【高考数学试题】2001年春季高考.(北京、内蒙古、安徽卷).理科数学试题及答案
2001年高考全国卷理科数学试题及答案
普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至9页。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式()l c c S +'=21台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的 四个选项中,只有一项是符合题目要求的。
(1) 若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限 (2)过点()()1,11,1--B A 、且圆心在直线02=-+y x 上的圆的方程是 (A )()()41322=++-y x (B )()()41322=-++y x(C )()()41122=-+-y x (D )()()41122=+++y x(3)设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间()01,-内的函数()()1log 2+=x x f a 满足0)(>x f ,则a 的取值范围是 (A )(0,21) (B )(0,21] (C )(21,+∞) (D )(0,+∞) (5)极坐标方程)4sin(2πθρ+=的图形是(A ) (B ) (C ) (D )(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A ))20)(1arccos(≤≤--=x x y (B ))20)(1arccos(≤≤--=x x y π (C ))20)(1arccos(≤≤-=x x y (D ))20)(1arccos(≤≤-+=x x y π (7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为 (A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为(A )60° (B )90° (C )105° (D )75° (10)设)()(x g x f 、都是单调函数,有如下四个命题: ○1若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ○2若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ○3若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ○4若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是(A )○1○3 (B )○1○4 (C ) ○2○3 (D )○2○4(11)一间民房的屋顶有如图三种不同的盖法:○1单向倾斜;○2双向倾斜;○3四向倾斜.记三种盖法屋顶面积分别为321P P P 、、.①② ③若屋顶斜面与水平面所成的角都是α,则(A )123P P P >>(B )123P P P =>(C )123P P P >=(D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。
2001年安徽省高考数学试卷(理)
夹角)是 (
)
第 1 页(共 15 页)
A . 30
B . 45
C. 60
10.( 5 分)若 b 为实数,且 a
b
a
2 ,则 3
b
3 的最小值为 (
A .18
B.6
C. 2 3
11.(5 分)如图是正方体的平面展开图.在这个正方体中,
① BM 与 ED 平行;
② CN 与 BE 是异面直线;
③ CN 与 BM 成 60 角;
1.( 5 分)集合 M { 1 , 2, 3,4, 5} 的子集个数是 (
)
A .32
B .31
C. 16
【解答】 解: 含有 n 个元素的集合的子集共有: 2n 个,
集合 M {1 , 2, 3, 4, 5} 的子集个数 25 32 .
D. 15
故选: A .
x
2.( 5 分)若 f (x) a (a 0 且 a 1) 对于任意实数 x 、 y 都有 (
)
A . f (xy) f (x) ( y)
B. f ( xy) f ( x) ( y)
C. f ( x y) f (x) f ( y)
D. f ( x y) f ( x) f ( y)
3.( 5 分)
lim
n
C2nn C2nn 1 2
(
)
A .0
B.2
1 C. 5 分)函数 y
1 x( x, 1) 的反函数是 (
D .第四象限
AB . 2
A
B, B
A.
2
2
sin A cos B , sin B cos A
cos B sin A 0 , sin B cos A 0
2001高考数学全国卷及答案理
2001年普通高等学校招生全国统一考试数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回.参考公式:一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 若siniθcosθ>0,则θ在( )(A) 第一、二象限(B) 第一、三象限(C) 第一、四象限(D) 第二、四象限(2) 过点A (1,-1)、B (-1,1)且圆心在直线x+y-2 = 0上的圆的方程是( )(A) (x-3) 2+(y+1) 2 = 4 (B) (x+3) 2+(y-1) 2 = 4(C) (x-1) 2+(y-1) 2 = 4 (D) (x+1) 2+(y+1) 2 = 4(3) 设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )(A) 1(B) 2(C) 4(D) 6(4) 若定义在区间(-1,0)的函数f (x ) = log 2a (x +1)满足f (x )>0,则a 的取值范围是( )(A)(210,)(B)⎥⎦⎤⎝⎛210,(C) (21,+∞) (D) (0,+∞)(5) 极坐标方程)4sin(2πθρ+=的图形是 ( )(6) 函数y = cos x +1(-π≤x ≤0)的反函数是 ( )(A) y =-arc cos (x -1)(0≤x ≤2) (B) y = π-arc cos (x -1)(0≤x ≤2) (C) y = arc cos (x -1)(0≤x ≤2)(D) y = π+arc cos (x -1)(0≤x ≤2)(7) 若椭圆经过原点,且焦点为F 1 (1,0) F 2 (3,0),则其离心率为 ( )(A)43(B)32 (C)21 (D) 41(8) 若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则 ( )(A) a <b(B) a >b(C) ab <1(D) ab >2(9) 在正三棱柱ABC -A 1B 1C 1中,若12BB AB =,则AB 1 与C 1B 所成的角的大小为( )(A) 60°(B) 90°(C) 105°(D) 75°(10) 设f (x )、g (x )都是单调函数,有如下四个命题:① 若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ② 若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④ 若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是( )(A) ①③ (B) ①④ (C) ②③ (D) ②④(11) 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 ( ) (A) P 3>P 2>P 1(B) P 3>P 2 = P 1(C) P 3 = P 2>P 1(D) P 3 = P 2 = P 1(12) 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为( )(A) 26 (B) 24(C) 20(D) 19第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 (14)双曲线116922=-yx的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P到x 轴的距离为(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则 q =(16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD .(Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. (18) (本小题满分12分) 已知复数z 1 = i (1-i ) 3. (Ⅰ)求arg z 1及1z ;(Ⅱ)当复数z 满足1z =1,求1z z -的最大值. (19) (本小题满分12分)设抛物线y 2 =2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .(20) (本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明in i i m i P m P n <;(Ⅱ)证明(1+m ) n > (1+n ) m . (21) (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41.(Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入? (22) (本小题满分14分)设f (x ) 是定义在R 上的偶函数,其图像关于直线x = 1对称.对任意x 1,x 2∈[0,21]都有f (x 1+x 2) = f (x 1) · f (x 2).且f (1) = a >0. (Ⅰ)求f (21) 及f (41);(Ⅱ)证明f (x ) 是周期函数; (Ⅲ)记a n = f (2n +n21),求()n n a ln lim ∞→.2001年普通高等学校招生全国统一考试数学试题参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)2π (14)516 (15)1 (16)2n (n -1)三.解答题:(17)本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分.解:(Ⅰ)直角梯形ABCD 的面积是 M 底面()43125.0121=⨯+=⋅+=AB AD BC , ……2分∴ 四棱锥S —ABCD 的体积是⨯⨯=SA V 31 M 底面43131⨯⨯=41=. ……4分(Ⅱ)延长BA 、CD 相交于点E ,连结SE 则SE 是所求二面角的棱. ……6分 ∵ AD ∥BC ,BC = 2AD ,∴ EA = AB = SA ,∴ SE ⊥SB ,∵ SA ⊥面ABCD ,得SEB ⊥面EBC ,EB 是交线, 又BC ⊥EB ,∴ BC ⊥面SEB , 故SB 是CS 在面SEB 上的射影, ∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角. ……10分 ∵ 22AB SASB +=2=,BC =1,BC ⊥SB ,∴ tan ∠BSC =22=SBBC .即所求二面角的正切值为22. ……12分(18)本小题考查复数基本性质和基本运算,以及分析问题和解决问题的能力.满分12分.解:(Ⅰ)z 1 = i (1-i ) 3 = 2-2i , 将z 1化为三角形式,得⎪⎭⎫ ⎝⎛+=47sin 47cos 221ππi z ,∴ 47arg 1π=z ,221=z . ……6分(Ⅱ)设z = cos α+i sin α,则z -z 1 = ( cos α-2)+(sin α+2) i , ()()22212sin 2cos ++-=-ααz zsin 249+=(4πα-), ……9分当sin(4πα-) = 1时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分 (19)本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分.证明一:因为抛物线y 2 =2px (p >0)的焦点为F (2p ,0),所以经过点F 的直线的方程可设为2p my x +=; ……4分代入抛物线方程得y 2 -2pmy -p 2 = 0,若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2 = -p 2. ……8分因为BC ∥x 轴,且点c 在准线x = -2p 上,所以点c 的坐标为(-2p ,y 2),故直线CO的斜率为111222x y y p p y k ==-=.即k 也是直线OA 的斜率,所以直线AC 经过原点O . ……12分证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD ⊥l ,D 是垂足.则 AD ∥FE ∥BC . ……2分连结AC ,与EF 相交于点N ,则ABBF AC CN AD EN ==,,ABAF BCNF =……6分根据抛物线的几何性质,AD AF =,BC BF =, ……8分∴ NFABBCAF ABBFAD EN =⋅=⋅=,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O . ……12分 (20)本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分.(Ⅰ)证明: 对于1<i ≤m 有im p = m ·…·(m -i +1),⋅-⋅=mm mm mp iim 1…mi m 1+-⋅,同理⋅-⋅=nn nn np iin 1…ni n 1+-⋅, ……4分由于 m <n ,对整数k = 1,2…,i -1,有mk m nk n ->-,所以iim i in mp np >,即im i i n i p n p m >. ……6分(Ⅱ)证明由二项式定理有()in ni i nC m m∑==+1,()im mi i mC n n ∑==+01,……8分由 (Ⅰ)知i n i p m >im i p n (1<i ≤m <n =,而 !i p C im im =,!i p C in in =, ……10分所以, im i i n i C n C m >(1<i ≤m <n =.因此,∑∑==>mi im i m i in iC n C m 22.又 10000==m n C n C m ,mn nCmCmn==11,()n i m Cm i ni ≤<>0.∴∑∑==>mi im i n i in i C n C m 0.即 (1+m )n >(1+n )m . ……12分 (21)本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.解:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,……,第n 年投入为800×(1-51)n-1万元.