龙岩市连城县中南片2018-2019学年七年级上期中模拟试卷(含解析)-(数学)

合集下载

2019年七年级上期中数学试卷含答案解析

2019年七年级上期中数学试卷含答案解析

2018-2019学年七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.﹣3的相反数是()A.3 B.﹣3 C.D.2.下列各组是同类项的是()A.a3与a2B.与2a2C.2xy与2y D.3与a3.下列运算正确的是()A.3a+2b=5ab B.3a2b﹣3ba2=0 C.3x2+2x3=5x5D.5y2﹣4y2=14.若有理数a的值在﹣1与0之间,则a的值可以是()A.﹣2 B.1 C.D.5.下列式子中,不能成立的是()A.﹣(﹣2)=2 B.﹣|﹣2|=﹣2 C.23=6 D.(﹣2)2=46.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1 B.x+1 C.x﹣3 D.x+37.已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣18.某商品进价a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店以8折的价格开展促销活动,这时一件商品的售价为()A.a元 B.1.04a元 C.0.8a元D.0.92a元9.已知a、b两数在数轴上对应的点如图所示,下列结论正确的是()A.ab>0 B.|a|>|b|C.a﹣b>0 D.a+b>010.当x=3时,代数式px3+qx+1的值为2,则当x=﹣3时,px3+qx+1的值是()A.2 B.1 C.0 D.﹣1二、填空题(本大题有10小题,其中第11小题7分,其余每小题7分,共34分)(1)﹣3+2=;(2)﹣2﹣4=;(3)﹣6÷(﹣3)=;(4)=;(5)(﹣1)2﹣3=;(6)﹣4÷×2=;(7)=.12.﹣2的绝对值是.13.根治水土流失刻不容缓,目前全国水土流失面积已达36700000米2,用科学记数法表示为_米2.14.单项式﹣2x2y的次数是.15.已知|a+3|+(b﹣1)2=0,则3a+b=.16.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是.17.a,b互为相反数,c,d互为倒数,则(a+b)3﹣3(cd)4=.18.定义新运算符号“⊕”如下:a⊕b=a﹣b﹣1,则2⊕(﹣3)=.19.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.20.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;…依此类推,则a2013=.三、解答题(本大题有9小题,共86分)(1)3+(﹣11)﹣(﹣9)(2)(﹣7)×5﹣(﹣36)÷4(3)(1﹣+)×(﹣24)(4)﹣14+×[2×(﹣6)﹣(﹣4)2].22.化简:(1)﹣3xy﹣2y2+5xy﹣4y2(2)2(5a2﹣2a)﹣4(﹣3a+2a2)23.先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y)其中x=﹣2,y=.24.在数轴上表示下列各数,并用“<”连接起来.﹣4,﹣|﹣2.5|,﹣(﹣2),0,﹣12.25.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣10,+6,﹣3,﹣6,﹣4,+10(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若出租车每千米的耗油量为0.08升,这天下午出租车共耗油量多少升?26.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?27.定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与是关于1的平衡数,5﹣x与是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1 的平衡数,并说明理由.28.小明乘公共汽车到东方明珠玩,小明上车时,发现车上已有(6a﹣2b)人,车到中途时,有一半人下车,但又上来若干人,这时公共汽车上共有(10a﹣6b)人,则中途上车多少人?当a=5,b=3时,中途上车的人数.29.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:备注:1.每月居民用水缴费包括实际用水的水费和污水处理费两部分.2.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.﹣3的相反数是()A.3 B.﹣3 C.D.【考点】14:相反数.【分析】由相反数的定义容易得出结果.【解答】解:﹣3的相反数是3,故选:A.2.下列各组是同类项的是()A.a3与a2B.与2a2C.2xy与2y D.3与a【考点】34:同类项.【分析】根据同类项定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项进行分析即可.【解答】解:A、a3与a2不是同类项,故此选项错误;B、a2与2a2是同类项,故此选项正确;C、2xy与2y不是同类项,故此选项错误;D、3与a不是同类项,故此选项错误;故选:B.3.下列运算正确的是()A.3a+2b=5ab B.3a2b﹣3ba2=0 C.3x2+2x3=5x5D.5y2﹣4y2=1【考点】35:合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B正确;C、不是同类项不能合并,故C错误;D、系数相加字母及指数不变,故D错误;故选:B.4.若有理数a的值在﹣1与0之间,则a的值可以是()A.﹣2 B.1 C.D.【考点】18:有理数大小比较.【分析】将﹣1、0及选项中的有理数在数轴上表示出来,然后根据数轴来解答问题.【解答】解:由上图所示:介于﹣1和0之间的有理数只有.故选D.5.下列式子中,不能成立的是()A.﹣(﹣2)=2 B.﹣|﹣2|=﹣2 C.23=6 D.(﹣2)2=4【考点】1G:有理数的混合运算.【分析】根据相反数、绝对值的定义及乘方的运算法则分别计算各个选项,从而得出结果.【解答】解:A、﹣(﹣2)=2,选项错误;B、﹣|﹣2|=﹣2,选项错误;C、23=8≠6,选项正确;D、(﹣2)2=4,选项错误.故选C6.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1 B.x+1 C.x﹣3 D.x+3【考点】44:整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(3x﹣2)﹣(2x﹣1)=3x﹣2﹣2x+1=x﹣1,故选A7.已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣1【考点】15:绝对值;19:有理数的加法.【分析】先根据绝对值的性质,求出x、y的值,然后根据x•y<0,进一步确定x、y的值,再代值求解即可.【解答】解:∵|x|=3,|y|=2,x•y<0,∴x=3时,y=﹣2,则x+y=3﹣2=1;x=﹣3时,y=2,则x+y=﹣3+2=﹣1.故选B.8.某商品进价a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店以8折的价格开展促销活动,这时一件商品的售价为()A.a元 B.1.04a元 C.0.8a元D.0.92a元【考点】32:列代数式.【分析】此题的等量关系:进价×(1+提高率)×打折数=售价,代入计算即可.【解答】解:根据题意商品的售价是:a(1+30%)×80%=1.04a元.故选:B.9.已知a、b两数在数轴上对应的点如图所示,下列结论正确的是()A.ab>0 B.|a|>|b|C.a﹣b>0 D.a+b>0【考点】13:数轴;15:绝对值.【分析】由题意可知a<﹣1,1>b>0,故a、b异号,且|a|>|b|.根据有理数加减法得a+b的值应取a的符号“﹣”,故a+b<0;由b>0得﹣b<0,而a<0,所以a﹣b=a+(﹣b)<0;根据有理数的乘除法则可知a•b<0.【解答】解:依题意得:a<﹣1,1>b>0∴a、b异号,且|a|>|b|.∴a+b<0;a﹣b=﹣|a+b|<0;a•b<0.故选B.10.当x=3时,代数式px3+qx+1的值为2,则当x=﹣3时,px3+qx+1的值是()A.2 B.1 C.0 D.﹣1【考点】33:代数式求值.【分析】把x=3代入代数式得27p+3q=1,再把x=﹣3代入,可得到含有27p+3q 的式子,直接解答即可.【解答】解:当x=3时,代数式px3+qx+1=27p+3q+1=2,即27p+3q=1,所以当x=﹣3时,代数式px3+qx+1=﹣27p﹣3q+1=﹣(27p+3q)+1=﹣1+1=0.故选C.二、填空题(本大题有10小题,其中第11小题7分,其余每小题7分,共34分)11.计算:(1)﹣3+2=﹣1;(2)﹣2﹣4=﹣6;(3)﹣6÷(﹣3)=2;(4)=;(5)(﹣1)2﹣3=﹣2;(6)﹣4÷×2=﹣16;(7)=6.【考点】1G:有理数的混合运算.【分析】(1)原式利用加法法则计算即可得到结果;(2)原式利用减法法则计算即可得到结果;(3)原式利用除法法则计算即可得到结果;(4)原式利用异号两数相加的法则计算即可得到结果;(5)原式先计算乘方运算,再计算减法运算即可得到结果;(6)原式从左到右依次计算即可得到结果;(7)原式先计算乘方运算,再计算乘法运算即可得到结果.【解答】解:(1)原式=﹣1;(2)原式=﹣6;(3)原式=2;(4)原式=;(5)原式=1﹣3=﹣2;(6)原式=﹣4×2×2=﹣16;(7)原式=﹣9×(﹣)=6,故答案为:(1)﹣1;(2)﹣6;(3)2;(4);(5)﹣2;(6)﹣16;(7)612.﹣2的绝对值是2.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2,故答案为2.13.根治水土流失刻不容缓,目前全国水土流失面积已达36700000米2,用科学记数法表示为 3.67×107_米2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:36700000用科学记数法表示为3.67×107,故答案为:3.67×107.14.单项式﹣2x2y的次数是3.【考点】42:单项式.【分析】直接利用单项式次数的定义得出答案.【解答】解:﹣2x2y的次数为:2+1=3.故答案为:3.15.已知|a+3|+(b﹣1)2=0,则3a+b=﹣8.【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则3a+b=﹣9+1=﹣8.故答案是:﹣8.16.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是﹣5.【考点】33:代数式求值.【分析】直接将代数式变形进而化简求值答案.【解答】解:∵代数式x+2y的值是3,∴代数式1﹣2x﹣4y=1﹣2(x+2y)=1﹣2×3=﹣5.故答案为:﹣5.17.a,b互为相反数,c,d互为倒数,则(a+b)3﹣3(cd)4=﹣3.【考点】33:代数式求值;14:相反数;17:倒数.【分析】根据相反数,倒数的定义求出a+b与cd的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,则原式=0﹣3=﹣3.故答案为:﹣3.18.定义新运算符号“⊕”如下:a⊕b=a﹣b﹣1,则2⊕(﹣3)=4.【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=2﹣(﹣3)﹣1=2+3﹣1=4,故答案为:419.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是n2+2n.【考点】L1:多边形.【分析】第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是nx(n+2)=n2+2n故答案为:n2+2n.20.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;…依此类推,则a2013=122.【考点】37:规律型:数字的变化类.【分析】计算出前几个数便不难发现,每三个数为一个循环组依次循环,用2013除以3正好能够整除可知a2013与a3的值相同.【解答】解:根据题意,n1=5,a1=n12+1=52+1=26,n2=2+6=8,a2=n22+1=82+1=65,n3=6+5=11,a3=n32+1=112+1=122,n4=2+2+1=5,a4=n42+1=52+1=26,…,依此类推,每三个数为一个循环组依次循环,∵2013÷3=671,∴a2013是第671组的最后一个数,与a3相同,为122.故答案为:122.三、解答题(本大题有9小题,共86分)21.计算:(1)3+(﹣11)﹣(﹣9)(2)(﹣7)×5﹣(﹣36)÷4(3)(1﹣+)×(﹣24)(4)﹣14+×[2×(﹣6)﹣(﹣4)2].【考点】1G:有理数的混合运算.【分析】(1)先化简,再算加减法;(2)先算乘除,后算减法;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)3+(﹣11)﹣(﹣9)=3﹣11+9=12﹣11=1;(2)(﹣7)×5﹣(﹣36)÷4=﹣35+9=﹣26;(3)(1﹣+)×(﹣24)=﹣24+×24﹣×24=﹣24+4﹣18=﹣38;(4)﹣14+×[2×(﹣6)﹣(﹣4)2]=﹣1+×[﹣12﹣16]=﹣1+×[﹣28]=﹣1﹣7=﹣8.22.化简:(1)﹣3xy﹣2y2+5xy﹣4y2(2)2(5a2﹣2a)﹣4(﹣3a+2a2)【考点】44:整式的加减.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=2xy﹣6y2(2)原式=10a2﹣4a+12a﹣8a2=2a2﹣8a23.先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y)其中x=﹣2,y=.【考点】45:整式的加减—化简求值.【分析】首先去括号,然后合并同类项,化简后,再把x、y的值代入计算即可.【解答】解:x2﹣3(2x2﹣4y)+2(x2﹣y),=x2﹣6x2+12y+2x2﹣2y,=﹣3x2+10y,当x=﹣2,y=时,原式=﹣3×(﹣2)2+10×=﹣3×4+2=﹣10.24.在数轴上表示下列各数,并用“<”连接起来.﹣4,﹣|﹣2.5|,﹣(﹣2),0,﹣12.【考点】18:有理数大小比较;13:数轴;15:绝对值;1E:有理数的乘方.【分析】首先在数轴上确定表示各数的点的位置,然后再根据在数轴上表示的有理数,右边的数总比左边的数大用“<“号排列即可.【解答】解:如图:,﹣4<﹣|﹣2.5|<﹣12<0<﹣(﹣2).25.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣10,+6,﹣3,﹣6,﹣4,+10(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若出租车每千米的耗油量为0.08升,这天下午出租车共耗油量多少升?【考点】11:正数和负数.【分析】(1)求出各数据之和,判断即可;(2)求出各数据绝对值之和,乘以0.08即可得到结果.【解答】解:(1)根据题意得:+9﹣3﹣5+4﹣10+6﹣3﹣6﹣4+10=﹣2千米,出租车离鼓楼出发点2千米,在鼓楼的西方;(2)根据题意得:|+9|+|﹣3|+|﹣5|+|+4|+|﹣10|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+10|=60(千米),60×0.08=4.8(升),这天下午出租车共耗油量4.8升.26.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?【考点】11:正数和负数.【分析】(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.【解答】解:(1)7﹣(﹣10)=17(辆);(2)100×7+(﹣1+3﹣2+4+7﹣5﹣10)=696(辆),答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆.27.定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与﹣1是关于1的平衡数,5﹣x与x﹣3是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1 的平衡数,并说明理由.【考点】44:整式的加减.【分析】(1)由平衡数的定义可求得答案;(2)计算a+b是否等于1即可.【解答】解:(1)设3的关于1的平衡数为a,则3+a=2,解得a=﹣1,∴3与﹣1是关于1的平衡数,设5﹣x的关于1的平衡数为b,则5﹣x+b=2,解得b=2﹣(5﹣x)=x﹣3,∴5﹣x与x﹣3是关于1的平衡数,故答案为:﹣1;x﹣3;(2)a与b不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.28.小明乘公共汽车到东方明珠玩,小明上车时,发现车上已有(6a﹣2b)人,车到中途时,有一半人下车,但又上来若干人,这时公共汽车上共有(10a﹣6b)人,则中途上车多少人?当a=5,b=3时,中途上车的人数.【考点】44:整式的加减.【分析】根据题意列出式子即可.【解答】解:设中途上来了A人,由题意可知:(6a﹣2b)﹣(6a﹣2b)+A=10a﹣6b∴A=(10a﹣6b)﹣(6a﹣2b)=10a﹣6b﹣3a+b=7a﹣5b=35﹣15=2029.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:备注:1.每月居民用水缴费包括实际用水的水费和污水处理费两部分.2.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【考点】32:列代数式;1G:有理数的混合运算.【分析】(1)先求出用15吨水的水费,再得出用超过15吨不超过25吨的部分水的水费,再加上污水处理费即可;(2)因为m大小没有明确,所以分①m≤15吨,②15<m≤25吨,③m>25吨,三种情况,根据图表的收费标准,列式进行计算即可得解.【解答】解:(1)该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2))①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m ﹣110)元.。

