概率密度则:(1)常数A=________; (2)P{|X|<1/2}=________;5.随机变量X,Y相互独立,且知X~U[1,13],且Z=X-3Y+5, 则D(Z)=________ E(Z)=_______二、选择题(将正确答案的序号填在括号内,每小题3分,共12分):1.若事件A与B相互独立,P(A)=0.6,P(B)=0.3,则P(B|A)=( )。

A. 0.6B. 0.3C. 1/2D. 0.182.一批产品共50个, 其中45个是合格品, 5个是次品, 从这些产品中任取3个,其中有次品的概率是( )。

A. B. C. D.3.若随机变量X的概率密度为f(x)=,则E(X)=( )。

A. 0B. 1C. 2D. 34.设事件A,B互斥,P(A)=p,P(B)=q,(0<p<1,0<q<1)则P(B)=( )。

A.(1-p)qB.p-qC.qD.p三、(14分)甲、乙两门高射炮命中目标的概率分别为0.6及0.8, 其各门炮发射炮弹的概率相等。

今有一敌机来侵犯。

(1)求敌机被炮弹击中的概率?(2)若知敌机被击中,问被甲炮命中的概率是多少?四、(12分)设随机变量X 的概率密度为随机变量Y 服从正态分布N (0,4)分布,且知E(XY)=1.25,求随机变量X,Y 的相关系数。

五、(16分)设从2、4、6三个数字中任取的第一个数为X ,第一个数取后不放回,再取得的第二个数为Y 。

求:(1)(X,Y )的联合分布律 (2)X,Y 的边缘分布律 (3)E(X), D(X)(4) 判断X,Y 是否独立? (5)Z=min(X,Y)的分布律六、(15)设总体X 的概率密度为,是该总体的样本。

求参数的最大似然估计。

七、(15分)某铁厂铁水含碳量X 服从正态分布,规定铁水含碳量均值为4.2,现要对一批产品进行检验,抽测5炉铁水,其含碳量经计算得。

试问这批产品铁水含碳量的均值是否符合规定(?=0.05),并以95%置信度写出铁水含碳量均值的置信区间。

概率统计模拟试题一 解答 一、 填空题 (不要求写过程)1、(设A ,B ,C 表示三个人破译密码事件。

P(三个人至少有一个不能破译密码) =法二 用加法公式 (略)2、P(A B)= 0.38 P()= 0.883、0.4938 ( P(2<X<2.5)=F(2.5)-F(2)=0.9938-0.5=0.4938 )4、A= 1 , P{|X|<1/2}=5、D(Z)= E(Z)=(解:由条件知,,二、1、(B) 2、(D) 3、(C) 4、 (C)三、解:设A表示炮击中飞机,B1,B2表示甲、乙炮发射炮弹。

由已知条件可知 ,,(1)P(敌机被炮弹击中)=P(A)=(2) 所求概率为四、解:由条件可知 E(X)=3, D(X)=9, E(Y)=0, D(Y)=4五、解:(3)(4)X与Y不独立(5)故知Z的分布律为六、解:是唯一驻点,故是最大似然估计七、解: 1.2.选取检验统计量3.H0的拒绝域为W0:4.其中查表得5.在显著水平下,H0相容,认为均值符合规定均值的置信度为95%的置信区间为即概率统计模拟题二一、填空题(每小空2分,共14分)1、有两批零件,其合格率分别为0.9和0.8。

在每批零件中随机地任取一件,则至少有一件是合格的概率为________;而恰好有一件是合格品的概率为__________。

2、设随机变量X服从正态分布分布,且知,则________;P(X=9)=__________。

3、设相互独立的两个随机变量X,Y都服从参数p=1/2的(0-1)分布即Y 1/2 1/2则随机变量Z=max{X,Y}的分布为:4、盒中有三件产品,其中一件是次品,两件是正品。

每次从中任取一件是正品的个数为随机变量X。

有放回地抽取10次,得到样本容量为10的样本,则样本均值的数学期望=__________;样本均值的方差 =_________。

二、选择题(共12分)1、设D(X)=4, D(Y)=1.。

则D(3X-2Y)=( )。

A、40B、34C、25.6D、17.62、设为标准正态分布的分布函数,则( )。

A、;B、;C、;D、3、若随机变量X,Y的分布函数分别为与,则a,b取值为(),可使为某随机变量的分布函数。

A、1/2,-3/2;B、2/3,2/3;C、-1/2,3/2;D、2/5,-3/5。

4、设总体X的密度函数是,已知(2,1,2,3,4,3)是来自该总体的一组样本值。

则未知参数的矩估计值为()。

A 2/5B 3/2C 15D 3三、(13分)有a,b,c三个盒子,a盒中一个白球和两个黑球,b盒中有一个黑球和两个白球,c盒中有三个白球和三个黑球。

扔一个骰子以决定选哪个盒,若扔骰子出现点数为1,2,3则选a盒;若出现点数为5,6,则选c盒。

再从选中的盒中任取一球,试求:(1)取出的一球为白球的概率。

(2)当知取出的球为白球时,求此球是来自a盒的概率?四、(15分)设连续型随机变量X~五、(16分)设二维随机变量(X,Y)的联合分布律为六、(15分)已知总体未知已知是来自该总体的一组样本求参数的矩估计量。

