理论力学静力学复习题答案
静力学基础试题及答案
静力学基础试题及答案一、单项选择题(每题2分,共20分)1. 静力学中,物体处于平衡状态的条件是()。
A. 合力为零B. 合力矩为零C. 合力和合力矩都为零D. 合力和合力矩中任意一个为零答案:C2. 作用在物体上的力可以分解为()。
A. 平衡力和非平衡力B. 重力和摩擦力C. 拉力和压力D. 作用力和反作用力答案:D3. 以下哪个选项不是静力学中常见的约束类型()。
A. 铰链约束B. 滑动约束C. 固定约束D. 弹性约束答案:B4. 静力学中,二力杆的特点是()。
A. 只能承受拉力B. 只能承受压力C. 只能承受弯矩D. 既能承受拉力也能承受压力答案:D5. 静定结构和超静定结构的主要区别在于()。
A. 材料种类不同B. 受力情况不同C. 约束数量不同D. 几何形状不同答案:C6. 静力学中,物体的平衡状态不包括()。
A. 静止状态B. 匀速直线运动状态C. 匀速圆周运动状态D. 加速运动状态答案:D7. 静力学中,力的三要素不包括()。
A. 大小B. 方向C. 作用点D. 性质答案:D8. 以下哪个选项是静力学中常见的平衡方程()。
A. ∑Fx = 0, ∑Fy = 0B. ∑M = 0C. ∑F = 0D. 所有选项都是答案:D9. 静力学中,力的平移定理指的是()。
A. 力的大小和方向不变,作用点可以任意移动B. 力的大小和作用点不变,方向可以任意改变C. 力的方向和作用点不变,大小可以任意改变D. 力的大小、方向和作用点都可以任意改变答案:A10. 静力学中,力的合成和分解遵循()。
A. 几何法则B. 代数法则C. 物理法则D. 数学法则答案:B二、填空题(每题2分,共20分)1. 静力学中,物体的平衡状态可以分为__________平衡和__________平衡。
答案:静态;动态2. 静力学中,力的平行四边形法则表明,两个力的合力大小和方向可以通过__________来确定。
答案:平行四边形法则3. 静力学中,物体在__________作用下,其运动状态不会发生改变。
《理论力学》静力学典型习题+答案
1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。
试求二力F1和 F2之间的关系。
解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。
F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。
试求 A 和 C 点处的拘束力。
解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。
曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。
AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。
对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。
2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。
静力学试题及答案
静力学试题及答案一、单项选择题(每题2分,共20分)1. 静力学中,力的三要素是什么?A. 大小、方向、作用点B. 大小、方向、作用线C. 大小、作用点、作用线D. 方向、作用点、作用线答案:A2. 力的合成遵循什么法则?A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 平行四边形法则答案:D3. 以下哪个不是静力学平衡条件?A. 合力为零B. 合力矩为零C. 物体静止D. 物体匀速直线运动答案:D4. 在静力学中,物体的平衡状态是指:A. 物体静止B. 物体匀速直线运动C. 物体静止或匀速直线运动D. 物体加速运动答案:C5. 以下哪个力不是保守力?A. 重力B. 弹簧力C. 摩擦力D. 电场力答案:C6. 静摩擦力的方向总是:A. 与物体运动方向相反B. 与物体运动趋势相反C. 与物体运动方向相同D. 与物体运动趋势相同答案:B7. 动摩擦力的大小与以下哪个因素有关?A. 物体的质量B. 物体的速度C. 物体间的接触面积D. 物体间的正压力答案:D8. 物体在斜面上保持静止时,斜面对物体的摩擦力方向是:A. 垂直于斜面向上B. 垂直于斜面向下C. 平行于斜面向上D. 平行于斜面向下答案:C9. 以下哪个力不是静力学中的力?A. 重力B. 弹力C. 摩擦力D. 惯性力答案:D10. 物体在水平面上静止时,其受力情况是:A. 重力与支持力平衡B. 重力与摩擦力平衡C. 支持力与摩擦力平衡D. 重力与支持力不平衡答案:A二、填空题(每题2分,共20分)1. 静力学中,物体的平衡状态是指物体处于________或________状态。
答案:静止;匀速直线运动2. 力的平行四边形法则可以用于求解两个力的______。
答案:合力3. 静摩擦力的大小与物体间的正压力______。
答案:无关4. 当物体在斜面上静止时,斜面对物体的摩擦力方向是______。
答案:平行于斜面向上5. 动摩擦力的大小与物体间的正压力______。
《理论力学》第四章 静力学应用专题习题解