龙岩市连城县中南片2019-2020学年七年级上期中模拟模拟试卷(含解析)-(数学)

龙岩市连城县中南片2019-2020学年七年级上期中模拟模拟试卷(含解析)-(数学)

2019-2020学年龙岩市连城县中南片七年级(上)期中数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.下列计算正确的是()A.7﹣(﹣7)=0B.C.0﹣4=﹣4D.﹣6﹣5=﹣12.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人3.单项式﹣a2n﹣1b4与3ab8m是同类项,则(1+n)5(m﹣1)7=()A.B.﹣C.4D.﹣44.下列各对数中,互为相反数的是()A.﹣(﹣2)和2B.+(﹣3)和﹣(+3)C.D.﹣(﹣5)和﹣|﹣5|5.数轴上与表示﹣1的点距离10个单位的数是()A.10B.±10C.9D.9或﹣116.若a2m+1b2n+3与5a4m﹣3b4n﹣5是同类项,则m、n的值是()A.m=2,n=﹣2B.m=﹣2,n=2C.m=﹣2,n=4D.m=2,n=47.已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99B.101C.﹣99D.﹣1018.对于代数式ax2﹣2bx﹣c,当x取﹣1时,代数式的值为2,当x取0时,代数式的值为1,当x取3时,代数式的值为2,则当x取2时,代数式的值是()A.1B.3C.4D.59.现规定一种运算:a※b=ab+a﹣b,其中a、b为有理数,则2※(﹣3)的值是()A.﹣6B.﹣1C.5D.1110.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8B.﹣8C.﹣12D.12二.填空题(共6小题,满分24分,每小题4分)11.计算:x2y﹣3yx2= .12.在0,﹣2,5,,﹣0.3中,最小的数是.13.在有理数集合中,最小的正整数是,最大的负整数是.14.有一种运算法则用公式表示为=ad﹣bc,依此法则计算= .15.若|a+1|+|a﹣2|=5,|b﹣2|+|b+3|=7,则a+b= .16.若|﹣m|=2018,则m= .三.解答题(共9小题,满分86分)17.(8分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.18.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?19.(8分)把下列各数在数轴上表示出来,并用“<”号连接﹣1,+3,0,﹣(﹣2.5),﹣|﹣5|20.(8分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.21.(8分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.22.(10分)足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?23.(10分)a、b、c在数轴上的位置如图所示,则:(1)用“<、>、=”填空:a 0,b 0,c 0;(2)用“<、>、=”填空:﹣a 0,a﹣b 0,c﹣a 0;(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|24.(12分)小明在学习有理数运算时发现以下三个等式:(a•b)2=a2•b2,(a•b)3=a3•b3,(a•b)4=a4•b4.(1)他把a=﹣2,b=3代入到第一个等式的左右两边验证:因为,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.请你帮他把a=﹣2,b=3代入到后两个等式的左右两边验证是否成立;(2)通过上述验证,请你猜想直接写出结果:(a•b)365= ,归纳得出:(a•b)n= (n 为正整数);(3)请应用(2)中归出的结论计算:(﹣)2017×11201825.(14分)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=2、b=﹣.2019-2020学年福建省龙岩市连城县中南片七年级(上)期中数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列计算正确的是()A.7﹣(﹣7)=0B.C.0﹣4=﹣4D.﹣6﹣5=﹣1【分析】根据有理数的减法法则逐一计算可得.【解答】解:A.7﹣(﹣7)=7+7=14,此选项计算错误;B.﹣=﹣=﹣,此选项计算错误;C.0﹣4=0+(﹣4)=﹣4,此选项计算正确;D.﹣6﹣5=﹣6+(﹣5)=﹣11,此选项计算错误;故选:C.【点评】本题主要考查有理数的减法,将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.3.单项式﹣a2n﹣1b4与3ab8m是同类项,则(1+n)5(m﹣1)7=()A.B.﹣C.4D.﹣4【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:2n﹣1=1,4=8m,解得:n=1,m=,∴原式=25×(﹣)7=(﹣2×)5×()2=,故选:B.【点评】本题考查同类项的定义,解题的关键是正确理解同类项的定义,本题属于基础题型.4.下列各对数中,互为相反数的是()A.﹣(﹣2)和2B.+(﹣3)和﹣(+3)C.D.﹣(﹣5)和﹣|﹣5|【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、﹣(﹣2)+2=4,故本选项错误;B、+(﹣3)﹣(+3)=﹣6,故本选项错误;C、﹣2=﹣,故本选项错误;D、﹣(﹣5)﹣|﹣5|=0,故本选项正确.故选:D.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.5.数轴上与表示﹣1的点距离10个单位的数是()A.10B.±10C.9D.9或﹣11【分析】设该数是x,再根据数轴上两点间的距离公式求出x的值即可.【解答】解:设该数是x,则|x﹣(﹣1)|=10,解得x=9或x=﹣11.故选:D.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.6.若a2m+1b2n+3与5a4m﹣3b4n﹣5是同类项,则m、n的值是()A.m=2,n=﹣2B.m=﹣2,n=2C.m=﹣2,n=4D.m=2,n=4【分析】根据同类项的定义列出关于m、n的方程组,解之可得.【解答】解:∵a2m+1b2n+3与5a4m﹣3b4n﹣5是同类项,∴,解得:m=2、n=4,故选:D.【点评】本题主要考查同类项,解题的关键是掌握:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.7.已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99B.101C.﹣99D.﹣101【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵m﹣n=100,x+y=﹣1,∴原式=n+x﹣m+y=﹣(m﹣n)+(x+y)=﹣100﹣1=﹣101.故选:D.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.对于代数式ax2﹣2bx﹣c,当x取﹣1时,代数式的值为2,当x取0时,代数式的值为1,当x取3时,代数式的值为2,则当x取2时,代数式的值是()A.1B.3C.4D.5【分析】根据x=﹣1,代数式的值为2,x=0,代数式的值为1,x=3,代数式的值为2,可知a、b、c的数量关系.【解答】解:根据题意可知:当x=﹣1时,a+2b﹣c=2当x=0时,﹣c=1当x=3时,9a﹣6b﹣c=2,联立∴解得:∴代数式为﹣x+1当x=2时,原式=﹣+1=1故选:A.【点评】本题考查代数式求值,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.9.现规定一种运算:a※b=ab+a﹣b,其中a、b为有理数,则2※(﹣3)的值是()A.﹣6B.﹣1C.5D.11【分析】利用题中的新定义即可得到结果.【解答】解:根据题意得:2※(﹣3)=﹣6+2+3=﹣1.故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8B.﹣8C.﹣12D.12【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【解答】解:∵2×5﹣1×(﹣2)=12,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=12.故选:D.【点评】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.计算:x2y﹣3yx2= ﹣2yx2.【分析】根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变进行合并.【解答】解:x2y﹣3yx2=﹣2yx2.故答案为:﹣2yx2.【点评】本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.12.在0,﹣2,5,,﹣0.3中,最小的数是﹣2 .【分析】根据正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小可得答案.【解答】解:在0,﹣2,5,,﹣0.3中,最小的数是﹣2,故答案为:﹣2.【点评】此题主要考查了有理数的比较大小,关键是掌握有理数比较大小的法则.13.在有理数集合中,最小的正整数是 1 ,最大的负整数是﹣1 .【分析】根据正整数和负整数的定义来得出答案.正整数:+1,+2,+3,…叫做正整数.负整数:﹣1,﹣2,﹣3,…叫做负整数.特别注意:0是整数,既不是正数,也不是负数.【解答】解:在有理数集合中,最小的正整数是1,最大的负整数是﹣1.故答案为1;﹣1.【点评】本题主要考查了有理数的分类及定义.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.特别注意:整数和正数的区别,注意0是整数,但不是正数.14.有一种运算法则用公式表示为=ad﹣bc,依此法则计算= ﹣11 .【分析】根据题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:﹣2×4﹣3=﹣8﹣3=﹣11.故答案为:﹣11【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.若|a+1|+|a﹣2|=5,|b﹣2|+|b+3|=7,则a+b= ±1或±6 .【分析】先根据绝对值的性质分类讨论求得a、b的值,再分别代入a+b计算可得.【解答】解:当a≤﹣1时,﹣a﹣1+2﹣a=5,解得a=﹣2;当﹣1<a<2时,a+1+2﹣a=3≠5,舍去;当a≥2时,a+1+a﹣2=5,解得a=3;当b≤﹣3时,2﹣b﹣b﹣3=7,解得b=﹣4;当﹣3<b<2时,﹣b﹣3+b﹣2=﹣5≠7,舍去;当b≥2时,b﹣2+b+3=7,解得b=3;综上a=﹣2或a=3,b=﹣4或b=3;当a=﹣2、b=﹣4时,a+b=﹣6;当a=﹣2、b=3时,a+b=1;当a=3、b=﹣4时,a+b=﹣1;当a=3、b=3时,a+b=6;即a+b=±1或±6;故答案为:±1或±6.【点评】本题主要考查有理数的加法和绝对值,解题的关键是根据绝对值的性质求得a、b的值及分类讨论思想的运用.16.若|﹣m|=2018,则m= ±2018 .【分析】由于|﹣m|=|m|,根据绝对值的意义求解即可.【解答】解:因为|﹣m|=|m|,又因为|±2018|=2018,所以m=±2018故答案为:±2018【点评】本题考查了绝对值的意义.解决本题的关键是掌握互为相反数的两个数的绝对值相等.三.解答题(共9小题,满分86分)17.(8分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a的值.【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点评】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.19.(8分)把下列各数在数轴上表示出来,并用“<”号连接﹣1,+3,0,﹣(﹣2.5),﹣|﹣5|【分析】先在数轴上表示各数,再根据数轴上右边的数大于左边的数,即可解答.【解答】解:如图,﹣(﹣2.5)=2.5,﹣|﹣5|=﹣5,﹣|﹣5|<﹣1<0<﹣(﹣2.5)<+3.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记数轴上右边的数大于左边的数.20.(8分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【分析】将代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点评】本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.21.(8分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.(10分)足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果;(2)求出每一段到出发点的距离,即可判断出结果;(3)利用绝对值的性质以及有理数加法法则求出即可.【解答】解:(1)(+40)+(﹣30)+(+50)+(﹣25)+(+25)+(﹣30)+(+15)+(﹣28)+(+16)+(﹣18)=+15(米);答:球员最后到达的地方在出发点的正西方向,距出发点15m;(2)第一段,40m,第二段,40﹣30=10m,第三段,10+50=60m,第四段,60﹣25=35m,第五段,35+25=60m,第六段,60﹣30=30m,第七段,30+15=45m,第八段,45﹣28=17m,第九段,17+16=33m,第十段,33﹣18=15m,∴在最远处离出发点60m;(3)∵|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=277(米),答:球员在一组练习过程中,跑了277米.【点评】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.23.(10分)a、b、c在数轴上的位置如图所示,则:(1)用“<、>、=”填空:a < 0,b < 0,c > 0;(2)用“<、>、=”填空:﹣a > 0,a﹣b < 0,c﹣a > 0;(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|【分析】(1)利用数轴表示数的方法进行判断;(2)利用负数的相反数为正数得到﹣a>0,利用有理数的减法判断a﹣b和c﹣a的符号;(3)先去绝对值,然后合并即可.【解答】解:(1)a<0,b<0,c>0;(2)﹣a>0,a﹣b<0,c﹣a>0;(3)|﹣a|﹣|a﹣b|+|c﹣a|=﹣a+a﹣b+c﹣a=﹣a﹣b+c.故答案为<、<、>;>、<、>.【点评】本题考查了由理数的大小比较:有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.也考查了绝对值.24.(12分)小明在学习有理数运算时发现以下三个等式:(a•b)2=a2•b2,(a•b)3=a3•b3,(a•b)4=a4•b4.(1)他把a=﹣2,b=3代入到第一个等式的左右两边验证:因为,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.请你帮他把a=﹣2,b=3代入到后两个等式的左右两边验证是否成立;(2)通过上述验证,请你猜想直接写出结果:(a•b)365= a365•b365,归纳得出:(a•b)n=a n•b n(n为正整数);(3)请应用(2)中归出的结论计算:(﹣)2017×112018【分析】(1)将a=﹣2,b=3代入(a•b)2,a2•b2的左右两边分别计算可得;(2)根据以上等式可得答案;(3)原式利用乘方的定义及所得结论变形为(﹣×11)2017×11,据此可得答案.【解答】解:(1)当a=﹣2,b=3时,左边=(﹣2×3)2=(﹣6)2=36,右边=(﹣2)2×32=4×9=36,∴左边=右边,所以等式成立;(2)根据以上验证,知:(a•b)365=a365•b365,归纳得出:(a•b)n=a n•b n,故答案为:a365•b365,a n•b n.(3)原式=(﹣)2017×112017×11=(﹣×11)2017×11=(﹣1)2017×1=﹣1×1=﹣1.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数混合运算顺序和运算法则,并根据已知等式得出运算的规律.25.(14分)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=2、b=﹣.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=7a2b﹣4a2b+5ab2﹣2a2b+3ab2=a2b+8ab2,当a=2,b=﹣时,原式=﹣2+4=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.。