所以,n 年内的总投入为a n = 800+800×(1-51)+…+800×(1-51)n-1∑=--⨯=nk k 11)511(800= 4000×[1-(54)n ]; ……3分第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41)万元,……,第n 年旅游业收入为400×(1+41)n-1万元.所以,n 年内的旅游业总收入为b n = 400+400×(1+41)+…+400×(1+41)n-1∑=-⨯=nk k 11)45(400= 1600×[ (54)n -1]. ……6分(Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即 1600×[(45)n -1]-4000×[1-(54)n ]>0.化简得 5×(54)n +2×(54)n -7>0, ……9分设=x (54)n ,代入上式得5x 2-7x +2>0,解此不等式,得52<x ,x >1(舍去). 即 (54)n <52,由此得 n ≥5.答:至少经过5年旅游业的总收入才能超过总投入. ……12分 (22)本小题主要考查函数的概念、图像,函数的奇偶性和周期性以及数列极限等基础知识;考查运算能力和逻辑思维能力.满分14分.(Ⅰ)解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2) = f (x 1) · f (x 2),所以=)(x f f (2x ) · f (2x )≥0,x ∈[0,1].∵ =)1(f f (2121+) = f (21) · f (21) = [f (21)]2,f (21)=f (4141+) = f (41) · f (41) = [f (41)]2. ……3分0)1(>=a f ,∴ f (21)21a =,f (41)41a =. ……6分(Ⅱ)证明:依题设y = f (x )关于直线x = 1对称, 故 f (x ) = f (1+1-x ),即f (x ) = f (2-x ),x ∈R . ……8分 又由f (x )是偶函数知f (-x ) = f (x ) ,x ∈R , ∴ f (-x ) = f (2-x ) ,x ∈R , 将上式中-x 以x 代换,得f (x ) = f (x +2),x ∈R .这表明f (x )是R 上的周期函数,且2是它的一个周期. ……10分 (Ⅲ)解:由(Ⅰ)知f (x )≥0,x ∈[0,1].∵ f (21)= f (n ·n 21) = f (n 21+(n -1)·n 21) = f (n 21) · f ((n -1)·n 21)= f (n 21) · f (n 21) · … ·f (n 21)= [ f (n 21)]n ,f (21) = 21a ,∴ f (n 21) = n a21.∵ f (x )的一个周期是2,∴ f (2n +n 21) = f (n 21),因此a n = n a 21, ……12分 ∴ ()∞→∞→=n n n a lim ln lim (a n ln 21) = 0. ……14分。
2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(文史类)
绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式: 正棱台、圆台的侧面积公式 三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++= l c c S )'(21+=台侧)]sin()[sin(21sin cos βαβαβα--+= 其中'c 、c 分别表示上、下底面周长,l 表示斜高或母线长)]cos()[cos(21cos cos βαβαβα-++= 球体的体积公式 334R V π=球)]cos()[cos(21sin sin β-α-β+α-=βα 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)集体{}5,4,3,2,1=M 的子集个数是(A )32(B )31 (C )16 (D )15(2)函数)10()(≠>=a a a x f x且对于任意的实数y x ,都有 (A ))()()(y f x f xy f = (B ))()()(y f x f xy f +=(C ))()()(y f x f y x f =+(D ))()()(y f x f y x f +=+(3)=++∞→1222lim n n nn n C C(A )0 (B )2 (C )21 (D )41 (4)函数)1(1≤--=x x y 的反函数是 (A ))01(12≤≤--=x x y (B ))10(12≤≤-=x x y(C ))0(12≤-=x x y(D ))10(12≤≤-=x x y(5)已知1F 、2F 是椭圆191622=+y x 的两焦点,过点2F 的直线交椭圆于点A 、B ,若5||=AB ,则=+||||11BF AF(A )11(B )10(C )9(D )16(6)设动点P 在直线1=x 上,O 为坐标原点.以OP 为直角边、点O 为直角顶点作等腰OPQ Rt ∆,则动点Q 的轨迹是 (A )圆(B )两条平行直线 (C )抛物线 (D )双曲线(7)已知x x f 26log )(=,那么)8(f 等于(A )34(B )8 (C )18 (D )21 (8)若A 、B 是锐角ABC ∆的两个内角,则点)cos sin ,sin (cos A B A B P --在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(9)如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 (A )︒30 (B )︒45 (C )︒60 (D )︒90(10)若b a ,为实数,且2=+b a ,则ba 33+的最小值是(A )18 (B )6(C )32 (D )432(11)右图是正方体的平面展开图.在这个正方体...中, ①ED BM 与平行②CN 与BE 是异面直线 ③CN 与BM 成︒60角 ④DM 与BN 垂直以上四个命题中,正确命题的序号是 (A )①②③ (B )②④(C )③④ (D )②③④(12)根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量n S (万件)近似地满足)12,,2,1)(521(902 =--=n n n nS n 按此预测,在本年度内,需求量超过1.5万件的月份是 (A )5月、6月 (B )6月、7月 (C )7月、8月 (D )8月、9月绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(文史类) 第Ⅱ卷(非选择题共90分)注意事项: 1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.(13(14)椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________. (15)已知αγβα(1sin sin sin 222=++、β、γ均为锐角),那么γβαcos cos cos 的最大值等于____________________.(16)已知m 、n 是直线, α、β、γ是平面,给出下列命题:① 若m n m ⊥=⋂⊥,,βαβα,则βα⊥⊥n n 或;②若α∥β,γβγα⋂=⋂,m ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若m =⋂βα,n ∥m ,且βα⊄⊄n n ,,则n ∥n 且α∥β.其中正确的命题的序号是_______________(注:把你认为正确的命题的序号都.填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 方程022=++n mx x 有实根,且2、m 、n 为等差数列的前三项.求该等差数列公差d 的取值范围. 设函数)0()(>>+=b a bx x f ,求)(x f 的单调区间,并证明)(x f 在其单调区间上的单调性.已知)1(17≠∈=z C z z 且.(Ⅰ)证明0165432=++++++z z z z z z ;(Ⅱ)设z 的辐角为α,求ααα4cos 2cos cos ++的值.已知VC 是ABC 上的射影,且N 位于ABC ∆的高CD上.AB VC a AB 与,=之间的距离为VC M h ∈,.(Ⅰ)证明∠MDC 是二面角M –AB –C 的平面角; (Ⅱ)当∠MDC =∠CVN 时,证明VC AMB 平面⊥; (Ⅲ)若∠MDC =∠CVN =)20(πθθ<<,求四面体MABC 的体积.万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价–投入成本)⨯年销售量.(Ⅰ)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?已知抛物线)0(22>=p pxy .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B .(Ⅰ)若a p AB 求,2||≤的取值范围;(Ⅱ)若线段AB 的垂直平分线交AB 于点Q ,交x 轴于点N ,试求MNQ Rt ∆的面积.绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数学试题(文史类)参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. (1)A (2)C (3)D (4)C (5)A (6)B (7)D (8)B (9)C (10)B (11)C (12)C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)π242SS (14)2516 (15)692(16)②④三、解答题(17)本小题主要考查等差数列,一元二次方程与不等式的基本知识.考查综合运用数学基础知识的能力.满分12分.解:依题意,有d n d m 22,2+=+=, ……2分由方程有实根,得0242≥⨯-n m ,即 0)22(8)2(2≥+-+d d , ……6分 整理,得012122≥--d d ,……8分解得 346346+≥-≤d d 或, ∴ ),346[]346,(+∞+⋃--∞∈d .……12分(18)本小题主要考查函数的基本性质,考查推理能力.满分12分. 解:函数bx ax x f ++=)(的定义域为),(),(+∞-⋃--∞b b . ),()(b x f --∞在内是减函数),()(+∞-b x f 在内也是减函数.……4分证明),()(+∞-b x f 在内是减函数. 取21,x x ),(+∞-∈b ,且21x x <,那么 b x ax b x a x x f x f ++-++=-221121)()())(())((2112b x b x x x b a ++--=,……6分∵ 0))((,0,02112>++>->-b x b x x x b a , ∴ 0)()(21>-x f x f , 即),()(+∞-b x f 在内是减函数.……9分 同理可证),()(b x f --∞在内是减函数.……12分(19)本小题考查复数的基本概念和运算.满分12分. 解:(Ⅰ)由 )1(65432z z z z z z z ++++++ 765432z z z z z z z ++++++=654321z z z z z z ++++++=,得0)1)(1(65432=++++++-z z z z z z z . ……4分因为 1≠z ,所以 0165432=++++++z z z z z z . ……6分(Ⅱ)因为1||,17==z z 可知,所以 1=⋅z z ,而17=z ,所以16=⋅z z , z z =6,同理3452,z z z z ==, 65342z z z z z z ++=++.由(Ⅰ)知 165342-=+++++z z z z z z , 即 14242-=+++++z z z z z z , 所以 42z z z ++的实部为21-, ……8分而z 的辐角为α时,复数42z z z ++的实部为 ααα4cos 2cos cos ++,所以 214c o s 2c o s c o s-=++ααα ……12分(20)本小题考查运用直线与直线、直线与平面的基本性质证明线面关系的能力.满分12分. (Ⅰ)证明:由已知,A B C AB CD N ABC VN AB CD 平面平面⊂∈⊥⊥,,,, ∴AB VN ⊥.∴VNC AB 平面⊥.……2分又V 、M 、N 、D 都在VNC 所在平面内,所以,DM 与VN 必相交,且CD AB DM AB ⊥⊥,,∴∠MDC 为二面角C AB M --的平面角. ……4分(Ⅱ)证明:由已知,∠MDC =∠CVN ,在DMC VNC ∆∆与中, ∠NCV =∠MCD , 又∵∠VNC =︒90,∴∠DMC =∠VNC =︒90. 故有VC AB VC DM ⊥⊥又,, ……6分 ∴AMB VC 平面⊥.……8分(Ⅲ)解:由(Ⅰ)、(Ⅱ),VC M AB D VC MD AB MD ∈∈⊥⊥,,,且,∴h MD =.又∵∠θ=MDC . 在MDC Rt ∆中,θtg h CM ⋅=.……10分ABM C MABC V V -=三棱锥四面体ah tg h S CM ABM213131⋅⋅=⋅=∆θθtg ah 261=. ……12分(21)本小题主要考查建立函数关系、运用不等式的性质和解法等数学知识解决实际问题的能力.满分12分.解:(Ⅰ)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯+⨯-+⨯=x x x x y ,……4分 整理得 )10(20020602<<++-=x x x y .……6分(Ⅱ)要保证本年度的利润比上年度有所增加,必须 ⎩⎨⎧<<>⨯--.10,01000)12.1(x y即 ⎩⎨⎧<<>+-.10,020602x x x……9分解不等式得 310<<x . 答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x . ……12分 (22)本小题考查直线与抛物线的基本概念及位置关系,考查运用解析几何的方法解决数学问题的能力.满分14分.解:(Ⅰ)直线l 的方程为:a x y -=,将 px y a x y 22=-=代入, 得 0)(222=++-a x p a x .……2分设直线l 与抛物线两个不同交点的坐标为),(11y x A 、),(22y x B ,则 ⎪⎩⎪⎨⎧=+=+>-+.),(2,04)(42212122a x x p a x x a p a……4分又a x y a x y -=-=2211,, ∴ 221221)()(||y y x x AB -+-= ]4)[(221221x x x x -+=)2(8a p p +=.……6分∵ 0)2(8,2||0>+≤<a p p p AB , ∴ p a p p 2)2(80≤+<. 解得 42pa p -≤<-. ……8分(Ⅱ)设),(33y x Q ,由中点坐标公式,得p a x x x +=+=2213, p a x a x y y y =-+-=+=2)()(221213.……10分∴ 22222)0()(||p p a p a QM =-+-+=. 又 MNQ ∆为等腰直角三角形, ∴ 22||21p QM S MNQ ==∆. ……14分。
