线段的垂直平分线各种证明

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明线段的垂直平分线的性质的逆定理

线段的垂直平分线

一、学生知识状况分析

学生对于掌握定理以及定理的证明并不存在多大得困难,这是因为在七年级学习《生活中的轴对称》中学生已经有了一定的基础。

二、教学任务分析

本节课的教学目标是:

1.知识目标:

①经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定里和判定定理.

②能够利用尺规作已知线段的垂直平分线.

2.能力目标:

①经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.

②体验解决问题策略的多样性,发展实践能力和创新精神.

③学会与人合作,并能与他人交流思维的过程和结果.

3.情感与价值观要求

①能积极参与数学学习活动,对数学有好奇心和求知欲.

②在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.4.教学重点、难点

重点是写出线段垂直平分线的性质定理的逆命题。难点是两者的应用上的区别及各自的作用。

三、教学过程分析

本节课设计了七个教学环节:第一环节:创设情境,引入新课;第二环节:探究新课;第三环节:想一想;第四环节:做一做;第五环节:随堂练习;第六环节:课时小结第七环节:课后作业。

第一环节:创设情境,引入新课

教师用多媒体演示:

如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?

其中“到两个仓库的距离相等”,要强调这几个字在题中有很重要的作用.

在七年级时研究过线段的性质,线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴.我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点

的距离相等.所以在这个问题中,要求在“A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等”利用此性质就能完成.

进一步提问:“你能用公理或学过的定理证明这一结论吗?”

教师演示线段垂直平分线的性质:

定理线段垂直平分线上的点到线段两个端点的距离相等.

同时,教师板演本节的题目:

1.3 线段的垂直平分线(一)

第二环节:探究新知

第一环节提出问题后,有学生提出了一个问题:“要证‘线段垂直平分线上的点到线段两个端点的距离相等’,可线段垂直平分线上的点有无数多个,需一个一个依次证明吗?何况不可能呢.”

教师鼓励学生思考,想办法来解决此问题。

通过讨论和思考,有学生提出:“如果一个图形上每一点都具有某种性质,那么只需在图形上任取一点作代表,就可以了.”

教师肯定该生的观点,进一步提出:“我们只需在线段垂直平分线上任取一点代表即可,因为线段垂直平分线上的点都具有相同的性质.”

已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点.

求证:PA=PB.

分析:要想证明PA=PB,可以考虑包含这两条线段的两个三角形是否全等.证明:∵MN⊥AB,

∴∠PCA=∠PCB=90°

∵AC=BC,PC=PC,

∴△PCA≌△PCB(SAS).;

∴PA=PB(全等三角形的对应边相等).

教师用多媒体完整演示证明过程.同时,用多媒体呈现:

第三环节:想一想

你能写出上面这个定理的逆命题吗?它是真命题吗? 这个命题不是“如果……那么……”的形式,要写出它的逆命题,需分析原命题的条件和结论,将原命题写成“如果……那么……”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论。

原命题的条件是“有一个点是线段垂直平分线上的点”.结论是“这个点到线段两个端点的距离相等”.

此时,逆命题就很容易写出来.“如果有一个点到线段两个端点的距离相等,那么这个点到线段两个端点的距离相等.”

写出逆命题后时,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们自行在练习册上完成.

学生给出了如下的四种证法。

证法一:

已知:线段AB,点P是平面内一点且PA=PB.

求证:P点在AB的垂直平分线上.

证明:过点P作已知线段AB的垂线PC,PA=PB,PC=PC,

∴Rt△PAC≌Rt△PBC(HL定理).

∴AC=BC,

即P点在AB的垂直平分线上.

证法二:取AB的中点C,过PC作直线.

∵AP=BP,PC=PC.AC=CB,

∴△APC≌△BPC(SSS).

∴∠PCA=∠PCB(全等三角形的对应角相等).

又∵∠PCA+∠PCB=180°,

∴∠PCA=∠PCB=90°,即PC⊥AB

∴P点在AB的垂直平分线上.

证法三:过P点作∠APB的角平分线.

∵AP=BP,∠1=∠2,PC=PC,

△APC≌△BPC(SAS).

∴AC=BC,∠PCA=∠PCB(全等三角形的对应角相等,对应边相等).又∵∠PCA+∠PCB=180°∴∠PCA=∠PCB=90°

∴P点在线段AB的垂直平分线上.

从同学们的推理证明过程可知线段垂直平分线的性质定理的逆命题是真命题,

我们把它称做线段垂直平分线的判定定理.

我们曾用折纸的方法折出过线段的垂直平分线.现在我们学习了线段垂直平分线的性质定理和判定定理,能否用尺规作图的方法作出已知线段的垂直平分线呢?

第四环节:做一做

活动内容:用尺规作线段的垂直平分线.

活动目的:探索尺规方法作线段垂直平分线的思路与过程以及体验其中的演绎思维过程。

活动过程:

用尺规作线段的垂直平分线.

要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两个端点距离相等的点在这条线段的垂直平分线上,那么我们必须找到两个到线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.

下面我们一同来写出已知、求作、作法,体会作法中每一步的依据.[师生共析]

已知:线段AB(如图).

求作:线段AB的垂直平分线.

作法:1.分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点C和D.

2.作直线CD.

直线CD就是线段AB的垂直平分线.

[师]根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线吗?请与同伴进行交流.

[生]从作法的第一步可知 AC=BC,AD=BD.

相关文档
最新文档