2018-2019学年福建省龙岩一中分校七年级(上)期中数学试卷解析版

2018-2019学年福建省龙岩一中分校七年级(上)期中数学试卷解析版

2018-2019学年福建省龙岩一中分校七年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.的相反数是A. B. C. 2 D.【答案】C【解析】解:的相反数是2,故选:C.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.中国的陆地面积约为将9600000用科学记数法表示应为A. B. C. D.【答案】D【解析】解:将9600000用科学记数法表示为.故选:D.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3.下列各组是同类项的是A. 与B. 与C. 2xy与2yD. 3与a【答案】B【解析】解:A、与不是同类项,故此选项错误;B、与是同类项,故此选项正确;C、2xy与2y不是同类项,故此选项错误;D、3与a不是同类项,故此选项错误;故选:B.根据同类项定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项进行分析即可.此题主要考查了同类项,关键是掌握同类项定义:一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.4.下列式子中,不能成立的是A. B. C. D.【答案】C【解析】解:A、,选项错误;B、,选项错误;C、,选项正确;D、,选项错误.故选:C.根据相反数、绝对值的定义及乘方的运算法则分别计算各个选项,从而得出结果.本题考查相反数,绝对值,乘方的计算方法注意符号及乘方的意义.5.化简正确的是A. B. C. D.【答案】A【解析】解:.故选:A.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“”,去括号后,括号里的各项都不改变符号;括号前是“”,去括号后,括号里的各项都改变符号顺序为先大后小.6.下列概念表述正确的是A. 单项式ab的系数是0,次数是2B. ,3ab,5是多项式的项C. 单项式的系数是,次数是5D. 是二次二项式【答案】D【解析】解:A、单项式ab的系数是1,次数是2,故选项错误;B、多项式的项是:,3ab,,故选项错误;C、单项式的系数是,次数是5,故选项错误;D、正确.故选:D.根据单项式系数、次数的定义来求解单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.本题考查单项式的系数,注意单项式中数字因数叫做单项式的系数.7.一个多项式加上多项式后得,则这个多项式为A. B. C. D.【答案】A【解析】解:根据题意得:,故选:A.根据题意列出关系式,去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.已知,,且,则的值等于A. 5或B. 1或C. 5或1D. 或【答案】B【解析】解:,,,时,,则;时,,则.故选:B.先根据绝对值的性质,求出x、y的值,然后根据,进一步确定x、y的值,再代值求解即可.此题主要考查了绝对值的性质,能够根据已知条件正确的判断出x、y的值是解答此题的关键.9.设有理数a、b在数轴上对应的位置如图所示,化简的结果是A. B. C. D. b【答案】D【解析】解:由图可知,,,,原式.故选:D.根据各点在数轴上的位置判断出a、b的符号,再去括号,合并同类项即可.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.10.如图一张方桌可围坐4人,拼两张方桌可围坐6人,拼三张方桌可围坐8人,按这样的规律,拼100张方桌可围坐的人数是A. 206B. 204C. 202D. 200【答案】C【解析】解:一张桌子可坐人,两张桌子可坐人,三张桌子可坐人,所以100张桌子可坐人,故选:C.根据图形得出n张桌子可坐人,据此可得答案.本题主要考查图形的变化规律,解题的关键是根据图形得出n张桌子可坐人.二、填空题(本大题共6小题,共24.0分)11.若珠穆朗玛峰高出海平面8848米记作米,则太平洋最深处低于海平面11034米,可记作______米【答案】【解析】解:珠穆朗玛峰高出海平面8848米记作米,太平洋最深处低于海平面11034米记作米,故答案为:米.根据题意,可以用相应的数据表示出题目中的数据.本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.12.的倒数是______.【答案】【解析】解:,因此它的倒数是.根据倒数的定义,互为倒数的两数积为1.本题考查倒数的定义,较为简单.13.近似数精确到______位【答案】百分【解析】解:近似数精确到百分位.故答案为百分.根据近似数的精确度求解.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示一般有,精确到哪一位,保留几个有效数字等说法从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.14.数轴上点A表示,则与点A相距3个单位长度的点所表示的数为______.【答案】或0【解析】解:当要求的点在点A的左边时,则;当要求的点在点A的右边时,则.故答案为或0.与点A相距3个单位长度的点可能在点A的左边,也可能在点A的右边,再根据“左减右加”进行计算.此题考查了数轴上的点和数之间的对应关系,同时注意“左减右加”.15.若多项式的值为12,则______.【答案】8【解析】解:的值为12,..原式.故答案为;8.由题意可知:,等式的两边同时乘以3得到,然后代入计算即可.本题主要考查的是求代数式的值,利用等式的性质求得是解题的关键.16.数学中有很多精炼的符号,如表示1开始的100个连续自然数的和,即这里“”是求和符号又如:,则______.【答案】50【解析】解:.故答案为:50.利用题中的新定义将原式变形,计算即可得到结果.此题考查了数字的变化规律及有理数的加法,弄清题中的新定义是解本题的关键.三、计算题(本大题共6小题,共59.0分)17.计算:【答案】解:【解析】同级运算,应按从左到右的顺序进行计算;有理数混合运算,先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题主要考查了有理数的混合运算,在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.18.化简:【答案】解:原式;原式.【解析】直接合并同类项即可;先去括号,然后合并同类项.本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.19.通常用作差法可以比较两个数或者两个式子的大小.如果,则a______b;如果,则a______b;如果,则a______b;用“”、“”、“”填空已知,,请用作差法比较A与B的大小.【答案】【解析】解:如果,则;如果,则;如果,则;故答案为::;;,.根据题意,利用整式的加减法法则判断即可;利用做差法判断即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.100本为正,不足100本为负:上星期借书最多的一天比借书最少的一天多借多少本书?上星期平均每天借出多少本书?【答案】解:本,答:上星期五借出87本;本,答:上星期借书最多的一天比借书最少的一天多借38本书;本,答:上星期平均每天借出97本书.【解析】根据负数的意义,可得答案;根据有理数的减法,可得答案;根据平均数的意义,可得答案.本题考查了正数和负数,利用有理数的运算是解题关键.21.如图,从长和宽分别为a和b的长方形中挖去一个四分之一圆和一个半圆,求剩余部分的面积结果保留.【答案】解:阴影部分的面积;故剩余部分的面积为.【解析】阴影部分的面积矩形的面积以b为半径的四分之一圆的面积以b为直径的半圆的面积.此题考查的知识点是根据意义列代数式此题解答的关键是观察图形,要明确阴影部分的面积矩形的面积以b为半径的四分之一圆的面积以b为直径的半圆的面积.22.某用户8月份用水量为24吨,则该用户8月份应缴水费是______元若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】22【解析】解:元,答:该用户4月份应缴水费是22元,故答案为:22;元,答:该用户8月份应缴水费是元;故答案为:;当时,需交水费元;当时,需交水费,元,当时,需交水费元.根据题意列式计算即可;利用已知表格中数据得出等式求出答案;利用分类讨论利用当时,当时,当时,求出答案.此题主要考查了一元一次方程的应用以及列代数式,正确利用分段表示出水费的总额是解题关键.四、解答题(本大题共3小题,共27.0分)23.在数轴上表示下列各数,并用“”连接起来.,,2,0,.【答案】解:在数轴上表示各数,如图所示.【解析】把各数表示在数轴上,根据“在数轴上表示的数,右边的总大于左边的”,用“”连接即可.本题考查了在数轴上表示有理数及有理数大小的比较,掌握数轴上比较有理数大小的方法是解决本题的关键.24.先化简,再求值:其中,.【答案】解:,,,当,时,原式.【解析】首先去括号,然后合并同类项,化简后,再把x、y的值代入计算即可.此题主要考查了整式的加减--化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25.如图,在数轴上点A表示数a,点B表示数b,点C表示数是最小的正整数,且a、c满足填空:__________________;点B静止不动,点A以每秒1个单位长度的速度在数轴上向左运动,同时点C以每秒3个单位长度的速度在数轴上向右运动设t秒后,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC.求BC的长用含t的代数式表示问的值是否随着时间t的变化而改变?若改变,请说明理由;若不变,求出其值.【答案】 1 6【解析】解:,,,,是最小的正整数,,故答案为,1,6.,.理由:,,,的值不随着时间t的变化而改变.理由非负数的性质即可解决问题;根据两点之间的距离的定义即可解决问题;结论:求出BC,AB代入化简即可;本题考查非负数的性质、数轴、两点间的距离公式、绝对值等知识,解题的关键是理解题意,属于中考常考题型.。

2018-2019学年福建省龙岩市连城县中南片七年级(上)期中数学试卷

2018-2019学年福建省龙岩市连城县中南片七年级(上)期中数学试卷

2018-2019学年福建省龙岩市连城县中南片七年级(上)期中数、一U g学试卷一、选择题(本大题共10小题,每小题4分洪40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(4分)去年12月份我市某一天的最高气温是13°C,最低气温是-2C,那么这一天的最高气温比最低气温高()C.14°CA.16°CB.15°C D.13°C2.(4分)据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为(3.A. 3.9xlO10B. 3.9xl09C.0.39xl0n D.39xl09(4分)下列各式中,不是同类项的是()A.2ab2与-3b'aB.27TX2与X2C.-—m2n25n2m22亨与6*2D.4.(4分)5的相反数与-2的和是(5.(4分)如图,数轴上两点分别对应有理数。

、b,则下列结论正确的是(A.a>bB.a<b6.(4分)如果-a3x b y与-疽功3同类项,2C.则(D,不能判断A.3B.-3C.7D.-7)a b0a=b)A.x=—2,y=3B.x=2,y=3C.x=—2,y——3D.x=2,y=37.(4分)必+破一2了+7—0必一2x+9y-l)的值与工的取值无关,贝!]一。

+人的值为()A.3B.1C.-2D.28.(4分)已知当x=l时,2s?-Zzr的值为-1,则当x--2时,ax2+bx的值为()A.2B.-2C.5D.-59.(4分)我们规定一种新运算"★〃,其含义:对于有理数。

,b,«★b=a1-ab-b,则计算(-3)*(-1)的结果是()A.-11B.5C.7D.1310.(4分)观察下列图形的构成规律,依照此规律,第10个图形中共有()个“・・・.•••••••.••••..••••••♦第1个第2个第3个第4个A.90B.91C.110D.111二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)计算:3a-2a=.12.(4分)比较大小:-3-4(用="或"<”表示).a13.(4分)有理数-3,0,20,-1.25,1-,-1-12|,-(-5)中,正整数是,4负整数是,正分数是,非负数是.14.(4分)若力互为相反数,c、d互为倒数,则(a+b)—2cd=—.15.(4分)|a|=3,|8|=1,且。

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。

2018-2019学年福建省龙岩市连城县城区片连城二中七年级(上)期中语文试卷(软件解析)

2018-2019学年福建省龙岩市连城县城区片连城二中七年级(上)期中语文试卷(软件解析)

2018-2019学年福建省龙岩市连城县城区片连城二中七年级(上)期中语文试卷一.积累与运用(22分)1.(12分)补写出下列句子中的空缺部分。

(1)潮平两岸阔,___ 。

(王湾《次北固山下》)(2)___ ,小桥流水人家, _____ 。

(马致远《天净沙秋思》)(3)不知何处吹芦管,____。

(李益《夜上受降城闻笛》)(4)我寄愁心与明月,____。

(李白《闻王昌龄左迁龙标遥有此寄》)(5)__ ,崔九堂前几度闻。

(杜甫《江南逢李龟年》)(6)___ ,应傍战场开。

(岑参《行军九日思长安故园》)(7)子曰:知之者不如好之者,____ 。

(《论语》)(8)子曰:___ ,思而不学则殆。

(《论语》)(9)“_ ”,不错的,像母亲的手抚摸着你。

(朱自清《春》)(10)生活中表示既要善于学习他人好的方面,又要善于从不好的方面吸取教训,我们常常要引用《论语》中孔子的一句话: _______ , _____ 。

