数量关系速算技巧

合集下载

国考数量关系解题技巧

国考数量关系解题技巧

国考数量关系解题技巧
国考数量关系是公务员考试中的一个重要模块,其难度相对较高,需要考生具备一定的数学基础和解题能力。

以下是一些数量关系解题技巧:
1. 利用整除思想解题:在数量关系中,经常出现一些数据具有
整除性质,如公倍数、最大公约数、最小公倍数等。

利用这些整除性质,可以快速求解问题。

2. 利用比例思想解题:比例是数量关系中的一种重要关系,通
常用倍数、分数等形式表示。

利用比例关系,可以求解一些复杂的问题。

3. 利用倍数特性解题:倍数特性是数量关系中的一个特殊性质,即如果一个数是另一个数的倍数,那么这个数乘以另一个数等于原数。

利用这个特性,可以快速求解一些倍数问题。

4. 利用代入排除法解题:在数量关系中,有时候无法确定最优解,可以通过代入排除法来求解问题。

即把不同的选项代入题目中,逐步排除,最终找到正确答案。

5. 利用图形特征解题:数量关系还可以通过图形特征来求解,
如直角三角形、等腰三角形、等边三角形等图形的特征,可以用来求解一些数量关系问题。

以上是一些数量关系解题技巧,当然,在实际考试中,还需要根据具体情况选择合适的解题方法。

因此,考生需要加强对数量关系题目的练习,提高解题能力和速度。

真的快!数量关系的3个“速算技巧”

真的快!数量关系的3个“速算技巧”

真的快!数量关系的3个“速算技巧”在公务员考试的行测备考中,数量关系题最为让人头疼,甚至很多考生在考场上选择直接放弃,题都没仔细看,直接蒙答案。

但随便蒙正确率只25%,今天分享3种方法,既能加快计算,还能提高正确率。

一起来看!1、奇偶法命题者为了避免学生正确率为0的情况,设置选项时会故意设置一些特殊选项,以便考生能快速得到答案。

通常有两种情况:其一,选项设置三个奇数,一个偶数,那么选偶数的可能性更大一些。

其二、应用奇偶性进行预判,简化计算过程。

【举个栗子】某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数相差多少?偶数个奇数想加减,最终结果一定为偶数。

题目共50道,无论答对or答错,得分均为奇数。

2、整除法根据题干提供的整除关系,选出答案。

【举个栗子】甲、乙、丙、丁四家公司为南方雪灾地区捐款,甲公司捐款数是另外三家公司捐款总数的一半,乙公司捐款数是另外三家公司捐款总数的1/3,丙公司捐款数是另外三家公司捐款总数的1/4,丁公司捐款169万元。

四家公司共捐款()万元。

A.780B.890C.1183D.2028根据“甲公司捐款数是另外三家公司捐款总数的一半”得出总捐款为3的倍数,根据“乙公司捐款数是另外三家公司捐款总数的1/3”得出总捐款为4的倍数,根据“丙公司捐款数是另外三家公司捐款总数的1/4”得出总捐款为5的倍数。

从而选A。

3、代入法将选项直接代入题干,验证答案。

1.直接代入:把选项一个一个代入验证,直至得到符合题意的选项为止;2.选择性代入:根据数的特性(奇偶性、整除特性、尾数特性、余数特性等)先筛选,再代入排除。

【举个栗子】编号为1~55号的55盏亮着的灯,按顺时针方向依次排列在一个圆周上,从1号灯开始顺时针方向留1号灯,关掉2号灯;留3号灯,关掉4号灯……这样每隔一盏灯关掉一盏,转圈关下去,则最后剩下的一盏亮灯编号是:A.50B.44C.47D.1第一轮灭灯偶数号灯全熄,排除A、B。

数量关系秒杀技巧

数量关系秒杀技巧

数量关系秒杀技巧数量关系是考试中常见的题型之一,需要我们根据给定的条件,推算出未知量的值。

然而,这种题型常常会给考生带来困扰,因为它需要我们运用一些特定的技巧和运算方法。

在本文中,我们将介绍一些有效的数量关系秒杀技巧,帮助大家更好地应对这种题型。

1. 利用比例比例是数量关系题中最常用的运算方法,它可以帮助我们快速推算出未知量的值。

比例的运算方法很简单,只需要将所给条件中的两个量进行比较,然后通过相乘或相除的方法得出未知量的值。

例如,某人每天能走50公里,要走到终点总共需要10天。

那么,这个人要走多少公里才能走到终点呢?可以通过设x为终点的距离,然后利用比例运算得出:50/10=x/1,解得x=500公里。

2. 利用倍数关系倍数关系是指两个量之间的数量关系可以表示为一个整数倍的关系。

例如,如果A的年龄是B的2倍,那么A的年龄就是B年龄的2倍。

在数量关系题中,如果我们能够找到两个量之间的倍数关系,就可以通过简单的乘法运算得出未知量的值。

例如,如果甲、乙、丙三人的工资分别是600元、300元、200元,且甲的工资是乙的两倍,乙的工资是丙的1.5倍,那么甲、乙、丙三人的工资分别是多少呢?可以通过倍数关系得出:甲的工资是乙的2倍,而乙的工资是丙的1.5倍,因此甲的工资就是乙的2×1.5=3倍,所以甲、乙、丙三人的工资分别是600元、200元、133.33元。

3. 利用平均数平均数是指一组数据的总和除以数据的个数,它可以用来表示这组数据的代表值。

在数量关系题中,如果我们能够找到两个量的平均数,就可以通过简单的乘除运算得出未知量的值。

例如,某班级共有50人,其中男生数是女生数的1.5倍,那么该班级男女生人数分别是多少呢?可以通过平均数得出:男女生人数的平均数是50÷2=25,而男生数是女生数的1.5倍,因此女生数是25÷2.5=10,男生数是15。