已知其一组样本值为(0.1,0.2,0.1,0.4,0.2,0.2)求参数的矩估计值。

七、(15分)一台自动车床加工的零件长度(单位:cm)X服从正态分布,加工精度。

在工作一段时间后,随机地抽取了这台车床加工的6个零件,测得长度如下:4.81,4.94,5.03,5.14,4.96,5.09问这台车床是否保持同样的加工精度()?模拟试卷二解答一、 1、0.98 , 0.262、0.3085 , 03、因为(X,Y)的联合分布律为4、(由模型E可知X~B(1,p) E(X)=p=2/3, D(X)=p (1-p)=2/9)二、1、(C) 2、(B) 3、(D) 4、(A)三、解:设“取出的一球为白球”=AB1,B2, B3表示从a,b,c盒中取球(选中盒)由条件知, ,,,(1) P(A)=(2) 所求概率为四:解:(1)用连续性(2)(3)(4)五、解:将上表改写如下:(1)(3) E(X)= -0.3, E(Y)=3,E(XY)= -1,COV(X,Y)=E(XY)-E(X)E(Y)= -0.1所以X与Y相关, 也可知道X与Y不独立.六、解:(1)(2)带入上式(3)是的矩估计量又由样本计算得是的矩估计值。

七、解 1.或2. 选取检验统计量3. H0的拒绝域为W0: 或4. 计算得其中或查表得5. 0.831<<12.833在显著水平下,H0相容,认为保持同样的精度概率统计模拟题三一、填空题(共15分)1.在箱中有a (>1)件合格品,b (>1)件次品,每次从中任取一件,取后不放回,连取两次,则两次抽取中恰有一件次品的概率是______ . 第二次抽取出的是次品的概率是______2.设随机变量X服从正态分布, 若P(X>10)=1/2,则=______.3.袋中有2只红球,9只白球,每次随机的任取一只球,取后不放回,直到2只红球都取出为止。

则第2只红球是在第三次抽取中被抽出的概率是________.4.设r.vX~U[1,13],且cov(X,Y)=5/6,则D(X-3Y)= ________二、选择题(12分)1.设P(A)=0.8, P(B)=0.7,P (A|B)=0.8, 则下列结论正确的是( ).A. 事件A与B相互独立B. 事件A与B互斥C.B A D. P(A+B)=P(A)+P(B)2. 已知随机变量X服从参数为n,p的二项分布B(n,p),且E(X)=2.4, D(X)=1.44, 则参数n, p 的值是( ).A. n=4,p=0.6B. n=6,p=0.4C. n=8,p=0.3D. n=24,p=0.13. 设X,Y是两个相互独立的随机变量,且都服从参数为p(0<p<1)的(0---1)分布,则有( ).A. B.C.X=Y D. P(X=Y)=14、设r.v,Y=3X+2, 则Y服从()A B C D三、(16分)甲袋中装有5只白球,6只黑球;乙袋中装有10只白球,12只黑球。

现从甲袋中摸出2只球放入乙袋,求从乙袋中摸出一球为白球的概率。

四.(16分)设随机变量X的概率密度为(1)确定常数A(2)求X的分布函数F(x)(3)求P(X<3/2)(4)求E(X)五. (11分)设二维随机变量(X,Y)的联合分布函数为(1) 确定常数A;(2) 求X,Y的边缘分布函数,并判断X与Y是否相互独立;六. (15分)设总体X的概率密度,参数未知,( )是该总体的样本.求参数A的最大似然估计量七. (15分)设某次考试的考生成绩X服从正态分布,从中随机地抽取36位考生的成绩,计算得平均成绩为66.5分,标准差15分。

问在显著水平下,是否可以认为这次考试全体考生的平均成绩为70分?并写出检验过程。

模拟试卷三解答一、1、,2、103、4、(由题意知,二、1、 (A) 2、(A) 3、(B) 4、(D)三、解:设“从乙袋中摸出的一球为白球”=ABk表示从甲袋中摸出2只球中又k只白球k=0,1,2(1) P(A)=(分数或小数答案均可以)四、解:(1)由规范性:(2)(3)(4)五、解:(1) 由规范性(2)(3) 对任意的(x,y)都有X与Y互相独立六、解:①②③ 是唯一驻点,故是A最大似然估计七、解: 10。

2。

选取检验统计量3。

H。

的拒绝域为W。

:4。

已知条件,s=15。

查表得5。

在显著水平下,拒绝H0,认为考生平均成绩不是70分。

相关文档
最新文档