2.(3分)下列关于文学常识的说法,有错误的一项是()A .《金色花》选自《泰戈尔诗选》,泰戈尔是印度文学家,1913年获若贝尔文学奖。

著有诗集《新月集》《园丁集》等。

B •《咏雪》选自《世说新语》,《世说新语》是一部主要记述汉末至东晋人物言谈逸事的志人小说,是由刘义庆组织一批文人编写的。

C.《春》和《济南的冬天》的作者分别是朱自清和老舍,他们都是现代作家。

老舍著有小说《骆驼祥子》《四世同堂》,话剧《茶馆》《龙须沟》等,朱自清著有散文集《背影》等。

D .令尊、令堂都是对对方父亲的敬称。

3.(7分)阅读下面文字,完成文后各题。

连城莒溪池家山,梅花山怀抱里的一个①(A古朴B朴素)美丽的革命基点村。

该村在村民们的he _____ 护下,自然生态和人工精心种植的翠竹□松树林层层叠叠。

村后,有海拔1500多米的一座“雪粒子迷顶”山,着实迷人。

这里,各种野花争相吐艳。

冬季,这里不时下雪,落在雪粒子迷顶山的雪花总是米粒状,由此当地人称此山为“雪粒子迷顶”。

2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷(四)一、选择题:(本题共12小题,每小题3分,共36分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.2.若(k﹣1)x|k|+20=0是一元一次方程,则k的值是()A.1 B.﹣1 C.0 D.±13.解方程﹣=1,去分母正确的是()A.2(2x+1)﹣3(5x﹣3)=1 B.2x+1﹣5x﹣3=6C.2(2x+1)﹣3(5x﹣3)=6 D.2x+1﹣3(5x﹣3)=6 4.已知a﹣7b=﹣2,则4﹣2a+14b的值是()A.0 B.2 C.4 D.85.下列说法中正确的是()A.最小的整数是0 B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等6.如图是由若干个小正方体所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时,所看到的几何图形是()A .B .C .D .7.若关于x 的方程2m+x=1和方程3x ﹣1=2x+1的解互为相反数,则m 的值为( )A .﹣B .C .0D .﹣28.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )A .甲B .乙C .同样D .与商品的价格有关 9.李华骑赛车从家里去乐山新村广场练习,去时每小时行24千米,回来时每小时16千米,则往返一次的平均速度为( )千米/时.A .20B .19.8C .19.6D .19.2 10.单项式﹣3πxy 2z 3的系数和次数分别是( )A .﹣π,5B .﹣1,6C .﹣3π,6D .﹣3,711.长城总长约为6 700 000米,用科学记数法表示正确的是( )A .6.7×108米B .6.7×107米C .6.7×106米D .6.7×105米 12.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为()A.n(n﹣1)B.n(n+1)C.(n+1)(n﹣1)D.n2+2 二、填空题(每小题3分,共18分)13.一个n边形,从一个顶点出发的对角线有条,这些对角线将n边形分成了个三角形.14.已知(a﹣3)2+|b+6|=0,则方程ax+b=0的解为.15.若a3=a,则a= .16.|3﹣π|= .17.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a ﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)= .18.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..三、解答题(本大题共66分.注意:解答应写出必要的文字说明,解答过程或解答步骤.)19.计算:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2];(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3.20.化简:(1)3x2﹣3(x2﹣2x+1)+4;(2)3(m﹣5n+4mn)﹣2(2m﹣4n+6mn)21.解方程:(1)3(x﹣1)﹣2(x+1)=﹣6(3)=1+(4)﹣=3.22.化简、求值:已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,①求﹣A﹣3B,②若A=﹣1,B=时,求6x2﹣6xy﹣15y2的值.23.城区某中学为形成体育特色,落实学生每天1小时的锻炼时间,通过调查研究,决定在七、八、九年级分别开展跳绳、羽毛球、毽球的健身运动.国家规定初中每班的标准人数为a人,七年级共有八个班,各班人数情况如下表,八年级学生人数是七年级学生人数的2倍少400人,九年级学生人数的2倍刚好是七、八年级学生人数的总和.(注:701班表示七年级一班)(1)用含a的代数式表示该中学七年级学生总数;(2)学校决定按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,其中跳绳每根5元,毽球每个3元,羽毛球拍每副18元.请你计算当a=50时,学校为落实1小时体育锻炼时间需购买器材的费用是多少?24.数a、b、c在数轴上对应的位置如图所示,化简|a+c|﹣|c+b|+|a ﹣b|.25.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?26.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72元.(1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费.若x≤60,则费用表示为;若x>60,则费用表示为.(2)若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?参考答案与试题解析一、1.【考点】展开图折叠成几何体.【分析】根据三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱;B、D的两底面不是三角形,故也不能围成三棱柱;只有C经过折叠可以围成一个直三棱柱.故选C.2.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:,解得:k=﹣1.故选B.3.【考点】解一元一次方程.【分析】方程两边乘以6,去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣3(5x﹣3)=6,故选C.4.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,把a﹣7b=﹣2代入计算即可求出值.【解答】解:∵a﹣7b=﹣2,∴原式=4﹣2(a﹣7b)=4+4=8,故选D.5.【考点】正数和负数;相反数;绝对值.【分析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.6.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【解答】解:从左面看会看到左侧有3个正方形,右面有1个正方形.故选B.7.【考点】一元一次方程的解.【分析】首先求得方程3x﹣1=2x+1的解,然后根据两个方程的解互为相反数求得2m+x=1的解,然后根据方程的解的定义代入求解即可.【解答】解:解方程3x﹣1=2x+1得:x=2,∵关于x的方程2m+x=1和方程3x﹣1=2x+1的解互为相反数,∴关于x的方程2m+x=1的解为x=﹣2,∴2m﹣2=1,解得:m=,故选B.8.【考点】有理数的混合运算.【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.【解答】解:设原价为x元,则甲超市价格为x×(1﹣10%)×(1﹣10%)=0.81x乙超市为x×(1﹣20%)=0.8x,0.81x>0.8x,所以在乙超市购买合算.故选B.9.【考点】一元一次方程的应用.【分析】把从家里去乐山新村广场的总路程看作单位“1”,先求出李华从家里去乐山新村广场所用的时间,再求出李华从乐山新村广场到家里所用的时间,最后用往返的总路程除以往返的总时间就是平均速度.【解答】解:(1+1)÷(1÷24+1÷16),=2÷(+),=2÷,=2×,=19.2(千米),答:往返一次的平均速度是每小时19.2千米.故选:D.10.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.11.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6 700 000用科学记数法表示为:6.7×106.故选:C.12.【考点】规律型:图形的变化类.【分析】由题意可知:等边三角形“扩展”而来的多边形的边数为12=3×(3+1),正方形“扩展”而来的多边形的边数为20=4×(4+1),正五边形“扩展”而来的多边形的边数为30=5×(5+1),正六边形“扩展”而来的多边形的边数为42=6×(6+1),…所以正n边形“扩展”而来的多边形的边数为n(n+1),据此解答即可.【解答】解:∵等边三角形“扩展”而来的多边形的边数为:12=3×(3+1),正方形“扩展”而来的多边形的边数为:20=4×(4+1),正五边形“扩展”而来的多边形的边数为:30=5×(5+1),正六边形“扩展”而来的多边形的边数为:42=6×(6+1),…∴正n边形“扩展”而来的多边形的边数为:n(n+1).故选:B.二、13.【考点】多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形(n>3)的一个顶点出发的对角线有n﹣3条,把n边形分成n﹣2个三角形.【解答】解:从n边形(n>3)的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,故答案为:n﹣3,n﹣2.14.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入方程计算即可求出解.【解答】解:∵(a﹣3)2+|b+6|=0,∴a﹣3=0,b+6=0,解得:a=3,b=﹣6,代入方程得:3x﹣6=0,解得:x=2,故答案为:x=215.考点】有理数的乘方.【分析】根据有理数乘方的法则进行计算即可.【解答】解:∵a3=a,∴a=0或±1.故答案为:0或±1.16.【考点】实数的性质.【分析】由于一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,由此即可求解.【解答】解:∵π>3,∴3﹣π<0,∴|3﹣π|=π﹣3.17.【考点】有理数的混合运算.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.18.【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.三、19.计算:【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法可以解答本题;(2)根据幂的乘方、有理数的乘法和减法可以解答本题.【解答】解:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2]=[1﹣0.5]×[2﹣9]=0.5×(﹣7)=﹣3.5;(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣0.5×[10﹣4]﹣(﹣1)=﹣1﹣0.5×6+1=﹣1﹣3+1=﹣3.20.【考点】整式的加减.【分析】(1)先去括号再合并同类项即可;(2)先去括号再合并同类项即可.【解答】解:(1)原式=3x2﹣3x2+6x﹣3+4=6x+1;(2)原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣3﹣2x﹣2=﹣6,移项合并得:x=﹣1;(2)去分母得:3x﹣3=12+4x+4,移项合并得:﹣x=19,解得:x=﹣19;(3)方程整理得:5x﹣10﹣2x﹣2=3,移项合并得:3x=15,解得:x=5.22.【考点】整式的加减—化简求值.【分析】①将A与B的表达式代入﹣A﹣3B后,化简即可求出答案.②将6x2﹣6xy﹣15y2表示为A与B即可求出答案.【解答】解:①﹣A﹣3B=﹣(4x2﹣4xy﹣y2)﹣3(﹣x2+xy+7y2)=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy+y2﹣20y2②当A=﹣1,B=时,6x2﹣6xy﹣15y2=(4x2﹣4xy﹣y2)﹣2(﹣x2+xy+7y2)=A﹣2B=﹣1﹣1=﹣223.【考点】列代数式;代数式求值.【分析】(1)a为每班的标准人数,根据表用a表示出每个班的人数,再相加即可得出答案;(2)根据已知条件得出八年级以及九年级的总人数,再计算出购买体育器材的费用.【解答】解:(1)七年级总人数=a+3+a+2+a﹣3+a+4+a+a﹣2+a﹣5+a﹣1=8a﹣2;(2)七年级总人数=8×50﹣2=398(人),买跳绳的费用=398×5=1990(元),八年级总人数=398×2﹣400=396(人),买羽毛球拍的费用=396÷2×18=3564(元),九年级总人数=÷2=397(人),买毽球的费用=397×3=1191(元),购买体育器材的费用=1990+3564+1191=6745(元).24【考点】整式的加减;数轴;绝对值.【分析】根据数轴先取绝对值再合并同类项即可.【解答】解:由数轴得,c<b<0<a,且|c|>|a|>|b|,|a+c|﹣|c+b|+|a﹣b|=﹣a﹣c+c+b+a﹣b=0.25.【考点】一元一次方程的应用.【分析】由题目可知:公共汽车速度为:30千米/时,出租车的速度应为60千米/时.可设小张家距火车站距离为x,公共汽车行驶后x的路程用时间应为=x小时,15分钟为小时,剩下的x的路程,出租车需要时间为:=x,则由题意,可根据时间差来列方程求解.【解答】解:由题目分析,根据时间差可列一元一次方程: x﹣x=,即: x=,解得:x=30千米.答:小张家到火车站有30km.26.【考点】一元一次方程的应用.【分析】(1)若x≤60,则费用按每立方米0.8元收费;若x>60,则费用=60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费).(2)设甲用户10月份用去煤气x立方米,根据60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费)=84,列方程求解.【解答】解:(1)若x≤60,则费用表示为:0.8x;若x>60,则费用表示为:60×0.8+(x﹣60)×1.2=1.2x﹣24.(2)设甲用户10月份用去煤气x立方米,由60×0.8=48<84,得到x>60,根据题意得:60×0.8+(x﹣60)×1.2=84,解得:x=90.答:甲用户10月份用去煤气90立方米.。