综上所述,数量关系题并不难,只要我们掌握一些有效的秒杀技巧,就能够快速准确地解答。

公务员考试数量关系快速解题技巧(含公式)——最新版

公务员考试数量关系快速解题技巧(含公式)——最新版

公务员考试数量关系快速解题技巧(含公式)第一节代入排除法1.使用范围看题型。

典型题型有多位数(提到具体位数(3、4位数)或出现位数的变化(个位与十位数发生变化))、不定方程(未知数比方程多)、年龄、余数看选项。

选项为一组数(2个数,问法为:分别/各)、可转化为一组数(比例可看成一组数)剩两项。

通过其他条件排除2项时,代入一项获取答案。

2.使用方法优先排除:通过尾数、奇偶、倍数等特性来排除。

直接代入:最值、好算。

(出现最值的先代入最大值、最小值计算;未出现最值时,先代入最好算的)PS:多位数问题优先考虑代入排除法;多次操作的、倒来倒去的优先考虑代入排除。

第二节倍数特性法(从问题入手)题型:出现分数、百分数、比例、倍数且所求与比例有关优先考虑倍数特征1.基础知识法(整除法)——考核较少若A=B*C,则A能被B整除,又能被C整除(考试时B、C假设当成整数)题型:①平均分配物品、平均数;②存在三量关系(总价、单价、数量,路程、速度、时间)常见判定方法:①常见数:口诀法(3、9看各位数字之和,2、5看末位数,4、25看末两位数)②因式分解法:把一个数分成几个互质的数相乘的形式(互质是指除1以外没有其他的公约数,如12=3*4)③拆分法(常用于7、11、13):例如验证395/405/409/416中哪个数能被13整除,先确定数字390,再计算+5/+15/+19/+26对比2.余数法(结合代入排除)题型:平均分实物,最后有剩余/缺少解题核心:多退少补(总量+、总量-)Eg :解析:总量-6=9*部门数,总量+10=11*部门数;有1个部门只能分1包代表着缺10包,代入选项可得知:正确选项为B3.比例型若A/B=m/n (m,n 互质),则的倍数是n m B A ±±的倍数n 是B 的倍数,m 是ANM N A M N A N A N A ++占所有数总和的,则占其他数的占所有数总和的,则占其他数的补充:111 重要提示:若1个总量包含2个比例,单看问题比例无法解决时,用两个比例计算总量第三节 方程法思维:找等量关系、设未知数、列方程、解方程1.普通方程主要在于设未知数: 避免出现分数,设小不设大出现比例避免出现分数,设比例出现高频多个主体,并于列式,设中间量未出现前面三种情况,求谁设谁2.不定方程主要在于怎么解方程(本质在于代入排除):①奇偶性26/2543a.b ,=+=+y x m by ax 如:先考虑奇偶性恰好为一奇一偶时,优当 ②倍数的倍数是,可知如:性奇一偶时,优先倍数特考虑倍数特性恰好为一,有公因子(公因素)时与或当36037m b a ,x y x m by ax =+=+③尾数 271203750b a ,=+=+y x m by ax 如:时,考虑尾数或尾数是或当 ④无以上三种特征时,直接代入选项3.不定方程组①3个未知数、2个方程,且未知数一定为整数(人数、具体事物的个数、本、页、张)方法:先消元(消解系数小的未知数,方便计算)转化为不定方程,再按不定方程求解。

行测数量关系快速解题技巧

行测数量关系快速解题技巧

行测数量关系快速解题技巧在行政职业能力测验(简称行测)中,数量关系一直是让众多考生感到头疼的部分。

然而,只要掌握了一些有效的快速解题技巧,就能在这一模块中取得较好的成绩。

接下来,我将为大家详细介绍一些实用的行测数量关系快速解题技巧。

一、整除法整除特性是解决数量关系问题的一个重要技巧。

当题目中出现“整除”“平均”“倍数”等字眼时,我们可以优先考虑使用整除法。

例如:某单位组织员工去旅游,如果每辆车坐 45 人,则有 10 人没有座位;如果每辆车坐60 人,则空出一辆车,问该单位共有多少员工?我们可以通过分析条件得出,员工总数减去 10 之后能够被 45 整除,员工总数能够被 60 整除。

所以,假设员工总数为 x 人,那么 x 10 =45n(n 为正整数),x = 60m(m 为正整数)。

从选项来看,如果一个数减去 10 能被 45 整除,那么这个数一定能被 5 整除,所以可以首先排除那些不能被 5 整除的选项。

二、特值法特值法是在题目中某些量不影响最终结果的情况下,将这些量设为特殊值来简化计算。

比如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?我们可以把这项工程的工作量设为 30(10 和 15 的最小公倍数),那么甲每天的工作效率就是 3,乙每天的工作效率就是 2,两人合作每天的工作效率就是 5,所以合作完成这项工程需要的时间就是 30÷5 =6 天。

三、比例法当题目中存在明显的比例关系时,使用比例法能够快速解题。

例如:甲、乙两人的速度比为 3∶4,两人同时出发,行走相同的路程,所用时间之比是多少?因为路程=速度×时间,路程相同,速度和时间成反比。

所以甲、乙所用时间之比为 4∶3。

四、尾数法对于一些计算量较大的题目,尤其是涉及到多个数的加减乘运算时,可以通过计算尾数来快速得出答案。

比如:2345 + 3456 + 4567 5678 的尾数是多少?我们只需要计算这几个数的尾数之和:5 + 6 + 7 8 = 0,所以该式的计算结果尾数为 0。

公务员行测数量关系速算公式归纳

公务员行测数量关系速算公式归纳

公务员行测数量关系速算公式归纳在公务员行测考试中,数量关系部分往往是让众多考生感到头疼的模块。

然而,掌握一些实用的速算公式,能够帮助我们在考场上快速解题,提高答题效率和准确率。

接下来,就为大家归纳一下常见的公务员行测数量关系速算公式。

一、行程问题1、相遇问题路程和=速度和 ×相遇时间相遇时间=路程和 ÷速度和速度和=路程和 ÷相遇时间例如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 米/秒,乙的速度为 3 米/秒,经过 10 秒相遇,那么 A、B 两地的距离就是(5 + 3)× 10 = 80 米。

