11、三角恒等变换
三角恒等变换
又
π
β∈(0,2 ),所以
tan β=1,则
π
β=4 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14
14.(2024·重庆模拟)写出一个使等式( 3-tan 10°)·cos α=1 成立的角 α 的值
为 50° . (答案不唯一)
解析 因为( 3-tan 10°)·
cos α=(tan 60°-tan 10°)cos α
因为 tan12 =tan(3 − 4 )=
=
=23.
π
π ,所以 tan
12
1+ 3
1+tan tan
3
4
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2α= 3,
8.(2024·江西鹰潭模拟)函数f(x)=(cos x-sin x)·cos(
π
是
.
π
解析 f(x)=(cos x-sin x)cos( -x)=(cos
cos10 °
cos50 °
α
sin100 °
cos50 °
α= cos10 ° ·cos α
cos
α=cos50 °=1,
= cos10 ° ·cos α= cos10 ° ·cos
所以 cos α=cos 50°,则 α=50°+k×360°或 α=-50°+k×360°,k∈Z.
故 α 可取值 50°.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
sin60 ° sin10 °
=(
−
)cos
cos60 ° cos10 °
sin (60°-10°)
简单的三角恒等变换 课件(经典公开课)
.
2.在上述化简过程中,如何确定θ所在的象限?
提示:θ所在的象限由a和b的符号确定.
3.辅助角公式 asin x+bcos x= + sin(x+φ)= + cos
(x-θ).其中 cos φ=
+
+1,
-
∴f(x)的最小正周期为 T= =π.
-
+1
(2)当 f(x)取得最大值时,sin -
=1.
故 2x- =2kπ+(k∈Z),即 x=kπ+(k∈Z).
因此,所求 x 的取值集合为
= +
,∈ .
探究四 三角恒等变换在实际问题中的应用
【例4】 如图,要把半径为R的半圆形木料截成长方形,应怎样
截取,才能使△OAB的周长最大?
解:设∠AOB=α,△OAB的周长为l,
则AB=Rsin α,OB=Rcos α.
∴l=OA+AB+OB=R+Rsin α+Rcos α
=R(sin α+cos α)+R= Rsin + +R.
∵0<α<,∴<α+ <
∴当 α+ = ,
.
即 α=时,l 取得最大值 R+R=( +1)R.
公式,若用α替换2α,则结果怎样?
提示:结果是 cos
2
α=2cos -1
2
2
高考数学简单的三角恒等变换
高考数学简单的三角恒等变换2021高考各科复习资料2021年高三开学差不多有一段时刻了,高三的同学们是不是差不多投入了紧张的高考一轮复习中,数学网高考频道从高三开学季开始为大伙儿系列预备了2021年高考复习,2021年高考一轮复习,2021年高考二轮复习,2021年高考三轮复习都将连续系统的为大伙儿推出。
化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;求值,要注意象限角的范畴、三角函数值的符号之间联系与阻碍,较难的问题需要依照上三角函数值进一步缩小角的范畴。
证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等。
三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间能够用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式,cos α= cosβcos(α-β)- sinβsin(α-β),1= sin2α+cos2α,= =tan(450+30 0)等。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
什么缘故?依旧没有完全“记死”的缘故。
要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。
能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。
高中数学简单的三角恒等变换
5.5.2 简单的三角恒等变换学习目标1.能用二倍角公式导出半角公式2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及证明三角恒等式,并能进行一些简单的应用.知识点一 半角公式 sin α2=±1-cos α2, cos α2=±1+cos α2, tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=b a1.cos α2=1+cos α2.( × ) 2.对任意α∈R ,sin α2=12cos α都不成立.( × )3.若cos α=13,且α∈(0,π),则cos α2=63.( √ )4.对任意α都有sin α+3cos α=2sin ⎝⎛⎭⎫α+π3.( √ )一、三角恒等式的证明例1 求证:1+sin θ-cos θ1+sin θ+cos θ+1+sin θ+cos θ1+sin θ-cos θ=2sin θ.证明 方法一 左边=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2+2cos 2θ2+2sin θ2cosθ22sin 2θ2+2sin θ2cosθ2=sinθ2cos θ2+cos θ2sin θ2=1cos θ2sinθ2=2sin θ=右边.所以原式成立.方法二 左边=(1+sin θ-cos θ)2+(1+sin θ+cos θ)2(1+sin θ+cos θ)(1+sin θ-cos θ)=2(1+sin θ)2+2cos 2θ(1+sin θ)2-cos 2θ=4+4sin θ2sin θ+2sin 2θ=2sin θ=右边. 所以原式成立.反思感悟 三角恒等式证明的常用方法 (1)执因索果法:证明的形式一般是化繁为简; (2)左右归一法:证明左右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同;(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立. 跟踪训练1 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x 4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x 2sin 2x 2=cos x 2sin x 2=2cos 2x 22sin x 2cos x 2=1+cos x sin x =右边.所以原等式成立.二、三角恒等变换的综合问题例2 已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8,f (x )单调递增; 当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎝⎛⎦⎤π8,π2上单调递减. 反思感悟 研究三角函数的性质,如单调性和最值问题,通常是把复杂的三角函数通过恰当的三角变换,转化为一种简单的三角函数,再研究转化后函数的性质.在这个过程中通常利用辅助角公式,将y =a sin x +b cos x 转化为y =A sin(x +φ)或y =A cos(x +φ)的形式,以便研究函数的性质.跟踪训练2 已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12. 三、三角函数的实际应用例3 如图,有一块以点O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另两点B ,C 落在半圆的圆周上.已知半圆的半径长为20 m ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大,最大值是多少?解 连接OB (图略),设∠AOB =θ,则AB =OB sin θ=20sin θ,OA =OB cos θ=20cos θ,且θ∈⎝⎛⎭⎫0,π2. 因为A ,D 关于原点对称, 所以AD =2OA =40cos θ. 设矩形ABCD 的面积为S ,则 S =AD ·AB =40cos θ·20sin θ=400sin 2θ. 因为θ∈⎝⎛⎭⎫0,π2,所以当sin 2θ=1, 即θ=π4时,S max =400(m 2).此时AO =DO =102(m).故当A ,D 距离圆心O 为10 2 m 时,矩形ABCD 的面积最大,其最大面积是400 m 2. 反思感悟 (1)三角函数与平面几何有着密切联系,几何中的角度、长度、面积等问题,常借助三角变换来解决;实际问题的意义常反映在三角形的边、角关系上,故常用三角恒等变换的方法解决实际的优化问题.(2)解决此类问题的关键是引进角为参数,列出三角函数式.跟踪训练3 如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?解 设∠AOB =α,则0<α<π2,△OAB 的周长为l ,则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin ⎝⎛⎭⎫α+π4+R . ∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π, ∴α2∈⎝⎛⎭⎫3π4,π,sin α2=1-cos α2=105. 2.若函数f (x )=-sin 2x +12(x ∈R ),则f (x )是( )A .最小正周期为π2的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数 答案 D解析 f (x )=-1-cos 2x 2+12=12cos 2x .故选D.3.下列各式与tan α相等的是( ) A.1-cos 2α1+cos 2αB.sin α1+cos αC.sin α1-cos 2αD.1-cos 2αsin 2α答案 D解析 1-cos 2αsin 2α=2sin 2α2sin αcos α=sin αcos α=tan α.4.函数y =-3sin x +cos x 在⎣⎡⎦⎤-π6,π6上的值域是________. 答案 [0,3]解析 y =-3sin x +cos x =2sin ⎝⎛⎭⎫π6-x . 又∵-π6≤x ≤π6,∴0≤π6-x ≤π3.∴0≤y ≤ 3.5.已知sin α2-cos α2=-15,π2<α<π,则tan α2=________.答案 2解析 ∵⎝⎛⎭⎫sin α2-cos α22=15, ∴1-sin α=15,∴sin α=45.又∵π2<α<π,∴cos α=-35.∴tan α2=1-cos αsin α=1-⎝⎛⎭⎫-3545=2.1.知识清单: (1)半角公式; (2)辅助角公式;(3)三角恒等变换的综合问题; (4)三角函数在实际问题中的应用. 2.方法归纳:换元思想,化归思想.3.常见误区:半角公式符号的判断,实际问题中的定义域.1.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a 2 B.1-a2C .-1+a2D .-1-a2答案 D解析 ∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4=-1-cosθ22=-1-a2. 2.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <b D .b <c <a 答案 C解析 由题意可知,a =sin 24°,b =sin 26°,c =sin 25°,而当0°<x <90°,y =sin x 为增函数,∴a <c <b ,故选C.3.已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 答案 B解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=32(2cos 2x -1)+32+1=32cos 2x +52,则f (x )的最小正周期为π,当x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 4.化简⎝⎛⎭⎫sin α2+cos α22+2sin 2⎝⎛⎭⎫π4-α2得( ) A .2+sin α B .2+2sin ⎝⎛⎭⎫α-π4 C .2 D .2+2sin ⎝⎛⎭⎫α+π4 答案 C解析 原式=1+2sin α2cos α2+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-α2 =2+sin α-cos ⎝⎛⎭⎫π2-α=2+sin α-sin α=2.5.设函数f (x )=2cos 2x +3sin 2x +a (a 为实常数)在区间⎣⎡⎦⎤0,π2上的最小值为-4,那么a 的值等于( )A .4B .-6C .-4D .-3 答案 C解析 f (x )=2cos 2x +3sin 2x +a =1+cos 2x +3sin 2x +a =2sin ⎝⎛⎭⎫2x +π6+a +1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π6∈⎣⎡⎦⎤π6,7π6, ∴f (x )min =2·⎝⎛⎭⎫-12+a +1=-4. ∴a =-4.6.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ=________. 答案 -π6解析 因为3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6, 因为φ∈(-π,π),所以φ=-π6.7.若θ是第二象限角,且25sin 2θ+sin θ-24=0,则cos θ2=________.答案 ±35解析 由25sin 2θ+sin θ-24=0, 又θ是第二象限角,得sin θ=2425或sin θ=-1(舍去).故cos θ=-1-sin 2θ=-725,由cos 2 θ2=1+cos θ2得cos 2 θ2=925.又θ2是第一、三象限角, 所以cos θ2=±35.8.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x1+cos x =________.考点 利用简单的三角恒等变换化简求值 题点 综合运用三角恒等变换公式化简求值 答案 tan x2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x=sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x1+cos x=sin x 1+cos x=tan x2.9.已知cos θ=-725,θ∈(π,2π),求sin θ2+cos θ2的值.解 因为θ∈(π,2π), 所以θ2∈⎝⎛⎭⎫π2,π, 所以sin θ2=1-cos θ2=45, cos θ2=-1+cos θ2=-35, 所以sin θ2+cos θ2=15.10.已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z .11.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎡⎦⎤π4,π2上的最大值是( ) A .1 B .2 C.32 D .3答案 C解析 f (x )=1-cos 2x 2+32sin 2x=sin ⎝⎛⎭⎫2x -π6+12, ∵x ∈⎣⎡⎦⎤π4,π2,∴2x -π6∈⎣⎡⎦⎤π3,5π6, ∴sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤12,1, ∴f (x )max =1+12=32,故选C.12.化简:tan 70°cos 10°(3tan 20°-1)=________. 答案 -1解析 原式=sin 70°cos 70°·cos 10°·⎝⎛⎭⎫3sin 20°cos 20°-1 =sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20° =sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°=-sin 70°cos 70°·sin 20°cos 20°=-1.13.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0, 即2sin 2α-cos 2α≤0,所以4sin 2α≤1, 所以-12≤sin α≤12.因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π.14.函数y =sin 2x +sin x cos x +1的最小正周期是______,单调递增区间是________. 答案 π ⎝⎛⎭⎫k π-π8,k π+3π8,k ∈Z 解析 y =sin 2x +sin x cos x +1=1-cos 2x 2+sin 2x 2+1=22sin ⎝⎛⎭⎫2x -π4+32.最小正周期T =2π2=π. 令-π2+2k π<2x -π4<π2+2k π,k ∈Z , 解得-π8+k π<x <3π8+k π,k ∈Z . 所以f (x )的单调递增区间是⎝⎛⎭⎫k π-π8,k π+3π8(k ∈Z ).15.已知sin 2θ=35,0<2θ<π2,则2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=________. 答案 12解析 2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4 =⎝⎛⎭⎫2cos 2θ2-1-sin θ2⎝⎛⎭⎫sin θcos π4+cos θsin π4 =cos θ-sin θsin θ+cos θ=1-sin θcos θsin θcos θ+1=1-tan θtan θ+1. 因为sin 2θ=35,0<2θ<π2, 所以cos 2θ=45,所以tan θ=sin 2θ1+cos 2θ=351+45=13, 所以1-tan θtan θ+1=1-1313+1=12, 即2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=12. 16.如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,四边形ABCD 是扇形的内接矩形,B ,C 两点在圆弧上,OE 是∠POQ 的平分线,E 在PQ 上,连接OC ,记∠COE =α,则角α为何值时矩形ABCD 的面积最大?并求最大面积.解 如图所示,设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 分别为AD ,BC的中点,在Rt △ONC 中,CN =sin α,ON =cos α,OM =DM tan π6=3DM =3CN =3sin α, 所以MN =ON -OM =cos α-3sin α,即AB =cos α-3sin α,而BC =2CN =2sin α,故S 矩形ABCD =AB ·BC =()cos α-3sin α·2sin α=2sin αcos α-23sin 2α=sin 2α-3(1-cos 2α)=sin 2α+3cos 2α- 3=2⎝⎛⎭⎫12sin 2α+32cos 2α- 3 =2sin ⎝⎛⎭⎫2α+π3- 3. 因为0<α<π6,所以0<2α<π3,π3<2α+π3<2π3. 故当2α+π3=π2,即α=π12时,S 矩形ABCD 取得最大值, 此时S 矩形ABCD =2- 3.。
简单的三角恒等变换