【6套打包】龙岩市七年级上册数学期中考试测试卷及答案

【6套打包】龙岩市七年级上册数学期中考试测试卷及答案

七年级上学期期中考试数学试题(答案)一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×1084.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣16.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2 7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为.10.比较大小:﹣(﹣3.14)﹣|﹣π|.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).16.(6分)计算:(﹣+﹣)×(﹣24).17.(6分)计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有个★,第六个图形共有个★;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2020个★?23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为;到乙商场购买所需的费用为;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?2018-2019学年吉林省长春市长春新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2018的绝对值是()A.2018B.﹣2018C.D.﹣【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.下列运算中,正确的是()A.(﹣3)2=﹣9B.﹣(+3)=3C.2(3x+2)=6x+2D.3a﹣2a=a【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=9,不符合题意;B、原式=﹣3,不符合题意;C、原式=6x+4,不符合题意;D、原式=a,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.【点评】本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.D.【分析】根据多项式的次数和项数,同类项,单项式及单项式的系数的定义作答.【解答】解:A、1﹣a﹣ab是二次三项式,正确;B、符合同类项的定义,故是同类项,正确;C、不符合单项式的定义,错误;D、,正确.故选:C.【点评】单项式的系数应包含完整的数字因数,多项式里次数最高项的次数叫做这个多项式的次数,单项式中,所有字母的指数和叫做这个单项式的次数.同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.5.若2x2m y3与﹣5xy2n是同类项,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】直接利用同类项的概念得出n,m的值,再利用绝对值的性质求出答案.【解答】解:∵2x2m y3与﹣5xy2n是同类项,∴2m=1,2n=3,解得:m=,n=,∴|m﹣n|=|﹣|=1.故选:B.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.6.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2【分析】根据题意列出代数式解答即可.【解答】解:能射进阳光部分的面积是2ab﹣b2,故选:D.【点评】此题考查了列代数式,弄清题意是解本题的关键.7.三个连续的奇数中,最大的一个是2n+3,那么最小的一个是()A.2n﹣1B.2n+1C.2(n﹣1)D.2(n﹣2)【分析】三个连续的奇数中,最大的一个是2n+3,由于奇数是不能被2除尽的整数,即连续奇数的相邻两项之间相差2,所以中间的那个奇数为2n+3﹣2=2n+1,那么最小的一个是2n+1﹣2=2n﹣1.【解答】解:由题意得:三个连续奇数中最小的一个为:2n+3﹣2﹣2=2n﹣1,故选:A.【点评】本题主要考查了代数式的求值,关键在于熟练掌握奇数的含义,明确相邻两个奇数之间的差为2,属于中考中的常考考点.8.若a,b互为相反数,c,d互为倒数,m的绝对值是2,则+m2﹣cd的值是()A.2B.3C.4D.5【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=4﹣1=3;当m=﹣2时,原式=4﹣1=3,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.将2.95用四舍五入法精确到十分位,其近似值为 3.0.【分析】精确到哪位,就是对它后边的一位进行四舍五入.【解答】解:将这个结果精确到十分位,即对百分位的数字进行四舍五入,是3.0.故答案为3.0.【点评】本题考查了近似数和有效数字,精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的7入了后,百分位的是9,满了10后要进1.10.比较大小:﹣(﹣3.14)>﹣|﹣π|.【分析】根据相反数的性质,绝对值的性质把两个数化简,根据正数大于负数比较即可.【解答】解:﹣(﹣3.14)=3.14,﹣|﹣π|=﹣π.3.14>﹣π,则﹣(﹣3.14)>﹣|﹣π|,故答案为:>.【点评】本题考查的是相反数的概念,实数的大小比较,掌握正数大于负数是解题的关键.11.已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣b|的结果是c﹣a.【分析】由数轴知c<a<0<b且|a|<|b|,据此得a﹣b>0、c+b<0,再根据绝对值性质去绝对值符号、合并即可得.【解答】解:由数轴知c<a<0<b,且|a|<|b|,则a﹣b>0、c﹣b<0,∴|a﹣b|﹣|c﹣b|=b﹣a+c﹣b=c﹣a,故答案为:c﹣a.【点评】此题考查了数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.12.若代数式x2+2x﹣1的值为0,则2x2+4x﹣1的值为1.【分析】根据题意确定出x2+2x的值,原式变形后代入计算即可求出值.【解答】解:∵x2+2x﹣1=0,∴x2+2x=1,则2x2+4x﹣1=2(x2+2x)﹣1=2×1﹣1=2﹣1=1,故答案为:1.【点评】此题考查了代数式求值,解题的关键是熟练掌握整体代入思想的运用.13.数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)的和等于﹣3.【分析】先求出各个整数,再相加即可.【解答】解:数轴上表示数﹣3和2之间的所有整数(包括﹣3和2两个数)为﹣3,﹣2,﹣1,0,1,2,和为﹣3﹣2﹣1+0+1+2=﹣3,故答案为:﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能求出符合的所有整数是解此题的关键.14.若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)=3.【分析】根据规定运算法则,分别把a、b换成1、(﹣2),然后进行计算即可求解.【解答】解:根据题意,1★(﹣2)=12﹣1×(﹣2)=1+2=3.故答案为:3.【点评】本题考查了有理数的混合运算问题,根据规定新运算代入进行计算即可,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).【分析】先凑成整数,再相加即可求解.【解答】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点评】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.(6分)计算:(﹣+﹣)×(﹣24).【分析】原式利用乘法分配律计算即可求出值.【解答】解:原式=4﹣18+2=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(6分)计算.【分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【解答】解:原式=9﹣60÷4×+2=9﹣60××+2=9﹣1.5+2=9.5.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.18.(7分)画出数轴,然后在数轴上标出下列各数,并用“>”把这些数连接起来.﹣3,+1,2,﹣1.5,﹣|﹣2.5|,﹣(+6)【分析】根据绝对值、相反数的意义得到﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,再利用数轴表示出6个数,然后利用数轴上右边的数总比左边的数大确定它们的大小关系.【解答】解:﹣|﹣2.5|=﹣2.5,﹣(+6)=﹣6,用数轴表示为:用“>”把这些数连接起来:2>+1>﹣1.5>﹣|﹣2.5|>﹣3>﹣(+6).【点评】本题考查了有理数的大小比较:比较有理数的大小可以利用数轴,他们从左到右的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.19.(7分)先化简,再求值:5x2﹣[3x﹣2(2x﹣3)+7x2],其中.【分析】先去括号,再合并,最后再把x的值代入计算即可.【解答】解:原式=5x2﹣3x+2(2x﹣3)﹣7x2=5x2﹣3x+4x﹣6﹣7x2=﹣2x2+x﹣6,当时,原式===﹣6.【点评】本题考查了整式的化简求值,解题的关键是去括号、合并同类项.20.(7分)已知x,y互为相反数,且|y﹣3|=0,求2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)的值.【分析】首先利用绝对值以及相反数的定义得出x,y的值,再去括号,利用整式加减运算法则合并同类项,将x,y的值代入求出答案.【解答】解:∵x,y互为相反数,且|y﹣3|=0,∴y=3,x=﹣3,2(x3﹣2y2)﹣(x﹣3y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+3y﹣x+3y2﹣2x3=﹣y2﹣2x+3y,当x=﹣3,y=3时,原式=﹣32﹣2×(﹣3)+3×3=6.【点评】此题主要考查了绝对值的性质以及整式加减运算法则,正确求出x,y的值是解题关键.21.(8分)用代数式表示:(1)a的5倍与b的平方的差.(2)m的平方与n的平方的和.(3)x、y两数的平方和减去它们积的2倍.(4)表示出这个三位数,它的百位数字是a,十位数字是b,个位数字是c.【分析】(1)a的5倍表示为5a,b的平方表示为b2,然后把它们相减即可;(2)m与n平方的和表示为m2+n2;(3)x、y两数的平方和表示为x2+y2,它们积的2倍表示为2xy,然后把两者相减即可;(4)百位数乘100,十位数乘10,个位数乘1,相加即可得.【解答】解:(1)a的5倍与b的平方的差可表示为5a﹣b2;(2)m的平方与n的平方的和可表示为m2+n2;(3)x、y两数的平方和减去它们积的2倍可表示为x2+y2﹣2xy;(4)此三位数为100a+10b+c.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.22.(9分)下列图形按一定规律排列,观察并回答:(1)依照此规律,第四个图形共有13个★,第六个图形共有19个★;(2)第n个图形中有★3n+1个;(3)根据(2)中的结论,第几个图形中有2020个★?【分析】(1)根据题目中的图形,可以得到第四个图形和第六个图形中★的个数;(2)根据题目中的图形,可以得到第n个图形中有★的个数;(3)根据(2)中的结论,可以解答本题.【解答】解:(1)由图可知,第一个图形中有★:1+3×1=4,第二个图形中有★:1+3×2=7,第三个图形中有★:1+3×3=10,故第四个图形中有★:1+3×4=13,第六个图形中有★:1+3×6=19,故答案为:13,19;(2)第一个图形中有★:1+3×1=4,第二个图形中有★:1+3×2=7,第三个图形中有★:1+3×3=10,故第n个图形中有★:1+3×n=3n+1,故答案为:3n+1;(3)设第x个图形中有2020个★,3x+1=2020,解得,x=673,答:第673个图形中有2020个★.【点评】本题考查图形的变化类,解答本题的关键是明确图形中★的个数的变化规律,利用数形结合的思想解答.23.(10分)长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站四哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?【分析】(1)根据有理数的加法,可得答案;(2)根据绝对值的意义和有理数的加法可得一共的站数,再乘以1.3可得答案.【解答】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是繁荣路站;(2)(5+2+6+8+3+4+9+8)×1.3=45×1.3=58.5(千米).答:这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【点评】本题考查了正数和负数,根据题意列出算式是解题的关键.24.(12分)某校餐厅计划购买12张餐桌和若干把餐椅,先从甲、乙两个商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为70元,甲商场规定:购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八折销售.(1)若学校计划购买x(x>12)把餐椅,则到甲商场购买所需的费用为(1560+70x)元;到乙商场购买所需的费用为(1920+56x)元;(2)若学校计划购进15张餐桌和30把餐椅,请通过计算说明,到哪个商场购买合算?【分析】(1)根据题意表示出甲乙两商场的费用即可;(2)计算出甲乙两个商场的费用,比较即可.【解答】解:(1)则到甲商场购买所需的费用为:12×200+70(x﹣12)=(1560+70x)元;到乙商场购买所需的费用为:(12×200+70x)×0.8=(1920+56x)元;故答案为:(1560+70x)元;(1920+56x)元;(2)到甲商场购买所需的费用为:15×200+70×(30﹣15)=4050(元),到乙商场购买所需的费用为:(15×200+70×30)×80%=4080(元),4050元<4080元答:到甲商场购买划算.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.人教版七年级第一学期期中模拟数学试卷【答案】一、选择题(共10小题,每小题3分,满分30分)1.2018的绝对值是()A.2018B.﹣2018C.D.2.在式子a,2x2+y,,﹣5,3m﹣3n中,多项式的个数是()A.4个B.3个C.2个D.1个3.(﹣2)6表示()A.6个﹣2相乘的积B.﹣2与6相乘的积C.2个6相乘的积的相反数D.6与2相乘的积4.下列各组式子中,是同类项的是()A.abc与5bc B.x2与y2C.m2n3与n3m2D.3a与a3 5.下列选项中,去括号正确的是()A.a+(b﹣1)=a﹣b﹣1B.a+(b﹣1)=a+b+1C.a﹣(b﹣1)=a﹣b+1D.a﹣(b﹣1)=a﹣b﹣16.下列说法正确的是()A.近似数13.5亿精确到亿位B.近似数3.1×105精确到十分位C.近似数1.80精确到百分位D.用四舍五入法取2.258精确到0.1的近似值是2.27.有理数a,b在数轴上的位置如图所示,则下列结论中,错误的是()A.a<0<b B.|a|>|b|C.﹣a>b D.b﹣a<a+b 8.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣3 9.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2B.x=﹣4,y=﹣2C.x=﹣3,y=4D.x=,y=3 10.现规定一种运算:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……,则的值为()A.200B.199C.D.1二、填空题(共5小题,每小题3分,满分15分)11.比较大小:﹣3﹣1(填“>”“<”或“=”).12.根据文化和旅游部的测算数据,2018年“十一”黄金周.全国共接待国内游客726000000人次.其中数据726000000用科学记数法表示为.13.如图,图中阴影部分的面积是.14.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为.15.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有个〇.三、解答题(共7小题,满分55分)16.(12分)(1)6+(﹣3)﹣(+5)﹣9(2)(﹣6)2×(﹣)(3)8﹣8÷(﹣)×(﹣)(4)5×(﹣1)3÷[﹣32+(﹣2)2]17.(6分)(1)3x2+6x﹣5x2﹣5x(2)3(2x2﹣xy)﹣2(3x2+xy﹣1)18.(6分)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?19.(6分)已知:A=a2+b2﹣c2,B=﹣4a2+2b2+3c2,且A﹣B+C=0(1)求A﹣B;(2)若a=1,b=﹣1,c=3,求多项式C的值.20.(7分)在数轴上两点之向的距离两数差的绝对值,我们可以用表示这两个点的大写字母一起标记,比如,表示点A的数为2,点B表示的数为﹣3,点A与点B之间的距离记作AB,别AB=2﹣(﹣3)=5.(1)数轴上表示﹣3和5的两点之间的距离是(2)如图,在数轴上点A表示数a,点C表示数c,且|a+20|+(c﹣30)2=0.求点A与点C之间的距离AC;(3)在(2)的条件下,在数轴上是否存在点B,使AB=5,若存在,求出点B表示的数b;若不存在,请说明理由.21.(8分)小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.22.(10分)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.2018-2019学年山东省济宁市微山县七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.2018的绝对值是()A.2018B.﹣2018C.D.【分析】直接利用绝对值的性质分析得出答案.【解答】解:2018的绝对值是:2018.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.在式子a,2x2+y,,﹣5,3m﹣3n中,多项式的个数是()A.4个B.3个C.2个D.1个【分析】由几个单项式的和组成的式子叫多项式,判断即可得出结论.【解答】解:在式子a,2x2+y,,﹣5,3m﹣3n中,多项式有:2x2+y,3m﹣3n 共2个.故选:C.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.3.(﹣2)6表示()A.6个﹣2相乘的积B.﹣2与6相乘的积C.2个6相乘的积的相反数D.6与2相乘的积【分析】根据乘方的意义直接回答即可.【解答】解:根据乘方的意义知:(﹣2)6表示6个﹣2相乘,故选:A.【点评】本题考查了有理数的乘法的意义,了解乘方的意义是解答本题的关键,难度不大.4.下列各组式子中,是同类项的是()A.abc与5bc B.x2与y2C.m2n3与n3m2D.3a与a3【分析】根据同类项的定义即可求出答案.【解答】解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,另外,同类项与字母的顺序无关,故选:C.【点评】本题考查同类项的定义,解题的关键是熟练运用同类项的定义,本题属于基础题型.5.下列选项中,去括号正确的是()A.a+(b﹣1)=a﹣b﹣1B.a+(b﹣1)=a+b+1C.a﹣(b﹣1)=a﹣b+1D.a﹣(b﹣1)=a﹣b﹣1【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A.a+(b﹣1)=a+b﹣1,故本选项错误;B.a+(b﹣1)=a+b﹣1,故本选项错误;C.a﹣(b﹣1)=a﹣b+1,正确;D.a﹣(b﹣1)=a﹣b+1,故本选项错误;故选:C.【点评】本题考查了去括号,解决本题的关键是要注意括号前面的符号,以选用合适的法则.6.下列说法正确的是()A.近似数13.5亿精确到亿位B.近似数3.1×105精确到十分位C.近似数1.80精确到百分位D.用四舍五入法取2.258精确到0.1的近似值是2.2【分析】根据近似数的精确度对各选项进行判断.【解答】解:A、近似数13.5亿精确到千万位,故选项错误;B、近似数3.1×105精确到万位,故选项错误;C、近1.80精确到百分位,故选项正确;D、用四舍五入法取2.258精确到0.1的近似值是2.3,故选项错误.故选:C.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.7.有理数a,b在数轴上的位置如图所示,则下列结论中,错误的是()A.a<0<b B.|a|>|b|C.﹣a>b D.b﹣a<a+b【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则﹣a>b,b﹣a>b+a.【解答】解:∵a<0<b,且|a|>b,∴﹣a>b,b﹣a>b+a.故选:D.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.也考查了数轴.8.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣3【分析】根据有理数的加法、减法、乘方法则分别计算出结果,再进行比较.【解答】解:A、23=8≠6,错误;B、﹣42=﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误;故选:B.【点评】本题主要考查学生的运算能力,掌握运算法则是关键.9.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2B.x=﹣4,y=﹣2C.x=﹣3,y=4D.x=,y=3【分析】根据运算程序,结合输出结果确定的值即可.【解答】解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=、y=3时,输出结果为2×+32=10,符合题意;故选:D.【点评】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.10.现规定一种运算:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……,则的值为()A.200B.199C.D.1【分析】原式利用题中的新定义化简,计算即可求出值.【解答】解:根据题中的新定义得:原式==200,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共5小题,每小题3分,满分15分)11.比较大小:﹣3<﹣1(填“>”“<”或“=”).【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣3|=3,|﹣1|=1,∵3>1,∴﹣3<﹣1.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.根据文化和旅游部的测算数据,2018年“十一”黄金周.全国共接待国内游客726000000人次.其中数据726000000用科学记数法表示为7.26×108.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:726000000=7.26×108,故答案为:7.26×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.如图,图中阴影部分的面积是 5.7mn.【分析】直接利用总面积减去空白面积进而得出答案.【解答】解:阴影部分面积为:6mn﹣0.3nm=5.7mn.故答案为:5.7mn.【点评】此题主要考查了列代数式,正确表示矩形面积是解题关键.14.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为1.【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解答】解:∵多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,∴b=4,a=1,则a b的值为:1.故答案为:1.【点评】此题主要考查了多项式,正确把握多项式的次数是解题关键.15.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有6056个〇.【分析】根据已知图形得出第n个图形中圆的个数为2n+n﹣1,据此可得.【解答】解:∵第一个图形中圆的个数2=2×1+0,第二个图形中圆的个数5=2×2+1,第三个图形中圆的个数8=2×3+2,第四个图形中圆的个数11=2×4+3,……∴第2019个图形中圆的个数为2×2019+2018=6056,故答案为:6056.【点评】本题主要考查图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(共7小题,满分55分)16.(12分)(1)6+(﹣3)﹣(+5)﹣9(2)(﹣6)2×(﹣)(3)8﹣8÷(﹣)×(﹣)(4)5×(﹣1)3÷[﹣32+(﹣2)2]【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题;(4)根据有理数的乘除法和加法可以解答本题.【解答】解:(1)6+(﹣3)﹣(+5)﹣9=6+(﹣3)+(﹣5)+(﹣9)=﹣11;(2)(﹣6)2×(﹣)=36×(﹣)=12﹣18=﹣6;(3)8﹣8÷(﹣)×(﹣)=8﹣8×=8﹣18=﹣10;(4)5×(﹣1)3÷[﹣32+(﹣2)2]=5×(﹣1)÷[﹣9+4]=5×(﹣1)÷(﹣5)=5×(﹣1)×(﹣)=1.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(6分)(1)3x2+6x﹣5x2﹣5x(2)3(2x2﹣xy)﹣2(3x2+xy﹣1)【分析】(1)根据合并同类项法则计算可得;(2)先去括号,再合并同类项即可得.【解答】解:(1)原式=(3﹣5)x2+(6﹣5)x=﹣2x2+x;(2)原式=6x2﹣3xy﹣6x2﹣2xy+2=﹣5xy+2.【点评】本题主要考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.18.(6分)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?【分析】(1)把上下楼层的记录相加,根据有理数的加法运算法则进行计算,如果等于0则能回到1楼,否则不能;(2)求出上下楼层所走过的总路程,然后乘以0.2即可得解.【解答】解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).【点评】本题主要考查了有理数的加法运算,(2)中注意要求出上下楼层的绝对值,而不是利用(1)中的结论求解,这是本题容易出错的地方.19.(6分)已知:A=a2+b2﹣c2,B=﹣4a2+2b2+3c2,且A﹣B+C=0(1)求A﹣B;(2)若a=1,b=﹣1,c=3,求多项式C的值.【分析】(1)根据整式的运算即可求出的答案.。