2、追及问题路程差=速度差 ×追及时间追及时间=路程差 ÷速度差速度差=路程差 ÷追及时间比如:甲在乙后面 20 米,甲的速度为 7 米/秒,乙的速度为 5 米/秒,那么甲追上乙所需的时间就是 20 ÷(7 5)= 10 秒。

3、流水行船问题顺水速度=船速+水速逆水速度=船速水速船速=(顺水速度+逆水速度)÷ 2水速=(顺水速度逆水速度)÷ 2假设一艘船在静水中的速度为 15 千米/小时,水流速度为 3 千米/小时,那么顺水速度就是 15 + 3 = 18 千米/小时,逆水速度就是 15 3 =12 千米/小时。

二、工程问题工作总量=工作效率 ×工作时间工作效率=工作总量 ÷工作时间工作时间=工作总量 ÷工作效率例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作完成这项工程需要的时间就是 1 ÷(1/10 + 1/15)=6 天。

三、利润问题利润=售价成本利润率=利润 ÷成本 × 100%售价=成本 ×(1 +利润率)成本=售价 ÷(1 +利润率)比如:一件商品的成本是 80 元,售价是 100 元,那么利润就是 10080 = 20 元,利润率就是 20 ÷ 80 × 100% = 25%。

数量关系 十大速算技巧

数量关系 十大速算技巧

★【速算技巧一:估算法】“估算法”毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。

所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。

估算的方式多样,需要各位考生在实战中多加训练与掌握。

进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了“估算”时候的精度要求。

★【速算技巧二:直除法】李委明提示:“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。

“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。

“直除法”从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

“直除法”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。

【例1】中最大的数是()。

【解析】直接相除:=30+,=30-,=30-,=30-,明显为四个数当中最大的数。

【例2】32409/4103、32895/4701、23955/3413、12894/1831中最小的数是()。

【解析】32409/4103、23955/3413、12894/1831都比7大,而32895/4701比7小,因此四个数当中最小的数是32895/4701。

李委明提示:即使在使用速算技巧的情况下,少量却有必要的动手计算还是不可避免的。

【例3】6874.32/760.31、3052.18/341.02、4013.98/447.13、2304.83/259.74中最大的数是()。

在本节及以后的计算当中由于涉及到大量的估算,因此我们用a+表示一个比a大的数,用a-表示一个比a 小的数。

数量关系技巧

数量关系技巧

关于数量关系的做题技巧
数量关系主要考察应考者对数量关系的理解和计算能力。

以下是一些数量关系的技巧:
1.基础运算知识:掌握基本的数学运算,如加、减、乘、除,以及
分数和小数的计算。

2.理解和识别问题:仔细阅读问题,理解其背景和要求,明确需要
求解的是什么。

3.利用公式快速解答:对于一些常见的问题,如行程问题、工程问
题等,可以预先记住相关的公式或模型,从而快速得到答案。

4.逻辑推理:对于一些较为复杂的问题,可能需要使用逻辑推理的
方法。

此时,可以尝试从问题的核心出发,逐步推导出答案。

5.排除法:当选项中有些数字出现频率较高时,可以考虑使用排除
法。

6.速算技巧:掌握一些速算技巧,如乘法分配律、提取公因数等,
可以提高计算速度。

7.实际应用:尝试将问题与现实生活联系起来,这样更容易理解和
解答。

8.反复练习:熟能生巧,只有通过大量的练习,才能真正掌握数量
关系的技巧。

9.注意陷阱:在问题中可能存在一些陷阱,如单位不统一、数据口
径不一致等,需要特别注意。

10.多角度思考:对于同一个问题,尝试从不同的角度去思考,这样
可以拓宽思路,也有助于发现更简便的解法。

数量关系十大速算技巧

数量关系十大速算技巧

★【速算技巧一:估算法】“估算法”毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。

所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。

估算的方式多样,需要各位考生在实战中多加训练与掌握。

进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了“估算”时候的精度要求。

★【速算技巧二:直除法】李委明提示:“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。

“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单而具有“极易操作”性。

“直除法”从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

“直除法”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。

【例1】中最大的数是()。

【解析】直接相除:=30 + , = 30-, = 30-, = 30-,明显为四个数当中最大的数。

【例2】32409/4103 、32895/4701 、23955/3413 、12894/1831 中最小的数是()【解析】32409/4103 、23955/3413 、12894/1831 都比7 大,而32895/4701 比7 小,因此四个数当中最小的数是32895/4701 。