第四章 力系的简化习题解[习题4-1] 试用节点法计算图示杵桁架各杆的内力。
解:(1)以整体为研究对象,其受力图如图所示。
由结构的对称性可知, kN R R B A 4==(2)以节点A 为研究对象,其受力图如图所示。
因为节点A 平衡,所以0=∑iyF0460sin 0=+AD N)(62.4866.0/4kN N AD -=-=0=∑ixF060cos 0=+AD AC N N)(31.25.062.460cos 0kN N N AD AC =⨯=-= (3)以节点D 为研究对象,其受力图如图所示。
因为节点D 平衡,所以 0=∑iyF0430cos 30cos 0'0=---AD D C N N 0866.0/4=++AD D C N N 0866.0/4866.0/4=+-D C N0=DC N0=∑ixF030sin 30sin 0'0=-+AD D C D E N N N 05.062.4=⨯+DE NkN4)(akN4AB RkN 2AC23N A )(31.2kN N DE -=(4)根据对称性可写出其它杆件的内力如图所示。
[习题4-2] 用截面法求图示桁架指定杆件 的内力。
解:(a)(1)求支座反力以整体为研究对象,其受力图如图所示。
由对称性可知,kN R R B A 12==(2)截取左半部分为研究对象,其受力图 如图所示。
因为左半部分平衡,所以0)(=∑i CF M0612422843=⨯-⨯+⨯+⨯N 063243=⨯-++N )(123kN N =kN2AC23N A0=∑ixF0cos cos 321=++N N N αθ01252252421=+⋅+⋅N N012515221=+⋅+⋅N N0512221=++N N ……..(1) 0=∑iyF02812sin sin 21=--++αθN N025*******=+⋅+⋅N N02525121=+⋅+⋅N N052221=++N N0544221=++N N ……..(2) 05832=-N)(963.53/582kN N ==)(399.1652963.5252221kN N N -=-⨯-=--=解:(b )截取上半部分为研究对象,其受力图如图所示。
《理论力学》静力学典型习题+答案00
1-3 试画出图示各结构中构件AB的受力图1-4 试画出两结构中构件ABCD的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知:0130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M 0)45sin(100=-+⋅⋅M a F A θ aM F A 354.0=其中:31tan =θ。
对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。
2-4FF解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。
理论力学习题及解答1
理论力学习题及解答第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
理论力学静力学与运动学部分复习题及答案[1]
°
而
2ABnBAABaω.=
2228321)
2(ωωωrrlrlaA.=.=
所以
ωωωω432330cos==
°
==
lrlrBEvBBE
1638322ωωετ.=.==
lrBEaBBE
CrCeCvvv+=
ω
vC
O
30
a
图示,且各杆自重及铰链摩擦不计,则有( )
(A) M1﹥M2(B) M1﹤M2(C)M1=M2
二.填空题(共20分,每小题5分)
1.长方体的边长各为a,b,c,作用有力 P 和Q ,其中力P沿对角线AB(图4),则力P 对x
轴的力矩mx(P) = ________;力 P 对y轴的力矩 my(P)= ________;力Q对z’的力矩
等于100N(图2)。已知物块和斜面间的静摩擦因数=0.3,则斜面对物块的摩擦力的大小等
于( )
f
(A)1003×0.3N (B)100N
(C)0 (D)100(1.3×0.3)N
图1
LA
'R
A
图2
P
α
4.四连杆机构在两力偶作用下处于平衡(图3),若力偶矩的大小分别是M1和M2,旋向如
kNNBx230= kNNBy200=
OBωRvcOBω
ABAABBvv][][=
OBOBBROBvωω.=.=2CAvRv22==ω
°=°75cos30cosABvv
sradvCOB/35.2530cos75cos2=
°
°
=ω
nτ
Aa
《理论力学》期末考试试题及答案
理论力学部分第一章静力学基础一、是非题(每题3分,30分)1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()9. 力偶只能使刚体发生转动,不能使刚体移动。
()10.固定铰链的约束反力是一个力和一个力偶。
()二、选择题(每题4分,24分)1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
6.关于约束的说法正确的是 。
① 柔体约束,沿柔体轴线背离物体。
② 光滑接触面约束,约束反力沿接触面公法线,指向物体。
理论力学试题及答案