福建省龙岩七年级上学期数学期中考试试卷

福建省龙岩七年级上学期数学期中考试试卷

福建省龙岩七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、仔细选一选(本题有10个小题,每小题3分,共30分) (共10题;共30分)1. (3分) (2019七上·椒江期中) 下列各对量中,不具有相反意义的是()A . 胜2局与负3局B . 盈利3万元与亏损3万元C . 向东走100m与向北走100mD . 转盘逆时针转6圈与顺时针转6圈2. (3分)(2016·永州) ﹣的相反数的倒数是()A . 1B . ﹣1C . 2016D . ﹣20163. (3分)(2018·市中区模拟) 在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A . 0.13×105B . 13×103C . 1.3×104D . 1.3×1054. (3分)(2012·丽水) 如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A . ﹣4B . ﹣2C . 0D . 45. (3分) (2018八上·紫金期中) 下列各式中,不正确的是()A .B .C .D .6. (3分)下列说法错误的是()A . 相反数等于它自身的数有1个B . 倒数等于它自身的数有2个C . 平方数等于它自身的数有3个D . 立方数等于它自身的数有3个7. (3分)若x是3的相反数,|y|=2,则x﹣y的值为()A . -5B . -1C . ﹣5或﹣1D . 5或18. (3分) (2016八上·常州期中) 等腰三角形腰长为5,底边长为8,则其底边上的高为()A . 3B . 4C . 6D . 109. (3分) (2016七上·泉州期中) 下列各对数中,结果不相等的一对数是()A . 32与(﹣3)2B . ﹣33与(﹣3)3C . (﹣3)4与﹣34D . |﹣3|4与|3|410. (3分)方程(x2+x﹣1)x+3=1的所有整数解的个数是()A . 5个B . 4个C . 3个D . 2个二、认真填一填(本题有6个小题,每小题3分,共18分) (共6题;共18分)11. (3分)在5,0.1,0,﹣,,﹣,,,,0.101001000…(相邻两个1之间依次增加一个0)这些实数中,无理数有________.12. (3分)若,则x=________.13. (3分) (2018七上·慈溪期中) 把实数0.45精确到0.1的近似值为________.14. (3分) (2016七上·湖州期中) 计算:(﹣)×(﹣5)÷(﹣)×(﹣5)=________15. (3分) (2018七上·龙江期末) 规定,则 ________.16. (3分)(2017·玉林模拟) 在一次猜数字游戏中,小红写出如下一组数:1,,,,…,小军猜想出的第六个数字是,也是正确的,根据此规律,第n个数是________.三、全面答一答(本题有7个小题,共52分) (共7题;共52分)17. (5分) (2019八下·师宗月考) 如图,字母b的取值如图所示,化简|b-2|+ .18. (6分)解方程:|x﹣|=1.19. (12分) (2019七上·吉林月考) 计算: .20. (6分)解方程:①8x3+125=0②5(x+1)2﹣100=0.21. (6分) (2018七上·常熟期中) 有30箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质质量的差12(单位:千克)箱数261084(1)这30箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量比较,这30箱苹果总计超过或不足多少千克?(3)若苹果每千克售价6元,则出售这30箱苹果可卖多少元?22. (7.0分)观察下列等式:=1- , = , = ……,将以上二个等式两边分别相加得:+ + =1- + + = =用你发现的规律解答下列问题:(1)猜想并写出: =________(2)直接写出下列各式的计算结果:① + + +…+ =________② + + +…+ =________(3)探究并计算:+…+23. (10.0分) (2020七上·商河期末) 阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.参考答案一、仔细选一选(本题有10个小题,每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、认真填一填(本题有6个小题,每小题3分,共18分) (共6题;共18分) 11-1、12-1、13-1、14-1、15-1、16-1、三、全面答一答(本题有7个小题,共52分) (共7题;共52分)17-1、答案:略18-1、19-1、答案:略20-1、21-1、21-2、21-3、22-1、22-2、22-3、答案:略23-1、23-2、。

2018年福建省龙岩市连城县中南片七年级上学期期中考试道德与法治试题

2018年福建省龙岩市连城县中南片七年级上学期期中考试道德与法治试题

连城县中南区片2018-2019学年第一学期期中联合考试七年级道德与法治试题(满分:100分闭卷,答卷时间90分钟)一、单项选择题(每小题2分,共25小题,50分)下列各题均有四个选项,其中只有一项最符合题意,请将所选答案的字母填在括号内。

1.金秋九月,我们告别小学,进入中学时代。

我们首先要( )A.确立新目标B.迎接新的目标和挑战C.实现新的目标D.克服依赖心理2.下列哪些方面说明中学阶段发生了重要变化( )①富有挑战的课程②新奇的实验器材③中小学老师的工作都很认真④中学老师比小学老师知识更渊博A.①②B.①③C.②③D.②④3.“开学了,我是名中学生了!”中学生活为我们提供了发展自我的多种机会,主要有( )①新的课程,引领我们探索新的知识领域②学习科目多,难度大,感到有压力③丰富多彩的社团活动,给我们提供发展的平台④自己的自理能力差,感到对学习和生活有点不知所措A.①②B.②③C.①③D.③④4.小东自进入中学后,最大的感受是:无论是学习还是生活,很多事情都得自己做主。

小东的感受表明( )A.在中学,自己做主的机会多了B.在中学,学习负担加重了C.在中学,学校生活非常丰富D.在中学,成长中的每个阶段都有独特的价值与意义5.新的学习生活开始了,在新的环境里要想使自己抓住新的机会,在新学校、新集体、新老师面前展现新的自我,必须制定一个尽快适应中学生活的计划和目标,制定的目标力求具体,避免笼统、含糊,设计的内容和采用的方法尽量要( )A.内容越多越好B.切合自己的实际C.方法越新越好D.让老师满意6.走进中学时代,以下同学的做法错误的是,( )A.小思不用父母催促,回家后主动学习B.小香每天写作业后都要进行复习和预习C.小平为了提高学习效率,总是模仿其他同学的学习方式D.小德制定了学习计划,科学安持每天的学习时间‘7.某班级全体同学在交流切磋中共同完成学习任务,这种学习方式的好处在于( )①有一些同学可以不用动脑筋,直接获取答案②培养互帮互助的精神,每个同学一定都能迅速提高成绩③通过学习能使自己的学习视野更广阔,能集思广益④能通过学习交流培养观察、想象、分析、推理等方面的能力A.①②B.②③C.①④D.③④8.小红在日记中写道:“学习中每次遇到一个难题,就苦思冥想,甚至睡不着觉,但经过努力解决了,那种愉悦是不能用语言表达的。

2018-2019学年福建省龙岩市连城县城区片七年级(上)期中英语试卷

2018-2019学年福建省龙岩市连城县城区片七年级(上)期中英语试卷

2018-2019学年福建省龙岩市连城县城区片七年级(上)期中英语试卷I.听力测试(共三节,20小题;每小题1.5分,满分7.5分)第一节听五个句子,从每小题所给的三幅图中选出与所听到的句子内容相符的选项.(每个句子读两遍)1.(★)2.(★)3.(★)4.(★)5.(★)第二节听七段对话,每段对话后有一个或两个小题,从题中所给的三个选项中选出正确答案.(每段对话读两遍)6.(★)Who has a sister?A.Li Mei.B.Jane.C.Ann.7.(★)Are Jim and Sara in the same grade?A.Yes,they are.B.No,they aren't.C.We don't know.8.(★)Who has a round face?A.Bill.B.Jim.C.Jim's father.9.(★)Who is Mike?A.Bill's student.B.Bill's friend.C.Bill's teacher.10.(★★★)听第五段对话,回答第10~11小题.10.What class is Bruce in?A.Class Five.B.Class SixC.Class Seven11.How old is Linda?A.ElevenB.TwelveC.Thirteen.11.(★★★)听第六段对话,回答第12~13小题.12.What color is Miss Wang's coat?A.PinkB.WhiteC.Green13.Who gives Miss Zhang the coat?A.Her familyB.Her friendC.Her student.12.(★★★)听第七段对话,回答第14~15小题.14.Whose coat is black?A .Judy'sB .Lisa'sC .Father's15.Does the father find Lisa's coat ? A .Yes ,he does .B .No ,he doesn'tC .We don't know .第三节 听一段短文, 根据短文内容及要求填写表格,每空填一词.短文读三遍13.(★★)II.单项选择 从每小题所给的A 、B 、C 三个选项中,选出可以填入空白处的正确答案。

连城县七年级期中数学试卷

连城县七年级期中数学试卷

1. 下列数中,是质数的是()A. 14B. 15C. 16D. 172. 下列代数式中,是单项式的是()A. 2x + 3yB. x² - 2xy + 5C. 3x³yD. x + y + z3. 若a > b,则下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. a + 2 > b + 2D. a - 2 < b - 24. 已知直角三角形的两条直角边分别为3cm和4cm,那么它的斜边长是()A. 5cmB. 7cmC. 9cmD. 12cm5. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 以上都是6. 若等差数列的第一项为2,公差为3,则第10项的值是()A. 27B. 30C. 33D. 367. 若一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是()A. 24cm²B. 32cm²C. 36cm²D. 48cm²8. 已知一次函数y = kx + b的图象经过点(1, 2),则下列选项中,正确的k和b的值是()A. k = 1, b = 1B. k = 2, b = 1C. k = 1, b = 2D. k = 2, b = 29. 下列方程中,有唯一解的是()A. 2x + 3 = 5B. 2x + 3 = 5xC. 2x + 3 = 0D. 2x + 3 = 210. 下列函数中,是奇函数的是()A. y = x²B. y = 2xC. y = x³D. y = |x|11. 若a² = 25,则a的值为______。

12. 已知等差数列的第一项为3,公差为2,则第5项的值为______。

13. 若直角三角形的斜边长为5cm,一条直角边长为3cm,则另一条直角边长为______。

福建省龙岩市连城县2023-2024学年七年级上学期期中考试数学试卷(含答案)

福建省龙岩市连城县2023-2024学年七年级上学期期中考试数学试卷(含答案)

连城县2023 --2024学年第一学期期中考试七年级数学试题(考试时间:120分钟满分:150分)温馨提示:请把所有答案书写到答题卡上!请不要错位、越界答题!一、选择题(每小题4分,共40分,在每个小题给出的四个选项中,只有一项是符合要求).1.如果向东走6米记为+6米,那么向西走2米记为( )A.﹣2米B.+2米C.0米D.±2米2.下列说法中错误的是( )A.数字0是单项式B.单项式b的系数与次数都是1C.是四次单项式D.的系数是3.根据2022年政府工作报告,2022年连城县全县GDP实现320亿元,增长6.2%;将320亿用科学记数法表示应为( )A.32×1010B.3.2×1011C.3.2×1010D.3.2×10124.某市三个不同的地点同一时刻测得气温分别为,,,则这三个地点此时的最大温差是()A.B.C.D.5.若x2﹣2x=2,2x2﹣4x+3的值为( )A.7B.﹣2C.5D.﹣36.若数轴上点A,B分别表示数﹣1,3,则A,B两点之间的距离可表示为( )A.(﹣1)﹣3B.3+(﹣1)C.(﹣1)+3D.3﹣(﹣1)7.已知:,请求出:的值是()A.0B.-1C.1D.无法确定8.已知a=﹣2023,b=,则多项式3a2+2ab﹣a2﹣3ab﹣2a2的值为( )A.﹣1B.1C.2023D.9.规定“※”为一种运算,若对任意两数a、b,有a※b=2a+b,则3※4=( )A.9B.10C.11D.1210.观察下列关于x的单项式,探究其规律:﹣x,4x2,﹣7x3,10x4,﹣13x5,16x6,...按照上述规律,则第2023个单项式是( )A.6069x2023B.﹣6069x2023C.-6067x2023D.6067x2023二、填空题(每小题4分,共24分).11.比较大小:(填“>”、“=”或“<”).12.如果单项式与是同类项,那么= .13.A、B两点在数轴上,点A对应的数为2,若线段的长为3,则点B对应的数为.14.一种商品每件成本为a元,按成本增加25%定价,售出60件,可盈利________ 元(用含a的式子表示).15.已知多项式﹣2x2+5kxy﹣3y2﹣15xy+10中不含xy项,则k= .16.已知有理数m,n,p满足则,则.三、解答题(共9题,共86分)17.(8分)将下列各数在数轴上表示出来,并用“>”将它们连接起来.(温馨提示:请用铅笔、直尺画图哦)18.(8分)计算:(1)(2)19.(8分)先化简,再求值:2(ab﹣3ab2)﹣3(a2b﹣2ab2)+ab﹣3a2b,其中a=,b=3.20.(8分)已知|x|=3,|y|=7.(1)若x<y,求x+y的值;(2)若xy<0,求x﹣y的值.21.(8分)阅读材料计算(﹣)÷解:原式的倒数为÷(﹣)=×(﹣30)=﹣20+3﹣5+12=﹣10所以原式=﹣.通过阅读上述材料,请你选择合适的方法计算(﹣)÷()22.(10分)如图是一块长方形花园,内部修有两个凉亭及过道,其余部分种植花圃(阴影部分).(1)用整式表示花圃的面积;(2)若为3米时,修建花圃的成本是每平方米60元,求修建花圃所需费用.23.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数——“纯数”.定义;对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2022是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.24.(12分)某地新华都超市在春节期间对顾客实行优惠,规定如下:(1)你一次性购物680元,那么实际付款  元;(2)某顾客在该超市一次性购物m 元,当m 小于500但不小于200时,他实际付款 元,当m 大于或等于500时,他实际付款 元;(用含m 的代数式表示)(3)班主任为了筹备元旦晚会,如果两次购物合计960元,第一次购物x (200<x <400)元,用含x 的代数式表示两次购物班主任实际付款多少元?当x =250元时,班主任两天一共节省了多少元?25.(14分)已知:b 是最小的正整数,且a 、b 满足(c ﹣5)2+|a +b |=0,请回答问题:(1)请直接写出a 、b 、c 的值.a = ,b = ,c = .一次性购物优惠方法低于200元不予优惠低于500元但不低于200元9折优惠不低于500元其中500元部分给予9折优惠,超过500元部分给予8折优惠(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.七年级2023-2024学年第一学期期中考试数学参考答案一、选择题:每小题4分序号12345678910选项A D C B A D C B B C二、填空题:每小题4分11.12.7 13.5或14.15.3 16.0三、解答题17.解:,,,,,将各数在数轴上表示出来,如下图:根据数轴得:.18.解:(1)原式(2)原式19.解:原式当,时,原式20.由题意知:,,(1),,或4(2),,或,,,21.解:原式的倒数则原式22.解:(1)花圃的面积为:;(2)当为3米时,修建花圃的费用(元).23.解:(1)2019不是“纯数”,2022是“纯数”,理由:当时,,,个位是,需要进位,不是“纯数”;当时,,,个位是,不需要进位,十位是,不需要进位,百位为,不需要进位,千位为,不需要进位,是“纯数”;(2)由题意可知,连续三个自然数的个位不同,其它位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其它位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;②当这个数为两位自然数时,十位只能是1、2、3,个位只能是0、1、2,即10、11、12、20、21、22、30、31、32,共9个;③当这个数为100时,易知100是“纯数”综上,不大于100的“纯数”的个数为24.(1)你一次性购物680元,那么实际付款594元;(2)某顾客在该超市一次性购物元,当小于500但不小于200时,他实际付款元,当大于或等于500时,他实际付款元;(用含的代数式表示)(3)第一次购物元,第二次购物元.,.两次购物王老师实际付款:元当元时,元,所以共节省:元答:两天购物王老师实际一共付款元,一共节省了117元.25.解:(1)是最小的正整数,.根据题意得:且,,,(2)当时,,,,则:;当时,,,.;(3)不变.理由如下:秒时,点对应的数为,点对应的数为,点对应的数为,即的值不随着时间的变化而改变.解法二点以每秒1个单位长度的速度向左运动,点以每秒2个单位长度的速度向右运动,、之间的距离每秒钟增加3个单位长度;点和点分别以每秒2个单位长度和5个单位长度的速度向右运动,、之间的距离每秒钟增加3个单位长度.又,的值不随着时间的变化而改变.。

