高一数学 对数函数的图象与性质教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:4.2.3 对数函数的图象和性质

【教学目标】

1. 初步了解对数函数的性质,并初步运用对数函数的性质解决诸如比较大小等简单问题;

2. 在用描点法或借助计算工具画出对数函数的图象,并探索对数函数的性质的过程中,发展学生的直观想象、数学抽象、逻辑推理等核心素养;

3. 类比指数函数的研究过程,让学生经历设计对数函数图象和性质的研究内容方法、步骤并实施,再次提升和丰富了函数的图象和性质研究的基本思想和基本活动经验.

【教学重点】

了解对数函数的图象和性质并能初步应用.

【教学难点】

抽象、概括出对数函数性质(底数a 对对数函数图象变化的影响).

【教学过程】

教学流程:明确思路→感知图象→发现性质→尝试应用→归纳小结→布置作业

(一) 回顾经验、明确思路

教师导语:对于具体的函数,我们一般按照“概念—图象—性质—应用”的过程进行研究.前面我们学习了对数函数的概念,接下来就要研究它的图象和性质.回顾指数函数的研究过程,你能说说我们要研究哪些内容?研究方法又是什么? 师生活动:教师引导学生类比指数函数的学习,共同商议、制定研究对数函数的图象和性质的内容、方法以及步骤.

【设计意图】:从初中到现在,学生已学习了一次函数、反比例函数、二次函数、幂函数、指数函数等初等函数,已对函数的相关概念、研究函数的方法有了一定的了解和掌握,可以通过类比的方法研究学习,从而明确了对数函数的图象与性质的研究内容、方法以及步骤,为接下来的学习建立先行组织者.

(二)尝试画图、形成感知

教师导语:在明确了探究方向后,下面请同学们按照“数学实验活动探究卡”的步骤进行探究活动.

活动(1)自主探究:用描点法画出对数函数x y 2log =的图象.

师生活动:由于描点法作图时列举点的个数的限制,学生对对数函数的图象特征缺乏直观感受.教师借助几何画板作出对数函数x y 2log =图象,验证猜想. 教师追问1:在同一个坐标系中,如何画出对数函数x y 2

1log =的图象?

教师追问2:我们知道,底数互为倒数的两个指数函数的图象关于y 轴对称,对于底数互为倒数的两个对数函数,它们的图象是否也有某种对称关系呢? 教师追问3:观察这两个对数函数的图象特征,它们有哪些异同点?

【设计意图】:对数函数是一种类型的函数,学生之前并没有接触过,所以采用典型的具体函数描点法作图;追问1、2让学生体会到可以用已知函数图象的对称性来作新函数的图象,其目的是让学生学习用联系的观点看问题,通过逻辑推理获得数学结论.

教师导语:为了归纳出对数函数的图象的共同特征,我们还需要画出更多具体对数函数的图象进行观察.

活动(2)合作探究:借助于几何画板,选取底数a 0(>a ,且)1≠

a 的若干不同的值,在同一直角坐标系内画出相应的对数函数图象.观察这些函数图象的位置、公共点和变化趋势,它们有哪些共性?

师生活动:学生小组合作,借助于几何画板,画出更多具体对数函数的图象进行观察、归纳,交流. 教师参与其中,适时点拨,追问.

教师追问4:对数函数x y a log =0(>a ,且)1≠

a 的图象是否恒过)0,1(? 教师追问5:研究对数函数的图象与性质,我们是否也需要分类讨论?分类的标准又是什么?

教师追问6:你能归纳出体现对数函数的代表性图象?

师生活动:由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用几何画板作出底数连续变化的图象,由静态图象到动态图象,逐步验证猜想.

【设计意图】:探究活动遵循由特殊到一般的思路,通过类比,猜想,推理,验证四个数学实验步骤研究对数函数的图象和性质,并让学生经历了数学实验研究的全过程;借助计算机辅助教学作用,能够便捷地作出大量图象,增强学生的直观感受;学生在探究中多次尝试、思考、追问,体会越来越深,所积累的数学活动经验更科学、更丰富.

(三)理性认识、发现性质

教师导语:当我们对对数函数的图象有了直观认识后,就可以进一步研究对数函数的性质,提高我们对对数函数的理性认识.

图象

定义域

值域

性质

教师追问7:请你根据所得性质,去分析对数函数的图象特征? 【设计意图】:通过探究活动,使学生获得对对数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.用对数函数的图象探究对数函数的性质,并用所得到的性质进一步理解对数函数的图象,这样就可以从“以形助数”和“以数助形”两个方面体会数形结合的思想方法,培养学生的理性思维.

(四)巩固练习、应用新知

例1 比较下列各题中两个值的大小:

(1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7;

(3)log 5.1a ,log 5.9a 0(>a ,且)1≠

a . 变式训练 比较下列各题中两个值的大小:

(4)6log 7,5log 7;(5)6log 7,7log 6.

师生活动:教师引导学生根据问题的特点构造适当的对数函数,利用对数函数的单调性进行比较.在变式运用的过程中又会发现矛盾:不同底数的对数无法直接利用单调性比较大小了,只有另寻它法.

【设计意图】:通过应用函数的单调性比较大小,进一步理解对数函数的单调性;通过变式训练,感悟解题方法,帮助学生形成两个对数值大小的解题主线.

例2 溶液酸碱度的测量.

溶液酸碱度是通过pH 计量的.pH 的计算公式为lg[]pH H ,其中[]H 表示溶液中氢离子的浓度,单位是摩尔/升.

(1)根据对数函数性质及上述pH 的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;

(2)已知纯静水中氢离子的浓度为7[]10H 摩尔/升,计算纯静水的pH . 学生独立思考:解决这个问题是选择怎样的对数函数模型?运用什么函数性质? 师生交流:11lg[]lg[]lg []

pH H H H 随着[]H 的增大,pH 减小,即溶液中氢离子浓度越大,溶液的酸性就越强.

【设计意图】:本例能让学生进一步熟悉对数函数的性质,并促使学生形成用函数观点解决问题的意识;关注学科间的相互联系,让学生体会到数学在自然科学中的重要作用,感受数学的实用价值. (五)归纳总结,拓展深化

请学生从知识和方法上谈谈对这一节课的认识与收获.

1. 知识上:研究了对数函数的图象与性质,关键要抓住底数1>a 和10<

2. 方法上:(1)比较两个对数值大小的方法;

(2)类比指数函数的研究方法,再次丰富了函数图象与性质研究的数学活动经验:由特殊到一般、由图象到性质,体会分类讨论思想、数形结合思想.

(六)作业布置、延伸课堂

1.课本第27页,练习1,2,3.

2.课外探究:对数函数log a y x 0(>a ,且)1≠a 和指数函数x y a 0(>a ,且)1≠

a 它们的定义域、值域、以及图象之间有什么关系?你是怎样得到结论的?

相关文档
最新文档