1第一 静力学公理和物体的受力分析一、是非判断题1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( × ) 1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。
( ∨ ) 1.1.5 两点受力的构件都是二力杆。
( × ) 1.1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × ) 1.1.7 力的平行四边形法则只适用于刚体。
( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。
( ∨ ) 1.1.9 只要物体平衡,都能应用加减平衡力系公理。
( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。
( × ) 1.1.11 合力总是比分力大。
( × ) 1.1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( × ) 1.1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ∨ ) 1.1.14 当软绳受两个等值反向的压力时,可以平衡。
( × ) 1.1.15 静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ∨ ) 1.1.16 静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( ∨ )1.1.17 凡是两端用铰链连接的直杆都是二力杆。
( × ) 1.1.18 如图1.1所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。
( × )二、填空题1.2.1 力对物体的作用效应一般分为 外 效应和 内 效应。
1.2.2 对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。
理论力学试题题目含参考答案
理论力学部分第一章 静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
( )2.两端用光滑铰链连接的构件是二力构件。
( )3.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
( )4.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
( )5.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
( )6.约束反力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
( )二、选择题1.若作用在A 点的两个大小不等的力1F 和2F ,沿同一直线但方向相反。
则其合力可以表示为 。
① 1F -2F ;② 2F -1F ;③ 1F +2F ;2.三力平衡定理是 。
① 共面不平行的三个力互相平衡必汇交于一点;② 共面三力若平衡,必汇交于一点;③ 三力汇交于一点,则这三个力必互相平衡。
3.在下述原理、法则、定理中,只适用于刚体的有 。
① 二力平衡原理; ② 力的平行四边形法则;③ 加减平衡力系原理; ④ 力的可传性原理;⑤ 作用与反作用定理。
4.图示系统只受F 作用而平衡。
欲使A 支座约束力的作用线与AB 成30︒角,则斜面的倾角应为________。
① 0︒; ② 30︒;③ 45︒; ④ 60︒。
5.二力A F 、B F 作用在刚体上且0=+B A F F ,则此刚体________。
①一定平衡; ② 一定不平衡;③ 平衡与否不能判断。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
3.作用在刚体上的两个力等效的条件是。
4.在平面约束中,由约束本身的性质就可以确定约束力方位的约束有,可以确定约束力方向的约束有,方向不能确定的约束有(各写出两种约束)。
理论力学习题册答案
.第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)b(杆ABa(球A ))c(杆AB、CD、整体)d(杆AB、CD、整体)e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体.第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体.第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N,放在水平梁AC的中央,如图所示。
理论力学练习册及答案同济
理论力学练习册及答案同济一、静力学基础1. 题目:一个均匀的木杆,长度为2m,重量为50kg,一端固定在墙上,另一端自由。
求木杆的重心位置。
答案:木杆的重心位于其几何中心,即木杆的中点。
由于木杆均匀,其重心距离固定端1m。
2. 题目:一个质量为10kg的物体,受到三个力的作用:F1=20N向右,F2=30N向上,F3=15N向左。
求物体的合力大小和方向。