§3.2简单的三角恒等变换学习目标1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一 半角公式思考 半角公式对任意角都适用吗? 答案 不是,要使得式子有意义的角才适用. 知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=ba1.若α≠k π,k ∈Z ,则tan α2=sin α1+cos α=1-cos αsin α恒成立.( √ )2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ所在的象限由a ,b 的符号决定,φ与点(a ,b )同象限.( √ )3.sin x +3cos x =2sin ⎝⎛⎭⎫x +π6.( × ) 提示 sin x +3cos x =2⎝⎛⎭⎫12sin x +32cos x =2sin ⎝⎛⎭⎫x +π3.题型一 应用半角公式求值例1 已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.考点 利用简单的三角恒等变换化简求值题点 利用半角公式化简求值解 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.∵5π4<θ2<3π2,∴cos θ2=-1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思感悟 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正弦、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算. (4)下结论:结合(2)求值. 跟踪训练1 已知cos α=33,α为第四象限角,则tan α2的值为________. 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案2-62解析 方法一 ⎝ ⎛⎭⎪⎪⎫用tan α2=± 1-cos α1+cos α来处理因为α为第四象限角,所以α2是第二或第四象限角.所以tan α2<0.所以tan α2=-1-cos α1+cos α=-1-331+33=-2-3=-128-4 3=-12(6-2)2=2-62.方法二 ⎝ ⎛⎭⎪⎫用tan α2=1-cos αsin α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63.所以tan α2=1-cos αsin α=1-33-63=2-62.方法三 ⎝ ⎛⎭⎪⎫用tan α2=sin α1+cos α来处理 因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63.所以tan α2=sin α1+cos α=-631+33=-63+3=2-62.题型二 三角函数式的化简 例2 化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 解 2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α=cos 2α2cos ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4+α·sin 2⎝⎛⎭⎫π4+α=cos 2αsin ⎝⎛⎭⎫π2+2α=cos 2αcos 2α=1.反思感悟 三角函数式化简的要求、思路和方法(1)化简的要求:①能求出值的应求出值.②尽量使三角函数种数最少.③尽量使项数最少.④尽量使分母不含三角函数.⑤尽量使被开方数不含三角函数.(2)化简的思路:对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用.另外,还可以用切化弦、变量代换、角度归一等方法.跟踪训练2 化简:(1-sin α-cos α)⎝⎛⎭⎫sin α2+cos α22-2cos α(-π<α<0).考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 原式=⎝⎛⎭⎫2sin 2α2-2sin α2cos α2⎝⎛⎭⎫sin α2+cos α22×2sin 2α2=2sin α2⎝⎛⎭⎫sin α2-cos α2⎝⎛⎭⎫sin α2+cos α22⎪⎪⎪⎪sin α2=sin α2⎝⎛⎭⎫sin 2α2-cos 2α2⎪⎪⎪⎪sin α2=-sin α2cos α⎪⎪⎪⎪sin α2.因为-π<α<0,所以-π2<α2<0,所以sin α2<0,所以原式=-sin α2cos α-sinα2=cos α.题型三 三角函数式的证明例3 求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ.考点 三角恒等式的证明 题点 三角恒等式的证明证明 要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ.∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ=2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ,∴左边=右边, ∴原式得证.反思感悟 证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练3 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .考点 三角恒等式的证明 题点 三角恒等式的证明 证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2 x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2 =sin x2sin 2 x 2=cos x 2sin x 2=2cos 2x22sin x 2cosx 2=1+cos xsin x=右边.所以原等式成立. 题型四 辅助角公式的应用例4 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z . 反思感悟 (1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)的正弦、余弦、正切公式、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,以便于讨论函数性质. 跟踪训练4 已知函数f (x )=cos ⎝⎛⎭⎫π3+x ·cos ⎝⎛⎭⎫π3-x ,g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)f (x )=⎝⎛⎭⎫12cos x -32sin x ·⎝⎛⎭⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π.(2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎫2x +π4, 当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )有最大值22.此时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π-π8,k ∈Z .利用半角公式化简求值典例 已知等腰三角形的顶角的余弦值为725,则它的底角的余弦值为( )A.34B.35C.12D.45考点 简单的三角恒等变换的综合应用 题点 三角恒等变换与三角形的综合应用 答案 B解析 设等腰三角形的顶角为α,底角为β,则cos α=725.又β=π2-α2,所以cos β=cos ⎝⎛⎭⎫π2-α2=sin α2=1-7252=35,故选B. [素养评析] 从实际问题提炼出等腰三角形底角、顶角间的关系,利用半角公式进行恒等变换化简,进而求值,这正是数学核心素养数学抽象的具体体现.1.若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B .-63 C .±63 D .±33考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 由题意知α2∈⎝⎛⎭⎫0,π2,∴cos α2>0,cos α2=1+cos α2=63. 2.已知sin θ=-35,3π<θ<72π,则tan θ2的值为( )A .3B .-3 C.13 D .-13考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 ∵3π<θ<7π2,sin θ=-35,∴cos θ=-45,tan θ2=sin θ1+cos θ=-3.3.已知2sin α=1+cos α,则tan α2等于( )A.12B.12或不存在 C .2D .2或不存在考点 利用简单的三角恒等变换化简求值题点 利用半角公式化简求值答案 B解析 2sin α=1+cos α,即4sin α2cos α2=2cos 2α2, 当cos α2=0时,tan α2不存在, 当cos α2≠0时,tan α2=12. 4.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果为( ) A .tan α B .tan 2α C .1 D .2考点 利用简单的三角恒等变换化简求值题点 利用半角公式化简求值答案 B解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α. 5.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( )A.π6B.π3C.π2D.2π3考点 利用简单的三角恒等变换化简求值题点 利用辅助角公式化简求值答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ)=2sin ⎝⎛⎭⎫2x +π3+θ. 当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x 是奇函数. 6.已知在△ABC 中,sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,求证:sin A +sin C =2sin B . 考点 三角恒等式的证明题点 三角恒等式的证明证明 由sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B , 得sin A ·1+cos C 2+sin C ·1+cos A 2=32sin B , 即sin A +sin C +sin A ·cos C +sin C ·cos A =3sin B ,∴sin A +sin C +sin(A +C )=3sin B ,∴sin A +sin C +sin(π-B )=3sin B ,即sin A +sin C +sin B =3sin B ,∴sin A +sin C =2sin B .1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ满足: ①φ与点(a ,b )同象限; ②tan φ=b a ⎝ ⎛⎭⎪⎫或sin φ=b a 2+b 2,cos φ=aa 2+b 2. 3.研究形如f (x )=a sin x +b cos x 的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a ,b 应熟练掌握,例如sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4; sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.。
三角恒等变换-高考数学一题多解
三角恒等变换-高考数学一题多解三角式的恒等变形是一种基本的数学技能,它的依据是三角变换公式和代数中代数式的恒等变换的一般方法,三角变换公式如:同角三角函数的基本关系式、两角和与差的公式、二倍角与半角公式、万能公式.积化和差与和差化积公式等,公式的数量较多,学习时要通过理解角的关系以及三角函数的关系揭示公式之间的内在联系、掌握公式的推导线索.要理解公式,注意公式的适用范围和符号的取舍,三角变换贵在灵活运用公式,掌握公式的逆用和各种变形的运用,以达到熟练、恰到好处地运用公式解决具体问题的目的.不同角的三角函数关系式使用起来与同角三角函数关系式最大的不同点是必须根据题目的题设条件与结论去确定所应用的公式,而选定公式的能力靠观察角度关系、熟悉公式特征来培养.已知条件和所要求的角之间不相同时,常看它们的和、差、倍的情况,定能找出角之间的关系.角的变换是三角变换技巧之一,转化思想是实施三角变换的主导思想,变换包括:函数名称变换、角的变换、“1”的代换、和积变换、幂的升降变换等,变换时必须熟悉公式,分清和掌握哪些公式会实现哪种变换,也要掌握各个公式的相互联系和适用条件.“恒等”这个词始终是三角变换的重点.三角恒等变换中的方法与技巧是必须掌握的解题能力.在三角恒等变换中较为重要的变换技巧如下.(1)函数名称的差异变换:①切割化弦,弦化切割;②异名化同名.(2)角的差异变换:①异角化同角;②拆角、配角技巧.(3)运算结构的差异变换:①升次降次;②分式通分;③无理化有理;④和(差)积互化.(4)常数的处理:特别注意“1”的代换.(5)引入辅助角的变换、角的分析与三角式的配凑.在解题过程中,不论运用什么变换技巧,基本原则是:把握方向,活用公式,注意目标,贵在“恒等”.真可谓:三角变换贵在活,变角变式变函数,恒等始终是重点,公式繁多方法多.【典例】(2022·新高考Ⅱ卷T6)角,αβ满足sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则()A.tan()1αβ+=B.tan()1αβ+=-C.tan()1αβ-= D.tan()1αβ-=-(一)直接法——由条件推结果【答案】D【解析】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-,即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=,即:()()sin cos 0αβαβ-+-=,所以()tan 1αβ-=-,故选:D(二)整体构造法——观察角与角的关系找共同点【答案】D【解析】根据sin()cos()αβαβ+++以及4πα+,可以利用辅助角公式,将4πα+当做一个整体,再进行合并,于是有如下解法:sin()cos()]44cos sin sin 444ππαβαβαβαβπππαβαβαβ+++=++++=++=+(()(()()cos sin 44ππαβαβ+=+()()sin cos cos sin =044ππαβαβ+-+(()即sin=04παβ+-()sin =sin cos cos sin ==0444πππαβαβαβαβαβ∴-+-+--+-()()()()()sin =cos αβαβαβ∴----()()即tan()=-1,故选D【点评】解题的关键当然是如何沟通条件和结论,一种思考是变形条件使之朝结论的目标靠拢,而条件的变形又是多种多样,但应始终抓住是恒等变形,条件式直接变形要始终抓住“恒等”,引进新元更要注意“恒等”.另一种思考是构造法,构造法也不是凭空而得,务必考虑与条件之间的等价关系.(三)特殊值排除法——做选择题的快速解法解法:设β=0则sinα+cosα=0,取=2πα,排除A ,C ;再取α=0则sinβ+cosβ=2sinβ,取β=4π,排除B ;选D.【点评】排除法是一种间接解法,也就是我们常说的筛选法、代入验证法,其实质就是舍弃不符合题目要求的选项,找到符合题意的正确结论.也即通过观察、分析或推理运算各项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论.具体操作起来,我们可以灵活应用,合理选取相应选项进行快速排除,【针对训练】(2022·浙江卷T13)1.若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.(2022·全国)2.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.3.化简:44661cos sin 1cos sin αααα----.4.求证:cos 1sin 1sin cos αααα+=-.5.设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=6.22sin 10cos 40sin10cos 40︒+︒+︒︒=_____________.7.已知π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,求2sin 22sin 1tan x x x+-的值.8.在△ABC 中,若cos cos A bB a=,则△ABC 的形状是________.9.cos15sin15cos15sin15︒-︒︒+︒的值是()A .-B .0C .D .310.在ABC 中,=4A π∠,边,,a b c 满足22212b a c -=,求tan C 的值.参考答案:1.1045【分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β.【详解】[方法一]:利用辅助角公式处理∵2παβ+=,∴sin cos βα=,即3sin cos αα-=1010αα⎫-=⎪⎪⎭,令sin θ=cos 10θ=,()αθ-=22k k Z παθπ-=+∈,,即22k παθπ=++,∴sin sin 2cos 2k παθπθ⎛⎫=++= ⎪⎝⎭,则224cos 22cos 12sin 15ββα=-=-=.故答案为:10;45.[方法二]:直接用同角三角函数关系式解方程∵2παβ+=,∴sin cos βα=,即3sin cos αα-=又22sin cos 1αα+=,将cos 3sin αα=210sin 90αα-+=,解得sin α=,则224cos 22cos 12sin 15ββα=-=-=.故答案为:10;45.2.(I )3B π=;(II )13,22⎛⎤ ⎥ ⎝⎦【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I )[方法一]:余弦定理由2sin b A =,得22223sin 4a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc+-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=,即444222222220a b c a c a b b c +++--=,即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->,∴222a c b ac +-=,所以2221cos 22a cb B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin b A =,结合正弦定理可得:2sin sin ,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤.由临界状态(不妨取2A π=)可知a cb+=而ABC 为锐角三角形,所以a cb+>由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++,222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭故cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 222A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin ,162A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,113sin ,6222A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦.即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.3.23.【分析】方法一:灵活利用平方关系及乘方公式化简即可.【详解】[方法一]:【最优解】“1”的代换化齐次式原式2224422366(cos sin )cos sin (cos sin )cos sin a ααααααα+--=+--2222222cos sin 23cos sin (cos sin )3αααααα⋅==+.[方法二]:公式降幂原式44661(cos sin )1(cos sin )a ααα-+=-+222222242241(cos sin )2cos sin 1(cos sin )(cos cos sin sin )αααααααααα⎡⎤-+-⋅⎣⎦=-+-⋅+2222222112cos sin 1(cos sin )3cos sin αααααα-+=⎡⎤-+-⋅⎣⎦22222cos sin 23cos sin 3a ααα⋅==⋅.[方法三]:降幂原式2242246(1cos )(1cos )sin (1cos )(1cos cos )sin ααααααα-+-=-++-2222244sin (1cos sin )sin (1cos cos sin )ααααααα+-=++-2222222cos 1cos (cos sin )(cos sin )αααααα=+++-22222cos 1cos cos sin a ααα=++-222cos 23cos 3αα==.【整体点评】方法一:根据22cos +sin =1αα化齐次式,简洁易算,是该题的最优解;方法二:根据22cos +sin =1αα以及平方和.立方和公式降幂,是化简求值的常用处理方法;方法三:根据平方差.立方差公式化简降幂,变形难度稍大.4.证明见解析【分析】方法一:式子左边分子分母同乘以cos α,再利用平方关系,变形分子即可得证.【详解】[方法一]:【最优解】左边=2cos cos (1sin )ααα-=21sin cos (1sin )ααα--=(1sin )(1sin )cos (1sin )αααα+--=1sin cos a α+=右边,等式成立.