李委明提示:即使在使用速算技巧的情况下,少量却有必要的动手计算还是不可避免的。

【例3】6874.32/760.31 、3052.18/341.02 、4013.98/447.13 、2304.83/259.74 中最大的数是()。

行测数量关系快速解题技巧

行测数量关系快速解题技巧

行测数量关系快速解题技巧在公务员考试的行政职业能力测验(简称行测)中,数量关系一直是让众多考生头疼的部分。

然而,只要掌握了一些有效的快速解题技巧,就能在这一模块中取得较好的成绩。

接下来,我将为大家详细介绍一些实用的行测数量关系快速解题技巧。

一、代入排除法代入排除法是行测数量关系中最常用的技巧之一。

当遇到一些复杂的问题,或者正面求解比较困难时,可以从选项入手,将选项逐一代入题干中进行验证。

例如,有一道题说:“一个数除以 7 余 3,除以 8 余 4,除以 9 余 5,这个数最小是多少?”这道题如果直接去计算,会非常复杂。

但我们可以从选项入手,依次代入进行验证。

比如先看 A 选项,如果不符合条件就排除,再看 B 选项,直到找到符合条件的选项为止。

二、数字特性法数字特性法包括奇偶特性、整除特性等。

奇偶特性:两数之和与两数之差的奇偶性相同。

例如,如果两个整数的和是奇数,那么它们的差也一定是奇数。

整除特性:若整数 a 除以非零整数 b,商为整数,且余数为零,我们就说 a 能被 b 整除。

比如,能被 2 整除的数的末位数字是偶数;能被 3 整除的数,其各位数字之和能被 3 整除。

利用这些数字特性,可以快速排除不符合条件的选项,缩小解题范围。

三、赋值法当题目中给出的具体数值较少,而只给出了比例关系或者倍数关系时,可以通过赋值来简化计算。

比如,题目中说“甲、乙两人的工作效率之比为 3∶2”,我们可以设甲的工作效率为 3,乙的工作效率为 2,然后根据题目中的其他条件进行计算。

四、方程法方程法是解决数量关系问题的基本方法之一。

关键是要找准等量关系,设出合适的未知数。

例如:“某工厂有工人 100 名,其中熟练工与非熟练工的人数比为4∶6,后来又招了一批熟练工,使得熟练工的人数占总人数的 60%,问新招了多少熟练工?”我们可以设新招的熟练工人数为 x,然后根据熟练工人数的前后变化列出方程进行求解。

五、十字交叉法十字交叉法适用于解决两种不同浓度的溶液混合,或者两种不同比例的对象混合等问题。

数量关系速算五方

数量关系速算五方

一、奇妙的完全平方数规律一:完全平方数的末位数只能是0、1、4、5、6、9;完全平方数的各位数字之和只能是0、1、4、7、9。

规律二:奇数的平方的个位数为奇,十位数为偶。

如3^2=9,5^2=25,7^2=49。

规律三:完全平方数的十位数为奇,其充分必要条件就是它的个位数为6。

规律四:凡个位数字是5,但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数(不包括0本身)不是完全平方数;个位数字为1、4、9,而十位数字为奇数的自然数不是完全平方数。

规律五:偶数的平方是4的倍数;奇数的平方是4的倍数加1;奇数的平方是8n+1型,偶数的平方为8k或8k+4型;不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。

规律六:平方数的形式必为下列两种之一:3k、3k+1;平方数的形式具有下列形式之一:16k、16k+1、16k+4、16k+9。

规律七:a^2b为完全平方数的充要条件是b为完全平方数。

规律八:如果质数p能整除a,但p^2不能整除a,则a不是完全平方数。

规律九:一个正整数n是完全平方数的充分必要条件是n有奇数个因子(包括1和n本身)。

甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。

为了平均分配,甲应该补给乙多少元?解:n头羊的总价为n^2元,由题意知n^2元中含有奇数个10元,即完全平方数n^2的十位数字是奇数,可推出n^2的末位数字为6,即乙最后拿的是6元,从而为平均分配,甲应补给乙2元。

二、空瓶换饮料的求解公式6个空瓶能换1瓶汽水,要喝157瓶汽水至少要买多少瓶汽水?157÷6×5=130.83(向上取整)=131X=A÷N×(N-1) (向上取整)如改为:每瓶饮料1元钱,131元最多能喝到多少瓶饮料?131÷5×6=157.2(向下取整)=157A=X÷(N-1)×N (向下取整)三、增长率比较问题2012年,A2/B2 。

数量关系快速解题技巧

数量关系快速解题技巧

数量关系快速解题技巧哎呀,今天我们来聊聊数量关系这个话题,听上去有点儿严肃,但其实只要掌握了几个小技巧,搞定它简直跟吃饭喝水一样简单!想象一下,在考试中看到那些复杂的数学题,心里是不是有点小慌?别怕,咱们可以用一些小方法,轻松解锁这道难题,让你成为班里的“数学小达人”。

要是你看到题目里有“几个”、“多少”、“相差”等词,脑袋里就要蹦出一些关键的画面了。

比如说,几个苹果加几个橙子,听着是不是像在逛水果市场?然后,心里默默把那些数字记下来,有点像在给自己做备忘录。

常常我们一看到数字就紧张,其实就像做菜,先准备好材料,才能烹饪出美味佳肴嘛。

咱们可以利用一些简单的图示。

想想,如果有个题目说有五只小鸟在树上,又来了两只小鸟,你是不是会想,“这不是简单的加法嘛?”把小鸟画出来,数一数,一目了然!图示就像是个小小的翻译官,把复杂的关系变得清晰明了,根本不需要费脑筋。

还有个小诀窍,就是联想法。

比如题目里提到的“相差”,你可以想象自己和朋友比赛,最后你领先了几步。

这样一来,数字之间的关系就活灵活现了,就像在操场上追逐打闹一样,不再冰冷。

数量关系就是生活中的调味品,灵活运用,结果会让你惊喜不断。

然后,不妨试试将题目转化为生活中的情境。

假如题目问你两个人的钱数和,想象他们在一起买冰淇淋,你就可以把数字变得生动起来,像是一场愉快的购物之旅。

这种方式让你把枯燥的题目变得有趣,让数学不再是个冷冰冰的符号,而是生活的一部分。

你会发现,数量关系其实就像阳光下的草地,明亮又温暖。

再说了,有时候题目会故意用一些复杂的词语来迷惑你,像“比例”、“倍数”之类的。

这个时候不要慌,咱们可以用简单的算术来应对。

想想,如果一个人花了五块钱,另一个人花了十块,那他们之间的比例就是二比一,这不就是简单得不能再简单了吗?越是复杂的词,越要用最直接的方式去理解,别让自己绕进去了。

最后得提醒大家,做数量关系题的时候,保持好心态!别让压力把你压垮,想想做游戏一样,放松心情,认真审题。

数量关系快速解题小技巧

数量关系快速解题小技巧

数量关系快速解题小技巧数量关系快速解题小技巧:1.奇偶性。

对于奇偶性来说,考生们都不陌生,能被2整除的为偶数,不能被2整除的为奇数,同时对于奇偶数的一些运算来说,有:奇数+奇数=偶数;偶数+偶数=偶数; 奇数+偶数=奇数;(减法运算一样)奇数奇数=奇数;偶数偶数=偶数;奇数偶数=偶数【例1】某国家对居民收入实行下列税率方案:每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000美元的部分按Y%税率征收(X、Y为整数)。