答案:合力F = F1 + F2 + F3 = (20N, 0) + (0, 30N) + (-15N, 0) = (5N, 30N)。
合力大小F = √(5² + 30²) = √(25 + 900) = √925 ≈30.41N。
合力方向与水平线的夹角θ满足tanθ = 30N / 5N = 6,所以θ ≈ 80.53°。
二、动力学基础1. 题目:一个质量为2kg的物体,从静止开始沿直线运动,加速度为5m/s²。
求物体在第3秒末的速度和位移。
答案:速度v = at = 5m/s² × 3s = 15m/s。
位移s = 0.5at² = 0.5 × 5m/s² × (3s)² = 22.5m。
2. 题目:一个质量为5kg的物体,以20m/s的初速度沿直线运动,受到一个恒定的阻力,大小为10N。
求物体在第5秒末的速度。
答案:加速度a = F/m = -10N / 5kg = -2m/s²。
速度v = v0 + at = 20m/s - 2m/s² × 5s = 0m/s。
三、转动动力学1. 题目:一个半径为0.5m的均匀圆盘,质量为10kg,绕通过其中心的轴旋转。
若圆盘的角加速度为10rad/s²,求圆盘的转动惯量。
答案:转动惯量I = mr² = 10kg × (0.5m)² = 2.5kg·m²。
理论力学静力学习题解答
习题:1-1(b)、(c)、(d),1-2(a)、(l)1-1 画出下列各图中物体A,ABC 或构件AB,AC 的受力图。
未画重力的各物体的自重不计,所有接触处均为光滑接触。
1-2 画出下列每个标注字符的物体的受力图。
题图中未画重力的各物体的自重不计,所有接触处均为光滑接触。
习题:2-3,2-5,2-6,2-8,2-12,2-14,2-18,2-10,2-402-3 如图示刚架的点B 作用一水平力F,刚架重量略去不计。
求支座A,D 的约束力F A和F D。
解:一、取刚架为研究对象,画受力图,如图(b)。
二、列平衡方程,求支座 A,D 的约束力 F A 和F D。
由三力平衡汇交定理,支座A 的约束力F A 必通过点C,方向如图(b)所示。
取坐标系Cxy ,由平衡理论得式(1)、(2)联立,解得2-5 图所示为一拨桩装置。
在木桩的点 A上系一绳,将绳的另一端固定在点C,在绳的点B 系另一绳BE,将它的另一端固定在点 E。
然后在绳的点 D 用力向下拉,使绳的 BD 段水平,AB 段铅直,DE 段与水平线、CB 段与铅直线间成等角θ= 0.1 rad(当 θ很小时,tanθ≈θ)。
如向下的拉力 F =800 N,求绳 AB 作用于桩上的拉力。
解:一、研究节点D,坐标及受力如图(b)二、列平衡方程,求 F DB解得讨论:也可以向垂直于F DE 方向投影,直接得三、研究节点 B ,坐标及受力如图(c) 四、列平衡方程,求 F AB0xF =∑,'sin 0BC DB F F θ-=0yF=∑,cos 0BC AB F F θ-=解得 80kN AB F =2-6 在图示结构中,各构件的自重略去不计,在构件BC 上作用一力偶矩为M 的力偶,各尺寸如图。
求支座A 的约束力。
解:一、研究对象:BC ,受力如图(b ) 二、列平衡方程,求F B 、F C 为构成约束力偶,有三、研究对象:ADC ,受力如图(c ) 四、列平衡方程,求 F A(方向如图)2-8 已知梁AB 上作用一力偶,力偶矩为M,梁长为l ,梁重不计。
《理论力学》静力学典型习题+答案
1-3 试画出图示各结构中构件AB的受力图的受力图1-4 试画出两结构中构件ABCD的受力图的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图所示刚体系整体各个构件的受力图1-5a 1-5b 在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
为二力杆,受力方向分别沿着各杆端点连线的方向。
为二力杆,受力方向分别沿着各杆端点连线的方向。
6F 2 F BCF ABB45oy x F BCF CD C60o F 130ox y 力构成封闭的力多边形,如图所示。
力构成封闭的力多边形,如图所示。
为二力杆为二力杆((受力如图所示受力如图所示)),故曲杆10a F BC60o F 130o F 2 F BCAB45o 解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。
对BC杆有:0=åM30sin20=-××MCBFB对AB杆有:杆有:ABFF=对OA杆有:杆有: 0=åM01=×-AOFMA求解以上三式可得:mNM×=31,NFFFCOAB5===,方向如图所示。
,方向如图所示。
////2-6求最后简化结果。
解:解:2-6a2-6a坐标如图所示,各力可表示为坐标如图所示,各力可表示为: :j Fi FF23211+=,i FF=2,j Fi FF23213+-=先将力系向A点简化得(红色的):j Fi FFR3+=,kFaMA23=方向如左图所示。
由于AR MF^,可进一步简化为一个不过A点的力点的力((绿色的绿色的)),主矢不变,其作用线距A点的距离ad43=,位置如左图所示。
,位置如左图所示。
2-6b同理如右图所示,可将该力系简化为一个不过A点的力(绿色的),主矢为:,主矢为:i F F R2-= 其作用线距A 点的距离a d43=,位置如右图所示。