[方法二]:右边=(1sin )(1sin )cos (1sin )αααα+--=21sin cos (1sin )ααα--=2cos cos (1sin )ααα-=cos 1sin αα-=左边,等式成立.[方法三]:左边=2cos (1sin )cos ααα-,右边=(1sin )(1sin )(1sin )cos αααα+--=21sin (1sin )cos ααα--=2cos (1sin )cos ααα-,∴左边=右边,∴等式成立.[方法四]:∵cos 1sin αα--1sin cos a α+=2cos (1sin )(1sin )(1sin )cos ααααα-+--=22cos cos (1sin )cos αααα--=0.∴等式成立.[方法五]:左边=cos 1sin αα-=cos (1sin )(1sin )(1sin )αααα+-+=2cos (1sin )1sin ααα+-=1sin cos a α+=右边.[方法六]:∵(1-sin α)(1+sin α)=1-sin 2α=cos 2α,∴cos 1sin αα-=1sin cos aα+.[方法七]:若证cos 1sin αα-=1sin cos aα+成立,只需证cos α·cos α=(1-sin α)(1+sin α),即证cos 2α=1-sin 2α,此式成立,∴原等式cos 1sin αα-=1sin cos aα+成立.【整体点评】方法一:利用平方关系,从左边证到右边,是证明题的通性通法;方法二:利用平方关系,从右边证到左边;方法三:利用左边=中间,右边=中间证出;方法四:利用作差法证出;方法五:利用平方关系,从左边证到右边;方法六:根据平方关系变形证出;方法七:根据分析法证出.5.C【详解】[方法一]:sin 1sin ,sin cos cos cos sin cos cos αβαβααβαβ+=∴=+()sin sin 2παβα⎛⎫∴-= ⎪⎝⎭,,0,2222ππππαβα⎛⎫⎛⎫-∈--∈ ⎪ ⎪⎝⎭⎝⎭ ,222ππαβααβ∴-=-∴-=.故选:C.[方法二]:222cos sin cos sin 1sin 2222tan tan cos 24cos sin cos sin 2222ββββββπαβββββ⎛⎫++ ⎪+⎛⎫⎝⎭====+ ⎪⎝⎭- 又,,,22442242βπππβππααβ⎛⎫+∈∴=+∴-= ⎪⎝⎭.故选:C.[方法三]:由已知得,sin 1sin tan cos cos αβααβ+==,去分母得,sin cos cos cos sin αβααβ=+,所以sin cos cos sin cos ,sin()cos sin()2παβαβααβαα-=-==-,又因为22ππαβ-<-<,022ππα<-<,所以2παβα-=-,即22παβ-=,故选:C.考点:同角间的三角函数关系,两角和与差的正弦公式.6.34【分析】根据两角和的正弦余弦公式及同角三角函数的基本关系计算可得;【详解】[方法一]:因为40°=30°+10°,所以原式=22sin 10cos (3010)sin10cos(3010)++++22211sin 10sin10)sin10cos10sin 102222=+-+⋅- 2233(sin 10cos 10)44=+= .[方法二]:原式=1cos 201cos80sin10cos 4022-+++cos(5030)cos(5030)1sin10cos 402+--=++cos50cos30sin 50sin 30cos50cos30sin 50sin 301sin10cos 402---=++1sin 50sin 30sin10cos 40=-+ 1cos 40(sin 30sin10)=-- 1cos 40[sin(2010)sin(2010)]=-+-- 12cos 40cos 20sin10=-2cos 40cos 20sin10cos101cos10=-sin8013114cos1044=-=-= .[方法三]:换元法令10,40,sin a b cos a b ⎧=+⎨=-⎩得()()()()()11110401050302020,2221110401050302020,22a sin cos sin sin sin cos cos b sin cos sin sin cos sin sin ⎧=+=+==⎪⎪⎨⎪=-=-=-=⎪⎩则原式=222222333()()()()3cos 20sin 20444a b a b a b a b a b ++-++-=+=+=.[方法四]:设2222sin 10cos 40sin10cos 40,cos 10sin 40cos10sin 40x y =++=++ ,则1110401040250240,11180205040.222x y sin cos cos sin sin cos x y cos cos sin cos ⎧+=+++=+=+⎪⎨-=--=--=--⎪⎩所以322x =,故34x =.[方法五]:余弦定理由余弦定理,得2222cos a b ab C c +-=,又由正弦定理,得2sin sin sin a b cR A B C===,于是2222224sin 4sin 22sin 2sin cos 4sin R A R B R A R B C R C +-⋅⋅⋅=,得222sin sin 2sin sin cos sin A B A B C C +-=故22sin 10cos 40sin10cos 40++22sin 10sin 50sin10sin 50=++22sin 10sin 502sin10sin 50cos120=+-223sin 120)24=== .[方法六]:22sin 10cos 40sin10cos 40︒+︒+︒︒()()22sin 10cos 1030sin10cos 1030=︒+︒+︒+︒︒+︒2211sin 10sin10sin10cos10sin102222⎛⎫⎛⎫=︒+︒-︒+︒⨯︒-︒ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22223113sin 10cos 10sin 10sin 104424=︒+︒+︒-︒=故答案为:34.【点睛】本题考查同角三角函数的基本关系及两角和的正弦余弦公式的应用,属于中档题.7.2875-【分析】方法一:利用倍角公式和和差公式可得2π2sin cos sin sin 22sin 4π1tan cos 4x x x x x x x ⎛⎫+ ⎪+⎝⎭=-⎛⎫+ ⎪⎝⎭,然后利用条件可求出答案.【详解】[方法一]:根据已知角化简 22sin 22sin 2sin cos 2sin 1tan 1cos x x x x sin x x x x++=--2sin cos (cos sin )cos sin x x x x x x +=-π2sin cos sin()4πcos()4x x x x +=+π3cos()45x += ,177ππ124x <<,π4sin()45x ∴+=-,72sin cos 25x x ∴=.∴π2sin cos sin()284π75cos()4x x x x +=-+,∴2sin 22sin 281tan 75x x x +=--.[方法二]:直接展开求sin cos ,sin cos x x x x±()π3cos cos sin 425x x x ⎛⎫+=-= ⎪⎝⎭,得cos sin x x -=平方得2sin cos x x =725,()2732cos sin 12525x x +=+=, 177,124x ππ<<∴cos sin 0,cos sin x x x x +<+=,∴原式=cos sin 2sin cos cos sin x x x x x x +-=-2875.[方法三]:【最优解】逆用两角和的正切公式和二倍角公式因为π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,所以4sin 45x π⎛⎫+=- ⎪⎝⎭,即π4tan(43x +=-)原式=cos sin 1tan 2sin cos sin 2cos sin 1tan x x x x x x x x x ++=--=πsin2tan 4x x ⎛⎫+ ⎪⎝⎭,7sin2cos 212cos 2425x x x ππ⎛⎫⎛⎫=-+=-+= ⎪ ⎪⎝⎭⎝⎭,∴原式=2875-.[方法四]:整体法求cos x 因为π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,所以4sin 45x π⎛⎫+=- ⎪⎝⎭,cos cos cos cos sin sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,又 177124x ππ<<,所以sin x =,tan x =7,∴原式=-2875.【整体点评】方法一:将所求式化简成已知角的三角函数形式,整体代换求出;方法二:直接根据两角和的余弦公式展开以及平方关系求sin cos ,sin cos x x x x ±,化切为弦求出;方法三:逆用两角和的正切公式和二倍角公式求解最为简洁,是该题的最优解;方法四:利用整体思想以及同角三角函数基本关系求出sin ,cos ,tan x x x ,是该题的通性通法.8.等腰三角形或直角三角形【分析】由已知及余弦定理可得22222()()0a b c a b ---=,即可判断△ABC 的形状.【详解】[方法一]:由余弦定理,222222cos 2cos 2b c a A b bc a c b B aac+-==+-,化简得22222()()0a b c a b ---=,∴a b =或222c a b =+,∴△ABC 为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.[方法二]:由cos cos A b B a =可知cos 0A >,cos 0B >,即0,2A π⎛⎫∈ ⎪⎝⎭,0,2B π⎛⎫∈ ⎪⎝⎭,由正弦定理结合题意可得cos sin cos sin A B B A =,即11sin cos sin cos ,sin 2sin 222A AB B A B =∴=,据此有22A B =或22A B π+=,即A B =或2A B π+=.∴△ABC 为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.9.D【详解】[方法一]:()()15453045304530122224154530453045301222cos cos cos cos sin sin sin sin sin cos cos sin =-=++=+==-=-==则原式44=[方法二]:()1tan15tan45tan15tan4515tan301tan151tan45tan15--===-==++原式[方法三]:cos15sin150>>,令cos15sin15(0)cos15sin15t t-=>+,22222cos152sin15cos15sin151sin301cos152sin15cos15sin151sin3033t t-+-===∴=+++则.[方法四]:()()222cos15cos15sin15cos15sin15cos15sin152cos15cos15sin1512cos152sin15cos15cos301sin3022cos152sin15cos15cos301sin30--=++-+-===+++[方法五]:22222cos15sin15cos15sin15cos15sin15cos15sin15cos15sin15cos15sin15cos30cos15sin152sin15cos151sin303-+-=++-===+++()()()[方法六]:cos15sin15sin15cos15cos15sin15sin15cos151sin30sin302sin60sin602--=-=-++--==()故选D.10.tan2C=.【分析】方法一:由余弦定理及已知可得3c=,再根据正弦定理的边角关系、三角形内角性质及差角正弦公式得3sin2cos2sinC C C=+,即可求tan C.【详解】[方法一]:【最优解】利用正、余弦定理边化角因为22212b a c-=,2222cosb c a bc A+-=,所以232c=,即3c=,所以33sin sin()2cos 2sin 4C B C C C π==-=+,即tan 2C =.[方法二]:和差化积公式的应用由22212b a c -=得,2221sin sin sin 2B AC -=,即212sincos 2cos sin sin 22222B A B A B A B AC +-+-⨯=,即()21sin sin sin 2C B A C -=,因为0sin 1C <≤,所以()()2sin sin sin B A C A B -==+,即sin cos 3sin cos B A A B =,所以tan 3tan 3B A ==.()tan tan 13tan tan 21tan tan 13A B C A B A B ++=-+=-=-=--.【整体点评】方法一:利用正、余弦定理边化角,再根据消元思想即可解出,是该题的最优解;方法二:利用和差化积公式转化求值,需要较强的运算能力.。
2023年高考数学真题分训练 三角函数定义与三角函数恒等变换(含答案含解析)
专题 11 三角函数定义与三角函数恒等变换十年大数据x 全景展示年份题号考点 考查内容理 5 三角函数定义 文 7 三角恒等变换2011课标三角函数定义与二倍角正弦公式同角三角函数根本关系与诱导公式同角三角函数根本关系式、三角函数在各象限 的符号及两角和的正切公式 卷 2理 15三角恒等变换 2023同角三角函数根本关系与诱导公式 三角恒等变换卷 2文 6理 8二倍角公式及诱导公式同角三角函数根本关系与诱导公式三角恒等变换 此题两角和与差的三角公式公式、诱导公式、 三角函数性质等根底知识 卷 12023卷 1文 2 三角函数定义同角三角函数根本关系与诱导公式 三角函数在各象限的符号 2023卷 1理 2 诱导公式及两角和与差的三角公式三角恒等变换 三角恒等变换两角差的正切公式、同角三角函数根本关系、 卷 2 理 9二倍角公式二倍角正弦公式、同角三角函数根本关系、三卷 3理 5 同角三角函数根本关系与诱导公式角函数式求值.2023诱导公式、同角三角函数根本关系、三角函数卷 1文 14 同角三角函数根本关系与诱导公式求值利用二倍角公式及同角三角函数根本关系求卷 3 文 6 同角三角函数根本关系与诱导公式 值三角恒等变换同角三角函数根本关系、两角和公式及化归与 转化思想卷 1文 14同角三角函数根本关系与诱导公式 三角恒等变换2023卷 3文 4二倍角的正弦公式与同角三角函数根本关系. 同角三角函数根本关系与诱导公式 三角恒等变换同角三角函数根本关系、两角和公式及化归 与转化思想卷 2 理 15 同角三角函数根本关系与诱导公式 理 4 三角恒等变换2023 卷 3 二倍角余弦公式,运算求解能力文 4卷 三角函数定义三角函数定义、同角三角函数根本关系,转化 与化归思想与运算求解能力文 111同角三角函数根本关系与诱导公式同角三角函数根本关系与诱导公式三角恒等变换诱导公式、两角和与差的正切公式,转化与化 归思想与运算求解能力卷 2文 15二倍角公式及同角三角函数根本关系,运算求解能力卷 2 理 10 三角恒等变换三角恒等变换卷 3卷 1文 5文 7二倍角公式,已知函数值求角及函数零点.诱导公式,两角和的正切公式函数零点2023同角三角函数根本关系与诱导公式三角恒等变换同角三角函数根本关系与诱导公式三角恒等变换 同角三角函数根本关系、二倍角公式、已知函 数值求角,运算求解能力 二倍角公式,平方关系 二倍角公式,三角函数的符号 二倍角公式 卷 2 文 11 卷 1 卷 2理 9 三角恒等变换 理 2三角恒等变换2023文 13 三角恒等变换 理 9 三角恒等变换 文 5三角恒等变换卷 3 卷 3两角和的正切公式 两角和的正弦公式大数据分析x 预测高考考 点出现频率2023 年预测三角函数定义4/232023 年高考仍将重点考查同角三角函数根本关系及三 角恒等变换,同时要注意三角函数定义的复习,题型仍 为选择题或填空题,难度为根底题或中档题.同角三角函数根本关系与诱导公式 16/23 三角恒等变换13/23十年真题分类x 探求规律考点 36 三角函数定义1.(2023•新课标Ⅰ,文 11)已知角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1,a ) ,2B (2,b ),且cos 2 ,则| a b | ()3 1 55 2 5 5A .B .C .D .15(答案)B2(解析) 角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1,a ) ,B (2,b ) ,且cos 2 , 3 2 3 5630 630 36 6 cos 2 2 c os 2 1, 解 得 cos 2, | cos | , | sin | 1,66b a 2 1 | s in | | cos | 56 30 6 | tan | | | | a b | ,应选 B .52.(2023 新课标 I ,文 2)假设 tan 0,则 A. sin 2 0 B . cos 0C . sin 0D . cos 2 0(答案)A(解析)由tan 0知, 在第—、第三象限,即k k 即2 在第—、第二象限,故只有sin 2 0,应选 A .(k Z ),∴2k 2 2k,23.(2011 全国课标理 5 文 7)已知角 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线 y 2x 上,则cos 2 =4 53 53 5 45(A)(B)(C)(D) (答案)By 2 5(解析)在直线 y 2x 取一点 P(1,2),则r = 5 ,则sin ==, r 53∴cos2=1 2 s in 2 = ,应选 B . 53 4 4.(2023 浙江)已知角 的顶点与原点O 重合,始边与 x 轴的非负半轴重合,它的终边过点 P ( , ) .5 5(1)求sin( )的值; 5(2)假设角 满足sin( ),求cos 的值. 133 4 (解析)(1)由角 的终边过点P ( , ) 得sin ,5 545 45 所以sin() sin . 3 4 3 (2)由角 的终边过点P ( , ) 得cos ,5 555 得cos( ) 12 由sin( ) . 13 13由 ( ) 得cos cos( ) c os sin( ) s in ,56 或cos 16 所以cos.65 65考点 37 同角三角函数根本关系与诱导公式1.(2023•新课标Ⅱ,文 11)已知 (0, ),2sin 2 cos 2 1,则sin ()2 1 55 3 2 5 5A .B .C .D .53(答案)B(解析) 2sin 2 cos 2 1 , 可得: 4sin cos 2 c os2, (0, ) , sin 0 , cos 0 ,25cos 2sin , sin 2 cos 2 sin 2 (2sin ) 2 5sin21, 解得:sin ,应选 B . 53 4 tan,则cos 2sin 222.(2023 新课标卷 3,理 5)假设 6448 25 16 25(A)(B)(C) 1(D)25(答案)A 3 4 3 4 5 3 45 (解析)由tan,得 sin , c os 或 sin , c os ,所以 5 5 16 2512 64cos22sin 2 4 ,应选 A .25 25 1 3.(2023 全国课标卷 3,文 6)假设tan ,则cos2 ( )3451 5 15 4 5(A) (B)(C) (D) (答案)D104.(2023 浙江)已知R ,sin 2costan 2 ,则( )2 43 34 3 4 A . B .C .D .43(答案)C10 2sin 2 4c os 2 4 s in cos 10 (解析)由 (sin 2 c os )( ) 可得 ,进一步整理可得 22 sin cos 4 2 212 t an 33 t an 2 8 t an 3 0,解得 tan 3或tan ,于是 tan 2,应选 C .31 tan2 4sin cos 1sin cos 25.(2023 江西)假设,则 tan2α=( )3 34 4 3A .−B .C .−D .4 43(答案)B(解析)分子分母同除cos 得: sin cos tan 1 1,∴ tan 3,sin cos tan 1 22 t an 3∴tan 24 1 tan25 1 5 6.(2023 广东)已知sin( ) ,那么 cos22 5B . 151 25A .C .D .5(答案)C 5 215 (解析)sin( ) sin(2 + ) sin cos ,选 C .2 2 37.(2023•新课标Ⅰ,文 14)已知 是第四象限角,且sin( ) ,则 tan( ).4 5 4 43(答案)(解析) 是第四象限角, 2k 2k ,则 2k2k ,k Z , 2 4 4 43533 45 又 sin( ) , cos( ) 1 sin2( ) 1 ( ) 2 , ∴ cos() = sin( ) =, 4 5 44 5 4 44sin( )4 44 5 3 sin( ) cos( ) ,则tan( ) = tan( ) = = = .4 45 4 43 cos( )4 51 28.