2001年安徽数学试题(理)
2001年全国高考数学试题(理)一、选择题:本大题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限(2)过点)1,1(-A 、)1,1(-B 且圆心在直线02=-+y x 上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x(C )4)1()1(22=-+-y x (D )4)1()1(22=+++y x(3)设}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间)0,1(-内函数)1(log )(2+=x x f a 满足0)(>x f ,则a 的取值范围是(A ))21,0( (B )]21,0( (C )),21(+∞ (D )),0(+∞(5)极坐标方程)4sin(2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A ))1arccos(--=x y (20≤≤x ) (B ) )1arccos(--=x y π(20≤≤x )(C ))1arccos(-=x y (20≤≤x ) (D ))1arccos(-+=x y π(20≤≤x )(7)若椭圆经过原点,且焦点为)0,1(1F ,)0,3(2F ,则其离心率为(A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,12BB AB =,则1AB 与B C 1所成角的大小为(A )︒60 (B )︒90 (C )︒105 (D )︒75(10)设)(x f 、)(x g 都是单调函数,有如下四个命题:①若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增;②若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增;③若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减;④若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减;其中,正确的命题是(A )①② (B )①④ (C )②③ (D )②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜,记三种盖法屋顶面积分别为1P 、2P 、3P若屋顶斜面与水平面所成的角都是α,则(A )123P P P >> (B )123P P P => (C )123P P P >= (D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线肤表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A )26 (B )24(C )20 (D )19二、填空题:本大题共4个小题,每小题4分,共16分.把答案填空在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 .(14)双曲线116922=-y x 的两个焦点为1F 、2F ,点P 在双曲线上.若21PF PF ⊥,则迠P 到x 轴的距离为 .(15)设}{n a 是公比为q 的等比数列,n S 是它的前n 项和.若}{n S 是等差数列,则q =(16)圆周上有n 2个等分点(1>n ),以其中三个点为顶点的直角三角形的个数为三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)如图,在底面是直角梯形的四棱锥ABCD S -中,︒=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,21=AD . (1)求四棱锥ABCD S -的体积;(2)求面SCD 与面SBA 所成的二面角的正切值.(18)(本小题满分12分)已知复数31)1(i i z -=.(1)求1arg z 及||1z ;(2)当复数z 满足1||=z ,求||1z z -的最大值.(19)(本小题12分)设抛物线px y 22=(0>p )的焦点F ,经过点F 的直线交抛物线于A 、B 两点。
2001年春季高考数学试题(北京、内蒙古、安徽理)
绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式: 正棱台、圆台的侧面积公式 三角函数的积化和差公式)]sin()[sin(21cos sin β-α+β+α=βα l c c S )'(21+=台侧)]sin()[sin(21sin cos β-α-β+α=βα 其中'c 、c 分别表示上、下底面周长,l 表示斜高或母线长)]cos()[cos(21cos cos β-α+β+α=βα 球体的体积公式 334R V π=球)]cos()[cos(21sin sin β-α-β+α-=βα 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)集体{}5,4,3,2,1=M 的子集个数是(A )32(B )31 (C )16 (D )15(2)函数)10()(≠>=a a a x f x且对于任意的实数y x ,都有 (A ))()()(y f x f xy f = (B ))()()(y f x f xy f +=(C ))()()(y f x f y x f =+(D ))()()(y f x f y x f +=+(3)=++∞→1222lim n n nn n C C(A )0 (B )2 (C )21 (D )41 (4)函数)1(1≤--=x x y 的反函数是 (A ))01(12≤≤--=x x y (B ))10(12≤≤-=x x y(C ))0(12≤-=x x y(D ))10(12≤≤-=x x y(5)极坐标系中,圆θ+θ=ρsin 3cos 4的圆心的坐标是(A ))53arcsin ,25((B ))54arcsin ,5((C ))53arcsin ,5((D ))54arcsin ,25((6)设动点P 在直线1=x 上,O 为坐标原点.以OP 为直角边、点O 为直角顶点作等腰OPQ Rt ∆,则动点Q 的轨迹是(A )圆(B )两条平行直线(C )抛物线(D )双曲线(7)已知x x f 26log )(=,那么)8(f 等于(A )34(B )8 (C )18 (D )21 (8)若A 、B 是锐角ABC ∆的两个内角,则点)cos sin ,sin (cos A B A B P --在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (9)如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 (A )︒30 (B )︒45 (C )︒60 (D )︒90(10)若实数b a ,满足2=+b a ,则ba 33+的最小值是(A )18 (B )6(C )32 (D )432(11)右图是正方体的平面展开图.在这个正方体...中, ①ED BM 与平行②CN 与BE 是异面直线 ③CN 与BM 成︒60角 ④DM 与BN 垂直以上四个命题中,正确命题的序号是 (A )①②③ (B )②④(C )③④ (D )②③④(12)根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量n S (万件)近似地满足)12,,2,1)(521(902 =--=n n n nS n 按此预测,在本年度内,需求量超过1.5万件的月份是 (A )5月、6月 (B )6月、7月 (C )7月、8月 (D )8月、9月绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(理工农医类) 第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.(13(14)椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.(15)已知α=γ+β+α(1sin sin sin 222、β、γ均为锐角),那么γβαcos cos cos 的最大值等于____________________.(16)已知m 、n 是直线, α、β、γ是平面,给出下列命题:①若m n m ⊥=⋂⊥,,βαβα,则βα⊥⊥n n 或;②若α∥β,n m =γ⋂β=γ⋂α,,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若m =⋂βα,n ∥m ,且βα⊄⊄n n ,,则n ∥n 且α∥β.其中正确的命题的序号是_______________(注:把你认为正确的命题的序号都.填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 设函数)0()(>>+=b a bx x x f ,求)(x f 的单调区间,并证明)(x f 在其单调区间上的单调性. 已知)1(17≠∈=z C z z 且.(Ⅰ)证明0165432=++++++z z z z z z ;(Ⅱ)设z 的辐角为α,求ααα4cos 2cos cos ++的值.已知VC 是ABC 上的射影,且在ABC∆的高CD 上.AB VC a AB 与,=之间的距离为VC M h ∈点,.(Ⅰ)证明∠MDC 是二面角M –AB –C 的平面角; (Ⅱ)当∠MDC =∠CVN 时,证明VC AMB 平面⊥;(Ⅲ)若∠MDC =∠CVN =20( π<θ<θ,求四面体MABC 的体积.n 3211与2之间插入n 个正数n b b b b ,,,,321 ,使这2+n 个数成等差数列.记n n n n b b b b B a a a a A ++++== 321321,.(Ⅰ)求数列{}n A 和{}n B 的通项;(Ⅱ)当7≥n 时,比较n A 与n B 的大小,并证明你的结论.万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价–投入成本)⨯年销售量.(Ⅰ)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?已知抛物线)0(22>=p px y .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,p AB 2||≤.(Ⅰ)求a 的取值范围;(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求NAB Rt ∆面积的最大值.。
【高考数学试题】2001年高考.全国卷.理科数学试题及答案
【高考数学试题】2001年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至9页。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin 正棱台、圆台的侧面积公式 ()l c c S +'=21台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限(2)过点()()1,11,1--B A 、且圆心在直线02=-+y x 上的圆的方程是(A )()()41322=++-y x (B )()()41322=-++y x (C )()()41122=-+-y x (D )()()41122=+++y x (3)设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间()01,-内的函数()()1log 2+=x x f a 满足0)(>x f ,则a 的取值范围是 (A )(0,21) (B )(0,21] (C )(21,+∞) (D )(0,+∞) (5)极坐标方程)4sin(2πθρ+=的图形是(A ) (B ) (C ) (D )(6)函数)0(1cos ≤≤-+=x x y π的反函数是 (A ))20)(1arccos(≤≤--=x x y (B ))20)(1arccos(≤≤--=x x y π(C ))20)(1arccos(≤≤-=x x y (D ))20)(1arccos(≤≤-+=x x y π(7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为(A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则 (A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为(A )60° (B )90° (C )105° (D )75°(10)设)()(x g x f 、都是单调函数,有如下四个命题:○1若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ○2若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ○3若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ○4若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是(A )○1○3 (B )○1○4 (C ) ○2○3 (D )○2○4(11)一间民房的屋顶有如图三种不同的盖法:○1单向倾斜;○2双向倾斜;○3四向倾斜.记三种盖法屋顶面积分别为321P P P 、、.①② ③若屋顶斜面与水平面所成的角都是α,则 (A )123P P P >>(B )123P P P =>(C )123P P P >=(D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。
2001年高考数学试题(全国理)及答案