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)一、选择题((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.24.70千克B.25.32千克C.25.51千克D.24.86千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体 D.三棱柱4.﹣23的意义是()A.3个﹣2相乘B.3个﹣2相加C.﹣2乘以3 D.3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A .0个B .1个C .2个D .3个6.将如图Rt △ABC 绕直角边AC 旋转一周,所得几何体的左视图是( )A .B .C .D .7.下列计算:(1)78﹣23÷70=70÷70=1;(2)12﹣7×(﹣4)+8÷(﹣2)=12+28﹣4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)=0. 其中错误的有( )A .1个B .2个C .3个D .4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )A .B .C .D .9.有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n .若a 1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,等于()利用这个规律可得a2016A.﹣B. C.2 D.310.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.15 B.9或15 C.15或21 D.9,15或21二、填空题(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(﹣3)﹣(﹣7)= .12.如图所示的三个几何体的截面分别是:(1);(2);(3).13.把边长为lcm的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = .三、解答题(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.19.(7分)画一条数轴,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数.然后用“>”把这些数连接起来.20.(16分)计算:(1)(﹣)+(﹣);(2)15×﹣(﹣15)×+15×;(3)﹣+÷(﹣2)×(﹣);(4)﹣14﹣×[2﹣(﹣3)2].21.(6分)根据实验测定,高度每增加100米,气温大约下降0.6℃.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是﹣16℃,如果当时地面温度是8℃,那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.23.(4分)已知|x|=3,y2=25,且x>y,求出x,y的值.24.(4分)已知|2m﹣6|+(﹣1)2=0,求m﹣2n的值.25.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km):﹣16,﹣7,12,﹣9,6,10,﹣11,9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?26.(10分)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= ;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= .参考答案与试题解析一、1.【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25﹣0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:∵25+0.25=25.25;25﹣0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【点评】本题考查几何体的分类和三视图的概念.4.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:﹣23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】解:①没有最小的整数,故①错误;②有理数中没有最大的数,故②正确;③如果两个数的绝对值相等,那么这两个数相等或互为相反数,故③错误;④互为相反数的两个数的绝对值相等,故④正确;故选:C.【点评】本题考查了有理数,没有最大的有理数,没有最小的有理数.6.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形,故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78﹣=77,错误;(2)原式=12+28﹣4=36,正确;(3)原式=12÷6=2,错误;(4)原式=3×9.42+3×(﹣9.42)=0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.9.【考点】规律型:数字的变化类.【分析】根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2016÷3=672可知a2016=a3.【解答】解:当a1=时,==3,a3===﹣,a4===,∴这列数的周期为3,∵2016÷3=672,∴a2016=a3=﹣,故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.10.【考点】认识立体图形;有理数的加法.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A.【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、11.计算(﹣3)﹣(﹣7)= 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(﹣3)﹣(﹣7)=(﹣3)+7=7﹣3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:(1)圆;(2)长方形;(3)三角形.【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7 条棱,展开成的平面图形周长为14 cm.【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,1×(7×2)=1×14=14(cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7,14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:﹣b<a<﹣a<b .【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵a<0,b>0,∴﹣a>0,﹣b<0,∵|a|<|b|,∴﹣a<b,∴﹣b<a<﹣a<b.故答案为:﹣b<a<﹣a<b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是剪去1号、2号或3号小正方形.【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答.【解答】解:∵剩余的部分恰好能折成一个正方体,∴展开图中没有田字形,∴应剪去1号、2号或3号小正方形.故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的11中形式是解题的关键,只要有“田”字格的展开图都不是正方体的表面展开图.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = 1﹣.【考点】规律型:图形的变化类.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、18.写出符合下列条件的数:(1)最小的正整数: 1 ;(2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5 ;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数.【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答.【解答】解:如图.(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1;0;﹣4,﹣5;4,﹣6;±1;0或负数.【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可.【解答】解:,3.5>0>﹣0.5>﹣2>﹣3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)(﹣)+(﹣)=(+)﹣(+)=1﹣=﹣(2)15×﹣(﹣15)×+15×=15×(++)=15×=22(3)﹣+÷(﹣2)×(﹣)=﹣+(﹣)×(﹣)=﹣+1=﹣1(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8﹣(﹣16)]÷0.6=24÷0.6=40(米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×10×4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、y,再根据条件确定x、y.【解答】解:∵|x|=3,∴x=±3∵y2=25,∴y=±5,∵x>y,∴x=3,y=﹣5或x=﹣3,y=﹣5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m﹣6=0,﹣1=0,解得,m=3,n=2,则m﹣2n=﹣1.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1)﹣16+(﹣7)+12+(﹣9)+6+10+(﹣11)+9=﹣16﹣7+12﹣9+6+10﹣11+9=﹣6(km),∴|﹣6|=6km,答:B地在A地的西边,相距6km;(2)0.46×(|﹣16|+|﹣7|+12+|﹣9|+6+10+|﹣11|+9)=0.46×(16+7+12+9+6+10+11+9)=0.46×80=36.8(升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.【考点】认识立体图形.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.【点评】本题主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.。

连城县2018-2019学年上学期七年级期中数学模拟题

连城县2018-2019学年上学期七年级期中数学模拟题

连城县2018-2019学年上学期七年级期中数学模拟题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()A.24.70kgB.24.80kgC.25.30kgD.25.51kg2.的平方根是()A.±2 B.2 C.±4 D.43.如表是小王存折存取记录的一部分,根据图中提供的信息,截止2015年8月20日,此张存折的余额为()A.19450元B.8550元C.7650元D.7550元4.下列对负数的理解错误的是()A.小于0的数是负数B.含有负号的数是负数C.在正数前面加上负号的数是负数D.在原点左侧的数是负数5.在-(-3)2、-|-3|、(-3 )3、(-3)2 四个数中,负数有()A.1个B.2个C.3个D.4个6.下列各组数中,不是具有相反意义的量的是()A.收入200元与支出20元B.上升10米和下降7米C.增大2岁与减少2升D.超过0.05mm与不足0.03m7.下列所给的算式中正确的是()A.3a+2b=5ab B.5mn﹣3nm=2mnC.9a﹣8a=1 D.3x2y+5xy2=8x2y28.如果把向北走5米,记作+5米,那么-6米表示()A.向西走6米B.向东走6米C.向南走6米D.向北走6米9.某同学集合在假期每天做6道数学题,超过的题数记为正数,不足的题数记为负数,十天中做题记录如下:-3,5,-4,2,-1,1,0,-3,8,7,那么他十天共做了数学题()A.70道B.71道C.72道D.73题10.(2012•芗城区校级模拟)如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A.400 cm2B.500 cm2C.600 cm2D.4000 cm211.下列方程中,属于一元一次方程的是()A.x﹣3 B.x2﹣1=0 C.2x﹣3=0 D.x﹣y=312.(2015秋•丹阳市校级月考)若|﹣a|+a=0,则()A.a>0 B.a≤0 C.a<0 D.a≥013.(2013秋•临颍县期末)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+2b)(a﹣b)=a2+ab﹣2b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b214.某年度某国家有外债10亿美元,有内债10亿美元,运用数学知识来解释说明,下列说法合理的是()A.如果记外债为-10亿美元,则内债为+10亿美元B.这个国家的内债、外债互相抵消C.这个国家欠债共20亿美元D.这个国家没有钱15.(2013•义乌市校级模拟)据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000007克,用科学记数法表示此数正确的是()A.7.0×108B.7.0×10﹣8C.0.7×109D.0.7×10﹣9二、填空题16.(2015春•萧山区月考)如图,已知AB∥EF,∠C=45°,写出x,y,z的关系式.17.(2013秋•揭西县校级月考)用配方法解方程x2﹣2x+1=0,原方程可化为.18.(2014•雁塔区校级模拟)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊.19.(2016春•江宁区期中)在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=100°,则∠OAB=.三、解答题20.“囧”(jiong)是网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示右图中“囧”的面积;(2)当x=3,y=6时,求此时“囧”的面积.21.(2015春•萧山区月考)计算①(﹣5)﹣2+(π﹣1)0;②3m2×(﹣2m2)3÷m﹣2.22.(2013秋•龙岗区期末)解下列一元二次方程.(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).23.一个底面半径为4cm,高为10cm的圆柱形烧杯中装满水.把烧杯中的水倒入底面半径为1cm的圆柱形试管中,刚好倒满试管.试管的高为多少cm?24.(2014•泗县校级模拟)已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.25.(2013秋•揭西县校级月考)如图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P表示).如果是太阳光请画出光线.(2)在图中画出表示大树高的线段.26.计算:(1);(2)|.27.(2014秋•宁海县月考)解方程:(1)x﹣4=2﹣5x;(2)4(﹣2y+3)=8﹣5(y﹣2);(3)﹣1;(4)=0.5.连城县2018-2019学年上学期七年级期中数学模拟题(参考答案)一、选择题1.【答案】B【解析】【解析】:解:在24.75~25.25这个区间内的只有24.80.故选B.【考点】:正数、负数、有理数【难度】:较难2.【答案】A【解析】解:∵=4,4的平方根为±2,∴的平方根为±2.故选A点评:此题考查了平方根,以及算术平方根,熟练掌握平方根的定义是解本题的关键.3.【答案】D【解析】【解析】:解:13500+(-7450)+1500=6050+1500=7550(元).答:此张存折的余额为7550元.故选:D.【考点】:正数、负数、有理数【难度】:容易4.【答案】B【解析】【解析】:解:∵-(-5)>0,∴含有负号的数不一定是负数,故B说法错误,故选:B.【考点】:正数、负数、有理数【难度】:较难5.【答案】C【解析】【解析】:解:-(-3)2=-9、-|-3|=-3、(-3 )3=-27、(-3)2=9,所以负数共有3个,故选:C.【考点】:正数、负数、有理数【难度】:中等难度6.【答案】C【解析】【解析】:解:具有相反意义的量是指相同的量,故A、B、D都是正确的,只有C中岁和升是不同的量.故选:C.【考点】:正数、负数、有理数【难度】:较难7.【答案】B【解析】解:A、3a与2b不是同类项,不能合并,故本选项错误;B、5mn﹣3nm=(3﹣2)mn=2mn,故本选项错误;C、9a﹣8a=a,故本选项错误;D、3x2y与5xy2不是同类项,不能合并,故本选项错误.故选:B.点评:本题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.8.【答案】C【解析】【解析】:解:把向北走5米,记作+5米,-6向南走6米,故选:C.【考点】:正数、负数、有理数【难度】:中等难度9.【答案】C【解析】【解析】:解:10×6+(-3+5-4+2-1+1+0-3+8+7)=60+12=72.故选C.【考点】:正数、负数、有理数【难度】:较难10.【答案】A【解析】解:设一个小长方形的长为xcm,宽为ycm,由图形可知,,解得:.所以一个小长方形的面积为400cm2.故选A.11.【答案】C【解析】解:A、不是等式,故不是方程;B、未知数的最高次数为2次,是一元二次方程;C、符合一元一次方程的定义;D、含有两个未知数,并且未知数的最高次数是一次,是二元一次方程;故选C.点评:判断一元一次方程的定义要分为两步:(1)判断是否是整式方程;(2)对整式方程化简,化简后判断是否只含有一个未知数(元),并且未知数的指数是1(次).12.【答案】B【解析】解:|﹣a|+a=0,∴|a|=﹣a≥0,a≤0,故选:B.13.【答案】B【解析】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故选B.14.【答案】C【解析】【解析】:解:A、如果记外债为-10亿美元,则内债为+10亿美元,内债与外债不是相反意义的量,不合理;B、这个国家的内债、外债互相抵消,不合理;C、这个国家欠债共20亿美元,合理;D、这个国家没有钱;不合理.故选C.【考点】:正数、负数、有理数【难度】:较难15.【答案】B【解析】解:0.000 000 07=7×10﹣8.故选B.二、填空题16.【答案】x+y+z=225°.【解析】解:如图,过点C、D分别作CM、DN平行于AB、EF,则x=∠5,∠4=∠3,∠1+∠z=180°,又∵∠1+∠3=y,∠4+∠5=45°,∴x+∠4=45°,∴∠3+∠x=45°,∴x+y+z=180°+45°=225°.故答案为:x+y+z=225°.17.【答案】(x﹣1)2=0.【解析】解:方程配方得:x2﹣2x+1=0,即(x﹣1)2=0,故答案为:(x﹣1)2=018.【答案】400只.【解析】解:20÷=400(只).故答案为400只.19.【答案】40°.【解析】解:∵四边形ABCD是矩形,∴AC=2OA,BD=2BO,AC=BD,∴OB=0A,∵∠AOB=100°,∴∠OAB=∠OBA=(180°﹣100°)=40°故答案为:40°.三、解答题20.【答案】【解析】解:(1)设“囧”的面积为S,则S=20×20﹣xy﹣2×(xy)=400﹣2xy;(2)当x=3,y=6时,S=400﹣2×3×6=364.点评:本题考查了列代数式求值,正确列出代数式是关键.21.【答案】【解析】解:①原式==;②原式=﹣3m2×8m6×m2=﹣24m8.22.【答案】【解析】解:(1)这里a=1,b=﹣5,c=1,∵△=25﹣4=21,∴x=;(2)方程变形得:3(x﹣2)2﹣x(x﹣2)=0,分解因式得:(x﹣2)(3x﹣6﹣x)=0,解得:x1=2,x2=3.23.【答案】【解析】解:设试管的高为xcm,则π×42×10=π×12×x解得:x=160答:试管的高为160cm.点评:此题的关键是要利用体积公式列出等量关系,即V烧杯=V试管.24.【答案】【解析】解:(1)x2﹣1=0,解得x1=1,x2=﹣1,x2+x﹣2=0,解得x1=1,x2=﹣2,x2+2x﹣3=0,解得x1=1,x2=﹣3,…x2+(n﹣1)x﹣n=0,解得x1=1,x2=﹣n;(2)这n个方程都有一个根为1,另外一根等于常数项.25.【答案】【解析】解:(1)如图所示:P点即为路灯的位置;(2)如图所示:GM即为所求.26.【答案】【解析】解:(1)原式=(﹣)×12+×12﹣1=﹣4+3﹣1=﹣2;(2)原式=4﹣|﹣2+4|=4﹣2=2.点评:本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.27.【答案】【解析】解:(1)方程移项合并得:6x=6,解得:x=1;(2)去括号得:﹣8y+12=8﹣5y+10,移项合并得:﹣3y=6,解得:y=﹣2;(3)去分母得:8x﹣4=3x+6﹣12,移项合并得:5x=﹣2,解得:x=﹣0.4;(4)方程整理得:﹣=0.5,去分母得:15x﹣10﹣50x=3,移项合并得:﹣35x=13,解得:x=﹣.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.。