(2023 新课标Ⅱ,理 15)假设 为第二象限角,tan( ,则sin cos.) 4 (答案)1 2 tan 1,即cos 3sin ,∵sin (解析)(法 1)由 tan() 得,= 2cos 2 1,为第二4 310 3 10 10105象限角,∴sin =,cos = ,∴sin cos . 1059.(2023 江苏)已知 ( , ) ,sin. 25(1)求sin( ) 的值;45(2)求cos( 2 ) 的值.65 52 55 (解析)(1)∵, ,sin ,∴cos 1 sin 2 24 4 2 2 10 10sin sin cos cos sin(cos sin ) ; 4 4 5 35(2)∵sin 2 2sin cos ,cos 2 cos sin 2 26 63 3 1 43 34 ∴cos 2 cos cos 2 sin sin 2 . 6 25 2 5 10 考点 38 三角恒等变换1.(2023 全国Ⅰ理 9)已知 0,π ,且3cos2 8cos 5,则sin ()52 31 35 A .B .C .D .39(答案)A(思路导引)用二倍角的余弦公式,将已知方程转化为关于cos的一元二次方程,求解得出cos,再用同角间的三角函数关系,即可得出结论. (解析)3cos 28cos 5,得6cos 2 8cos 8 0,即3cos 4 c os4 0,解得225cos 或cos 2(舍去),又 1 cos 20,, sin ,应选 A . 332.(2023 全国Ⅱ理 2)假设 为第四象限角,则 ()A .cos 2 0 (答案)DB .cos 2 0C .sin 2 0D .sin 2 0(思路导引)由题意结合二倍角公式确定所给的选项是否正确即可.0,选项 B 错误;当2时,cos2 cos 3(解析)当 时,cos2 cos 0,6 3sin 0, c os 3 0 ,则sin2 2sin cos 0 选项 A 错误;由 在第四象限可得: ,选项 C 错误,选项 D 正确,应选 D .363.(2023 全国Ⅲ文 5)已知sin sin 1,则sin( )1 23 2 3 2 A .B .C .D .32(答案)B(思路导引)将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 1 23 3 3 3 13 (解析)由题意可得:sinsin cos 1,则: sin cos 1, sin cos,2 2 2 2 2 3从而有:sin coscos sin3 ,即6 3 .应选 B .sin6 63 34.(2023 全国Ⅲ理 9)已知2 t an tan 7 ,则 tan4()A . 2B . 1C .1D .2(答案)D(思路导引)利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.4tan 1 1 t 2 t an tan7, 2tan 1 tan 7,令t tan ,t 1,则2t 1 t 7,整(解析) 理得t 24t 4 0 ,解得t 2,即 tan 2.应选 D .5.(2023•新课标Ⅱ,理 10)已知 (0, ),2sin 2 cos 2 1,则sin ()2 1 55 3 2 55A .B .C .D .53(答 案)B(解析) 2sin 2 cos 2 1, 4sin cos 2 c os2, (0, ) ,sin 0,cos 0 , cos 2sin ,25sin 2 cos 2 sin 2 (2sin ) 2 5sin21, sin ,应选 B . 56.(2023•新课标Ⅲ,文 5)函数 f (x ) 2sin x sin 2x 在0 ,2 ]的零点个数为( )A .2B .3C .4D .5(答案)B(解析)函数 f (x ) 2sin x sin 2x 在0 ,2 ]的零点个数,即:2sin x sin 2x 0在区间0 ,2 ]的根个数, 即2sin x sin 2x ,即sin x (1 cos x ) 0,即sin x 0或cos x 1,∵ x 0 ,2 ],∴ x 0, ,2 ,应选B .7.(2023•新课标Ⅰ,文 7) tan 255 ( )A . 2 3 (答案)DB . 2 3C .2 3D .2 3(解析)∵tan 255 tan(180 75 ) tan 75 tan(45 30 )31tan 45 tan 30 1 tan 45 tan 30 3 3 (3 3) 2 12 6 3 3 2 3 ,应选 D . 3 3 36 6 1 1318.(2023•新课标Ⅲ,理 4 文 4)假设sin ,则cos 2 ()3 8 97 97 98 A .B .C .D .9(答案)B11 71 2 ,应选 B .9 9(解析) sin , cos 2 1 2sin2349.(2023 新课标卷 3,文 4)已知sin cos ,则sin 2 = 37 92 92 97 9A .B .C .D .(答案)Acos 21 sin 79(解析)因为sin 2 2sin cos,应选 A .1 310.(2023•新课标Ⅱ,理 9)假设cos( ) ,则sin 2 ()4 5 715C . 17 A .B .D .25 525(答案)D3(解析)法1 : cos( ) ,4 59 7sin 2 cos( 2 ) cos 2( ) 2 c os 2 ( ) 1 2 125 25 , 2 4 4 法2 : cos( ) 2(sin cos ) , (1 sin 2 ) 3 1 9 , sin 2 2 1259 7, 4 2 5 2 25 25 应选 D .11.(2023 新课标Ⅰ,理 2)sin20°cos10°-con160°sin10°=3 3 1 2 1 2A .B .C .D .22(答案)D1 (解析)原式=sin20°cos10°+cos20°sin10°=sin30°= ,应选 D . 21 sincos 12.(2023 新课标Ⅰ,理 8)设 (0, ), (0, ) ,且 tan,则2 2 A .3(答案)BB .2C .3D .22222sin 1 sin(解析)∵tan,∴sin cos cos cos sin cos cos2sin cos ,0 sin , 2 2 2 2 ∴,即2 ,选 B 2 22 313.(2023 新课标Ⅱ,文 6)已知sin 2 ,则cos 2( ) ()4 161 3 1 22 3(A)(B)(C)(D)(答案)A2 1 1 1 (解析)因为sin 2,所以cos 2( ) 1 cos 2( )]= (1 sin 2 ) = ,应选 A ., 3 4 2 4 2 63cos()10 14.(2023 重庆)假设tan 2 t an ,则=( ) 5 sin( ) 5A .1B .2C .3D .4(答案)C3 3 3 3 3 cos() cos cos sin sin cos tan sin 10 10 10 10 10(解析)sin( ) sin cos cos sin tan cos sin5 5 5 5 53 3 3 3cos 2 t an sin cos cos 2s in sin 10 5 10 5 10 5 102 t an cos sin sin cos5 5 5 5 51 2(cos 5cos 5 cos ) (cos ) 3cos cos 10 10 1 10 10 10 = 3,选 C . 22sin5 104 23 7 8 15.(2023 山东)假设, ,sin 2 ,则sin ( ) 34 57 43 A .B .C .D .5 4(答案)D 4 2 2 1, (解析)由2 , cos 2 1 sin , 2, 可得 2 81 cos2 34sin,应选 D . 21 316.(2011 浙江)假设0< < ,- < <0,cos( ) ,cos( ),则cos( ) 22434 2 3 233 5 3 96 A . B .C .D .339(答案)C) cos((解析)cos() ( )] ) cos( ) c os( )2 4 4 2 4 4 23sin( ) s in( ) ( , ( , ),,而 , 4 4 2 4 4 4 4 2 4 2 2 2 3 ,sin( ) 4 26因此sin( ), 4 31 32 26 5 3 则cos( )3 3. 2 3 3 9 217.(2023 全国Ⅱ文 13)设sin x ,则cos 2x.3 1 9(答案)(思路导引)直接利用余弦的二倍角公式进行运算求解即可. 2 8 1 1 (解析)cos2x 1 2sin 2x 1 2 ( ) 1 2.故答案为:.3 9 992 18.(2023 江苏 8)已知sin 2 ( ) ,则sin 2 的值是________.4 31(答案)32 1 1 21 3(解析)∵sin2( ) ,由sin 2 ( ) (1 cos( 2 )) (1 sin 2 ) ,解得sin 2 . 4 3 4 2 2 2 3π419.(2023 浙江 13)已知tan 2,则cos2 ; tan .3 1(答案); 5 3(思路导引)利用二倍角余弦公式以及弦化切得cos2 ,依据两角差正切公式得 tan( )4cos cos 2 2 sin sin 2 2 1 tan 1 tan 2 2 3tan 1 14 1 tan 3 (解析) cos 2 cos 2sin 2, tan ,故 5 3 1答案为: ;.5 320.(2023 北京 14)假设函数 f (x ) sin(x ) cos x 的最大值为2,则常数 的一个取值为 .(答案)2(解析)∵ f (x ) sin(x ) cos x sin x cos cos x sin cos x sin x cos cos x (sin 1)cos (sin 1) sin(x ),(sin 1) 4,cos sin 2 2则cos 2 2 22 2sin 1 1 2sin 1 4,∴sin 1,∴. 221.(2023•新课标Ⅱ,理 15)已知sin cos 1,cos sin 0 ,则sin( ) .1 (答案)2(解析)sin cos 1,两边平方可得:sin 22sin cos cos 2 1,①,cos sin 0 , 两 边 平 方 可 得 : cos22cos sin sin 2 0 , ② , 由 ① ② 得 :1 2 2(sin cos cos sin ) 1 ,即2 2sin( ) 1, 2sin( ) 1, sin( ) . 25 122.(2023•新课标Ⅱ,文 15)已知 tan( ) ,则 tan .4 53 2 (答案) 5 1 515(解析)tan() ,tan( ), 则4 4 15 tan( ) tan1 1 5 6 3 .4 4 tan tan( ) 15 1 4 2 4 4 1 tan( ) t an 1 14 45 ππcos ( ) 23.(2023 新课标卷,文 14)已知a (0,) ,tan α=2,则=__________.243 10 10(答案)1(解析)由tan 2得sin 2cos ,又sin2cos 2 1,所以cos 2 ,因为 (0, ),所5 2 5 2 55以cos,sin ,因为. cos( ) cos cos sin sin,所以5 4 4 45 2 2 5 2 3 10cos( )4 5 2 5 2 10f (x ) sin2x 的最小正周期是 ________. 2 24.(2023 北京 9)函数(答案)21 cos 4x 1 12π πf x 〕 sin 〔22x 〕cos 4x ,所以 f x 的最小正周期T 2 2 (解析)因为 . 2 4 2tan 23π4 π 4 sin 2 ,则25.(2023 江苏 13)已知 的值是_________. tan2(答案)10tan 2 tan 2 3 (解析)由,得 ,3 tan( ) tan tan 1 tan tan4 44tan (1 tan ) 2 1所以,解得 tan 2或 tan .1 tan 3 32tan 4 1 tan 2 3 5当tan 2时,sin2 5 ,cos2 , 1 tan 2 1 tan 2 4 2 3 2 2sin(2 ) sin2 cos cos2 sin. 4 4 4 5 2 5 2 101 tan2 4 1时,sin2 2tan,cos2 3 当tan , 3 1 tan 2 51 tan 5 23 24 22 所以sin(2 ) sin2 cos cos2 sin. 4 4 4 5 2 5 2 102 综上,sin(2 )的值是. 4 1026.(2023 北京)在平面直角坐标系 中,角与角 均以Ox为始边,它们的终边关于 轴对称.假设yxOy1 3 sin cos( ) =___________.,则 7 (答案)9y 2k, 所 以( 解 析 ) ∵ 角与 角 的 终 边 关 于 轴 对 称 , 所 以 ;1sin sin(2k ) sin ,cos cos31 2 379cos( ) cos cos sin sin cos 2 sin 2 2sin 2 1 2 ( ) 1 .127.(2023 江苏)假设tan( ) ,则tan =. 4 67 5(答案)tan( ) tan7 4 4 (解析) tan tan( ). 4451 tan( ) tan4 428.(2023 四川)sin15sin75.6(答案)26(解析)sin15 sin 75 sin15 cos15 2 s in(15 45 ). 2129.(2023 江苏)已知 tan 2, tan(答案)3,则 tan 的值为_______. 71 2tan( ) tan 1 tan( ) t an 7 (解析) tan tan( )3. 21 730.(2023 四川)设sin 2 sin , ( , ),则 tan 2 的值是_____. 2(答案) 31(解析) sin 2 2sin cos sin ,则cos,又 ( , ) ,2 22 t an 2 31 3 则tan 3,tan 23.1 tan 24 6 531.(2023 江苏)设 为锐角,假设cossin 2 ,则 .的值为1217 2 50(答案)4 324 7(解析) 因为 为锐角,cos( )= ,∴sin( )= ,∴sin2( ) cos2( ), 6 5 6 5 625,6 25 2 17 17 2 所以 sin(2) sin2( ) ] .12 6 4 2 25 5045 32.(2023 江苏)已知 , 为锐角, tan,cos( ) . 3 5(1)求cos 2 的值; (2)求 tan( )的值. 4sin cos 4(解析)(1)因为 tan ,tan,所以 , sin cos . 33 9因为sin 2 cos 2 1 ,所以cos 2257因此,cos 2 2c os 1 2. 25(2)因为 , 为锐角,所以 (0, π) . 5 2 55又因为cos( ) ,所以sin( ) 1 cos 2 ( ), 5 因此 tan( ) 2 .4 2 t an 247 因为 tan ,所以 tan 2 ,3 1 tan 2 tan 2 tan( ) 1+ t an 2 tan( ) 2因此,tan( ) tan2 ( ).11f x a 2cos 2 x cos 2x 为奇函数 ,且 f 0 33.(2023江西)已知函数 (1)求a , 的值;,其中a R , 0, . 44 2 23(2)假设 f ,, ,求sin 的值. 5 (解析)(1)因为 f x a 2 c os2x cos 2x 是奇函数,而 y a 2c os x 为偶函数,所以 21y 2 cos(2x )为奇函数,又 0, ,得. 2f 0,得 (a 1) 0 ,即a 1. f x = sin 2x a 2 c os x由 2 所以 〔 44 1 25 1 4(2)由(1)得: f x f sinsin , ,得 sin 4x , 因为 2 2 5 235 又 , ,所以cos ,3 4 3 3 sin sin cos sin cos 因此. 3 3 1012f (x ) 2 cos x,x R 34.(2023 广东)已知函数 . 3 f (1) 求 的值; 33 2cos , ,2 f ,求 (2) 假设. 65(解析)(1) f () 2 cos 1. 3 12 43 3 94 (2)由于cos ,<θ<2π,所以sin 1 cos 21 , 5 225 5 66 12因此 f 2 cos43 24 2 21 2 cos 2 cos cos 2 sin sin 2 .4 45 2 5 2 5。
高中数学分章节训练试题:11三角恒等变换
高三数学章节训练题11 《三角恒等变换练习题》时量:60分钟 满分:80分 班级: 姓名: 计分:个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’)一、选择题(本大题共6小题,每小题5分,满分30分) 1. 已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( )A. 247 B. 247- C. 724 D. 724- 2. 函数3sin 4cos 5y x x =++的最小正周期是( )A. 5π B. 2π C. π D. 2π 3. 在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( )A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 无法判定4. 设00sin14cos14a =+,00sin16cos16b =+,c =,则,,a b c 大小关系( )A. a b c <<B. b a c <<C. c b a <<D. a c b <<5. 函数)cos[2()]y x x ππ=-+是( )A. 周期为4π的奇函数 B. 周期为4π的偶函数 C. 周期为2π的奇函数 D. 周期为2π的偶函数6. 已知cos 2θ=则44sin cos θθ+的值为( ) A. 1813 B. 1811 C. 97 D. 1-二、填空题(本大题共4小题,每小题5分,满分20分)1. 求值:0000tan 20tan 4020tan 40+=_____________.2. 若1tan 2008,1tan αα+=-则1tan 2cos 2αα+= .3. 已知sin cos 22θθ+=那么sin θ的值为 ,cos 2θ的值为 .4. ABC ∆的三个内角为A 、B 、C ,当A 为 时,cos 2cos2B C A ++取得最大值,且这个最大值为 .三、解答题(本大题共3小题,每小题10分,满分30分) 1. ① 已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.②若,22sin sin =+βα求βαcos cos +的取值范围.2. 求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+--3. 已知函数.,2cos 32sin R x x x y ∈+= ①求y 取最大值时相应的x 的集合;②该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象.高三数学章节训练题11 《三角恒等变换练习题》参考答案一、选择题 1. D (,0)2x π∈-,24332tan 24cos ,sin ,tan ,tan 25541tan 7x x x x x x ==-=-==-- 2. D 25sin()5,21y x T πϕπ=++== 3. C cos cos sin sin cos()0,cos 0,cos 0,A B A B A B C C C -=+>-><为钝角4. D 0a =,061b =,060c =5. C 2cos 24y x x x ==,为奇函数,242T ππ==6. B 442222221sin cos (sin cos )2sin cos 1sin 22θθθθθθθ+=+-=-21111(1cos 2)218θ=--= 二、填空题0000000tan 20tan 40tan 60tan(2040)1tan 20tan 40+=+==-000020tan 40tan 20tan 40=+2. 2008 11sin 21sin 2tan 2cos 2cos 2cos 2cos 2ααααααα++=+= 222(cos sin )cos sin 1tan 2008cos sin cos sin 1tan αααααααααα+++====--- 3. 17,39 22417(sin cos )1sin ,sin ,cos 212sin 22339θθθθθθ+=+===-= 4. 0360,2 2cos 2cos cos 2sin 12sin 2sin 2222B C A A A A A ++=+=-+ 22132sin 2sin 12(sin )22222A A A =-+-=--+ 当1sin 22A =,即060A =时,得max 3(cos 2cos )22BC A ++= 三、解答题1. ①解:sin sin sin ,cos cos cos ,βγαβγα+=-+=-22(sin sin )(cos cos )1,βγβγ+++=122cos()1,cos()2βγβγ+-=-=-. ②解:令cos cos t αβ+=,则2221(sin sin )(cos cos ),2t αβαβ+++=+ 221322cos(),2cos()22t t αβαβ+-=+-=-2231722,,22222t t t -≤-≤-≤≤-≤≤ 2. 解:原式2000000002cos 10cos5sin 5sin10()4sin10cos10sin 5cos5=-- 000000cos10cos102sin 202cos102sin102sin10-=-= 0000000000cos102sin(3010)cos102sin 30cos102cos30sin102sin102sin10---+==0cos302==3. 解:sin2sin()2223x x x y π=+=+ (1)当2232x k πππ+=+,即4,3x k k Z ππ=+∈时,y 取得最大值 |4,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭为所求 (2)2sin()2sin 2sin 232x x y y y x ππ=+→=−−−−−−−→=右移个单位横坐标缩小到原来的2倍3 sin y x −−−−−−−→=纵坐标缩小到原来的2倍。