假设该国某居民月收入为6500美元,支付了120美元所得税,则Y为多少?A.6B.3C.5D.4【解析】选A。

30001%+3000x%+500y%=120,那么6x+y=18,x、y 都是整数,6x也一定为偶数,可以得到y 为偶数,排除B、C;由于x、y 为整数,y=6 满足条件,选择A。

2.质合性。

质数和合数是在中学时就学过的知识点,一个整数除了能被自己和1整除外,还能被其他数整除,则其为合数,否则为质数。

对于质合数来说,主要应用于质因数的分解,质因数分解的意思是每个合数都可以写成几个质数相乘的形式,把一个合数分解成若干个质因数乘积的形式,叫做分解质因数。

通过分解质因数可以很快速地求出一个合数的正约数个数,具体有以下关系:【例2】学校准备了1152 块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法?A.52B.36C.28D.12【解析】答案选D。

无论是正方形还是长方形,用的都是这1152 块彩板,1152 块彩板的总面积是不变的,因为总面积不变,将其变成长方形,只是长宽改变。

由于面积等于长乘宽,所以此时长和宽就是面积的约数,有多少个长方形就有多少对长和宽,也就是求正约数的个数。

1152=2732 ,约数为 83=24 ,所以拼法有12 种。

3.公约数和公倍数。

公约数和公倍数为几个数共同的约数或者是共同的倍数,在考试中,主要研究的是最大公约数和最小公倍数。

行测数量关系快速解题技巧

行测数量关系快速解题技巧

行测数量关系快速解题技巧在公务员行测考试中,数量关系一直是让众多考生头疼的模块。

题目难度较大、时间紧张等因素常常让考生在这部分丢分较多。

然而,只要掌握了一些快速解题的技巧,就能在考试中提高解题效率,增加得分的机会。

下面就为大家详细介绍一些行测数量关系的快速解题技巧。

一、代入排除法代入排除法是数量关系中最常用的技巧之一。

当题目中给出的条件较为复杂,或者直接计算比较困难时,可以将选项逐一代入题干进行验证。

这种方法特别适用于选项信息充分、多位数问题、年龄问题、不定方程等。

例如,有一个题目说:“一个三位数,各位数字之和是 15,百位数字比十位数字大 5,个位数字是十位数字的 3 倍,求这个三位数是多少?”我们就可以从选项入手,依次代入,看哪个选项满足题目中的条件。

因为选项就是具体的三位数,代入验证相对计算来说会更快捷。

二、数字特性法数字特性法包括奇偶特性、整除特性等。

奇偶特性:当两个数的和或差为奇数时,这两个数的奇偶性相反;当两个数的和或差为偶数时,这两个数的奇偶性相同。

例如,如果已知两个数的和是奇数,那么这两个数一定是一奇一偶;如果两个数的和是偶数,那么这两个数要么都是奇数,要么都是偶数。

整除特性:如果题目中涉及到倍数、分数、百分数等,我们可以考虑整除特性。

比如,“某班学生人数是 3 的倍数”,那么总人数除以 3应该是整数。

通过利用这些数字特性,可以快速排除一些不符合条件的选项,缩小解题范围。

三、赋值法在一些题目中,如果没有给出具体的数值,只是给出了一些比例关系或者倍数关系,这时候可以采用赋值法。

比如,有一道题说:“甲、乙两人完成一项工作的效率之比是3∶2,两人合作完成这项工作需要 6 天,问甲单独完成需要几天?”我们可以设甲的效率为 3,乙的效率为 2,然后根据工作总量=工作时间×工作效率,求出工作总量,进而求出甲单独完成所需的时间。

四、方程法方程法是解决数量关系问题的基本方法之一。

当题目中的等量关系比较明显时,可以设未知数,列出方程进行求解。

行测考试数量关系速算技巧

行测考试数量关系速算技巧

十大速算技巧★【速算技巧一:估算法】要点:"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。

所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。

估算的方式多样,需要各位考生在实战中多加训练与掌握。

进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了"估算"时候的精度要求。

★【速算技巧二:直除法】要点:"直除法"是指在比较或者计算较复杂分数时,通过"直接相除"的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。

"直除法"在资料分析的速算当中有非常广泛的用途,并且由于其"方式简单"而具有"极易操作"性。

"直除法"从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案"直除法"从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的"倒数"的首位来判定答案。

★【速算技巧三:截位法】要点:326.5/423.5所谓"截位法",是指"在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果"的速算方式。

在加法或者减法中使用"截位法"时,直接从左边高位开始相加或者相减(同时注意下一位是否需要进、位与借位),直到得到选项要求精度的答案为止。

在乘法或者除法中使用"截位法"时,为了使所得结果尽可能精确,需要注意截位近似的方向:一、扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子;二、扩大(或缩小)被除数,则需扩大(或缩小)除数。

行测数量关系快速解题技巧

行测数量关系快速解题技巧

行测数量关系快速解题技巧在公务员行测考试中,数量关系部分一直是让众多考生感到头疼的模块。

但实际上,只要掌握了一些有效的解题技巧,就能在考试中快速准确地解答出数量关系题目,从而提高整体成绩。

接下来,我将为大家详细介绍一些实用的行测数量关系快速解题技巧。

一、代入排除法代入排除法是行测数量关系中最常用也是最基本的解题方法之一。

当遇到题目中给出的条件较为复杂,直接计算比较困难时,可以尝试将选项逐一代入题干中进行验证。

如果某个选项能够满足题干中的所有条件,那么它就是正确答案。

例如:一个三位数,各位数字之和为15,百位数字比十位数字大5,个位数字是十位数字的 3 倍,求这个三位数是多少?A 627B 726C 933D 825我们首先来看 A 选项,6 + 2 + 7 = 15,百位数字 6 比十位数字 2 大 4,不符合“百位数字比十位数字大5”,所以 A 选项错误。