理论力学静力学典型习题+答案
1-3试画出图示各结构中构件AB的受力图1-4试画出两结构中构件ABCD勺受力图1-5试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD勺铰链B和C上分别作用有力F i和F2,机构在图示位置平衡。
试求二力F1和F2之间的关系。
解:杆AB BC CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B和C为研究对象,受力如图所示:由共点力系平衡方程,对B点有:F x 0 F2F BC COS45°0对C点有:F x 0 F BC F1COS300 0解以上二个方程可得:F12 6F 1.63F2解法2(几何法)分别选取销钉B和C为研究对象,根据汇交力系平衡条件,作用在B和C点上的力构成封闭的力多边形,如图所示。
对B点由几何关系可知:F2F BC COS450对C点由几何关系可知:F BC F1 COS300解以上两式可得:F1 1.63F22-3在图示结构中,二曲杆重不计,曲杆AB上作用有主动力偶M试求A和C 点处的约束力。
解:BC为二力杆(受力如图所示),故曲杆AB在B点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB受到主动力偶M的作用,A点和B点处的约束力必须构成一个力偶才能使曲杆AB保持平衡。
AB受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):M 0 F A 10a sin(450) M 0 F A 0.354M其中:tan -。
对BC杆有:F C F B F A 0.354M3 aA,C两点约束力的方向如图所示。
2-4解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。
由力偶系作用下 刚体的平衡条件,点 0,C 处的约束力方向也可确定,各杆的受力如图所示。
对1313 -6aFFi FjF 2 FiF 3- F i - —Fj2 222F RFi3Fj M A■-3 Fak F R M A V3 d a F R2Fi24d3 a F X 0 PsinFB X0 F y 0 F By P P cos0 F X 04F A X F B X 0F y 0F AyF By0 M A 0 MA F Byl 0求解以上三式可得:M 1 3N m , F ABF OF C 5N ,方向如图所示Psi nAF BxF AxBC 杆有:M 0对AB 杆有: F B F AF B BC sin300 M 2对OA 杆有:M 0 M i F AOA 0F By , MFA X,FAy, FBX, M A 0 N D aG -cos F l coscos2F y 0 N D cosG F 0N D ,arccosf 2(F (2FG)a 卡G)l ]F Ay F By P(1 COS ) M A P(1 cos )1M y O p eta n F BC cos c F BC sin eta n 0 F BC60.6N 2M x' 0 P 1 aF B c F BC S in2a 0 F B100N F y 0 F Z0F Ay,F A;z M x 0 M DE 0 F2COS4500 F20 M AO 0 F6COS45° a F COS450 COS450 a 0 F6 2 F M BH 02F4COS450 a F6COS450 a 0 F4 2F M AD 02F1 a F6COS450 a F sin450 a 0 £ 1 2 F M CD 02F1 a F3 a F sin45°a 0 F3 1F M BC 02F x 0F3 a F5 a F4COS450 a 0 F50 M 1500N cm Fy 0M O0以下几题可看一看!FA , F NA , FB , F NB ,tan3( f sif s2)FNB 0ta n 6002aM cf s2f si2 3F By 2a 0 F ByM H 0 F D y a Fa 0 F Dy FM BF DX a F 2a 0 F DX2FF y 0F AyF DyF By 0F AyF M A0 FD X a FB X 2aFB XFM BF AX 2aFD Xa0 FA XFM c 0 F D bF XF D-F M A0 F B bF XbF i F 2 (F i2Mpcos45° psin45° F 2)DF N 2 N iF i F 2f s N i f s N 2F i ,N i ,F 2,N 2, f s:s 2p D F e f 2M0 f siF By0.223, f s2 4.49 FB x N iP(i _f s2) _2( i —f ;2)f s%.223450F xF yM AT cosAC sinF N T sinF s T cos pT sin AC cosAB . sin 2FN , F s , T, fsf s 0.646a l . a几F NB a Pcos-Psi n 022 3F NA a P cos-Psin a 小 —— 02 2、3 F AF BPsi nM A 0M B 0 F