课时作业11:简单的三角恒等变换
§4.3 简单的三角恒等变换1.已知α是第二象限角,且tan α=-13,则sin 2α等于( )A .-31010 B.31010 C .-35 D.35答案 C解析 因为α是第二象限角,且tan α=-13,所以sin α=1010,cos α=-31010, 所以sin 2α=2sin αcos α=2×1010×⎝⎛⎭⎫-31010=-35. 2.(2019·大连调研)已知sin(θ+20°)=15,则sin(2θ-50°)的值为( )A .-2325 B.2325 C.4625 D.25答案 A解析 sin(2θ-50°)=sin [(2θ+40°)-90°]=-cos(2θ+40°)=2sin 2(θ+20°)-1=-2325. 3.cos 15°+sin 15 °cos 15°-sin 15°的值为( )A.33 B. 3 C .-33D .- 3 答案 B解析 原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.4.(2020·沧州七校联考)若sin(π+θ)=-35,θ是第二象限角,sin ⎝⎛⎭⎫π2+φ=-255,φ是第三象限角,则cos(θ-φ)的值是( ) A .-55 B.55 C.11525D. 5 答案 B解析 ∵sin(π+θ)=-sin θ=-35,∴sin θ=35,又θ是第二象限角,∴cos θ=-45.又∵sin ⎝⎛⎭⎫π2+φ=cos φ=-255,φ为第三象限角, ∴sin φ=-55. ∴cos(θ-φ)=cos θcos φ+sin θsin φ =⎝⎛⎭⎫-45×⎝⎛⎭⎫-255+35×⎝⎛⎭⎫-55=55.5.化简cos 250°-sin 220°-sin 30°sin 50°等于( ) A.12cos 10° B .-12cos 10°C.12sin 10° D .-12sin 10°答案 D解析 原式=1+cos 100°2-1-cos 40°2-12cos 40°=12cos 100°=-12sin 10°. 6.设a =cos 50°cos 127°+cos 40°sin 127°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .a >c >b 答案 D解析 a =sin 40°cos 127°+cos 40°sin 127° =sin(40°+127°)=sin 167°=sin 13°, b =22(sin 56°-cos 56°)=22sin 56°-22cos 56° =sin(56°-45°)=sin 11°,c =cos 239°-sin 239°cos 239°sin 239°+cos 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°, ∵sin 13°>sin 12°>sin 11°,∴a >c >b .7.(多选)下列四个选项中,化简正确的是( )A .cos(-15°)=6-24B .cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C .cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=cos [(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12D .sin 14°cos 16°+sin 76°cos 74°=12答案 BCD解析 对于A 方法一 原式=cos(30°-45°)=cos 30°·cos 45°+sin 30°sin 45°=32×22+12×22=6+24,A 错误. 方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24. 对于B ,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B 正确. 对于C ,原式=cos [(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12.对于D ,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=12.8.3tan 12°-3sin 12°(4cos 212°-2)= .答案 -4 3解析 原式=3×sin 12°cos 12°-3sin 12°(4cos 212°-2)=3sin 12°-3cos 12°2sin 12°cos 12°(2cos 212°-1)=23⎝⎛⎭⎫12sin 12°-32cos 12°sin 24°cos 24°=23sin (12°-60°)12sin 48°=-4 3.9.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为 . 答案17250解析 ∵α为锐角且cos ⎝⎛⎭⎫α+π6=45>0, ∴α+π6∈⎝⎛⎭⎫π6,π2,∴sin ⎝⎛⎭⎫α+π6=35. ∴sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =sin 2⎝⎛⎭⎫α+π6cos π4-cos 2⎝⎛⎭⎫α+π6sin π4 =2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6-22⎣⎡⎦⎤2cos 2⎝⎛⎭⎫α+π6-1 =2×35×45-22⎣⎡⎦⎤2×⎝⎛⎭⎫452-1 =12225-7250=17250. 10.已知sin α+cos β=13,sin β-cos α=12,则sin(α-β)= .答案 -5972解析 ∵sin α+cos β=13,sin β-cos α=12,∴(sin α+cos β)2=19,(sin β-cos α)2=14,即sin 2α+2sin αcos β+cos 2β=19,①sin 2β-2sin βcos α+cos 2α=14.②①+②得2+2sin(α-β)=1336,∴sin(α-β)=-5972.11.若sin θ=45且5π2<θ<3π,求cos θ2,tan θ2的值.解 ∵sin θ=45,5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.∵cos θ=2cos 2θ2-1,∴cos 2θ2=1+cos θ2,又∵5π4<θ2<3π2,∴cos θ2=-1+cos θ2=-1-352=-55,tan θ2=sinθ2cos θ2=sin θ2cos 2θ2=sin θ1+cos θ=451-35=2. 12.若sin ⎝⎛⎭⎫34π+α=513,cos ⎝⎛⎭⎫π4-β=35,且0<α<π4<β<34π,求cos(α+β)的值. 解 因为0<α<π4<β<34π.所以34π<34π+α<π,-π2<π4-β<0.又sin ⎝⎛⎭⎫34π+α=513, cos ⎝⎛⎭⎫π4-β=35,所以cos ⎝⎛⎭⎫34π+α=-1213,sin ⎝⎛⎭⎫π4-β=-45, 所以cos(α+β)=sin ⎣⎡⎦⎤π2+(α+β)=sin ⎣⎡⎦⎤⎝⎛⎭⎫34π+α-⎝⎛⎭⎫π4-β =sin ⎝⎛⎭⎫34π+αcos ⎝⎛⎭⎫π4-β-cos ⎝⎛⎭⎫34π+αsin ⎝⎛⎭⎫π4-β =-3365.13.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235 B.235 C.45 D .-45答案 D解析 由cos ⎝⎛⎭⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435, 所以3sin ⎝⎛⎭⎫α+π6=435,sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 14.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin ⎝⎛⎭⎫β+5π4= . 答案7210解析 依题意可将已知条件变形为sin [(α-β)-α]=-sin β=35,sin β=-35.又β是第三象限角,所以cos β=-45.所以sin ⎝⎛⎭⎫β+5π4=-sin ⎝⎛⎭⎫β+π4 =-sin βcos π4-cos βsin π4=35×22+45×22=7210.15.已知cos ⎝⎛⎭⎫π4+θcos ⎝⎛⎭⎫π4-θ=14,则sin 4θ+cos 4θ的值为 . 答案 58解析 因为cos ⎝⎛⎭⎫π4+θcos ⎝⎛⎭⎫π4-θ =⎝⎛⎭⎫22cos θ-22sin θ⎝⎛⎭⎫22cos θ+22sin θ=12(cos 2θ-sin 2θ)=12cos 2θ=14. 所以cos 2θ=12.故sin 4θ+cos 4θ=⎝⎛⎭⎫1-cos 2θ22+⎝⎛⎭⎫1+cos 2θ22=116+916=58. 16.(2018·江苏)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.解 (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.又因为sin 2α+cos 2α=1, 所以cos 2α=925,因此,cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π, 所以sin(α+β)=1-cos 2(α+β)=255,因此tan(α+β)=-2. 因为tan α=43,所以tan 2α=2tan α1-tan 2α=-247.因此,tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.第2课时 简单的三角恒等变换三角函数式的化简1.化简:sin 2α-2cos 2αsin ⎝⎛⎭⎫α-π4=________.答案 22cos α解析 原式=2sin αcos α-2cos 2α22(sin α-cos α)=22cos α.2.当π<α<2π时,化简:(1+sin α+cos α)⎝⎛⎭⎫sin α2-cos α22+2cos α=________.答案 cos α解析 原式=⎝⎛⎭⎫2cos 2α2+2sin α2cos α2⎝⎛⎭⎫sin α2-cos α24cos 2α2=2cos α2⎝⎛⎭⎫cos α2+sin α2⎝⎛⎭⎫sin α2-cos α22⎪⎪⎪⎪cos α2=cos α2(-cos α)⎪⎪⎪⎪cos α2.∵π<α<2π,∴π2<α2<π.∴cos α2<0.∴原式=-cos α2cos α-cosα2=cos α.3.化简:sin 2αsin 2β+cos 2αcos 2β-12cos 2αcos 2β=________.答案 12解析 方法一(从“角”入手,化复角为单角) 原式=sin 2αsin 2β+cos 2αcos 2β-12(2cos 2α-1)(2cos 2β-1)=sin 2αsin 2β-cos 2αcos 2β+cos 2α+cos 2β-12=sin 2αsin 2β+cos 2αsin 2β+cos 2β-12=sin 2β+cos 2β-12=1-12=12.方法二(从“名”入手,化异名为同名)原式=sin 2αsin 2β+(1-sin 2α)cos 2β-12cos 2αcos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos 2αcos 2β=cos 2β-sin 2αcos 2β-12cos 2αcos 2β=cos 2β-cos 2β⎝⎛⎭⎫sin 2α+12cos 2α =1+cos 2β2-12cos 2β=12. 4.化简:sin (2α+β)sin α-2cos(α+β).解 原式=sin (2α+β)-2sin αcos (α+β)sin α=sin[α+(α+β)]-2sin αcos (α+β)sin α=sin αcos (α+β)+cos αsin (α+β)-2sin αcos (α+β)sin α=cos αsin (α+β)-sin αcos (α+β)sin α=sin[(α+β)-α]sin α=sin βsin α.思维升华 (1)三角函数式的化简要遵循“三看”原则 一看角,二看名,三看式子结构与特征.(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的联系点.三角函数的求值命题点1 给角求值例1 (1)cos π9·cos 2π9·cos ⎝⎛⎭⎫-23π9=________. 答案 -18解析 cos π9·cos 2π9·cos ⎝⎛⎭⎫-23π9 =cos 20°·cos 40°·cos 100° =-cos 20°·cos 40°·cos 80° =-sin 20°·cos 20°·cos 40°·cos 80°sin 20°=-12sin 40°·cos 40°·cos 80°sin 20°=-14sin 80°·cos 80°sin 20°=-18sin 160°sin 20°=-18sin 20°sin 20°=-18.(2)sin 10°1-3tan 10°=________. 答案 14解析 sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.命题点2 给值求值例2 (1)已知cos ⎝⎛⎭⎫θ+π4=1010,θ∈⎝⎛⎭⎫0,π2,则sin ⎝⎛⎭⎫2θ-π3=________. 答案4-3310解析 由题意可得cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=110,cos ⎝⎛⎭⎫2θ+π2=-sin 2θ=-45,即sin 2θ=45. 因为cos ⎝⎛⎭⎫θ+π4=1010>0,θ∈⎝⎛⎭⎫0,π2, 所以0<θ<π4,2θ∈⎝⎛⎭⎫0,π2, 根据同角三角函数基本关系式,可得cos 2θ=35,由两角差的正弦公式,可得sin ⎝⎛⎭⎫2θ-π3=sin 2θcos π3-cos 2θsin π3 =45×12-35×32=4-3310. (2)若cos ⎝⎛⎭⎫π4+x =35,1712π<x <74π,则sin 2x +2sin 2x 1-tan x =________. 答案 -2875解析 ∵17π12<x <7π4,∴5π3<π4+x <2π. 又cos ⎝⎛⎭⎫π4+x =35, ∴sin ⎝⎛⎭⎫π4+x =-45, ∴cos x =cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+x -π4=cos ⎝⎛⎭⎫π4+x cos π4+sin ⎝⎛⎭⎫π4+x sin π4=-210. ∴sin x =-7210,tan x =7.∴sin 2x +2sin 2x 1-tan x =2sin x cos x +2sin 2x 1-tan x=2×⎝⎛⎭⎫-7210×⎝⎛⎭⎫-210+2×⎝⎛⎭⎫-721021-7=-2875.命题点3 给值求角例3 已知α,β为锐角,cos α=277,sin β=3143,则cos 2α=________,2α-β=________.答案 17 π3解析 因为cos α=277,所以cos 2α=2cos 2α-1=17. 又α,β为锐角,sin β=3143, 所以sin α=217,cos β=1314, 因此sin 2α=2sin αcos α=437, 所以sin(2α-β)=437×1314-17×3314=32. 因为α为锐角,所以0<2α<π.又cos 2α>0,所以0<2α<π2, 又β为锐角,所以-π2<2α-β<π2, 又sin(2α-β)=32,所以2α-β=π3. 思维升华 (1)给角求值与给值求值问题的关键在“变角”,通过角之间的联系寻找转化方法.(2)给值求角问题:先求角的某一三角函数值,再根据角的范围确定角.跟踪训练 (1)cos 275°+cos 215°+cos 75°cos 15°的值等于( )A.62B.32C.54 D .1+34答案 C解析 原式=sin 215°+cos 215°+sin 15°cos 15°=1+12sin 30°=1+14=54. (2)已知α∈⎝⎛⎭⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝⎛⎭⎫α+π4sin 2α+cos 2α+1=________. 答案 268 解析 ∵α∈⎝⎛⎭⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0, 则(2sin α-3cos α)·(sin α+cos α)=0,又∵α∈⎝⎛⎭⎫0,π2,sin α+cos α>0, ∴2sin α=3cos α,又sin 2α+cos 2α=1,∴cos α=213,sin α=313, ∴sin ⎝⎛⎭⎫α+π4sin 2α+cos 2α+1=22(sin α+cos α)(sin α+cos α)2+(cos 2α-sin 2α)=24cos α=268. (3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________. 答案 -3π4解析 ∵tan α=tan [(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0, ∴0<α<π2. 又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0, ∴0<2α<π2, ∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0, ∴2α-β=-3π4.1.计算:1-cos 210°cos 80°1-cos 20°等于( ) A.22 B.12 C.32 D .-22答案 A解析 1-cos 210°cos 80°1-cos 20°=sin 210°sin 10°1-(1-2sin 210°)=sin 210°2sin 210°=22. 2.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α 等于( ) A .-78 B .-14 C.14 D.78答案 A 解析 cos ⎝⎛⎭⎫π3+2α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫23π-2α =-cos ⎝⎛⎭⎫23π-2α=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α =-⎣⎡⎦⎤1-2×⎝⎛⎭⎫142=-78. 3.已知cos ⎝⎛⎭⎫π4-x =35,则sin 2x 等于( )A.1825B.725 C .-725D .-1625答案 C解析 因为cos ⎝⎛⎭⎫π4-x =cos π4cos x +sin π4sin x =22(cos x +sin x )=35, 所以sin x +cos x =325,所以1+2sin x cos x =1825, 即sin 2x =1825-1=-725.4.4cos 50°-tan 40°等于( )A. 2B.2+32C. 3 D .22-1 答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40° =2sin 80°-sin 40°cos 40° =2sin 100°-sin 40°cos 40° =2sin (60°+40°)-sin 40°cos 40°=2×32cos 40°+2×12sin 40°-sin 40°cos 40°= 3.故选C. 5.若cos 2αsin ⎝⎛⎭⎫α+π4=12,则sin 2α的值为( ) A .-78B.78 C .-47D.47答案 B解析 cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4 =2(cos α-sin α)=12, 即cos α-sin α=24,等式两边分别平方得 cos 2α-2sin αcos α+sin 2α=1-sin 2α=18,解得sin 2α=78. 6.