再看 B 选项,7 + 2 + 6 = 15,百位数字 7 比十位数字 2 大 5,个位数字 6 是十位数字 2 的 3 倍,符合所有条件,所以 B 选项正确。

C 选项 9 + 3 + 3 = 15,但百位数字 9 比十位数字 3 大 6,不符合条件。

D 选项 8 + 2 + 5 = 15,百位数字 8 比十位数字 2 大 6,不符合条件。

通过代入排除法,我们很快就能得出答案是 B 选项。

二、数字特性法数字特性法是根据题目中数字所具有的特性,如奇偶性、整除特性、倍数特性等来快速排除错误选项或直接确定答案。

比如:某单位组织员工去旅游,如果每辆车坐 45 人,则有 10 人没有座位;如果每辆车坐60 人,则空出一辆车,问该单位共有多少员工?A 240B 250C 260D 270我们可以设车的数量为 x 辆,根据员工总数不变可列方程:45x +10 = 60(x 1)化简得到:45x + 10 = 60x 6015x = 70x = 14 / 3车的数量必须是整数,所以这个结果不符合实际情况。

2024必备行测数量关系技巧全总结

2024必备行测数量关系技巧全总结

2024必备行测数量关系技巧全总结数量关系是公务员考试中的常见题型之一,需要考生对数字、比例、图表等进行分析和计算。

以下是2024年必备行测数量关系技巧的详细总结。

一、基础技巧:1.记忆数字:在数量关系题中,需熟悉常用的数字、比例关系、容量单位等,减少计算过程中的出错概率。

2.快速计算:掌握常见的计算技巧,如快速乘除法、平方根的近似值等,以提高解题速度。

3.数据转换:根据题目给出的条件,将不同的数据形式互相转换,以便进行比较和计算。

4.精确度估算:在计算过程中,对数据的精确度有一定的估计,以便预估计算结果的大小。

二、问题解决技巧:1.比较大小:对于给定的数量关系,通过比较大小来确定答案。

可将各个选项转换成相同的单位,进行大小的比较。

2.算术平均数:在一组数据中,若知道其中一个数据的平均值和总数,可通过计算得出其他数据的和,并据此计算其他数据。

3.比例关系:根据给定的比例,计算未知数量的值。

可通过相似三角形的性质来计算角度和边长的比值。

4.百分比:将百分数转换成小数,并通过乘法或除法计算出具体数值。

5.单位换算:根据不同的单位进行换算,例如时间、长度、面积、体积等。

三、逻辑推理技巧:1.逆向思维:根据问题的答案,倒推出可能的条件和前提。

通过排除已知条件和选项之间的矛盾关系,来确定正确选项。

2.解方程:用未知数代表问题中的数据,将问题转换成方程组,再通过求解方程组得出结果。

3.统计分析:对给定的数据进行统计和分析,找到问题中的规律和特点,以便解决问题。

4.图表分析:根据图表中的信息,通过计算和比较来解决问题。

注意理解图表中的数据和单位,不要误解题意。

四、实际应用技巧:1.代入法:将给定的数值代入到问题中进行计算,以便得到正确的结果。

2.对称关系:利用对称图形和对称线的关系,计算未知数据的值。

3.最大最小值:通过求解问题中的最大值和最小值,来确定答案的范围。

4.统一单位:将不同单位的数据换算成相同单位,以便进行比较和计算。

中公教育-李委明数量关系资料分析十大速算技巧

中公教育-李委明数量关系资料分析十大速算技巧

李委明十大速算技巧★【速算技巧一:估算法】“估算法”毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。

所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。

估算的方式多样,需要各位考生在实战中多加训练与掌握。

进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了“估算”时候的精度要求。

★【速算技巧二:直除法】★【速算技巧三:截位法】所谓“截位法”,是指“在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果”的速算方式。

在加法或者减法中使用“截位法”时,直接从左边高位开始相加或者相减(同时注意下一位是否需要进位与错位),知道得到选项要求精度的答案为止。

在乘法或者除法中使用“截位法”时,为了使所得结果尽可能精确,需要注意截位近似的方向:一、扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子;二、扩大(或缩小)被除数,则需扩大(或缩小)除数。

如果是求“两个乘积的和或者差(即a*b+/-c*d),应该注意:三、扩大(或缩小)加号的一侧,则需缩小(或扩大)加号的另一侧;四、扩大(或缩小)减号的一侧,则需扩大(或缩小)减号的另一侧。

到底采取哪个近似方向由相近程度和截位后计算难度决定。

一般说来,在乘法或者除法中使用”截位法“时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定;在误差较小的情况下,计算过程中的数据甚至可以不满足上述截位方向的要求。