x 0F A F Bf si F NAS 2F NBS24.49 i2MF D )b F ACAyD 2MF (bF 2x)F B F I F AAa b F A F 3 FxAy F i F 3 cos450F 1M2qa F yF 2aF2 Z M r ( 2qa) F x 0 FAXF 3 cos45(F AX(MaaF AyF 2 F 3si n450 P 4qa 0F AyP 4qa M A F 2 a P 2a 4qa 2a F 3S in450 '3aMM A 24qa 2 Pa M M A0 F By 2a F2a 0 F ByF Ay 2a F 2a 0 F A 『FF x 0 F AXFBx FF 32qa) F 0 F EF2 M C 0 F Bx a F By aV 2(MF AX2q x a) a F E sin450 a 0 F BxM eM BF By FF NDF 3 sin450F yM AM B0F BXM AN 13r P 3rcos60020 N i 6.93(N)F xFA XN 1 sin 60°F AX 6(N) F y 0F AyN 1cos600P 0 F Ay 12.5'(N) FN 1cos300 Tcos300 6.93(N)M A F N 2Lsin2P -cos2 M BF N LsinP Lcos F s Lcos2F S P F SFNtan100 F RC ,F RD F RC , F RD F RC , F RD2 2M A 0 F ND aI 0F ND44M A0F NC a F l 0F NC -FF NDaM O 0 F SC R F SD R 0FNCF X 0sinF — ----------- F----- FS D NCN D1 cos 1 cossin 1 costan —, f SD tanFRC,F2 221 cosF RCSDF NDF SD 0tan — 2 I FaFla cos —2PF RCsi n[180°(1800 2,sin ] ftanFl sinISD (Pa Fl )(1 cos )F yF NDP F SC sin F ND PFl ( (cosasin tan —)2f SD tanFl sin(Pa Fl )(1 cos )F B F ACFBF AC tan1 F3(F ND P) R MDF B \M E (P F NE )1RtanF NDM D M E!FRM DF NDBPL FaM AM EF yF x 4 f sP 4f sP } f s ,1 3f s }F SC%F X0 F NC costa nFl sin (Pa Fl )(1 cos )F NCsinF SC cos F SD 0FNDFSDM E 1FFNE F NE F SD tan2FNDF min{ —P,」 P,R R 3 1 F SD F NE F SE F 02P R M DF SE RF SD 3FFSDf s F ND M FM GF SE;FF SE f s F NEF max 0.362.该系统的位置可通过杆OA 与水平方向的夹角B 完全确定,有一个自由度。
静力学试题及答案
静力学试题及答案一、选择题1. 静力学中,力的平衡条件是什么?A. 力的大小相等B. 力的方向相反C. 力的大小相等,方向相反D. 力的大小和方向都相等答案:C2. 以下哪个不是静力学的基本概念?A. 力的合成B. 力的分解C. 力的平衡D. 力的守恒答案:D二、填空题1. 在静力学中,当一个物体处于________时,我们称其为平衡状态。
答案:静止或匀速直线运动2. 根据牛顿第一定律,物体在没有外力作用下,将保持________状态。
答案:静止或匀速直线运动三、简答题1. 简述牛顿第三定律的内容及其在静力学中的应用。
答案:牛顿第三定律指出,作用力和反作用力大小相等,方向相反,作用在两个不同的物体上。
在静力学中,这一定律用于分析物体间的相互作用,确保系统的力平衡。
2. 解释什么是静摩擦力,并说明其在物体保持静止状态时的作用。
答案:静摩擦力是阻止物体滑动的力,其大小与引起滑动的外力相等,但方向相反。
在物体保持静止状态时,静摩擦力与外力平衡,防止物体发生运动。
四、计算题1. 一个质量为10 kg的物体,受到水平方向上的两个力F1和F2的作用,F1 = 50 N,F2 = 30 N,求物体受到的合力。
答案:首先确定两个力的方向,如果F1和F2方向相反,则合力F = F1 - F2 = 50 N - 30 N = 20 N;如果F1和F2方向相同,则合力F = F1 + F2 = 50 N + 30 N = 80 N。
2. 一个斜面上的物体质量为20 kg,斜面与水平面的夹角为30°,求物体受到的重力分量在斜面方向上的分力。
答案:物体受到的重力G = m * g = 20 kg * 9.8 m/s² = 196 N。
在斜面方向上的分力 F = G * sin(θ) = 196 N * sin(30°) = 98 N。
五、分析题1. 一个均匀的直杆,长度为L,固定在水平面上的A点,B点自由悬挂,求直杆的平衡条件。
静力学考试题及答案
静力学考试题及答案一、选择题(每题2分,共20分)1. 静力学中,物体处于平衡状态的充要条件是()。