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则( ) A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2答案 B解析 因为tan α=1+sin βcos β,所以sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β,所以sin αcos β-cos αsin β=cos α,即sin(α-β)=sin ⎝⎛⎭⎫π2-α,又α,β均为锐角,且y =sin x 在⎝⎛⎭⎫-π2,π2上单调递增,所以α-β=π2-α,即2α-β=π2,故选B. 7.(多选)函数f (x )=sin x cos x 的单调递减区间可以是( )A.⎣⎡⎦⎤k π-3π4,k π-π4(k ∈Z ) B.⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ) C.⎣⎡⎦⎤2k π+π4,2k π+π2(k ∈Z ) D.⎣⎡⎦⎤k π+π4,k π+π2(k ∈Z ) 答案 AB解析 f (x )=sin x cos x =12sin 2x , 由π2+2k π≤2x ≤2k π+3π2,k ∈Z , 得π4+k π≤x ≤k π+3π4,k ∈Z , ∴函数f (x )=sin x cos x 的单调递减区间是⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ), ∵函数的周期是k π(k ≠0),故A 也正确.故选AB.8.(多选)下列说法不正确的是( )A .存在x 0∈R ,使得1-cos 3x 0=log 2110B .函数y =sin 2x cos 2x 的最小正周期为πC .函数y =cos 2⎝⎛⎭⎫x +π3的一个对称中心为⎝⎛⎭⎫-π3,0 D .若角α的终边经过点(cos(-3),sin(-3)),则角α是第三象限角答案 ABC解析 在A 中,因为cos x 0∈[-1,1],所以1-cos 3x 0≥0,因为log 2110<log 21=0, 所以不存在x 0∈R ,使得1-cos 3x 0=log 2110,故A 错误; 在B 中,函数y =sin 2x cos 2x =12sin 4x 的最小正周期为π2,故B 错误; 在C 中,令2⎝⎛⎭⎫x +π3=π2+k π,k ∈Z , 得x =-π12+k π2,k ∈Z , 所以函数y =cos 2⎝⎛⎭⎫x +π3的对称中心为⎝⎛⎭⎫-π12+k π2,0,k ∈Z ,故C 错误; 在D 中,因为cos(-3)=cos 3<0,sin(-3)=-sin 3<0,所以角α是第三象限角,故D 正确.9.化简:⎝⎛⎭⎫3cos 10°-1sin 170°·cos 15°+sin 15°cos 15°-sin 15°=___________________. 答案 -4 3解析 原式=3sin 10°-cos 10°cos 10°sin 10°·1+tan 15°1-tan 15°=2sin (10°-30°)12sin 20°·tan 45°+tan 15°1-tan 45°·tan 15°=-4·tan(45°+15°)=-4 3.10.(2019·淄博模拟)已知tan ⎝⎛⎭⎫π4+θ=3,则sin 2θ-2cos 2θ=________.答案 -45解析 tan ⎝⎛⎭⎫π4+θ=3,1+tan θ1-tan θ=3,解得tan θ=12, sin 2θ-2cos 2θ=2sin θcos θ-2cos 2θsin 2θ+cos 2θ=2tan θ-2tan 2θ+1=-45. 11.已知tan α=-13,cos β=55,α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求tan(α+β)的值,并求出α+β的值.解 由cos β=55,β∈⎝⎛⎭⎫0,π2, 得sin β=255,tan β=2. 所以tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. 因为α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2, 所以π2<α+β<3π2, 所以α+β=5π4. 12.已知0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=13,sin(α+β)=45. (1)求sin 2β的值;(2)求cos ⎝⎛⎭⎫α+π4的值. 解 (1)方法一 因为cos ⎝⎛⎭⎫β-π4=cos π4cos β+sin π4·sin β=22cos β+22sin β=13, 所以cos β+sin β=23, 所以1+sin 2β=29,所以sin 2β=-79. 方法二 sin 2β=cos ⎝⎛⎭⎫π2-2β=2cos 2⎝⎛⎭⎫β-π4-1=-79.(2)因为0<α<π2<β<π, 所以π4<β-π4<34π,π2<α+β<3π2. 所以sin ⎝⎛⎭⎫β-π4>0,cos(α+β)<0, 因为cos ⎝⎛⎭⎫β-π4=13,sin(α+β)=45, 所以sin ⎝⎛⎭⎫β-π4=223,cos(α+β)=-35. 所以cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4 =-35×13+45×223=82-315.13.(2019·福建省百校联考)若α∈(0,π),且3sin α+2cos α=2,则tan α2等于( ) A.32 B.34C.233D.433答案 A解析 由已知得cos α=1-32sin α. 代入sin 2α+cos 2α=1,得sin 2α+⎝⎛⎭⎫1-32sin α2=1, 整理得74sin 2α-3sin α=0,解得sin α=0或sin α=437. 因为α∈(0,π),所以sin α=437,故cos α=1-32×437=17. 所以tan α2=sin α1+cos α=4371+17=32. 14.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β=______. 答案 π3解析 由题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2, 故cos(α-β)=1-sin 2(α-β)=1314, 又cos α=17,∴sin α=437, 于是sin β=sin [α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=437×1314-17×3314=32. 又0<β<π2,故β=π3.15.已知α∈⎝⎛⎭⎫π4,3π4,β∈⎝⎛⎭⎫0,π4,且cos ⎝⎛⎭⎫π4-α=35,sin ⎝⎛⎭⎫5π4+β=-1213,则cos(α+β)=________. 答案 -3365解析 ∵α∈⎝⎛⎭⎫π4,3π4,∴π4-α∈⎝⎛⎭⎫-π2,0, 又cos ⎝⎛⎭⎫π4-α=35,∴sin ⎝⎛⎭⎫π4-α=-45, ∵sin ⎝⎛⎭⎫5π4+β=-1213,∴sin ⎝⎛⎭⎫π4+β=1213, 又∵β∈⎝⎛⎭⎫0,π4,π4+β∈⎝⎛⎭⎫π4,π2, ∴cos ⎝⎛⎭⎫π4+β=513,∴cos(α+β)=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+β-⎝⎛⎭⎫π4-α =cos ⎝⎛⎭⎫π4+βcos ⎝⎛⎭⎫π4-α+sin ⎝⎛⎭⎫π4+βsin ⎝⎛⎭⎫π4-α =513×35-1213×45=-3365. 16.(2019·江苏泰州中学模拟)已知0<α<π2<β<π,且sin(α+β)=513,tan α2=12. (1)求cos α的值;(2)证明:sin β>513. (1)解 ∵tan α2=12,∴tan α=2tan α21-tan 2α2=2×121-⎝⎛⎭⎫122=43. ∴⎩⎪⎨⎪⎧ sin αcos α=43,sin 2α+cos 2α=1.又α∈⎝⎛⎭⎫0,π2,解得cos α=35. (2)证明 由已知得π2<α+β<3π2. ∵sin(α+β)=513,∴cos(α+β)=-1213. 由(1)可得sin α=45, ∴sin β=sin [(α+β)-α]=513×35-⎝⎛⎭⎫-1213×45=6365>513.。
(完整版)三角恒等变换知识点归纳
第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式⑴;⑵;()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-⑶;⑷;()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+⑸ ();()tan tan tan 1tan tan αβαβαβ--=+⇒()()tan tan tan 1tan tan αβαβαβ-=-+⑹ ().()tan tan tan 1tan tan αβαβαβ++=-⇒()()tan tan tan 1tan tan αβαβαβ+=+-25、二倍角的正弦、余弦和正切公式:⑴.sin 22sin cos ααα=222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos 2cossin 2cos 112sin ααααα=-=-=-升幂公式⇒2sin 2cos 1,2cos 2cos 122αααα=-=+降幂公式,. ⇒2cos 21cos 2αα+=21cos 2sin 2αα-=26、 .22tan tan 21tan ααα=-27、(后两个不用判断符号,更加好用)⇒28、合一变形把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的⇒形式。
,其B x A y ++=)sin(ϕϖ()sin cos αααϕA +B =+中.tan ϕB =A29、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,αα2tan 2cos ==2tan 12tan 1 cos ;2tan 12tan2sin :222αααααα万能公式+-=+=灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①是的二倍;是的二倍;是的二倍;是的二倍;α2αα4α2α2α2α4α②;问:;2304560304515o ooooo=-=-==12sin π=12cosπ;③;④;ββαα-+=)()4(24αππαπ--=+⑤;等等)4()4()()(2απαπβαβαα--+=-++=(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
三角函数与三角恒等变换知识点
三角函数与三角恒等变换(知识点)1.⑴ 角度制与弧度制的互化:π弧度180=o ,1180π=o 弧度,1弧度180()π=o '5718≈o .⑵ 弧长公式:||l R α=;扇形面积公式:211||22S R Rl α==. 2.三角函数定义:⑴ 设α是一个任意角,终边与单位圆交于点P (x ,y ),那么y 叫作α的正弦,记作sin α;x 叫作α的余弦,记作cos α;yx叫作α的正切,记作tan α. ⑵ 角α中边上任意一点P 为(,)x y ,设||OP r =,则:sin ,cos ,y x r r αα==tan yxα=.三角函数符号规律:一全正,二正弦,三正切,四余弦. 3.三角函数线:正弦线:MP ; 余弦线:OM ; 正切线: AT . 4.诱导公式:六组诱导公式统一为“()2k Z α±∈”,记忆口诀:奇变偶不变,符号看象限. 5.同角三角函数基本关系:22sin cos 1αα+=(平方关系);sin tan cos ααα=(商数关系).6.两角和与差的正弦、余弦、正切:①sin()sin coscos sin αβαβαβ±=±;② cos()cos cos sin sin αβαβαβ±=m ; ③ tan tan tan()1tan tan αβαβαβ±±=m .7.二倍角公式:① sin22sin cos ααα=;② 2222cos2cos sin 2cos 112sin ααααα=-=-=-; ③ 22tan tan 21tan ααα=-. 变形:21cos2sin 2αα-=;21cos2cos 2αα+=. (降次公式)8.化一:sin cos )y a x b x x x =+)x ϕ+. 9. 物理意义:物理简谐运动sin(),[0,)y A x x ωϕ=+∈+∞,其中0,0A ω>>. 振幅为A ,表示物体离开平衡位置的最大距离;周期为2T πω=,表示物体往返运动一次所需的时间;频率为12f T ωπ==,表示物体在单位时间内往返运动的次数;x ωϕ+为相位;ϕ为初相.11. 正弦型函数sin()(0,0)y A x A ωϕω=+>>的性质及研究思路:① 最小正周期2T πω=,值域为[,]A A -.② 五点法图:把“x ωϕ+”看成一个整体,取30,,,,222x ππωϕππ+=时的五个自变量值,相应的函数值为0,,0,,0A A -,描出五个关键点,得到一个周期内的图象.③ 三角函数图象变换路线:sin y x =ϕ−−−−−→左移个单位sin()y x ϕ=+ ω−−−−−→1横坐标变为倍sin()y x ωϕ=+A −−−−−→纵坐标变为倍sin()y A x ωϕ=+. 或:sin y x = ω−−−−−→1横坐标变为倍sin y x ω=ϕω−−−−−→左移个单位sin ()y x ϕωω=+A −−−−−→纵坐标变为倍sin()y A x ωϕ=+. ④ 单调性:sin()(0,0)y A x A ωϕω=+>>的增区间,把“x ωϕ+”代入到sin y x =增区间[2,2]()22k k k Z ππππ-++∈,即求解22()22k x k k Z πππωϕπ-+≤+≤+∈.⑤ 整体思想:把“x ωϕ+”看成一个整体,代入sin y x =与tan y x =的性质中进行求解. 这种整体思想的运用,主要体现在求单调区间时,或取最大值与最小值时的自变量取值.。
三角恒等变换的常见技巧(师)
三角恒等变换的常见技巧一、核心技巧方法1、三角恒等变换中的“统一”思想:三角恒等变换的主要目的是异名化同名、异次化同次、异角化同角、异构化同构,即化异为同,也就是将待证式左右两边统一为一个形式,或将条件中的角、函数式表达为问题中的角或函数式,达到以已知表达未知的目的。
基本切入点是统一角,往往从统一角入手便能全面达到化异为同的目的。
2、统一思想的应用——引入辅助角:对x b x a y cos sin +=型函数式的性质的研究,我们常常引入辅助角ϕ。
即化ab x b a x b x a y =++=+=ϕϕtan ),sin(cos sin 22,然后将该式与基本三角函数x A sin y =进行比照研究。
“位置相同,地位平等”是处理原则。
3、统一思想的应用——拆、拼角,如()()()()22β-α+β+α=αβ-β+α=αβ+β+α=β+α,,等等;4、统一思想的应用——弦切互化,如利用万能公式,把正余弦化为正切等等;对关于正余弦函数的齐次式的处理也属于“弦化切”技巧;5、统一思想的应用——公式变、逆用,主要做法是将三角函数式或其一部分整理成公式的一部分,然后利用公式的这一部分与另一部分的等量关系代入6、代换思想的应用——关于正余弦对等式的处理,常以21t x cos x sin ,t x cos x sin 2-==+代入,把函数式化为关于t 的函数式进行研究;另外,三角代换也是处理函数最值、值域等问题的重要技巧。
二、考点解析与典型例题考点一 引入辅助角研究三角函数的性质例1. 设f (x )=asin x ω+bcos x ω(0,,>ωb a )的周期为π且最大值f (12π)=4; 1)求ω、a 、b 的值;2)若α、β为f (x )=0的两个根(α、β终边不共线), 求tan (α+β)的值。
【解】1)ab x b a x f =++=ϕϕωtan ),sin()(22,则 ⎪⎩⎪⎨⎧===ω⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎩⎪⎨⎧==ϕ=ω⇒⎪⎪⎭⎪⎪⎬⎫=ϕ+ωππ=ωπ=+⇒=+=π=π32b 2a 23a b tan 21)12sin(24b a 4b a )12(f )x (f ,)x (f 2222max 周期为由上可知:)32sin(4)(π+=x x f ,令26320)(ππππk x k x x f +-=⇒=+⇒=因为α、β终边不共线,故33)tan(2123=+⇒++-=+βαππβαk考点二 拆、拼角例2. 已知cos 91)2(-=-βα,sin 32)2(=-βα,且,20,2πβπαπ<<<<求.2cos βα+【分析】观察已知角和所求角,可作出)2()2(2βαβαβα---=+的配凑角变换,然后利用余弦的差角公式求角。
三角恒等变形测试题及答案解析
三角恒等变形测试题及答案解析一、命题意图恒等变形能力是数学学习和应用中的一项重要的基本功。
基本的三角恒等变形公式是实践中经常使用的工具。
在力学、物理、电气工程、机械制造、图象处理以及其他科学研究和工程实践中经常会用到这些公式。
基本三角恒等变形公式及简单应用,提高了学生理解和运用三角恒等变形公式的能力,培养学生数形结合的思想能力。
本章内容一直是高考的热点、重点,新课改下仍立于不败之地。
本套试题紧扣教学大纲,依据往届高考要求,注重基础知识、基本技能考察,体现了新课程标准数学的基本理念,考察了学生的运用能力和基础知识的掌握情况,难度适中,对新课程标准要求下的三角恒等变形知识的有很好的检测作用。
二、试卷结构特点本章试题是对高一数学必修4第三章“三角恒等变换”的单元检测,满分150分,时间90分钟,分为Ⅰ卷和Ⅱ卷,共有试题22道,其中12道选择题,共60分;5道填空题,共30分;5道解答题,共60分。
难度为中等水平,既有基础题,也有拔高题。
用基础题考察学生对基本知识技能的掌握情况,也同时用拔高题来提高学生的灵活应用能力,为培养学生的数学意识和数学知识的实践与应用能力打基础。
三、典型试题例说以18题为例:18.已知12cos,13α=求sinα和tanα[分析]本题易错,学生看到题目只考虑角在第一象限的情况,或忽视了第四象限这一种情况造成结果不全。
[解析]因为12cos13α=>0,且cosα≠1,所以α是第一或第四象限的角.当α是第一象限的角时,sinα>0.5sin sin,13sin5135tan.cos131212αααα=====⨯=当α是第四象限角时,sin0.α<5sin,13sin5tan.cos12αααα==-==-(参考评分说明:写对角所在象限得2分,分两中情况每种得6分.)以19题为例:19.设cos(α-β2)=-19,sin(α2-β)=23,且π2<α<π,0<β<π2,求cos (α+β).[分析]讲求做题技巧和方法,培养学生的创新意识是新课标理念,对本题学生易受惯性思维的影响,拿到题容易直接展开做,结果南辕北辙。
高考数学二轮精讲三角与向量第3讲三角恒等变换(含解析)