2001年全国普通高等学校招生全国统一考试数学(理工农医类)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A)第一、二象限 (B)第一、三象限 (C)第一、四象限 (D)第二、四象限 (2)过点A(1,-1),B(-1,1)且园心在直线x+y-2=0上的圆珠笔的方程是 (A)(x-3)2+(y+1)2=4 (B)(x+3)2+(y-1)2=4 (C)(x-1)2+(y-1)2=4 (B)(x+1)2+(y+1)2=4(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A)1 (B)2 (C)4 (D)6(4)若定义在区间(-1,0)内的函数f (x )= log 2a (x + 1)满足f (x )> 0,则 a 的取值范围是 (A)(0,21) (B) (0,21] (C) (21,+∞) (D) (0,+∞)(5)极坐标方程)4sin 2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是 (A) )20)(1arccos(≤≤--=x x y(B) )20)(1arccos(≤≤--=x x y π(C) )20)(1arccos(≤≤-=x x y (D) )20)(1arccos(≤≤-+=x x y π(7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为 (A)43 (B)32 (C)21 (D)41 (8)若b a =+=+<<<ββααπβαcos sin ,cos sin ,40,则(A)a <b(A)a >b(A)ab <1(D)ab >2(9)在正三棱柱ABC -A 1 B 1C 1中,若AB =2BB 1,则AB 与C 1B 所成的角的大小为 (A)60° (B)90° (C)105° (D)75°(10)设f (x )、g (x )都是单调函数,有如下四个命题:①若f (x )单调速增,g (x )单调速增,则f (x )-g (x ))单调递增; ②若f (x )单调速增,g (x )单调速减,则f (x )-g (x ))单调递增; ③若f (x )单调速减,g (x )单调速增,则f (x )-g (x ))单调递减;④若f (x )单调速减,g (x )单调速减,则f (x )-g (x ))单调递减; 其中,正确的命题是 (A)①③ (B)①④ (C)②③ (D)②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 (A)P 3>P 2>P 1 (B) P 3>P 2=P 1 (C) P 3=P 2>P 1 (D) P 3=P 2=P 1(12)如图,小圆圈表示网络的结点,结点之间的连线表承它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的 路线同时传递.则单位时间内传递的最大信息量为(A)26; (B)24; (C)20; (D)19二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是_________.(14)双曲线116922=+y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF ⊥PF 2,则点P 到x 轴的距离为_________。
2001年高考数学(理科)真题及答案[全国卷I]
2001年全国普通高等学校招生全国统一考试数学(理工农医类)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A)第一、二象限 (B)第一、三象限 (C)第一、四象限 (D)第二、四象限 (2)过点A(1,-1),B(-1,1)且园心在直线x+y-2=0上的圆珠笔的方程是 (A)(x-3)2+(y+1)2=4 (B)(x+3)2+(y-1)2=4 (C)(x-1)2+(y-1)2=4 (B)(x+1)2+(y+1)2=4(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A)1 (B)2 (C)4 (D)6(4)若定义在区间(-1,0)内的函数f (x )= log 2a (x + 1)满足f (x )> 0,则 a 的取值范围是(A)(0,21) (B) (0,21] (C) (21,+∞) (D) (0,+∞)(5)极坐标方程)4sin 2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A) )20)(1arccos(≤≤--=x x y (B) )20)(1arccos(≤≤--=x x y π (C) )20)(1arccos(≤≤-=x x y (D) )20)(1arccos(≤≤-+=x x y π (7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为(A) 43(B) 32 (C) 21 (D) 41(8)若ba =+=+<<<ββααπβαcos sin ,cos sin ,40,则(A)a <b (A)a >b(A)ab <1(D)ab >2(9)在正三棱柱ABC -A 1 B 1C 1中,若AB =2BB 1,则AB 与C 1B 所成的角的大小为(A)60°(B)90°(C)105°(D)75°(10)设f(x)、g(x)都是单调函数,有如下四个命题:①若f(x)单调速增,g(x)单调速增,则f(x)-g(x))单调递增;②若f(x)单调速增,g(x)单调速减,则f(x)-g(x))单调递增;③若f(x)单调速减,g(x)单调速增,则f(x)-g(x))单调递减;④若f(x)单调速减,g(x)单调速减,则f(x)-g(x))单调递减;其中,正确的命题是(A)①③(B)①④(C)②③(D)②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则(A)P3>P2>P1 (B) P3>P2=P1(C) P3=P2>P1(D) P3=P2=P1(12)如图,小圆圈表示网络的结点,结点之间的连线表承它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A)26(B)24(C)20(D)19二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是_________.(14)双曲线116922=+yx的两个焦点为F1、F2,点P在双曲线上.若PF⊥PF2,则点P到x轴的距离为_________。
2001年普通高等学校招生全国统一考试数学试卷全国卷理
2001年普通高等学校招生全国统一考试数学(理工农医类)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若θθcos sin >0,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限 (2)过点A (1,-1)、B (-1,1)且圆心在直线x 十y -2=0上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x (D )4)1()1(22=+++y x (3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1(B )2(C )4(D )6(4)若定义在区间(-1,0)内的函数)1(log )(2+=x x f a 满足)(x f >0,则a 的取值范围是(A ))21,0((B )]21,0( (C )),21(∞+(D )),0(∞+(5)极坐标方程)4sin(2πθρ+=的图形是(6)函数y =x +1)0(≤≤-x π的反函数是(A )y =-arccos (x -1) (0≤x ≤2) (B )y =π-arccos (x -1) (0≤x ≤2) (C )y =arccos (x -1) (0≤x ≤2)(D )y =π+arccos (x -1) (0≤x ≤2)(7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为(A )43(B )32 (C )21(D )41(8)若ba =+=+<<<ββααπβαcos sin ,cos sin ,40,则(A)a<b (B)a>b (C)ab<1 (D)ab>2(9)在正三棱柱ABC-A1B1C1中,若AB=2BB1,则AB1与C1B所成的角的大小为(A)60°(B)90°(C)105°(D)75°(10)设f (x)、g (x)都是单调函数,有如下四个命题:①若f (x)单调递增,g (x)单调递增,则f (x)-g (x)单调递增;②若f (x)单调递增,g (x)单调递减,则f (x)-g (x)单调递增;③若f (x)单调递减,g (x)单调递增,则f (x)-g (x)单调递减;④若f (x)单调递减,g (x)单调递减,则f (x)-g (x)单调递减.其中,正确的命题是(A)①③(B)①④(C)②③(D)②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;②四向倾斜.记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则(A)P3>P2>P1 (B)P3>P2=P1 (C)P3=P2>P1(D)P3=P2=P1(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A)26 (B)24 (C)20 (D)19第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是.(14)双曲线116922=-yx的两个焦点为F1、F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为 .(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则q = . (16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)如图,在底面是直角梯形的四棱锥S -ABCD 中,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =21.(Ⅰ)求四棱锥S -ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.(18)(本小题满分12分) 已知复数z 1=i (1-i )3. (Ⅰ)求arg z 1及| z |;(Ⅱ)当复数z 满足| z |=1,求| z -z 1 |的最大值. (19)(本小题满分12分)设抛物线)0(22>=p pxy 的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O . (20)(本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明in i i m i P m P n <; (Ⅱ)证明mn n m )1()1(+>+.(21)(本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41.(Ⅰ)设n 年内(本年度为第一年)总投人为a n 万元,旅游业总收入为b n 万元.写出a n ,b n的表达式;(Ⅱ)至少经过几年旅游业的总收人才能超过总投入? (22)(本小题满分12分)设f (x )是定义在R 上的偶函数。
2001年高考全国卷理科数学试题及答案
普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至9页。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式()l c c S +'=21台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的 四个选项中,只有一项是符合题目要求的。
(1) 若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限 (2)过点()()1,11,1--B A 、且圆心在直线02=-+y x 上的圆的方程是 (A )()()41322=++-y x (B )()()41322=-++y x(C )()()41122=-+-y x (D )()()41122=+++y x(3)设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A )1 (B )2 (C )4 (D )6(4)若定义在区间()01,-内的函数()()1log 2+=x x f a 满足0)(>x f ,则a 的取值范围是 (A )(0,21) (B )(0,21] (C )(21,+∞) (D )(0,+∞) (5)极坐标方程)4sin(2πθρ+=的图形是(A ) (B ) (C ) (D )(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A ))20)(1arccos(≤≤--=x x y (B ))20)(1arccos(≤≤--=x x y π (C ))20)(1arccos(≤≤-=x x y (D ))20)(1arccos(≤≤-+=x x y π (7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为 (A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a < (B )b a > (C )1<ab (D )2>ab (9)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为(A )60° (B )90° (C )105° (D )75° (10)设)()(x g x f 、都是单调函数,有如下四个命题: ○1若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ○2若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ○3若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ○4若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是(A )○1○3 (B )○1○4 (C ) ○2○3 (D )○2○4(11)一间民房的屋顶有如图三种不同的盖法:○1单向倾斜;○2双向倾斜;○3四向倾斜.记三种盖法屋顶面积分别为321P P P 、、.①② ③若屋顶斜面与水平面所成的角都是α,则(A )123P P P >>(B )123P P P =>(C )123P P P >=(D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。
2001年高考数学试题分类汇编圆锥曲线
4、(广东卷)对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是 (B)
A.(-∞,0)B.(-∞,2)C.[0,2]D.(0,2)
5、(全国卷)极坐标方程 的图形是(C)
(A)(B)(C)(D)
6、(全国卷)若椭圆经过原点,且焦点为 ,则其离心率为(C)
解:(I)两曲线的交点坐标(x,y)满足方程组
即
有4个不同交点等价于 且 即
又因为 所以得 的取值范围为(0,
(II)由(I)的推理知4个交点的坐标(x,y)满足方程
即得4个交点共圆,该圆的圆心在原点,半径为
因为 在 上是减函数,所以由
知r的取值范围是
本小题主要考查坐标法、曲线的交点和三角函数性质等基础知识,以及逻辑推理能力和运算能力.