A. 合力为零B. 合力矩为零C. 合力和合力矩都为零D. 合力和合力矩中至少有一个为零答案:C2. 以下哪个力不是保守力?()。
A. 重力B. 弹簧力C. 摩擦力D. 静电力答案:C3. 一物体在水平面上受到一个斜向上的拉力F,下列关于物体受力的说法正确的是()。
A. 物体受到的重力和支持力是一对平衡力B. 物体受到的拉力和摩擦力是一对平衡力C. 物体受到的重力和拉力是一对平衡力D. 物体受到的拉力和支持力是一对平衡力答案:A4. 一个质量为m的物体,受到一个大小为F的力作用,下列说法正确的是()。
A. 物体的加速度一定为F/mB. 物体的加速度一定为0C. 物体的加速度可能为0D. 物体的加速度一定为F/m答案:C5. 一物体在水平面上受到一个大小为F的力作用,下列说法正确的是()。
A. 物体的加速度一定为F/mB. 物体的加速度一定为0C. 物体的加速度可能为0D. 物体的加速度一定为F/m答案:C6. 一个质量为m的物体在水平面上受到一个大小为F的力作用,下列说法正确的是()。
A. 物体受到的合力为FB. 物体受到的合力为0C. 物体受到的合力可能为0D. 物体受到的合力一定为F答案:C7. 一物体在水平面上受到一个大小为F的力作用,下列说法正确的是()。
A. 物体受到的合力为FB. 物体受到的合力为0C. 物体受到的合力可能为0D. 物体受到的合力一定为F答案:C8. 一个质量为m的物体在水平面上受到一个大小为F的力作用,下列说法正确的是()。
A. 物体受到的合力为FB. 物体受到的合力为0C. 物体受到的合力可能为0D. 物体受到的合力一定为F答案:C9. 一物体在水平面上受到一个大小为F的力作用,下列说法正确的是()。
A. 物体受到的合力为FB. 物体受到的合力为0C. 物体受到的合力可能为0D. 物体受到的合力一定为F答案:C10. 一个质量为m的物体在水平面上受到一个大小为F的力作用,下列说法正确的是()。
理论力学静力学复习题答案
重修班静力学复习题一、是非判断题(10 分)r r1.若两个力的力矢量相等,F F,则两个力等效。
(×)12r r(若两个力偶的力偶矩矢相等,M 1M 2,则两个力偶等效)(√)2.根据力的可传性原理,可以将构架ABC 上的作用在 AB 杆的力 F 移至 AC 杆图示位置。
2. 图中圆盘处于平衡状态,说明力偶M 与力 F 等效。
(×)F F3.空间中三个力构成一平衡力系,此三力必共面。
(√)4.空间任意力系向某一点O 简化,主矢为零,则主矩与简化中心无关。
(√)5.空间任意力系总可以用二个力来平衡。
(√)6.力与轴共面则力对轴的矩为零。
(√)7.空间平行力系不可能简化为力螺旋。
(√)二选择题( 15 分)1 不经计算,可直接判断出图示桁架结构的零杆数目为C个。
A2; B3;C4;D5A B C DGPFE期未试题A:(6 分)图示简支桁架,已知力P、Q,长度a,刚杆 1,2,3 的内力分别为T1( 0), T2(- P),T3(0)。
第二、 1 题图期未试题(B 6 分)图示悬臂桁架受到大小均为 F 的三个力作用,则杆 1 内力大小为(0),杆 2 内力大小为(-F),杆3内力大小为(0)。
第二、 1 题图2 物块重力大小为 G 5kN ,与水平面间的摩擦角为f200,今用与铅垂线成25 0角的力F推动物块,若F G5kN ,则物块A。
A 保持静止;B 处于临界状态;C 向右加速滑动;D 向右匀速滑动250F500F650FG GG期未试题: 2 物块重力大小为 G5kN ,与水平面间的摩擦角为f300,今用与铅垂线成 500角的力F推动物块,若F G 5kN,则物块(A)。
补考试题:物块重力大小为G 5kN ,与水平面间的摩擦角为f300,今用与铅垂线成650角的力F推动物块,若 F G 5kN ,则物块(C2 fzaB3 在正方体的一个侧面,沿 AB 方向作用一集中力 F ,a则该力对坐标轴的力矩大小为 D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重修班静力学复习题
一、是非判断题(10分)
1.若两个力的力矢量相等,12F F =r r
,则两个力等效。
(×) (若两个力偶的力偶矩矢相等,12M M =r r
,则两个力偶等效)(√)
2.根据力的可传性原理,可以将构架ABC 上的作用在AB 杆的力F 移至AC 杆图示位置。
2. 图中圆盘处于平衡状态,说明力偶M 与力F 等效。
(×)
3. 空间中三个力构成一平衡力系,此三力必共面。
(√)
4. 空间任意力系向某一点O 简化,主矢为零,则主矩与简化中心无关。
(√)
5. 空间任意力系总可以用二个力来平衡。
(√)
6. 力与轴共面则力对轴的矩为零。
(√)
7. 空间平行力系不可能简化为力螺旋。
(√)
二 选择题(15分)
1不经计算,可直接判断出图示桁架结构的零杆数目为 C 个。
A 2; B 3;C 4;D 5
P
A
B
C
D
E
F
G
F F
期未试题A :(6分)图示简支桁架,已知力P 、Q ,长度a ,刚杆1,2,3的内力分别为
=1T ( 0 ),=2T ( -P ),=3T ( 0 )。
期未试题B (6分) 图示悬臂桁架受到大小均为F 的三个力作用,则杆1内力大小为( 0 ),杆2内力大小为( -F ),杆3内力大小为( 0 )。