第3讲三角恒等变换知识与方法本专题主要知识为两角和与差的正弦、余弦和正切公式.同学们要会推导正弦、余弦、正切的倍角公式和辅助角公式,运用这些公式进行简单的恒等变换.要掌握以两角差的余弦公式为基础,推导两角和与差(或二倍角)的正弦、余弦、正切公式的方法,了解它们的内在联系.进行公式探究,能利用对比、联系、化归的观点来分析、处理问题.能依据三角函数式的特点,逐渐明确三角恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换.体验由简单到复杂、从特殊到一般的变换思想,代换和方程的思想,进而提高分析问题、解决问题的能力. 1.两角和与差的正弦、余弦和正切公式 2.二倍角公式sin22sin cos ααα=;缩角升幂2221sin2(sin cos ),1cos22cos ,1cos22sin ααααααα±=±+=-=.扩角降幂22sin21cos21cos2sin cos ,sin ,cos 222ααααααα-+===.3.辅助角公式()sin cos a b αααϕ+=+(其中cos ϕϕ==,辅助角ϕ所在象限由点(),a b 的象限决定,tan b a ϕ⎫=⎪⎭. 注意应用特殊角的三角函数值实现数值与三角函数间的转化,要加强各三角函数公式的正用、逆用及变形应用;尤其是二倍角的正弦公式在构成完全平方式中的应用和二倍角的余弦公式在升幂、降幂变形中的应用.在进行三角恒等变换时,要掌握三角函数式的化简及证明的基本方法与常用技巧.典型例题【例1】若()()13cos ,cos 55αβαβ+=-=,则tan tan αβ=________________. 【分析】本题为已知两个角,αβtan tan αβ,一般先“化切为弦”,发现sin sin tan tan cos cos αβαβαβ=,因此需探求角,αβ的同名三角函数值,分子恰为两角和与差的余弦公式的变形与应用.【解析】13cos cos sin sin ,cos cos sin sin 55αβαβαβαβ-=+=. 两式分别相加、相减得21cos cos ,sin sin 55αβαβ==,故sin sin 1tan tan cos cos 2αβαβαβ==. 【点睛】tan tan αβ转化为sin sin cos cos αβαβ,运用已知两角和与差的余弦公式展开,然后相加、相减可得;若为tan tan αβ,则化为sin cos cos sin αβαβ,利用两角和与差的正弦公式展开,然后相加、相减可得.【例2】若cos cos cos 0,sin sin sin 0αβγαβγ++=++=,则()cos αβ-=______. 【分析】本题涉及两角差的余弦公式的变形与应用,解决问题的关键在于将已知条件变形为()()cos cos cos ,sin sin sin γαβγαβ=-+=-+,分别对等号两边平方,然后相加消去角γ,进而求出结论.【解析】因为()()cos cos cos ,sin sin sin γαβγαβ=-+=-+,所以22(cos cos )(sin sin )1αβαβ+++=,即()22cos cos sin sin 1αβαβ++=,整理得()22cos 1αβ+-=,所以()1cos 2αβ-=-. 【点睛】将已知条件变形为()()cos cos cos ,sin sin sin γαβγαβ=-+=-+,分别对等号两边平方,然后相加消去角γsin sin ,cos cos ,m n p m n q αβαβ+=⎧⎨+=⎩求()cos αβ-;或已知sin cos ,cos sin ,m n p m n q αβαβ+=⎧⎨+=⎩求()sin αβ+.【例3】已知()sin 22sin αββ+=,且2tan1tan 22αα=-,则()tan αβ+=______.【分析】本题求角αβ+的正切值,涉及的角有2,,2ααββ+,函数名有正弦与正切.从待求目标出发,先利用二倍角正切公式求出α的正切,再将式子()sin 22sin αββ+=,化为关于α+β与α的三角函数值,得到()tan αβ+与tan α的关系求解.【解析】因为2tan1tan 22αα=-,所以22tan2tan 21tan2ααα==-.又()()sin 2sin αβααβα⎡⎤⎡⎤++=+-⎣⎦⎣⎦,所以()()()()sin cos cos sin 2sin cos 2cos sin αβααβααβααβα+++=+-+,即()()sin cos 3cos sin αβααβα+=+.等号两边同除以()cos cos ααβ+,得()tan 3tan 6αβα+==.【点睛】要善于将三角恒等变换公式展开和变形.在计算过程中注意角的配凑,把末知角用已知角表示,如将2αβ+表示为(),αβαβ++表示为()αβα+-;角α是2α的二倍. 【例4】计算4cos50tan40-=()B.21 【分析】本题为三角函数式4cos50tan40-的化简与求值,涉及的角有40,50,函数名和系数均不同,先将正切化为正弦和余弦的商,再通分.利用二倍角公式时,注意到2sin80sin40cos40-中的角有80,40,先将80化为12040-,再将()sin 12040-展开,合并求解.【解析】原式sin404sin40cos40sin402sin80sin404sin40cos40cos40cos40--=-==()2sin 12040sin403cos40sin40sin403cos40cos40--+-===,答案选 C.【点睛】利用同角三角函数的基本关系、诱导公式、两角差的正弦公式、二倍角公式化简所给的式子,注意角的变换和拆角等. 【例5】计算()sin40tan103-.【分析】本题计算()sin40tan103-的值,涉及的角有40,10,三角函数名有正切与正弦,一般先将正切化为正弦和余弦的商,再通分并运用辅助角公式进行恒等变换.求解时要充分运用特殊角和特殊值的隐含关系,注意公式的逆用.【解析】解法1:原式()sin40sin103cos10sin10sin403cos10cos10-⎛⎫=-=⎪⎝⎭解法2:原式()sin40tan10tan60=-【点睛】解法1,构建余弦的两角和的关系.解法2则是正切的差角公式的变形应用.【例6】()1sin cos sincos )θθθθθπ⎛⎫++- ⎪<<的结果是___________.【分析】,方法是缩角升幂,去根号,加绝对值符号,开方时注意θ的范围是0θπ<<.注意到分子中含有sincos22θθ-,因此分子1sin cos θθ++的处理也化为半角的三角函数.一方面,()1sin cos 1sin cos θθθθ++=++=222sin cos cos sin sin cos sin cos cos sin 2222222222θθθθθθθθθθ⎛⎫⎛⎫⎛⎫⎛⎫++-=+++- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2cos sin cos 222θθθ⎛⎫=+ ⎪⎝⎭;另一方面,()21sin cos 1cos sin 2cos 2θθθθθ++=++=+2sincos2cos sin cos 22222θθθθθ⎛⎫=+ ⎪⎝⎭,也就是合理分组、升幂、因式分解、提取公因式.涉及二倍角公式的应用,突出转化思想与运算能力. 【解析】0,cos0222θπθ<<>,原式212sin cos 2cos 1sin cos θθθθθ⎛⎫⎛⎫++-- ⎪⎪=222cos sin cos sin cos 2cos sin cos 222cos 2cos 2θθθθθθθθθθ⎛⎫⎛⎫⎛⎫+-- ⎪⎪ ⎪⎝⎭===-.【点睛】依题意,可求得cos 02θ>,利用二倍角的正弦与余弦公式将所求关系式化简并约分即可.【例7】已知,sin 2cos 2ααα∈+=R ,则tan2α=() A.43B.34C.34- D.43- 【分析】本题为已知同角α的正弦、余弦三角函数值的和,求角α的二倍角的正切值.通常做法是先利用同角三角函数的平方关系,解方程组,解出α的正弦、余弦三角函数值,再求出α的正切值,最后求二倍角的正切.若对原式平方,等号两边同除以“1”,化为关于tan α的二次齐次式,则更为方便.【解析】解法1:由22sin 2cos sin cos 1αααα⎧+=⎪⎨⎪+=⎩得222cos cos 1αα⎫+=⎪⎪⎝⎭.所以210cos 30αα-+=,解得cos α=.当cos α=,sin 2cos αα==,此时tan 3α=;当cos α=时,sin α=此时1tan 3α=-. 所以tan 3α=或13-,所以22tan 3tan21tan 4ααα==--.故选C.解法2:将sin 2cos αα+=平方,得225sin 4sin cos 4cos 2αααα++=. 所以2222sin 4sin cos 4cos 5sin cos 2αααααα++=+,所以22tan 4tan 45tan 12ααα++=+, 所以23tan 8tan 30αα--=,解得tan 3α=或13-,所以22tan 3tan21tan 4ααα==--. 故选C.【点睛】由题意,结合22sin cos 1αα+=可得sin ,cos αα,进而可得tan α,将其代入二倍角的正切公式求解.【例8】若50,sin 4413x x ππ⎛⎫<<-= ⎪⎝⎭,求cos2cos 4x x π⎛⎫+ ⎪⎝⎭的值.【分析】此题解法较多,若从条件与结论中角的关系入手,可发现2242x x ππ⎛⎫+=+⎪⎝⎭.若从诱导公式角度入手,可以把2x 看成是4x π+的“二倍角”.而44x x ππ⎛⎫=+- ⎪⎝⎭,从而将单角转化为两角差来处理.若从条件与结论的函数关系入手,可借助cos sin 44x x ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭. 【解析】解法1:因为04x π<<,所以120,cos 44413x x πππ⎛⎫<-<-== ⎪⎝⎭, 所以120cos2sin 22sin cos 244169x x x x πππ⎛⎫⎛⎫⎛⎫=-=--=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 注意到442x x πππ⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭,所以5cos sin 4413x x ππ⎛⎫⎛⎫+=-=⎪ ⎪⎝⎭⎝⎭. 原式cos22413cos 4x x π==⎛⎫+ ⎪⎝⎭.解法2:因为04x π<<,所以044x ππ<-<.所以12sin sin cos 424413x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=--=-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以原式sin 22sin cos 242442sin 413cos cos 44x x x x x x ππππππ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭===+= ⎪⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭.解法3:由5sin 413x π⎛⎫-=⎪⎝⎭展开得()5cos sin 213x x -=,所以cos sin 13x x -=.所以)22cos2cos sin cos 4x x x x π==+⎛⎫+ ⎪⎝⎭. 因为22(cos sin )(cos sin )2x x x x -++=,所以cos sin 13x x +=. 故原式2413=. 【点睛】(1)解有条件的三角函数求值题,关键是从条件与结论中角的关系和函数关系入手,变换条件或结论,在变换条件过程中注意角的范围的变化.(2)在恒等变形中,注意变角优先,要根据函数式中的“角”“名”“形”的特点(即有没有与特殊角相关联的角;有没有互余、互补的角;角和角之间有没有和、差、倍、半的关系)来寻求已知条件和所求式子之间的关系,从而找到解题的突破口. (3)对于条件求值题,一般先化简,再代入求值.【例9】化简1sin4cos41sin4cos4αααα+-++.【分析】可以考虑正弦、余弦的倍角公式的和与积的互化,2(sin cos )1sin2ααα±=±及1-22cos22sin ,1cos22cos αααα=+=;考虑用余弦倍角公式的升幕形式.【解析】1 原式()()221cos4sin42sin 22sin2cos21cos4sin42cos 22sin2cos2αααααααααα-++==+++ 【解析】2原式()()222222(sin2cos2)cos 2sin 2(sin2cos2)cos 2sin 2αααααααα+--=++- 【点睛】对于较复杂的三角函数式的化简与求值题,一般先观察式子的结构特征,在熟练堂握三角函数变换公式的基础上,灵活运用公式的变形、公式的逆用等.【例10】已知02πβαπ<<<<,且12cos ,sin 2923βααβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,求()cos αβ+的值.【分析】本题已知cos ,sin 22βααβ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭的值,要求角αβ+的余弦值.观察已知角和所求角,可作222αββααβ+⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭的配凑角变换,利用余弦的差角公式求2αβ+的正弦值或余弦值,最后用二倍角公式求角αβ+的余弦值.【解析】因为02πβαπ<<<<,所以,,,24242βπαππαπβ⎛⎫⎛⎫-∈-∈- ⎪ ⎪⎝⎭⎝⎭.所以sin 22βααβ⎛⎫⎛⎫-==-== ⎪ ⎪⎝⎭⎝⎭, 所以coscos 222αββααβ⎡⎤+⎛⎫⎛⎫=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以()22239cos 2cos1212729αβαβ++=-=⨯-=-⎝⎭.【点睛】“凑角法”是解三角函数题的常用技巧,本题计算角αβ+的余弦函数值,而已知角只有,22βααβ--,因此要将αβ+配凑为22βααβ⎛⎫--- ⎪⎝⎭的二倍.【例11】已知都是锐角,若sin αβ==,则αβ+=______________. A.4πB.34πC.4π和34πD.4π-和34π- 【分析】本题要求角αβ+的大小,一般方法是求其某一三角函数值,结合角的范围求角的大小(或范围).考虑到,αβ都是锐角,0αβπ<+<,为使角的三角函数值唯一,则考虑选用求()cos αβ+.【解析】因为sin αβ==且,αβ都是锐角,所以cos αβ==所以()cos cos cos sin sin αβαβαβ+=-==. 又()0,αβπ+∈,所以4παβ+=.故选A.【点睛】例已知,αβ的正弦值,根据同角的正弦值与余弦值的平方关系,可分别求出,αβ的余弦值,接下来利用两角和的余弦公式求出()cos αβ+,然后结合αβ+αβ+的取值范围这里选用()cos αβ+求解,若选用()sin αβ+求解,应先考虑缩小αβ+的取值范围,否则会产生增解34παβ+=.【例12】已知函数()226sin cos 2cos 1,4f x x x x x x π⎛⎫=++-+∈ ⎪⎝⎭R . (1)求()f x 的最小正周期.(2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【分析】本题研究三角函数()f x 的性质,计算化简时利用相关三角恒等变换公式,需要将已知函数式化为()()sin f x A x b ωϕ=++的形式,常用公式为辅助角公式.【解析】(1) ()3sin2cos2f x x x x x⎫=+-⎪⎪⎭所以()f x 的最小正周期2T ππω==.(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤-∈-⎢⎥⎣⎦.所以sin 242x π⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦,所以max min?()()2f x f x ==-.【点睛】用二倍角公式降幂,结合辅助角公式研究三角函数的图象与性质.强化训练1.若()()13sin ,sin 55αβαβ+=-=,则tan tan αβ=________________. 【答案】2- 【解析】1sin cos cos sin 5αβαβ+=,3sin cos cos sin 5αβαβ-=,两式分别相加、相减得,21sin cos ,cos sin 55αβαβ==- 所以tan sin cos 2tan cos sin ααββαβ==-.2.已知22sin sin ,cos cos 33x y x y -=--=,且,x y 为锐角,则()tan x y -的值是()B.C.【答案】B 【解析】已知22sin sin ,cos cos 33x y x y -=--=,两式平方并相加得 ()822cos cos sin sin 9x y x y -+=, 即()5cos 9x y -=. 因为,x y 为锐角,sin sin 0x y -<,所以x y <.所以()sin x y -==()()()sin tan cos 5x y x y x y --==--. 3.求值:tan20tan403tan20tan40++.【解析】原式()()tan 20401tan20tan403tan20tan40=+-+ )1tan20tan403tan20tan403=-+=. 4.化简2cos10sin20cos20-. 【解析】:原式2cos10sin20cos20-==5.求值():cos4013tan10+. 【解析】原式3sin10cos10cos40cos10+=⨯()2sin 1030cos40cos10+=⨯ 2sin40cos40sin801cos10cos10===.6.化简()()()()22:cos 60cos 60cos 60cos 60θθθθ-+++-+. 【解析】解法1:原式=()()1cos 12021cos 120211cos cos 222222θθθθθθ+-++⎛⎫⎫⎛+++- ⎪⎪ ⎪⎪⎝⎝⎭⎭34=.解法2:由余弦的平方差公式得()()22cos cos cos sin αβαβαβ+-=-,所以原式()()()()2cos 60cos 60cos 60cos 60θθθθ⎡⎤=-++--+⎣⎦34=.7.已知3sin 4cos 0αα-=,则23cos2α+=_______.【答案】2925【解析】因为3sin 4cos 0αα-=所以4tan 3α=.所以222222cos sin 1tan 7cos2cos sin 1tan 25ααααααα--===-++, 所以212923cos222525α+=-=. 8.已知1sin cos 2αα=+,且0,2πα⎛⎫∈ ⎪⎝⎭,则cos2sin 4απα⎛⎫- ⎪⎝⎭的值为_______.【答案】 【解析】解法1:由1sin cos 2αα=+和22sin cos 1αα+=,0,2πα⎛⎫∈ ⎪⎝⎭可得11sin 44αα+-+==, 则)22cos2sin cos 2sin 4αααπα==+=-⎛⎫- ⎪⎝⎭ 解法2:由1sin cos 2αα=+可得1sin cos 2αα-=,等号两边平方可得3sin24α=, 则27(sin cos )4αα+=. 又0,2πα⎛⎫∈ ⎪⎝⎭,则sin cos 2αα+=, 则)22cos2sin cos 2sin 4αααπα==+=-⎛⎫- ⎪⎝⎭9.设3,22παπ⎛⎫∈ ⎪⎝⎭,. 【解析】因为3,22παπ⎛⎫∈ ⎪⎝⎭,所以3,24αππ⎛⎫∈ ⎪⎝⎭.原式cos cos 22αα====-.10.已知函数(),12f x x x π⎛⎫=-∈ ⎪⎝⎭R . (1)求6f π⎛⎫- ⎪⎝⎭的值. (2)若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【解析】(1)164f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭. (2)因为33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,所以4sin 5θ=-. 故4324sin22sin cos 25525θθθ⎛⎫==⨯-⨯=- ⎪⎝⎭, 所以27cos212sin 25θθ=-=-.从而1722cos2sin23425f ππθθθθ⎛⎫⎛⎫+=+=-= ⎪ ⎪⎝⎭⎝⎭. 11.已知()113cos ,cos 714ααβ=-=,且02πβα<<<.(1)求tan2α的值.(2)求β.【解析】(1)因为1cos ,072παα=<<,所以sin tan 7αα==所以22tan tan21tan 14847ααα===---. (2)因为02παβ<-<,所以()sin αβ-==所以()cos cos βααβ⎡⎤=--⎣⎦11317142=⨯+=. 因为02πβ<<,所以3πβ=.12.已知函数()26cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,,B C 为图象与x 轴的交点,ABC 为正三角形.(1)求ω的值及函数()f x 的值域.(2)若()0f x =且0102,33x ⎛⎫∈- ⎪⎝⎭,求()01f x +的值.【解析】(1)由已知可得,()3cos 3f x x x x πωωω⎛⎫==+ ⎪⎝⎭.所以正三角形ABC 的高为从而4BC =. 所以函数()f x 的周期428T =⨯=,即28πω=,4πω=函数()f x 的值域为⎡-⎣.(2)已知()0f x =由(1)有()00435f x x ππ⎛⎫=+= ⎪⎝⎭, 即04sin 435x ππ⎛⎫+= ⎪⎝⎭. 由0102,33x ⎛⎫∈- ⎪⎝⎭知0,4322x ππππ⎛⎫+∈- ⎪⎝⎭,所以03cos 435x ππ⎛⎫+== ⎪⎝⎭.故()001443f x x πππ⎛⎫+=++⎪⎝⎭00sin cos 43435x x ππππ⎤⎛⎫⎛⎫=+++= ⎪ ⎪⎥⎝⎭⎝⎭⎦.。
2016年高考全国数学卷二试题及答案解析
B.
C.
D.
二、填空题(共4小题)
13.
已知向量 , ,且 ,则 =___________.
14.
若 满足约束条件 ,则 的最小值为__________.
15.
的内角 的对边分别为 ,若 , , ,则 =____________.
16.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.
答案:A
7.考点:空间几何体的三视图与直观图
试题解析:因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为 ,故选C.
答案:C
8.考点:几何概型
试题解析:至少需要等待15秒才出现绿灯的概率为 ,故选B.
答案:B
9.考点:算法和程序框图
试题解析:第一次运算: ,
第二次运算: ,
第三次运算: ,故选C.
因为 ,所以 ,所以
, , , ,
, ,
四点共圆.
(Ⅱ) , ,
,
四点共圆
所以
所以
答案:(Ⅰ)见解析(Ⅱ)
23.考点:参数和普通方程互化极坐标方程
试题解析:(Ⅰ)利用 , 可得C的极坐标方程;(Ⅱ)先将直线 的参数方程化为普通方程,再利用弦长公式可得 的斜率.
解析(Ⅰ)由 得
,
故 的极坐标方程为
(Ⅱ)由 ( 为参数)得 ,即
试题解析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2.