(Ⅰ)求 的取值范围;
(Ⅱ)若线段AB的垂直平分线交 轴于点N,求 面积的最大值.
解:(Ⅰ)直线 的方程为 ,
将 ,
得 .
设直线 与抛物线两个不同交点的坐标为 、 ,
则
又 ,
∴
.
∵ ,
∴ .
解得 .
(Ⅱ)设AB的垂直平分线交AB于点Q,令坐标为 ,则由中点坐标公式,得
,
.
∴ .
又 为等腰直角三角形,
18、(上海卷)已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则又①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为.
答案:设圆方程(x-a)2+(y-b)2=r2①(x-c)2+(y-d)2=r2②(a≠c或b≠d),由①-②,得两圆的对称轴方程.
2001年全国统一高考数学试卷(理科)及其参考考答案
2001年全国统一高考数学试卷(理科)一、选择题:本大题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限(2)过点)1,1(-A 、)1,1(-B 且圆心在直线02=-+y x 上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x(C )4)1()1(22=-+-y x (D )4)1()1(22=+++y x(3)设}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间)0,1(-内函数)1(log )(2+=x x f a 满足0)(>x f ,则a 的取值范围是(A ))21,0( (B )]21,0( (C )),21(+∞ (D )),0(+∞(5)极坐标方程)4sin(2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A ))1arccos(--=x y (20≤≤x ) (B ) )1arccos(--=x y π(20≤≤x )(C ))1arccos(-=x y (20≤≤x ) (D ))1arccos(-+=x y π(20≤≤x )(7)若椭圆经过原点,且焦点为)0,1(1F ,)0,3(2F ,则其离心率为(A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,12BB AB =,则1AB 与B C 1所成角的大小为(A )︒60 (B )︒90 (C )︒105 (D )︒75(10)设)(x f 、)(x g 都是单调函数,有如下四个命题:①若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增;②若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增;③若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减;④若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减;其中,正确的命题是(A )①② (B )①④ (C )②③ (D )②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜,记三种盖法屋顶面积分别为1P 、2P 、3P若屋顶斜面与水平面所成的角都是α,则(A )123P P P >> (B )123P P P => (C )123P P P >= (D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线肤表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A )26 (B )24(C )20 (D )19二、填空题:本大题共4个小题,每小题4分,共16分.把答案填空在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 . (14)双曲线116922=-y x 的两个焦点为1F 、2F ,点P 在双曲线上.若21PF PF ⊥,则迠P 到x 轴的距离为 .(15)设}{n a 是公比为q 的等比数列,n S 是它的前n 项和.若}{n S 是等差数列,则q =(16)圆周上有n 2个等分点(1>n ),以其中三个点为顶点的直角三角形的个数为三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)如图,在底面是直角梯形的四棱锥ABCD S -中,︒=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,21=AD . (1)求四棱锥ABCD S -的体积;(2)求面SCD 与面SBA 所成的二面角的正切值.(18)(本小题满分12分)已知复数31)1(i i z -=.(1)求1arg z 及||1z ;(2)当复数z 满足1||=z ,求||1z z -的最大值.(19)(本小题12分)设抛物线px y 22=(0>p )的焦点F ,经过点F 的直线交抛物线于A 、B 两点。
2001年普通高等学校春季招生考试(北京 内蒙古 安徽卷)
2001年普通高等学校春季招生考试物 理(北京、内蒙古、安徽卷)一、选择题本题共10小题;每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.1.如图所示,两根相同的轻弹簧1S 、2S ,劲度系数皆为m N k /1042⨯=.悬挂的重物的质量分别为kg m kg m 4221==和.若不计弹簧质量,取2/10s m g =,则平衡时弹簧1S 、2S的伸长量分别为 A .cm 5、10cm B .10cm 、cm 5 C .15cm 、10cm D .10cm 、15cm 答案:C2.下列现象中,与原子核内部变化有关的是A .α粒子散射B .光电效应C .天然放射现象D .原子发光现象 答案:C3.下列说法中正确的是A .物体的分子热运动动能的总和就是物体的内能B .对于同一种气体,温度越高,分子平均动能越大C .要使气体的分子平均动能增大,外界必须向气体传热D .一定质量的气体,温度升高时,分子间的平均距离一定增大 答案:B4.初速为0v 的电子,沿平行于通电长直导线的方向射出,直导线中电流方向与电子的初始运动方向如图所示,则A .电子将向右偏转,速率不变B .电子将向左偏转,速率改变C .电子将向左偏转,速率不变D .电子将向右偏转,速率改变 答案:A5.一定质量的理想气体经过一系列过程,如图所示.下列说法中正确的是A .b a →过程中,气体体积增大,压强减小B .c b →过程中,气体压强不变,体积增大C .a c →过程中,气体压强增大,体积变小D .a c →过程中,气体内能增大,体积不变 答案:AD6.将物体以一定的初速度竖直上抛.若不计空气阻力,从抛出到落回原地的整个过程中,下列四个图线中正确的是答案:BC7.一平行板电容器,两板之间的距离d 和两板面积S 都可以调节,电容器两板与电池相连接.以Q 表示电容器的电量,E 表示两极板间的电场强度,则 A .当d 增大、S 不变时,Q 减小、E 减小 B .当S 增大、d 不变时,Q 增大、E 增大 C .当d 减小、S 增大时,Q 增大、E 增大D .当S 减小、d 减小时,Q 不变、E 不变 答案:AC8.在如图所示的电路中,电容器C 的上极板带正电.为了使该极板仍带正电且电量增大,下列办法中可 采用的是A .增大1R ,其他电阻不变B .增大2R ,其他电阻不变C .增大3R ,其他电阻不变D .增大4R ,其他电阻不变 答案:AD9.有一列沿水平绳传播的简谐横波,频率为10Hz ,振动方向沿竖直方向.当绳上的质点P 到达其平衡位置且向下运动时,在其右方相距m 6.0处的质点Q 刚好到达最高点.由此可知波速和传播方向可能是 A .s m /8,向右传播 B .s m /8,向左传播 C .s m /24,向右传播 D .s m /24,向左传播答案:BC10.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图所示.在物体始终相对于斜面静止的条件下, 下列说法中正确的是A .当θ一定时,a 越大,斜面对物体的正压力越小B .当θ一定时,a 越大,斜面对物体的摩擦力越大C .当a 一定时,θ越大,斜面对物体的正压力越小D .当a 一定时,θ越大,斜面对物体的摩擦力越小答案:BC二、填空题 本题共3小题;每小题5分,共15分。
2001年普通高等学校春季招生考试数学试题及答案
2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的(1) 集合M ={1,2,3,4,5}的子集个数是 ( )(A) 32(B) 31(C) 16(D) 15(2) 函数f (x ) = a x (a > 0且a ≠ 1)对于任意的实数x ,y 都有 ( )(A) f (xy ) = f (x ) f (y ) (B) f (xy ) = f (x ) + f (y ) (C) f (x + y ) = f (x ) f (y ) (D) f (x + y ) = f (x ) + f (y )(3) =++∞→1222limn n n n n C C( )(A) 0 (B) 2 (C)21(D)41 (4) 函数)1(1≤--=x x y 的反函数是 ( )(A) y = x 2-1 (-1≤x ≤0) (B) y = x 2-1 (0≤x ≤1) (C) y = 1-x 2 (x ≤0)(D) y = 1-x 2 (0≤x ≤1)(5) 极坐标系中,圆θθρsin 3cos 4+=的圆心的坐标是 ( )(A) ),(53arcsin 25(B) ),(54arcsin5 (C) ),(53arcsin 5 (D) ),(54arcsin 25(6) 设动点P 在直线x = 1上,O 为坐标原点. 以OP 为直角边、点O 为直角顶点作等腰Rt △OPQ ,则动点Q 的轨迹是( )(A) 圆(B) 两条平行直线(C) 抛物线(D) 双曲线(7) 已知f (x 6) = log 2x ,那么f (8)等于( )(A)34 (B) 8 (C) 18 (D)21 (8) 若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在 ( ) (A) 第一象限(B) 第二象限(C) 第三象限(D) 第四象限(9) 如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是( )(A) 30°(B) 45°(C) 60°(D) 90°(10) 若实数a ,b 满足a + b = 2,则3a + 3b 的最小值是 ( )(A) 18(B) 6(C) 32(D) 432(11) 右图是正方体的平面展开图.在这个正方体...中, ① BM 与ED 平行 ② CN 与BE 是异面直线 ③ CN 与BM 成60º角 ④ DM 与BN 垂直以上四个命题中,正确命题的序号是 ( ) (A) ①②③(B) ②④(C) ③④(D) ②③④(12) 根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足)521(902--=n n nS n (n =1,2,……,12). 按此预测,在本年度内,需求量超过1.5万件的月份是 ( )(A) 5月、6月 (B) 6月、7月(C) 7月、8月(D) 8月、9月第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13) 已知球内接正方体的表面积为S ,那么球体积等于___________(14) 椭圆x 2 + 4y 2 = 4长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是______________(15) 已知1sin sin sin 222=++γβα(α、β、γ均为锐角),那么cos αcos βcos γ的最大值等于______________(16) 已知m 、n 是直线,α、β、γ是平面,给出下列命题: ① 若α⊥β,α∩β= m ,n ⊥m ,则n ⊥α或n ⊥β; ② 若α∥β,α∩γ= m ,β∩γ= n ,则m ∥n ;③ 若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④ 若α∩β= m ,n ∥m ;且α⊄n ,β⊄n ,则n ∥α且n ∥β.