所以应用这种方法时,需要考生在做题当中多加熟悉与训练误差的把握,在可以使用其它方式得到答案并且截位误差可能很大时,尽量避免使用乘法与除法的截位法。

★【速算技巧四:化同法】所谓”化同法”,是指“在比较两个分数大小时,将这两个分数的分子或分母化为相同或相近,从而达到简化计算”的速算方式。

行测数量关系快速解题技巧

行测数量关系快速解题技巧

行测数量关系快速解题技巧在公务员行测考试中,数量关系一直是让众多考生头疼的部分。

但实际上,只要掌握了一些有效的解题技巧,就能在考试中快速准确地解答数量关系题目,从而提高整体成绩。

接下来,我将为大家分享一些行测数量关系的快速解题技巧。

一、整除特性整除特性是解决数量关系问题的常用技巧之一。

当题目中出现“整除”“倍数”“平均分”等字眼时,往往可以考虑运用整除特性来解题。

例如,如果题目中说“某班级学生人数能被 5 整除”,那么我们就可以知道这个班级学生人数的尾数可能是 0 或 5。

再比如,“甲的钱数是乙的 3 倍”,那么甲的钱数一定能被 3 整除。

通过对题中数据整除特性的分析,可以快速排除一些不符合条件的选项,缩小解题范围。

二、特值法特值法是将题目中的某些未知量设为特殊值,从而简化计算的方法。

比如在工程问题中,如果题目中只给出了工作时间,而没有给出工作总量和工作效率,我们就可以将工作总量设为时间的最小公倍数,从而求出工作效率。

又如在利润问题中,如果题目中只给出了利润率,而没有给出成本和售价,我们可以假设成本为 100,这样就能方便地计算出售价和利润。

特值法能够使复杂的问题变得简单直观,提高解题速度。

三、比例法比例法是根据题目中给出的比例关系,通过设未知数或直接计算来求解的方法。

例如,“甲、乙的速度比为 3∶4,相同时间内甲、乙所走的路程比也为 3∶4”。

当我们知道其中一个人的路程或速度时,就可以根据比例关系求出另一个人的路程或速度。

在浓度问题、行程问题等中,比例法都能发挥很大的作用。

四、尾数法当计算量较大时,我们可以通过观察选项的尾数来快速得出答案。

例如,在加法或减法运算中,只计算个位数字就能排除一些选项。

在乘法运算中,我们可以先计算个位数字相乘的结果,从而判断答案的尾数。

五、方程法方程法是解决数量关系问题的基本方法之一。

当题目中的等量关系比较明显时,可以通过设未知数、列方程来求解。

在设未知数时,要注意选择合适的未知数,尽量使方程简单易解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数量关系速算技巧(一)奇偶性例题:有8个盒子分别装有17个,24个,29个,33个,35个,36个,38个和44个乒乓球,小赵取走一盒,其余各盒被小钱,小孙,小李取走,已知小钱和小孙取走的乒乓球个数相同,并且是小李取走的两倍,则小钱取走的各个盒子中的乒乓球最可能是A.17个,44个B.24个,38个C.24个,29个,36个D.24个,29个,35个小钱是小李的两倍,小钱肯定是偶数,排除AC,B选项的一半是12+19=31,上面没有31这个数字,排除B,得到答案为D。

(二)大小性例题:现有一种预防禽流感药物配置成的甲、乙两种不同浓度的消毒溶液。

若从甲中取2100克,乙中取700克混合而成的消毒浓度为3%;若从甲中取900克,乙中取2700克,则混合而成的溶液的浓度为5%。

则甲、乙两种消毒溶液的浓度分别为:A、3% 6%B、3% 4%C、2% 6%D、4% 6%A,B,D不管怎么配都不可能达到3%,得到答案为C。

(三)因数特性(重点是因数3和9)例题:A、B两数恰含有质因数3和5,它们的最大公约数是75,已知A数有12个约数,B 数有10个约数,那么AB两数和等于()A 2500B 3115C 2225D 2550AB的和肯定能被3整除,ABC显然都不能被3整除,得到答案为D。

例题:某单位招录了10名新员工,按其应聘成绩排名1到10,并用10个连续的四位自然数依次作为他们的工号,凑巧的是每个人的工号都能被他们的成绩排名整除,问排名第三的员工工号所有数字之和是多少()A.12 B.9 C.15 D.18第10名能被10整除,尾数肯定是0。

1到9 应该是XXX1,XXX2,XXX3………..XXX9,XXX9能被9整除,所以XXX能被9整除,答案减去3肯定能被9整除,只有12-3=9,得到答案为A。

(四)尾数法例题:一只木箱内有白色乒乓球和黄色乒乓球若干个。

小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。

问原木箱内共有乒乓球多少个? A.246个B.258个C.264个D.272个答案肯定是10*X+24,尾数肯定是C,得到答案为C。

几个数相加或者相乘一定要想到尾数法。

(五)幂次特性例题:某突击队150名工人准备选一名代表上台领奖。

选举的方法是:让150名工人排成一排,由第一名开始报数,报奇数的人落选退出队列,报偶数的人站在原位置不动,然后再从头报数,如此继续下去,最后剩下的一名当选。

小李非常想去,他在第一次排队时应该站在队列的什么位置上才能被选中?()A.64B.128C.148D.150每次拿掉奇数位,最后留下的是2的N次方最大的那个,得到答案为B。

如果每次拿掉偶数位,最后留下的是1.(六)余数特性重点是:几个数的和能被3整除,那么他们各自除以3的余数的和也能被三整除。

举例:9+8+7=24,能够被三整除。

9,8,7除以3的余数是0,2,1.0+2+1=3例题:某店一共进货6桶油,分别为15、16、18、19、20、31千克,上午卖出2桶,下午卖出3桶,下午卖的重量正好是上午的2倍。

那么,剩下的一桶油重多少千克?()A.15B.16C.18D.20设上午卖的数量为a,下午卖的数量为2a,和为3a,,用余数特性很容易得到剩下的一桶是20. (七)赋值法例题:受原材料涨价影响,某产品的总成本比之前上涨了1/15,而原材料成本在总成本中的比重提高了2.5个百分点,问原材料的价格上涨了多少?()A.1/9 B.1/10 ]C.1/11 D.1/12设原来的总成本为15,现在的总成本为15+15*1/15=16.设原来的原材料为X,现在的原材料为X+1(增长的只是原材料)(X+1)/16-X/15=2.5%,解的X=9.所以上涨了1/9(八)画图法例题:甲乙两人相约见面,并约定第一人到达后,等15分钟不见第二人来就可以离去。

假如他们都在10至10点半的任意时间来到见面地点,则两人能见面的概率有多大?A.37.5%B.50%C.62.5%D.75%画个坐标图,|X-Y |《15.画完图后很直观的看到答案为D。

解决容斥问题也可以画图,这里就不举例子了。

(九)整除思想(非常重要)例题:某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?A.329B.350C.371D.504设去年男员工数量为a,则今年的男员工数量为0.94a,0.94a=答案ABCD里面的一个,a=答案ABCD/0.94,因为人是整数,不能有小数点,经验证,答案为A。

