苏州苏州国际外语学校数学轴对称解答题中考真题汇编[解析版]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏州苏州国际外语学校数学轴对称解答题中考真题汇编[解析版]
一、八年级数学轴对称解答题压轴题(难)
1.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.
(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.
【解析】
【分析】
(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;
(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到
∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明
△BAE≌△ACH,故BE=AH,故可证明BE=2AF.
(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.
【详解】
(1)∵△ADC≌△EDB,
∴BE=AC=8,
∵AB=12,
∴12-8<AE<12+8,
即4<AE<20,
∵D为AE中点
∴2<AD<10;
(2)延长AF到H,使AF=HF,
由题意得△ADF≌△HCF,故AH=2AF,
∵AB⊥AC,AD⊥AE,
∴∠BAE+∠CAD=180°,
又∠ACH+∠CAH+∠AHC=180°,
∵∠D=∠FCH,∠DAF=∠CHF,
∴∠ACH+∠CAD=180°,
故∠BAE= ACH,
又AB=AC,AD=AE
∴△BAE≌△ACH(SAS),
故BE=AH,又AH=2AF
∴BE= 2AF.
(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,
由题意得△DBF≌△ADG,
∴FD=GD,BF=AG,
∵DE⊥DF,
∴DE垂直平分GF,
∴EF=EG,
∵∠C=90°,
∴∠B+∠CAB=90°,
又∠B=∠DAG,
∴∠DAG +∠CAB=90°
∴∠EAG=90°,
故EG2=AE2+AG2,
∵EF=EG, BF=AG
∴EF2=AE2+BF2,
则以线段AE、BF、EF为边的三角形为直角三角形.
【点睛】
此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.
2.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=︒,点D 是ABC △ 内一点,连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F .
(1)如图 1,求BFC ∠的度数;
(2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证:
2EAC EDF ∠=∠;
(3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ∆的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积.
【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形.
【解析】
【分析】
(1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以
90BFC BAC ∠=∠=︒.
(2)根据题意先求出180ABG ADG ∠+∠=︒,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=︒,可证得BKG KBG ∠=∠,
GB GK DG ==,所以
DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以
2CAE EDF ∠=∠.
(3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =,
所以ADN DHN S S ∆∆-= 1122
DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,226DF x y =+=,求
出x ,y ,不难得到AEF ANF ADM S S S ∆∆∆===4,然后可得20AMFE S =四边形.
【详解】
(1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=︒=∠, 所以BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.
(2)因为AD AE =,90DAE ∠=︒,所以45AED ACG ∠=︒=∠,所以
CAE CGE ∠=∠,
由(1)知:BAD CAE ∠=∠,所以BAD CGD ∠=∠,
设2BAD CGD α∠==∠, 所以1802BGD α∠=︒-,所以180BAD BGD ∠+∠=︒, 所以180ABG ADG ∠+∠=︒, 因为AG 平分BAD ∠,所以BAG DAG α∠=∠=, 在AB 上截取AK AD =,连接KG ,
因为AG AG =,所以AKG ADG ≌,所以AKG ADG ∠=∠,DG KG =, 因为180BKG AKG ∠+∠=︒,所以BKG KBG ∠=∠,
所以GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为
2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.
(3)由(2)知:BAG DBG α∠=∠=,因为90BAC ∠=︒,45ABC ∠=︒,所以45ABN α∠=︒-,
因为2BAD α∠=,所以45ADN α∠=︒+,因为902DAN α∠=︒-,所以
45AND ADN α∠=︒+=∠,所以AD AN =,因为AD AE =,所以AE AN =, 过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,
因为45ACE ABD α∠=∠=︒-,2CAE α∠=,所以45AET ANR α∠=︒+=∠, 因为AE AN =,所以ANR AET ≌,所以AR AT =,所以FA 平分BFT ∠, 所以45AFN AFE ∠=∠=︒,因为45AMN ∠=︒,所以AFM AMF ∠=∠,所以