其中正确的命题的序号是______________ (注:把你认为正确的命题的序号都填上)三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分) 设函数)0()(>>++=b a bx ax x f ,求f ( x )的单调区间,并证明f ( x )在其单调区间上的单 调性.(18) (本小题满分12分) 已知z 7=1(z ∈C 且z ≠1).(Ⅰ)证明 1 + z + z 2 + z 3 + z 4 + z 5 + z 6 = 0;(Ⅱ)设z 的辐角为α,求cos α+cos2α+cos4α的值. (19) (本小题满分12分)已知VC 是△ABC 所在平面的一条斜线,点N 是V 在平面ABC 上的射影,且在△ABC 的高CD 上.AB = a ,VC 与AB 之间的距离为h ,点M ∈VC .(Ⅰ)证明∠MDC 是二面角M -AB -C 的平面角; (Ⅱ)当∠MDC = ∠CVN 时,证明VC ⊥平面AMB ; (Ⅲ)若∠MDC =∠CVN =θ(20πθ<<),求四面体MABC 的体积. (20)(本小题满分12分)在1与2之间插入n 个正数a 1,a 2,a 3,…,a n ,使这n +2个数成等比数列;又在1与2之间插入n 个正数b 1,b 2,b 3,…,b n ,使这n +2个数成等差数列.记A n = a 1 a 2 a 3…a n ,B n = b 1 + b 2 + b 3 + … + b n .(Ⅰ)求数列{A n}和{B n}的通项;(Ⅱ)当n≥7时,比较A n和B n的大小,并证明你的结论.(21)(本小题满分12分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0 < x < 1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润= (出厂价-投入成本)×年销售量.(Ⅰ)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?(22)(本小题满分14分)已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,| AB | ≤2p.(Ⅰ)求a的取值范围;(Ⅱ)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数.四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)A (2)C (3)D (4)C (5)A (6)B(7)D (8)B (9)C (10)B (11)C (12)C二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分.(13) π242SS (`14)2516 (15)692 (16) ② ④三.解答题(17)本小题主要考查函数的单调性及不等式的基础知识,考查数学推理判断能力.满分12分. 解:函数bx ax x f ++=)(的定义域为(-∞,-b )∪(-b ,+∞). f ( x )在(-∞,-b )内是减函数,f ( x )在(-b ,+∞)内也是减函数. ……4分 证明f ( x )在(-b ,+∞)内是减函数. 取x 1,x 2∈(-b ,+∞),且x 1 < x 2,那么 bx ax b x a x x f x f ++-++=-221121)()( ))(())((2112b x b x x x b a ++--=, ……6分∵ a -b > 0,x 2-x 1>0,(x 1+b )(x 2+b ) > 0, ∴ f (x 1)-f (x 2) > 0,即f (x )在(-b ,+∞)内是减函数. ……9分 同理可证f (x )在(-∞,-b )内是减函数. ……12分 (18)本小题主要考查复数的基本概念和基本运算,考查综合运用复数的知识解决问题的能力,满分12分.解:(Ⅰ)由 z (1 + z + z 2 + z 3 + z 4 + z 5 + z 6)= z + z 2 + z 3 + z 4 + z 5 + z 6+ z 7 =1 + z + z 2 + z 3 + z 4 + z 5 + z 6,得 (z -1)(1 + z + z 2 + z 3 + z 4 + z 5 + z 6)= 0. …… 4分 因为 z ≠1,z -1≠0,所以 1 + z + z 2 + z 3 + z 4 + z 5 + z 6= 0. …… 6分 (Ⅱ)因为z 7= 1.可知 | z | = 1,所以 1=⋅z z ,而z 7= 1,所以z ·z 6 = 1,z z =6,同理52z z =,34z z =, 65342z z z z z z ++=++由(Ⅰ)知 z + z 2 + z 4 + z 3 + z 5 + z 6= -1, 即 14242-=+++++z z z z z z , 所以42z z z ++的实部为21-, …… 8分 而z 的辐角为α时,复数42z z z ++的实部为ααα4cos 2cos cos ++,所以214cos 2cos cos -=++ααα. …… 12分 (19)本小题主要考查线面关系的基本概念,考查运用直线与直线、直线与平面的基本性质进行计算和证明的能力.满分12分. (Ⅰ)证明:由已知,CD ⊥AB ,VN ⊥平面ABC ,N ∈CD ,⊂AB 平面ABC , ∴VN ⊥AB .∴AB ⊥平面VNC . ……2分 又 V 、M 、N 、D 都在VNC 所在的平面内, 所以,DM 与VN 必相交,且AB ⊥DM ,AB ⊥CD , ∴∠MDC为二面角M -AB -C的平面角. ……4分 (Ⅱ)证明:由已知,∠MDC = ∠CVN ,在△VNC 与△DMC 中, ∠NCV = ∠MCD , 又∵∠VNC = 90º,∴ ∠DMC =∠VNC = 90º, 故有DM ⊥VC ,又AB ⊥VC , ……6分 ∴ VC ⊥平面AMB . ……8分 (Ⅲ)解:由(Ⅰ)、(Ⅱ),MD ⊥AB ,MD ⊥VC ,且D ∈AB ,M ∈VC , ∴ MD = h . 又 ∵ ∠MDC =θ. 在Rt △MDC 中,CM = h ·tg θ. ……10分 V 四面体MABC = V 三棱锥C -ABMABM S CM ∆⋅=31ah tg h 2131⋅⋅=θ θtg 612ah =. ……12分 (20)本小题主要考查等差数列、等比数列的基础知识,考查观察、猜想并进行证明的数学思想方法.满分12分.解:(Ⅰ)∵ 1,a 1,a 2,a 3,……,a n ,2成等比数列,∴ a 1a n = a 2 a n -1 = a 3 a n -2 = … = a k a n -k +1 = … = 1×2 = 2 ,∴ n n n n n n n na a a a a a a a a a A 2)21()()()()()(121231212=⨯==--- , ∴ 22n n A =. ……4分∵ 1,b 1,b 2,b 3,……,b n ,2成等差数列,∴ b 1 + b 2 = 1 + 2 = 3, ∴ n n b b B n n 2321=⋅+=. 所以,数列{A n }的通项22nn A =,数列{B n }的通项n B n 23=. ……6分 (Ⅱ)∵ 22n n A =,n B n 23=, ∴ n n A 22=,2249n B n =, 要比较A n 和B n 的大小,只需比较2n A 与2n B 的大小,也即比较当n ≥ 7时,2n 与249n 的大小.当n = 7时,2n = 128,4949492⨯=n ,得知2492n n >, 经验证n = 8,n = 9时,均有命题2492n n >成立.猜想当n ≥ 7时有2492n n >. 用数学归纳法证明. ……9分 (ⅰ)当n = 7时,已验证2492n n >,命题成立.(ⅱ)假设n = k (k ≥ 7)时,命题成立,即2492k k >, 那么 214922k k ⨯>+, 又当k ≥ 7时,有k 2 > 2k + 1, ∴ )1249221++⨯>+k k k ( 2149)(+⨯=k . 这就是说,当n = k + 1时,命题2492n n >成立. 根据(ⅰ)、(ⅱ),可知命题对于n ≥ 7都成立.故当n ≥ 7时,A n > B n . ……12分(21)本小题主要考查建立函数关系、不等式的性质和解法等内容,考查运用数学知识解决实际问题的能力.满分12分. 解:(Ⅰ)由题意得y = [ 1.2×(1+0.75x )-1×(1 + x ) ] ×1000×( 1+0.6x )(0 < x < 1)……4分整理得 y = -60x 2 + 20x + 200(0 < x < 1). ……6分 (Ⅱ)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y 即 ⎩⎨⎧<<>+-.10,020602x x x ……9分解不等式得310<<x . 答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足 0 < x < 0.33. ……12分(22)本小题考查直线与抛物线的基本概念及位置关系,考查运用解析几何的方法解决数学问题的能力.满分14分. 解:(Ⅰ)直线l 的方程为y = x -a将 y = x -a 代入y 2 = 2px ,得 x 2-2 (a + p ) x + a 2 = 0. ……2分 设直线l 与抛物线两个不同的交点坐标为A (x 1,y 1)、B (x 2,y 2),则⎪⎩⎪⎨⎧=+=+>-+2212122)(204)(4ax x p a x x a p a ……4分 又 y 1 = x 1-a ,y 2 = x 2-a ,∴ 221221)()(y y x x AB -+-=]4)[(221221x x x x -+=.)2(8a p p += ……6分∵ 0 < | AB | ≤ 2p ,8p ( p +2a )>0, ∴ p a p p 2)2(80≤+<. 解得 42pa p -≤<-. ……8分 (Ⅱ)设AB 的垂直平分线交AB 于点Q ,令坐标为(x 3,y 3),则由中点坐标公式,得p a x x x +=+=2213, p a x a x y y y =-+-=+=2)()(221213. ……10分∴ | QM |2 = (a + p -a )2+ ( p -0 )2 = 2p 2, 又△MNQ 为等腰直角三角形, ∴ |QN |=|QM |=p 2 ∴ QN AB S NAB ⋅=∆21AB p 22= p p 222⋅≤ 22p =,即△NAB 面积最大值为22p . ……14分。
2001年普通高等学校春季招生全国统一考试北蒙皖卷理科
2001年普通高等学校春季招生全国统一考试(北京、内蒙古、安徽卷)化 学第Ⅰ卷可能用到的原子量: H 1 C 12 N 14 O 16 Cl 35.5K 39 Ca 40 Fe 56 Cu 64 Br 80一、选择题(本题包括9小题,每小题4分,共36分。
每小题只有一个选项符合题意。
) 1.当今化学界关注的热点之一的60C ,它可以看成是金刚石的A .同素异形体B .同分异构体C .同位素D .同系物2.下列化工生产过程所发生的反应不属于氧化还原反应的是 A .用油脂制肥皂B .用铝土矿制金属铝C .用氯气和消石灰制漂白粉D .用氢气和氮气合成氨3.放在敞口容器中的下列溶液,久置后溶液中该溶质的浓度会变大的是A .浓硫酸B .氢氧化钠C .氯水D .氯化钠4.关于非金属元素N 、O 、Cl 、P 的叙述,正确的是A .在通常情况下其单质均为气体B .其单质均由双原子分子构成C .都属于主族元素D .每种元素仅生成一种氢化物5.下列氧化物按其形成的含氧酸酸性递增排列的顺序是A .52322O P S O CO S iO <<<B .35222S O O P CO S iO <<<C .35222S O O P S iO CO <<<D .23522S iO S O O P CO <<<6.关于氮族元素(用R 代表)的下列叙述正确的是A .最高化合价是5B .氢化物的通式为RH 5C .非金属性由上到下递增D .其含氧酸均为一元强酸7.下列说法正确的是 A .硬水是指含有很多盐的海水B .重水是指密度大的液态O H 2C .溴水是指溴的水溶液D .王水是指3体积浓硝酸和1体积浓盐酸的混合液 8.把生铁冶炼成碳素钢要解决的主要问题是A .除去生铁中的各种杂质,把生铁提纯B .适当降低生铁里的含碳量,除去大部分硫、磷等有害杂质C .用还原剂把铁的氧化物还原成铁D .加入合金元素改善生铁性能9.迄今为止,以下各族元素中生成化合物的种类最多的是A .ⅡA 族B .ⅢA 族C .ⅣA 族D .ⅤA 族二、选择题(本题包括9小题,第小题4分,共36分。