例题:旅游团安排住宿,若有4个房间每间住4人,其余房间每间住5人,还剩2人,若有4个房间每间住5人,其余房间每间住4人,正好住下,该旅游团有多少人?()A.43B.38C.33D.28很明显,答案减去20应该是4的倍数,秒杀得到D。

(十)比例法路程问题是必考题目,大家一定要高度重视,常用解题方法:比例法。

下面我出的题目很多都能用比例法解决,大家一起做做1. 甲乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人下山的速度都是各自上山速度的2倍。

甲到山顶时乙距山顶还有500米,甲回到山脚时乙刚好回到半山腰。

求从从山脚到山顶的距离。

解析:当甲到达山顶的时候甲走的距离为S,此时乙走的距离为S-500,甲从山顶到下山这段时间,乙走了500+S/2,由于下山的速度为上山的2倍,可以把上山的500米转化为下山的1000米,这样乙走了1000+S/2.(S-500)/S=(1000+S/2)/S,解的S=3000.这个题很典型,做题的时候一定要注意转化一步,转化完此题就非常简单了.2. 甲从A地步行到B地,出发1小时40分钟后,乙骑自行车也从同地出发,骑了10公里时追上甲。

于是,甲改骑乙的自行车前进,共经5小时到达B地,这恰是甲步行全程所需时间的一半。

问骑自行车的速度是多少公里/小时?解析:要注意到不管是甲还是乙骑车,两个人的速度都是一样的,而后面那个5小时是指甲整个过程的,那么因为甲早出发了1小时40分,所以骑车完成全程的时间我们要减去这个1小时40分,也就是5-(5/3)=10/3小时,而甲走全程需要的时间是5*2=10小时,也就是说车和人的速度是3:1车走10公里人就要走10/3公里,这个时候他们相遇了,说明这个时候人已经走了10-10/3=20/3 公里人是速度(20/3)/(5/3)=4公里/小时所以单车的速度是12公里/小时.3. 一辆车从甲地开往乙地,如果提速20%,可以比原定时间提前一小时到达。

如果以原速走120千米后,再将速度提高25%,则可提前40分钟到。

那么甲、乙两地相距多少千米?解析:解法一如果把车速提高20%,则可比原定时间提前1小时到达B速度之比5:6 ,时间之比是6:5 ,差1个小时说明原始速度行驶全程需要6小时120千米后,速度之比4:5 ,时间之比5:4 ,差1个比例点对应2/3个小时则原速度行驶这段路程所需时间是10/3小时。

说明前面120千米是6-10/3=8/3小时120:8/3=a:6 解得a=270千米解法二方程法S/V-S/1.2V=1S/V=120/V+(S-120)/1.25V+2/3解的S=270千米最好要掌握比例法,如果实在不会那就用方程法吧,不过方程法费时间,不推荐使用.4. A、B两站之间有一条铁路,甲、乙两列火车分别停在A站和B站,甲火车4分钟走的路程等于乙火车5分钟走的路程.乙火车上午8时整从B站开往A站,开出一段时问后,甲火车从A站出发开往B站,上午9时整两列火车相遇.相遇地点离A、B两站的距离比是15:16.那么甲火车在()从A站出发开往B站.(07全国)A.8时12 分B.8时15 分C.8 时24 分D.8 时30 分解析:: A…………………C……………………..B根据题意, 甲火车4分钟走的路程等于乙火车5分钟走的路程,所以V甲:V乙=5:4那么我们设甲每分钟走的路程为5,乙每分钟走的路程为4,设甲在乙开车X分钟后才发车( 60-X)*5/60*4=15/16,解的X=15分钟,所以甲在8点15分才从A站出发开往B站.5. 猎犬发现前方9米远的地方有一只奔跑着的兔子,立刻追赶,猎犬的步子大,它跑5步的距离兔子要跑9步,但是兔子速度快,猎犬跑2步的时间兔子跑3步,问猎犬跑多少米才能追上兔子?A54 B67 C49 D34解析:猎狗一步的距离:兔子一步的距离=9:5,猎狗频率:兔子的频率=2:3,所以猎狗的速度:兔子的速度=18:15=6:5X/(X-9)=6/5,解的X=54.6. 一列队伍沿直线匀速前进,某时刻一传令兵从队尾出发,匀速向队首前进传送命令,他到达队首后马上以原速返回,当他返回队尾时,队伍行进的距离正好与整列队伍的长度相等。

问传令兵从出发到最后到达队尾所行走的整个路程是队伍长度的多少倍?(2010年425联考)解析:A----------------------------------------------B----------------------------C------------------B’(D)在C点的时候传令兵追上排头,这段时间传令兵走的距离为AB+BC,当传令兵到达B的时候,排头走到B’点,这段时间传令兵走的距离为BC,队伍走的距离为CD,BC+CD=AB(AB+BC)/BC=BC/CD,解的BC=√2/2AB,传令兵走的总距离为AB+2BC=(1+√2)AB7. 小王从家开车上班,汽车行驶10分钟后发生了故障,小王从后备箱中取出自行车继续赶路。

由于自行车的速度只有汽车的3/5,小王比预计时间晚了20分钟到达单位。

如果之前汽车再多行驶6公里,他就能少迟到10分钟。

问小王从家到单位的距离是多少公里?(2010年918联考真题)A 12B 14C 15D 16解析:: A--------------C--------------------------------B在C点汽车坏了,由于自行车的速度为汽车的3/5,小王比预计时间晚了20分钟,根据比例法,汽车行驶BC段用的时间为30分钟,也就是汽车开完全程用40分钟,汽车多行6公里,就少迟到10分钟,也就是说汽车多行驶12公里他就不用迟到了,即为全程为12公里+10分钟的车程,30分钟行驶了12公里,所以10分钟行驶4公里,故全程为16公里.8. 一个圆的周长是5.4米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行,这两只蚂蚁每秒钟分别爬行5.5厘米和3.5厘米。

它们每次爬行1秒、3秒、5秒……(连续奇数)就调头爬行。

相关文档
最新文档