2 物块重力大小为5kN G =,与水平面间的摩擦角为020f ϕ=,今用与铅垂线成
025角的力F 推动物块,若5kN F G ==,则物块
A 。
A 保持静止;
B 处于临界状态;
C 向右加速滑动;
D 向右匀速滑动
第二、1题图 第二、1题图
期未试题:2 物块重力大小为5kN G =,与水平面间的摩擦角为030f ϕ=,今用与铅垂线成050角的力F 推动物块,若5kN F G ==,则物块( A )。
补考试题:物块重力大小为5kN G =,与水平面间的摩擦角为030f ϕ=,今用与铅垂线成
065角的力F 推动物块,若5kN F G ==,则物块( C )。
2f θϕ≤
3在正方体的一个侧面,沿AB 方向作用一集中力F , 则该力对坐标轴的力矩大小为 D 。
A 对x,y,z 轴之矩全相等;
B 对x,y,z 轴之矩全不等;
C 只是对x,y 轴之矩相等;
D 只是对x,z 轴之矩相等;
期未试卷(6分)在正方体的一个侧面,沿AB 方向作用一集中力F ,则该力对x,y,z 三轴的矩分别为Mx=( 2Fa -
);My=( 2Fa - ); Mz=( 2Fa )。
x
y
z
a
a
a
O
F
A
B
G
F
65G
F
25G F
50
4 空间任意力系向某一定点O 简化,若主矢0≠'R ,主矩00≠M ,则此力系简化的最后结果 C 。
A 可能是一个力偶,也可能是一个力;
B 一定是一个力;
C 可能是一个力,也可能是力螺旋;
D 一定是力螺旋。
5. 一空间平行力系,各力均平行于y 轴,则此力系的独立平衡方程组为 B 。
A 0x F =∑,()0y M F =∑r ,()0z M F =∑r
B 0y F =∑,()0x M F =∑r ,()0z M F =∑r
C 0z F =∑,()0x M F =∑r ,()0y M F =∑r
D 0x F =∑,()0y M F =∑r ,()0z M F =∑r
4已知正方体各边长a ,沿对角线BH 作用一力F ,则该力在x 轴上的投影为 。
A 0; B /
2F -; C /6F -; D /3F -
(a 2a 3a )
填空题
1. (5分)图中力P 对点O 的力矩大小是(P)O m =。
(22sin P a b α+)
例题:水平梁 AB 受按三角形分布的载荷作用。
载荷的最大值为 q ,梁长为 l 。
分布载荷对支座A 的力矩为( 2
13
ql ,顺时针)。
例 自重为P =100 kN 的T 字型刚架 ABD ,置于铅垂面内,尺寸及载荷如图。
其中 M =20 kN·m , F =400 kN , q = 20 kN/m ,l =1 m 。
固定端A 处的约束力偶矩A M =()。
习题:悬臂梁 AB 受按三角形分布的载荷作用。
载荷的最大值为 q ,梁长为 l 。
分布载荷对支座A 的力矩=(
2
36
ql ,顺时针)。
P
o
a b
α
789.2(kN m)
A M =-⋅
2(5分)半径为R 的刚性圆板受到两根无质量刚性杆的约束,如图所示,1F r
作用在板的边
缘沿水平方向,2F r 沿铅垂方向,若使系统平衡,1F r 与2F r
大小的关系为 。
3(5分)平面结构如图所示,AB 在A 点为固定端约束,并与等腰直角三角板BCD 在B 点铰接,D 点吊起一重为W 的物块,在力P 的作用下平衡。
已知力P 沿DC 方向,各杆件自重不计,则A 处的约束力偶矩A M = 。
(0)
2. 图示桁架中,CD 杆的内力大小为 。
( 3
2
CD F F =
,拉力) F
r 1
F 2
F O 0
120A
B
C
D
W
L L
L P 123F ⎛⎫= ⎪ ⎪⎝⎭
149F F =-(压),22
3
F F
=-(压)
,30F =
(10分)边长为a 2的正方形薄板,截去四分之一后 悬挂在A 点,今若使BC 边保持水平,则点A 距右端 的距离x = -------------------。
A . a ; B . 3a /2; C . 6a /7; D . 5a /6。
(5a /6)
3(10分)如下图所示,边长为a =1m 的正方体,受三个集中力的作用。
则将该力系向O 点简化可得到:
主矢为R F =r
( , , )N ;
主矩为O M =r
( , , )N.m 。
(主矢(-1,2,-3);主矩(-4,2,2))
7.(10分)杆AB ,CD 由铰链连接,并由固定铰链支座约束如图。
在杆AB 上作用一铅垂力F ,在杆CD 上作用一力偶矩为M 的力偶,各杆自重不计。
则支
座D 处的铅垂方向的约束反力Dy F = 。
(3
2
Dy F F =)
图示结构,已知:q ,a ,2
M qa =,则DC 杆在D 处的水平方向受力大小 Dx F =(qa ),
方向(受拉)。
1N
3N
2N
组合梁ABC 的支撑及载荷情况如图所示。
已知P=1000 N ,M=500 N ·m 。
则DE 杆受力DE F =( 250E N F = )。
已知:梯子放在光滑的水平面上,AB =AC ,F ,a ,h 则绳DE 的拉力=( ) 对整体:
0C m =∑ 2cos cos 0B N L Fa αα⨯-=, 2B Fa N L
=
对AB 杆: cos 0B N L Th α-⨯+=, cos 2Fa T h
α
=
已知: P=1200N , 结构尺寸如图所示,BC杆内力
F=( )。
BC。