2001全国春数学
2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 集合M ={1,2,3,4,5}的子集个数是 ( )(A) 32(B) 31(C) 16(D) 15(2) 函数f (x ) = a x (a > 0且a ≠ 1)对于任意的实数x ,y 都有 ( ) (A) f (xy ) = f (x ) f (y ) (B) f (xy ) = f (x ) + f (y ) (C) f (x + y ) = f (x ) f (y ) (D) f (x + y ) = f (x ) + f (y )(3) =++∞→1222limn n n n n C C( )(A) 0 (B) 2 (C)21(D)41 (4) 函数)1(1≤--=x x y 的反函数是 ( )(A) y = x 2-1 (-1≤x ≤0) (B) y = x 2-1 (0≤x ≤1) (C) y = 1-x 2 (x ≤0)(D) y = 1-x 2 (0≤x ≤1)(5) 极坐标系中,圆θθρsin 3cos 4+=的圆心的坐标是 ( )(A) ),(53arcsin 25(B) ),(54arcsin 5 (C) ),(53arcsin 5 (D) ),(54arcsin 25(6) 设动点P 在直线x = 1上,O 为坐标原点. 以OP 为直角边、点O 为直角顶点作等腰Rt △OPQ ,则动点Q 的轨迹是( )(A) 圆(B) 两条平行直线(C) 抛物线(D) 双曲线(7) 已知f (x 6) = log 2x ,那么f (8)等于( )(A)34 (B) 8 (C) 18 (D)21 (8) 若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在 ( ) (A) 第一象限(B) 第二象限(C) 第三象限(D) 第四象限(9) 如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是( )(A) 30°(B) 45°(C) 60°(D) 90°(10) 若实数a ,b 满足a + b = 2,则3a + 3b 的最小值是 ( )(A) 18(B) 6(C) 32(D) 432(11) 右图是正方体的平面展开图.在这个正方体...中, ① BM 与ED 平行 ② CN 与BE 是异面直线 ③ CN 与BM 成60º角 ④ DM 与BN 垂直以上四个命题中,正确命题的序号是 ( ) (A) ①②③(B) ②④(C) ③④(D) ②③④(12) 根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足)521(902--=n n nS n (n =1,2,……,12). 按此预测,在本年度内,需求量超过1.5万件的月份是 ( )(A) 5月、6月 (B) 6月、7月(C) 7月、8月(D) 8月、9月第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13) 已知球内接正方体的表面积为S ,那么球体积等于____________.(14) 椭圆x 2 + 4y 2 = 4长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_________________.(15) 已知1sin sin sin 222=++γβα(α、β、γ均为锐角),那么cos αcos βcos γ的最大值等于________________.(16) 已知m 、n 是直线,α、β、γ是平面,给出下列命题: ① 若α⊥β,α∩β= m ,n ⊥m ,则n ⊥α或n ⊥β; ② 若α∥β,α∩γ= m ,β∩γ= n ,则m ∥n ;③ 若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④ 若α∩β= m ,n ∥m ;且α⊄n ,β⊄n ,则n ∥α且n ∥β.其中正确的命题的序号是_________________.(注:把你认为正确的命题的序号都填上)三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分) 设函数)0()(>>++=b a bx ax x f ,求f ( x )的单调区间,并证明f ( x )在其单调区间上的单 调性.(18) (本小题满分12分) 已知z 7=1(z ∈C 且z ≠1).(Ⅰ)证明 1 + z + z 2 + z 3 + z 4 + z 5 + z 6 = 0;(Ⅱ)设z 的辐角为α,求cos α+cos2α+cos4α的值. (19) (本小题满分12分)已知VC 是△ABC 所在平面的一条斜线,点N 是V 在平面ABC 上的射影,且在△ABC 的高CD 上.AB = a ,VC 与AB 之间的距离为h ,点M ∈VC .(Ⅰ)证明∠MDC 是二面角M -AB -C 的平面角; (Ⅱ)当∠MDC = ∠CVN 时,证明VC ⊥平面AMB ; (Ⅲ)若∠MDC =∠CVN =θ(20πθ<<),求四面体MABC 的体积. (20)(本小题满分12分)在1与2之间插入n 个正数a 1,a 2,a 3,…,a n ,使这n +2个数成等比数列;又在1与2之间插入n 个正数b 1,b 2,b 3,…,b n ,使这n +2个数成等差数列.记A n = a 1 a 2 a 3…a n ,B n = b 1 + b 2 + b 3 + … + b n.(Ⅰ)求数列{A n}和{B n}的通项;(Ⅱ)当n≥7时,比较A n和B n的大小,并证明你的结论.(21)(本小题满分12分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0 < x < 1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润= (出厂价-投入成本)×年销售量.(Ⅰ)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?(22)(本小题满分14分)已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,| AB | ≤2p.(Ⅰ)求a的取值范围;(Ⅱ)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数.四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)A (2)C (3)D (4)C (5)A (6)B(7)D (8)B (9)C (10)B (11)C (12)C二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分.(13) π242SS (`14)2516 (15)692 (16) ② ④三.解答题(17)本小题主要考查函数的单调性及不等式的基础知识,考查数学推理判断能力.满分12分. 解:函数bx ax x f ++=)(的定义域为(-∞,-b )∪(-b ,+∞). f ( x )在(-∞,-b )内是减函数,f ( x )在(-b ,+∞)内也是减函数. ……4分 证明f ( x )在(-b ,+∞)内是减函数. 取x 1,x 2∈(-b ,+∞),且x 1 < x 2,那么 bx ax b x a x x f x f ++-++=-221121)()( ))(())((2112b x b x x x b a ++--=, ……6分∵ a -b > 0,x 2-x 1>0,(x 1+b )(x 2+b ) > 0, ∴ f (x 1)-f (x 2) > 0,即f (x )在(-b ,+∞)内是减函数. ……9分 同理可证f (x )在(-∞,-b )内是减函数. ……12分 (18)本小题主要考查复数的基本概念和基本运算,考查综合运用复数的知识解决问题的能力,满分12分.解:(Ⅰ)由 z (1 + z + z 2 + z 3 + z 4 + z 5 + z 6)= z + z 2 + z 3 + z 4 + z 5 + z 6+ z 7 =1 + z + z 2 + z 3 + z 4 + z 5 + z 6,得 (z -1)(1 + z + z 2 + z 3 + z 4 + z 5 + z 6)= 0. …… 4分 因为 z ≠1,z -1≠0,所以 1 + z + z 2 + z 3 + z 4 + z 5 + z 6= 0. …… 6分 (Ⅱ)因为z 7= 1.可知 | z | = 1,所以 1=⋅z z ,而z 7= 1,所以z ·z 6 = 1,z z =6,同理52z z =,34z z =,65342z z z z z z ++=++由(Ⅰ)知 z + z 2 + z 4 + z 3 + z 5 + z 6= -1, 即 14242-=+++++z z z z z z , 所以42z z z ++的实部为21-, …… 8分 而z 的辐角为α时,复数42z z z ++的实部为ααα4cos 2cos cos ++,所以214cos 2cos cos -=++ααα. …… 12分 (19)本小题主要考查线面关系的基本概念,考查运用直线与直线、直线与平面的基本性质进行计算和证明的能力.满分12分. (Ⅰ)证明:由已知,CD ⊥AB ,VN ⊥平面ABC ,N ∈CD ,⊂AB 平面ABC , ∴VN ⊥AB .∴AB ⊥平面VNC . ……2分 又 V 、M 、N 、D 都在VNC 所在的平面内, 所以,DM 与VN 必相交,且AB ⊥DM ,AB ⊥CD , ∴∠MDC为二面角M -AB -C的平面角. ……4分 (Ⅱ)证明:由已知,∠MDC = ∠CVN ,在△VNC 与△DMC 中, ∠NCV = ∠MCD , 又∵∠VNC = 90º,∴ ∠DMC =∠VNC = 90º, 故有DM ⊥VC ,又AB ⊥VC , ……6分 ∴ VC ⊥平面AMB . ……8分 (Ⅲ)解:由(Ⅰ)、(Ⅱ),MD ⊥AB ,MD ⊥VC ,且D ∈AB ,M ∈VC , ∴ MD = h . 又 ∵ ∠MDC =θ. 在Rt △MDC 中,CM = h ·tg θ. ……10分 V 四面体MABC = V 三棱锥C -ABMABM S CM ∆⋅=31ah tg h 2131⋅⋅=θ θtg 612ah =. ……12分 (20)本小题主要考查等差数列、等比数列的基础知识,考查观察、猜想并进行证明的数学思想方法.满分12分.解:(Ⅰ)∵ 1,a 1,a 2,a 3,……,a n ,2成等比数列,∴ a 1a n = a 2 a n -1 = a 3 a n -2 = … = a k a n -k +1 = … = 1×2 = 2 ,∴ n n n n n n n n a a a a a a a a a a A 2)21()()()()()(121231212=⨯==--- ,∴ 22nn A =. ……4分∵ 1,b 1,b 2,b 3,……,b n ,2成等差数列,∴ b 1 + b 2 = 1 + 2 = 3, ∴ n n b b B n n 2321=⋅+=. 所以,数列{A n }的通项22nn A =,数列{B n }的通项n B n 23=. ……6分 (Ⅱ)∵ 22n n A =,n B n 23=, ∴ n n A 22=,2249n B n =, 要比较A n 和B n 的大小,只需比较2n A 与2n B 的大小,也即比较当n ≥ 7时,2n 与249n 的大小.当n = 7时,2n = 128,4949492⨯=n ,得知2492n n >, 经验证n = 8,n = 9时,均有命题2492n n >成立.猜想当n ≥ 7时有2492n n >. 用数学归纳法证明. ……9分 (ⅰ)当n = 7时,已验证2492n n >,命题成立.