答案: 和
三角恒等变换和解三角形公式
三角恒等变换和解三角形公式三角恒等变换是指一类等式或恒等式,可以通过它们来简化或转换三角函数表达式。
这些变换可以帮助我们解决三角函数问题,并简化复杂的三角表达式。
解三角形公式是用来计算三角形各个角度和边长的公式。
下面将详细介绍三角恒等变换和解三角形公式。
一、三角恒等变换1.正弦、余弦和正切的基本恒等变换:(1) $\sin^2 \theta + \cos^2 \theta = 1$,这个等式被称为三角恒等式的基本等式,它适用于所有角度。
(2) $1 + \tan^2 \theta = \sec^2 \theta$,也是三角函数的基本恒等变换。
2.余弦、正切和余切的基本恒等变换:(1) $1 + \cot^2 \theta = \csc^2 \theta$,也是三角函数的基本恒等变换。
3.正弦和余弦的互补恒等变换:(1) $\sin(\frac{\pi}{2} - \theta) = \cos \theta$(2) $\cos(\frac{\pi}{2} - \theta) = \sin \theta$这两个恒等变换表明,两个角度的正弦和余弦互为相反数。
4.正切和余切的互补恒等变换:(1) $\tan(\frac{\pi}{2} - \theta) = \cot \theta$(2) $\cot(\frac{\pi}{2} - \theta) = \tan \theta$这两个恒等变换表明,两个角度的正切和余切互为倒数。
5.其他常用的三角恒等变换:(1) $\sin(-\theta) = -\sin \theta$(2) $\cos(-\theta) = \cos \theta$(3) $\tan(-\theta) = -\tan \theta$这些变换表明,正弦、余弦和正切函数在角度取相反数时会发生改变。
1.解直角三角形:(1)已知两个直角三角形的边长求第三边:- 斜边长:$c = \sqrt{a^2 + b^2}$- 一边长和斜边长:$b = \sqrt{c^2 - a^2}$或$a = \sqrt{c^2 -b^2}$(2)已知一个直角三角形的边长和一个角度,求其他边长和角度:- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} =\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab \cos C$2.解一般三角形:(1)已知三个角度的和为180度- 内角和公式:$A + B + C = 180^\circ$(2)已知一个三角形的边长和一个角度,求其他边长和角度:- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} =\frac{c}{\sin C}$- 余弦定理:$a^2 = b^2 + c^2 - 2bc \cos A$总结:三角恒等变换是一类等式或恒等式,可以用来简化或转换三角函数表达式,包括正弦、余弦和正切的基本恒等变换、余弦、正切和余切的基本恒等变换、正弦和余弦的互补恒等变换、正切和余切的互补恒等变换,以及其他常用的变换。
11.简单的三角恒等变换
简单的三角恒等变换【学习目标】1.能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【预习案】1.半角公式sin α2=_____,cosα2=________,tan α2=_____,tanα2=sinα1+cosα=1-cosαsinα.2.求值题常见类型(1)“给角求值”:所给出的角常常是非特殊角,从表面来看较难,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合和、差、倍、半角公式、和差化积、积化和差公式消去非特殊角转化为特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.3.三角函数的最值问题(1)用三角方法求三角函数的最值常见的函数形式①y=a sin x+b cos x=a2+b2sin(x+φ),其中cosφ=aa2+b2,sinφ=ba2+b2.②y=a sin2x+b sin x cos x+c cos2x可先降次,整理转化为上一种形式.③y=a sin x+bc sin x+d⎝⎛⎭⎪⎪⎫或y=a cos x+bc cos x+d可转化为只有分母含sin x(或cos x)的函数式或sin x=f(y)(cos x=f(y))的形式,由正、余弦函数的有界性求解.(2)用代数方法求三角函数的最值常见的函数形式①y=a sin2x+b cos x+c可转化为cos x的二次函数式.②y=a sin x+cb sin x(a,b,c>0),令sin x=t,则转化为求y=at+cbt(-1≤t≤1)的最值,一般可用基本不等式或单调性求解.【预习自测】1.(2014·安徽宿州质检)设向量a=(sinα,22)的模为32,则cos2α=()A.32B.12C.-12D.-14[答案] B[解析]因为向量a=(sinα,22)的模为|a|=sin2α+(22)2=sin2α+12,所以可得sin2α+12=32,解得sin2α=14.cos2α=1-2sin2α=1-2×14=12.2.(2013·洛阳统考)函数f(x)=2sin2(π4+x)-3cos2x(π4≤x≤π2)的最大值为()A.2B.3C.2+3D.2- 3[答案] B[解析]依题意,f(x)=1-cos2(π4+x)-3cos2x=sin2x-3cos2x+1=2sin(2x-π3)+1,当π4≤x≤π2时,π6≤2x-π3≤2π3,12≤sin(2x-π3)≤1,此时f(x)的最大值是3,选B.3.(2013·呼和浩特第二次统考)若cosα=45,α∈(0,π2),则1+tanα21-tanα2=()A.-12B.12C.2D.-2 [答案] C[解析]据已知得tanα=sinαcosα=3545=34,由二倍角公式得tanα=2tanα21-tan2α2=34,且tan α2>0,解得tanα2=13,故tanα2+11-tanα2=2. 4.(2014·九龙坡区质检)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)=() A.33B.-33C.539D.-69[答案] C[解析]本题主要考查三角函数的两角和、差公式的运用.∵0<α<π2,-π2<β<0,∴π4+α∈(π4,3π4),π4-β2∈(π4,π2),∵cos(π4+α)=13,cos(π4-β2)=33,∴sin(π4+α)=223,sin(π4-β2)=63,∴cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+cos(π4+α)sin(π4-β2)=13×33+223×63=539.5.已知π<α<2π,则cosα2等于()A.-1-cosα2B.1-cosα2C.-1+cosα2D.1+cosα2[答案] C合作探究题型一:三角函数的化简与求值例13-sin70°2-cos210°=()A.12B.22C.2D.32[答案] C原式=3-cos20°2-cos210°=3-(2cos210°-1)2-cos210°=2探究1.(2014·浙江杭州调研)已知tan(α+π4)=12,且-π2<α<0,则2sin2α+sin2αcos(α-π4)=()A.-255B.-3510C.-31010D.255[答案] A[解析]∵tan(α+π4)=12,∴tanα+11-tanα=12,∴tanα=-13.∵-π2<α<0,∴sinα=-1010.∴2sin2α+sin2αcos(α-π4)=2sin2α+2sinαcosα22(cosα+sinα)=22sinα=-255.题型二:三角函数的给值求值(角)问题例 2. 已知0<α<π2<β<π,tanα2=12,cos(β-α)=210.(1)求sinα的值;(2)求β的值.[解析] (1)tan α=2tanα21-tan2α2=43,所以sin αcos α=43.又因为sin 2α+cos 2α=1,解得sin α=45.(2)因为0<α<π2<β<π,所以0<β-α<π.因为cos(β-α)=210,所以sin(β-α)=7210.因为sin α=45,所以cos α=35.所以sin β=sin[(β-α)+α] =sin(β-α)cos α+cos(β-α)sin α =7210×35+210×45=22. 因为β∈(π2,π),所以β=3π4.探究2(2014·山东嘉祥一中月考)已知α、β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________[答案] -3π4[解析] ∵tan α=tan[(α-β)+β] =tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2,又∵tan2α=2tan α1-tan 2α=2×131-(13)2=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵tan β=-17<0, ∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4. 题型三: 给角求值例3.求值:2sin20°+cos10°+tan20°sin10°.[解析]原式=2sin20°cos20°+cos10°cos20°+sin10°sin20°cos20°=sin40°+cos10°cos20°=sin (60°-20°)+cos (30°-20°)cos20°=(32cos20°-12sin20°)+(32cos20°+12sin20°)cos20°= 3.探究3. (1)sin110°sin20°cos 2155°-sin 2155°的值为( )A .-12B .12C .32D .-32(2)求值tan20°+4sin20°=________. [答案] (1)B (2) 3[解析] (1)sin110°sin20°cos 2155°-sin 2155°=sin70°sin20°cos310° =cos20°sin20°cos50°=12sin40°sin40°=12.(2)tan20°+4sin20°=sin20°+4sin20°cos20°cos20°=sin20°+2sin40°cos20°=2sin30°cos (-10°)+sin40°cos20°=sin80°+sin40°cos20°=3cos20°cos20°= 3.题型四:综合应用例4化简:sin 2αsin 2β+cos 2αcos 2β-12cos2αcos2β.[解析] 解法1:(从“角”入手,复角化单角) 原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)(2cos 2β-1)=sin 2α·sin 2β+cos 2α·cos 2β-12·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12=sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12=sin 2β+cos 2β-12=1-12=12.解法2:(从“名”入手,异名化同名) 原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-12cos2α·cos2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos2α·cos2β=cos2β-cos2β·⎝ ⎛⎭⎪⎫sin 2α+12cos2α =1+cos2β2-cos2β⎣⎢⎡⎦⎥⎤sin 2α+12(1-2sin 2α)=1+cos2β2-12cos2β=12.解法3:(从“幂”入手,利用降幂公式先降次)原式=1-cos2α2·1-cos2β2+1+cos2α2·1+cos2β2-12cos2α·cos2β =14(1+cos2α·cos2β-cos2α-cos2β)+14(1+cos2α·cos2β+cos2α+cos2β)-12·cos2α·cos2β=14+14=12. 解法4:(从“形”入手,利用配方法,先对二次项配方)原式=(sin α·sin β-cos α·cos β)2+2sin α·sin β·cos α·cos β-12cos2α·cos2β=cos 2(α+β)+12sin2α·sin2β-12cos2α·cos2β=cos 2(α+β)-12cos(2α+2β)=cos 2(α+β)-12·[2cos 2(α+β)-1]=12.探究4(2014·无锡模拟)已知α,β为三角形的两个内角,cos α=17,sin(α+β)=5314,则β=________.[答案] π3[解析] 因为0<α<π,cos α=17,所以sin α=1-cos 2α=437,故π3<α<π2,又因为0<α+β<π,sin(α+β)=5314<32,所以0<α+β<π3,或2π3<α+β<π,由π3<α<π2知2π3<α+β<π, 所以cos(α+β)=-1-sin 2(α+β)=-1114,所以cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =(-1114)×17+5314×437=12,又因为0<β<π,所以β=π3.你能解决下列问题吗?(1°)求sin 220°+cos 250°+sin20°cos50°的值; 求cos 273°+cos 247°+cos47°cos73°的值; (2°)求sin 2α+cos 2(α+30°)+sin αcos(α+30°)的值;求cos 2α+sin 2(α+30°)-cos αsin(α+30°)的值; (3°)求sin 2α+cos 2(α+60°)+3sin αcos(α+60°)的值;求cos 2α+sin 2(α+60°)-3cos αsin(α+60°)的值;题型五:函数与方程的思想例5、已知sin x +sin y =13,求sin x -cos 2y 的最大、最小值.[解析] 由sin x =13-sin y 及-1≤sin x ≤1得,-23≤sin y ≤1. 而sin x -cos 2y =sin 2y -sin y -23=(sin y -12)2-1112,所以当sin y =12时,最小值为-1112,当sin y =-23时,最大值为49.探究5已知sin x -sin y =-23,cos x -cos y =23,且x 、y 为锐角,则sin(x +y )的值是( )A .1B .-1C .13D .12[答案] A[解析] 两式相加得sin x +cos x =sin y +cos y ,∴sin ⎝ ⎛⎭⎪⎫x +π4=sin ⎝ ⎛⎭⎪⎫y +π4,∵x 、y 为锐角,且sin x -sin y <0,∴x <y ,∴x +π4=π-⎝ ⎛⎭⎪⎫y +π4,∴x +y =π2,∴sin(x +y )=1.易错警示系列:不等价转化致误 若“∃x 0∈[0,π2],sin x 0+3cos x 0<m ”为假命题,则实数m 的取值范围是________[错解] 令f (x )=sin x +3cos x =2sin(x +π3),x∈[0,π2],可知f (x )在[0,π6]上为增函数,在(π6,π2]上为减函数,由于f (0)=3,f (π6)=2,f (π2)=1,所以1≤f (x )≤2,*由于“∃x 0∈[0,π2],sin x 0+3cos x 0<m ”为假命题,故“∀x ∈[0,π2],sin x +3cos x <m ”,∴m >2,故m 的取值范围是(2,+∞).[正解] 上接原错解*处.由于“∃x 0∈[0,π2],sin x 0+3cos x 0<m ”为假命题,则其否定“∀x ∈[0,π2],sin x +3cos x ≥m ”为真命题,所以m ≤f (x )min =1.[方法总结] 1.已知三角函数值求角的步骤 已知角α的三角函数值求角α,应注意所得的解不一定是唯一的,可能有无数多个,其解法步骤是:(1)确定角α所在的象限;(2)求对应的锐角α1.如函数值为正,求出对应的锐角α1;如函数值为负,求出其绝对值对应的锐角α1;(3)求出满足条件的角.首先根据角α所在的象限,得出0~2π间的角.如果适合已知条件的角在第二象限,则它是π-α1;如果在第三或第四象限,则它是π+α1,或2π-α1.然后利用终边相同的角的表达式写出适合条件的所有角的集合.2.给出某三角函数(式)的值,求某角的一般解题步骤.(1)求角的某一个三角函数值(尽量选取在角的范围内单调的函数);(2)确定角的范围(根据条件中角的范围、值的大小、正负确定,注意隐含条件发掘);(3)根据角的范围写出所求的角.3.已知三角函数式的值,求其他三角函数式值的一般思路(1)先化简所求式子或所给条件;(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手);(3)将已知条件代入所求式子,化简求值.。
三角恒等变换 - 最全的总结· 学生版
12.(特殊值化特殊角处理) =_______
13、(tan 45°=tan(20°+25°)+多项式展开)若α=20°,β=25°,则(1+tanα)(1+tanβ)的值为_______
14、(合理组合,多项式乘法展开)(1+tan 21°)(1+tan 22°)(1+tan 23°)(1+tan 24°)的值为_______
(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”快速进行逻辑判断。注意构造两角和差因子
1、(二倍角公式)(2007重庆文)下列各式中,值为 的是()
A. B. C. D.
2、(二倍角公式+平方差公式)(2008六校联考) 的值是
A. B. C. D.
8、(互余两角正余弦互换)【四川雅安中学2014-2015学年上期9月试题,理11】若 _______.
9、(互补两角余弦互为相反数) ,则 ___________
10.(两角整体相减)若 , 则 .
11、(两角整体相减)【2015重庆高一期末】若 且 ,则 ;
12.(两角整体相减)【2015江苏高考,8】已知 , ,则 的值为______
13、(两角整体相减)(中山市2014届高三上学期期末考试)已知 , ,则
14、(两角相减)【2015湖南浏阳高一期末】已知 ,则β=。
答案:BDACB 6、 7、 8、 9、- 10、 11、 12、3 13、 14、
(3)弦切互化:1)、分子分母同时除以cos 2)注意分母还原sin2 + cos2 =1,然后分子分母同时除以cos2 ,即可化为正切3)注意期间学会使用解方程的思想4)遇到部分Asinα+ Bcosα之类求正切的,注意先两边平方后再进行相切互化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辅导教案
学生姓名
性别 年级 学科 数学 授课教师
上课时间 年 月 日 第( )次课 共( )次课 课时: 课时 教学课题
三角恒等变换 教学目标
知识目标:
能力目标:
情感态度价值观:
教学重点
与难点
知识要点
1.两角和与差的正弦、余弦、正切公式
(1)sin (α±β)=____________________.
(2)cos (α±β)=____________________.
(3)tan (α±β)=
.
2.二倍角的正弦、余弦、正切公式
(1)sin2α=______________.
(2)cos2α=_______________=_____________=_______________.
(3)tan2α=
.
3.半角的正弦、余弦、正切公式
(1)sin α2
=±1-cos α2. (2)cos α2
=±1+cos α2. (3)tan α2=±1-cos α1+cos α=sin α1+cos α
=1-cos αsin α. 4.几个常用的变形公式
(1)升幂公式:1±sin α= ;
1+cos α= ;
1-cos α= .
(2)降幂公式:sin 2α= ;
cos 2α= .
(3)tan α±tan β=______________________;
tan αtan β=tan α-tan βtan (α-β)-1=1-tan α+tan βtan (α+β)
. (4)辅助角公式:a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ= ,sin φ= ,或tan φ= ,φ角所在象限与点(a ,b )所在象限________.
【自查自纠】
1.(1)sin αcos β±cos αsin β
(2)cos αcos β∓sin αsin β
(3)tan α±tan β1∓tan αtan β
2.(1)2sin αcos α
(2)cos 2α-sin 2α 2cos 2α-1 1-2sin 2α
(3)2tan α1-tan 2α
4.(1)⎝⎛⎭⎫sin α2±cos α22
2cos 2α2 2sin 2α2
(2)1-cos2α2 1+cos2α2
(3)tan (α±β)(1∓tan αtan β)
(4)a a 2+b 2 b a 2+b 2 b a
一致 精讲精练
【考点一 非特殊角求值问题】
【例1】求值:
(1)sin18°cos36°; (2)2cos10°-sin20°cos20°
.
【变式1】求1+cos20°2sin20°-2sin10°·tan80°的值.
【考点二 给值求值问题】
【例2】(1)已知α,β为锐角,sin α=817,cos (α-β)=21
29,求cos β的值;
(2)已知sin x 2-2cos x 2
=0. (Ⅰ)求tan x 的值;
(Ⅱ)求cos2x 2cos ⎝⎛⎭⎫π4+x sin x 的值.
【变式2】已知tan (α+β)=-1,tan (α-β)=12,则sin2αsin2β的值为( )
A .13
B .-13
C .3
D .-3
【考点三 给值求角问题】
【例3】已知tan α=3(1+m ),tan (-β)=3(tan αtan β+m )(m ∈R ),若α,β都是钝角,求α+β的值.
【变式3】已知α,β均为锐角,sin α=55,cos β=10
10,求α-β的值.
【考点四 三角函数式的化简与证明】
【例4】(1)求证:sin 2αsin 2β+cos 2αcos 2β-12cos2αcos2β=1
2.
(2)已知-π2<x <0,sin x +cos x =15
. (Ⅰ)求sin x -cos x 的值;
(Ⅱ)求3sin 2x 2-2sin x 2cos x 2+cos 2x 2tan x +1tan x
的值.
【变式4】求证:tan 2x +1tan 2x =
2(3+cos4x )1-cos4x
.
当堂检测
1、计算sin43°cos13°-sin13°cos43°的值等于( )
A .12
B .33
C .22
D .32
2、已知α为第二象限角,sin α=35
,则sin2α=( ) A .-2425 B .-1225 C .1225 D .2425
3、sin47°-sin17°cos30°cos17°
=( ) A .-32 B .-12 C .12 D .32
4、已知tan α+tan β=2,tan (α+β)=4,则tan α·tan β=____________.
5、如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于A ,B 两点.若点A 的横坐标是35
,点B 的纵坐标是1213
,则sin (α+β)=____________.
课后作业
1.若tan α=3,则sin2αcos 2α
的值等于( ) A .2 B .3 C .4 D .6
2.(2012·江西)若tan θ+1tan θ
=4,则sin2θ=( ) A .15
B .14
C .13
D .12 3.cos15°-sin15°cos15°+sin15°
的值是( ) A .-3 B .0
C .3
D .33 4.已知α为第二象限角,sin α+cos α=
33,则cos2α=( ) A .-
53 B .-59 C .59 D .53 5.sin47°-sin17°cos30°cos17°
=_____________. 6.已知cos ⎝⎛⎭⎫α-π6+sin α=45
3,则sin ⎝⎛⎭⎫α+7π6=________. 7.已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭
⎫α-π4的值为________. 8.已知角α的顶点在原点,始边与x 轴的正半轴重合,终边经过点P (-3,3).
(1)求sin2α-tan α的值;
(2)若函数f (x )=cos (x -α)cos α-sin (x -α)sin α,求函数 y =
3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的取值范围.
9.已知cos α=17,cos ()α-β=1314,且0<β<α<π2
. (1)求tan2α的值;
(2)求β的值.
10、已知函数f (x )=2cos ⎝
⎛⎭⎫ωx +π6 (其中ω>0,x ∈R )的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+5π3=-65,f ⎝
⎛⎭⎫5β-5π6 =1617,求cos ()α+β的值.。