(ⅱ)假设n = k (k ≥ 7)时,命题成立,即2492k k >, 那么 214922k k ⨯>+, 又当k ≥ 7时,有k 2 > 2k + 1, ∴ )1249221++⨯>+k k k ( 2149)(+⨯=k . 这就是说,当n = k + 1时,命题2492n n >成立. 根据(ⅰ)、(ⅱ),可知命题对于n ≥ 7都成立.故当n ≥ 7时,A n > B n . ……12分(21)本小题主要考查建立函数关系、不等式的性质和解法等内容,考查运用数学知识解决实际问题的能力.满分12分. 解:(Ⅰ)由题意得y = [ 1.2×(1+0.75x )-1×(1 + x ) ] ×1000×( 1+0.6x )(0 < x < 1)……4分整理得 y = -60x 2 + 20x + 200(0 < x < 1). ……6分 (Ⅱ)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y 即 ⎩⎨⎧<<>+-.10,020602x x x ……9分解不等式得310<<x . 答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足 0 < x < 0.33. ……12分(22)本小题考查直线与抛物线的基本概念及位置关系,考查运用解析几何的方法解决数学问题的能力.满分14分. 解:(Ⅰ)直线l 的方程为y = x -a将 y = x -a 代入y 2 = 2px ,得 x 2-2 (a + p ) x + a 2 = 0. ……2分 设直线l 与抛物线两个不同的交点坐标为A (x 1,y 1)、B (x 2,y 2),则⎪⎩⎪⎨⎧=+=+>-+2212122)(204)(4ax x p a x x a p a ……4分 又 y 1 = x 1-a ,y 2 = x 2-a ,∴ 221221)()(y y x x AB -+-=]4)[(221221x x x x -+=.)2(8a p p += ……6分∵ 0 < | AB | ≤ 2p ,8p ( p +2a )>0, ∴ p a p p 2)2(80≤+<. 解得 42pa p -≤<-. ……8分 (Ⅱ)设AB 的垂直平分线交AB 于点Q ,令坐标为(x 3,y 3),则由中点坐标公式,得p a x x x +=+=2213, p a x a x y y y =-+-=+=2)()(221213. ……10分∴ | QM |2 = (a + p -a )2+ ( p -0 )2 = 2p 2, 又△MNQ 为等腰直角三角形, ∴ |QN |=|QM |=p 2 ∴ QN AB S NAB ⋅=∆21AB p 22= p p 222⋅≤ 22p =,即△NAB 面积最大值为22p . ……14分。
精编版-2001年安徽高考理科数学真题及答案
2001年安徽高考理科数学真题及答案第Ⅰ卷 (选择题共60分)参考公式: 正棱锥、圆锥的侧面积公式 如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的 概率是P ,那么n 次独立重复试 验中恰好发生k 次的概率 k n k k n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)函数)32sin(3π+=x y 的周期、振幅依次是 (A )4π、3(B )4π、-3(C )π、3(D )π、-3(2)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是(A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列(D )既非等比数列又非等差数列(3)过点A (1,-1)、B (-1,1)且圆心在直线x +y-2=0上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x(D )4)1()1(22=+++y x(4)若定义在区间(-1,0)内的函数a x f x x f a 则满足,0)()1(log )(2>+=的取值范围是(A ))21,0((B )]21,0((C )),21(+∞(D )),0(+∞(5)若向量a=(1,1),b=(1,-1),c=(-1,2),则c=(A )21-a+23b (B )21a -23b (C )23a 21- b(D )-23a 21+ b(6)若A 、B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|.若直线PA 的方程为 01=+-y x ,则直线PB 的方程是(A )05=-+y x (B )012=--y x (C )042=--x y (D )072=-+y xπcl S 21=锥侧其中c 表示底面周长,l 表示斜高或母线长. 棱锥、圆锥的体积公式 sh V 31=锥体其中s 表示底面积,h 表示高.(A )b a < (B )b a > (C )1<ab (D )2>ab(8)函数331x x y -+=有(A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2(D )极小值-1,极大值3(9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分, 一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有(A )3种(B )4种(C )5种(D )6种(10)设坐标原点为O ,抛物线x y 22=与过焦点的直线交于A 、B 两点,则=⋅OB OA (A )43 (B )-43 (C )3 (D )-3(11)一间平房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高考数学试题】2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)
数 学(理工农医类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.
第Ⅰ卷(选择题 共60分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.
3.考试结束,监考人将本试卷和答题卡一并收回.
参考公式: 正棱台、圆台的侧面积公式 三角函数的积化和差公式
)]sin()[sin(2
1
cos sin β-α+β+α=βα l c c S )'(2
1
+=
台侧 )]sin()[sin(2
1
sin cos β-α-β+α=
βα 其中'c 、c 分别表示上、下底面周长,l 表示斜高或母线长
)]cos()[cos(2
1
cos cos β-α+β+α=
βα 球体的体积公式 33
4
R V π=球
)]cos()[cos(2
1
sin sin β-α-β+α-=βα 其中R 表示球的半径
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)集合{
}5,4,3,2,1=M 的子集个数是
(A )32
(B )31 (C )16 (D )15
(2)函数)10()(≠>=a a a x f x
且对于任意的实数y x ,都有 (A ))()()(y f x f xy f = (B ))()()(y f x f xy f +=
(C ))()()(y f x f y x f =+
(D ))()()(y f x f y x f +=+
(3)=++∞→1
2
22
lim n n n
n n C C
(A )0 (B )2 (C )
2
1 (D )
4
1 (4)函数)1(1≤--=x x y 的反函数是 (A ))01(12
≤≤--=x x y (B ))10(12
≤≤-=x x y
(C ))0(12≤-=x x y
(D ))10(12
≤≤-=x x y
(5)极坐标系中,圆θ+θ=ρsin 3cos 4的圆心的坐标是
(A ))5
3arcsin ,2
5(
(B ))5
4arcsin ,5(
(C ))5
3arcsin ,5(
(D )
)5
4arcsin ,25( (6)设动点P 在直线1=x 上,O 为坐标原点.以OP 为直角边、点O 为直角顶点作等腰
OPQ Rt ∆,则动点Q 的轨迹是
(A )圆
(B )两条平行直线
(C )抛物线
(D )双曲线
(7)已知x x f 26log )(=,那么)8(f 等于
(A )
3
4 (B )8 (C )18 (D )
2
1 (8)若A 、B 是锐角ABC ∆的两个内角,则点)cos sin ,sin (cos A B A B P --在
(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (9)如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 (A )︒30 (B )︒45 (C )︒60 (D )︒90 (10)若实数b a ,满足2=+b a ,则b
a
33+的最小值是
(A )18
(B )6
(C )32
(D )432
(11)右图是正方体的平面展开图.在这个正方体...中, ①ED BM 与平行
②CN 与BE 是异面直线 ③CN 与BM 成︒60角 ④DM 与BN 垂直
以上四个命题中,正确命题的序号是 (A )①②③ (B )②④
(C )③④ (D )②③④
(12)根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量n S (万件)近似地满足
)12,,2,1)(521(90
2 =--=
n n n n
S n 按此预测,在本年度内,需求量超过1.5万件的月份是 (A )5月、6月 (B )6月、7月 (C )7月、8月
(D )8月、9月
绝密★启用前
2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)
数 学(理工农医类) 第Ⅱ卷(非选择题共90分)
注意事项: 1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.
(13(14)椭圆442
2
=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.
(15)已知α=γ+β+α(1sin sin sin 222、β、γ均为锐角),那么γβαcos cos cos 的最大值等于____________________.
(16)已知m 、n 是直线, α、β、γ是平面,给出下列命题:
①
若m n m ⊥=⋂⊥,,βαβα,则βα⊥⊥n n 或; ②若α∥β,n m =γ⋂β=γ⋂α,,则m ∥n ;
③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若m =⋂βα,n ∥m ,且βα⊄⊄n n ,,则n ∥n 且α∥β.
其中正确的命题的序号是_______________(注:把你认为正确的命题的序号都.填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 设函数)0()(>>+=b a b
x x x f ,求)(x f 的单调区间,并证明)(x f 在其单调区间上的单调性.
已知)1(17
≠∈=z C z z 且.
(Ⅰ)证明016
5
4
3
2
=++++++z z z z z z ;
(Ⅱ)设z 的辐角为α,求ααα4cos 2cos cos ++的值.
已知VC 是ABC 上的射影,且在ABC
∆的高CD 上.AB VC a AB 与,=之间的距离为VC M h ∈点,.
(Ⅰ)证明∠MDC 是二面角M –AB –C 的平面角; (Ⅱ)当∠MDC =∠CVN 时,证明VC AMB 平面⊥;
(Ⅲ)若∠MDC =∠CVN =2
0( π<θ<θ,求四面体MABC 的体积.
n 3211与2之间插入n 个正数n b b b b ,,,,321 ,使这2+n 个数成等差数列.记n n n n b b b b B a a a a A ++++== 321321,
.
(Ⅰ)求数列{}n A 和{}n B 的通项;
(Ⅱ)当7≥n 时,比较n A 与n B 的大小,并证明你的结论.。