龙岩七年级上学期期中数学试卷

龙岩七年级上学期期中数学试卷

龙岩七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·孝义期中) 下列说法错误的是()A . 两个数之差不一定小于被减数B . 0的倒数是0C . 正数的绝对值是它本身D . 减去一个负数,差一定大于被减数2. (2分)(2011·南通) 如果60m表示“向北走60m”,那么“向南走40m”可以表示为()A . ﹣20mB . ﹣40mC . 20mD . 40m3. (2分) (2019七上·江苏期中) 下列代数式:(1) ,(2) ,(3) ,(4) ,(5) (6),(7) , (8) 中,整式有()A . 3个B . 4个C . 6个D . 7个4. (2分)某厂2011年用于购买原材料的费用2350000元,实数2350000用科学记数法表示为()A . 2.35×105B . 23.5×105C . 0.235×105D . 2.35×1065. (2分) (2019七上·咸阳期中) 下列各式:-(-5)、-|-5|、-52、(-5)2计算结果为负数的有()A . 4个B . 3个C . 2个D . 1个6. (2分)在数轴上,与表示-3点的距离等于5的点所表示的数是()A . 2B . -8和-2C . -8D . 2和-87. (2分)化简x-(x-1)的结果是()A . x+B . x-C . x-1D . x+18. (2分) (2016高二下·抚州期中) 设P是关于x的5次多项式,Q是关于x的3次多项式,则()A . P+Q是关于x的8次多项式B . P-Q是关于x的二次多项式C . 3P+Q是关于x的8次多项式D . P-Q是关于x的五次多项式9. (2分) (2019八上·朝阳期中) 下列计算正确的是()A . ;B . ;C . ;D . .10. (2分) (2017七上·娄星期末) 七年级(1)班有x人,七年级(2)班人数比七年级(1)班的多1人,则七年级(2)班的人数是()A . x+1B .C . x﹣1D . (x﹣1)二、填空题 (共4题;共4分)11. (1分) (2019七上·富阳期中) 将1.63709精确到百分位的结果是________.12. (1分) (2016七上·兰州期中) 若|a﹣3|=3﹣a,则a=________.(请写一个符合条件a的值)13. (1分) (2017七上·深圳期中) 找出下列各图形中数的规律,依此,a的值为________.14. (1分)探索规律:用棋子按如图所示的方式摆正方形.按照这种方式摆下去,摆第20个正方形需要________个棋子.三、解答题 (共8题;共70分)15. (10分) (2017七上·启东期中) 计算:(1)﹣3+12×(﹣ + );(2)﹣1×[﹣32×(﹣)2﹣2]×(﹣).16. (5分) (2017七上·泉州期末) 已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|.17. (5分) (2018七上·天台期中) 先化简再求值:,其中.18. (5分) (2016七上·宁江期中) 请你把32、(﹣2)3、|﹣ |、﹣、0、﹣(﹣3)、﹣1.5这七个数按照从小到大,从左到右的顺序串成一个糖葫芦.19. (10分) (2019七上·江都月考) 某面粉加工厂加工的面粉,用每袋可装10kg面粉的袋子装了200袋经过称重,质量超过标准质量10kg的用正数表示,质量低于标准质量10kg的用负数表示,结果记录如下与标准质量的偏差(kg)﹣1.5﹣1﹣0.500.512袋数(袋)40301025402035(1)求这批面粉的总质量;(2)如果100kg小麦加工80kg面粉,那么这批面粉是由多少千克小麦加工的?20. (15分) (2019七上·安庆期中) 如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为am,计算:(1)窗户的面积;(2)窗框的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).21. (5分)已知|b|<a,ab<0,比较大小:-a,a,-b,b.22. (15分) (2016七上·长泰期中) 已知a,b为有理数,且它们在数轴上的位置如图所示.(1)在数轴上分别标出表示a,b的相反数的位置;(2)把a,﹣a,b,﹣b按照从大到小的顺序排列并用“>”连接;(3)若|a|=1,|b|=3,求2a﹣3b的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共8题;共70分)15-1、15-2、16-1、17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、22-3、。

龙岩市初级中学2019年秋七年级上期中质量数学试题及答案

龙岩市初级中学2019年秋七年级上期中质量数学试题及答案

龙岩初级中学2018-2019学年第一学期期中教学质量检查七年级数学试题一、选择题(每题2分,共20分)1、-3的相反数是 ( )A .31- B .-3C .31D .32、下列四个数中,在-2到0之间的数是 ( )A .-3B . 3C .-1D .1 3.计算)3(3--的结果是 ( )A .6B .3C .0D .6-4.3)2(-的值是 ( )A .5-B .6-C .8-D .9-5.2008年5月27日,北京2008年奥运会火炬接力传递活动在南京境内举行,火炬传递路线全程约12 900m ,把12 900m 用科学记数法可以记为 ( )A .212910⨯ mB .312.910⨯ mC .41.2910⨯ mD .50.12910⨯ m6.计算)51()5(51-÷-⨯,结果等于 ( )A .5B .5-C .51D .17.下列各题中的两项是同类项的是 ( )A .2ab 与b a 221- B .3xy 与22y x C . 2x 与2y D .3与5-8.下列各式的计算,正确的是 ( )A .ab b a 523=+B .23522=-y yC .x x x 5712-=+-D .mn mn n m 22422=-9. 全班同学排成长方形长队,每排的同学数为a ,排数比每排同学数的3倍还多2,那么全班同学数是 ( )A. 23·+a aB. )2(3+a aC. 23++a aD. )23(+a a10.a 、b 互为倒数,x 、y 互为相反数且y 0≠,那么代数式: (a +b )(x +y )-ab -yx的值为 ( )A.2;B.1;C.-1;D.0 二、填空题(每题2分,共16分)11.如果+3吨记为运入仓库的大米吨数, 那么运出5吨大米记为 吨 .12.73的倒数是 ,-2.3的绝对值是 .13.绝对值小于3的所有整数的和是 .14.比较大小:(1) )]9([____)3(-+--- ; (2) 43___21--.15.某银行今年五月份的储蓄额是a 亿元,比去年五月份的储蓄额少40亿元,那么去年五月份的储蓄额是 亿元. 16.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .17.“24”点游戏,用2、6、9、9凑成24点(每一个数只用一次),算式是_()9962+-⨯________.18.现定义某种运算“*”,对给定的两个有理数a 、b (a ≠0),有a*b=a b ,则(-3)*2= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年龙岩市连城县中南片七年级(上)期中数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.下列计算正确的是()A.7﹣(﹣7)=0B.C.0﹣4=﹣4D.﹣6﹣5=﹣12.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人3.单项式﹣a2n﹣1b4与3ab8m是同类项,则(1+n)5(m﹣1)7=()A.B.﹣C.4D.﹣44.下列各对数中,互为相反数的是()A.﹣(﹣2)和2B.+(﹣3)和﹣(+3)C.D.﹣(﹣5)和﹣|﹣5|5.数轴上与表示﹣1的点距离10个单位的数是()A.10B.±10C.9D.9或﹣116.若a2m+1b2n+3与5a4m﹣3b4n﹣5是同类项,则m、n的值是()A.m=2,n=﹣2B.m=﹣2,n=2C.m=﹣2,n=4D.m=2,n=47.已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99B.101C.﹣99D.﹣1018.对于代数式ax2﹣2bx﹣c,当x取﹣1时,代数式的值为2,当x取0时,代数式的值为1,当x取3时,代数式的值为2,则当x取2时,代数式的值是()A.1B.3C.4D.59.现规定一种运算:a※b=ab+a﹣b,其中a、b为有理数,则2※(﹣3)的值是()A.﹣6B.﹣1C.5D.1110.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8B.﹣8C.﹣12D.12二.填空题(共6小题,满分24分,每小题4分)11.计算:x2y﹣3yx2=.12.在0,﹣2,5,,﹣0.3中,最小的数是.13.在有理数集合中,最小的正整数是,最大的负整数是.14.有一种运算法则用公式表示为=ad﹣bc,依此法则计算=.15.若|a+1|+|a﹣2|=5,|b﹣2|+|b+3|=7,则a+b=.16.若|﹣m|=2018,则m=.三.解答题(共9小题,满分86分)17.(8分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.18.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?19.(8分)把下列各数在数轴上表示出来,并用“<”号连接﹣1,+3,0,﹣(﹣2.5),﹣|﹣5|20.(8分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.21.(8分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.22.(10分)足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?23.(10分)a、b、c在数轴上的位置如图所示,则:(1)用“<、>、=”填空:a0,b0,c0;(2)用“<、>、=”填空:﹣a0,a﹣b0,c﹣a0;(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|24.(12分)小明在学习有理数运算时发现以下三个等式:(a•b)2=a2•b2,(a•b)3=a3•b3,(a•b)4=a4•b4.(1)他把a=﹣2,b=3代入到第一个等式的左右两边验证:因为,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.请你帮他把a=﹣2,b=3代入到后两个等式的左右两边验证是否成立;(2)通过上述验证,请你猜想直接写出结果:(a•b)365=,归纳得出:(a•b)n=(n为正整数);(3)请应用(2)中归出的结论计算:(﹣)2017×11201825.(14分)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=2、b=﹣.2018-2019学年福建省龙岩市连城县中南片七年级(上)期中数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列计算正确的是()A.7﹣(﹣7)=0B.C.0﹣4=﹣4D.﹣6﹣5=﹣1【分析】根据有理数的减法法则逐一计算可得.【解答】解:A.7﹣(﹣7)=7+7=14,此选项计算错误;B.﹣=﹣=﹣,此选项计算错误;C.0﹣4=0+(﹣4)=﹣4,此选项计算正确;D.﹣6﹣5=﹣6+(﹣5)=﹣11,此选项计算错误;故选:C.【点评】本题主要考查有理数的减法,将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.3.单项式﹣a2n﹣1b4与3ab8m是同类项,则(1+n)5(m﹣1)7=()A.B.﹣C.4D.﹣4【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:2n﹣1=1,4=8m,解得:n=1,m=,∴原式=25×(﹣)7=(﹣2×)5×()2=,故选:B.【点评】本题考查同类项的定义,解题的关键是正确理解同类项的定义,本题属于基础题型.4.下列各对数中,互为相反数的是()A.﹣(﹣2)和2B.+(﹣3)和﹣(+3)C.D.﹣(﹣5)和﹣|﹣5|【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、﹣(﹣2)+2=4,故本选项错误;B、+(﹣3)﹣(+3)=﹣6,故本选项错误;C、﹣2=﹣,故本选项错误;D、﹣(﹣5)﹣|﹣5|=0,故本选项正确.故选:D.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.5.数轴上与表示﹣1的点距离10个单位的数是()A.10B.±10C.9D.9或﹣11【分析】设该数是x,再根据数轴上两点间的距离公式求出x的值即可.【解答】解:设该数是x,则|x﹣(﹣1)|=10,解得x=9或x=﹣11.故选:D.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.6.若a2m+1b2n+3与5a4m﹣3b4n﹣5是同类项,则m、n的值是()A.m=2,n=﹣2B.m=﹣2,n=2C.m=﹣2,n=4D.m=2,n=4【分析】根据同类项的定义列出关于m、n的方程组,解之可得.【解答】解:∵a2m+1b2n+3与5a4m﹣3b4n﹣5是同类项,∴,解得:m=2、n=4,故选:D.【点评】本题主要考查同类项,解题的关键是掌握:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.7.已知m﹣n=100,x+y=﹣1,则代数式(n+x)﹣(m﹣y)的值是()A.99B.101C.﹣99D.﹣101【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵m﹣n=100,x+y=﹣1,∴原式=n+x﹣m+y=﹣(m﹣n)+(x+y)=﹣100﹣1=﹣101.故选:D.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.对于代数式ax2﹣2bx﹣c,当x取﹣1时,代数式的值为2,当x取0时,代数式的值为1,当x取3时,代数式的值为2,则当x取2时,代数式的值是()A.1B.3C.4D.5【分析】根据x=﹣1,代数式的值为2,x=0,代数式的值为1,x=3,代数式的值为2,可知a、b、c的数量关系.【解答】解:根据题意可知:当x=﹣1时,a+2b﹣c=2当x=0时,﹣c=1当x=3时,9a﹣6b﹣c=2,联立∴解得:∴代数式为﹣x+1当x=2时,原式=﹣+1=1故选:A.【点评】本题考查代数式求值,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.9.现规定一种运算:a※b=ab+a﹣b,其中a、b为有理数,则2※(﹣3)的值是()A.﹣6B.﹣1C.5D.11【分析】利用题中的新定义即可得到结果.【解答】解:根据题意得:2※(﹣3)=﹣6+2+3=﹣1.故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8B.﹣8C.﹣12D.12【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【解答】解:∵2×5﹣1×(﹣2)=12,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=12.故选:D.【点评】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.计算:x2y﹣3yx2=﹣2yx2.【分析】根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变进行合并.【解答】解:x2y﹣3yx2=﹣2yx2.故答案为:﹣2yx2.【点评】本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.12.在0,﹣2,5,,﹣0.3中,最小的数是﹣2.【分析】根据正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小可得答案.【解答】解:在0,﹣2,5,,﹣0.3中,最小的数是﹣2,故答案为:﹣2.【点评】此题主要考查了有理数的比较大小,关键是掌握有理数比较大小的法则.13.在有理数集合中,最小的正整数是1,最大的负整数是﹣1.【分析】根据正整数和负整数的定义来得出答案.正整数:+1,+2,+3,…叫做正整数.负整数:﹣1,﹣2,﹣3,…叫做负整数.特别注意:0是整数,既不是正数,也不是负数.【解答】解:在有理数集合中,最小的正整数是1,最大的负整数是﹣1.故答案为1;﹣1.【点评】本题主要考查了有理数的分类及定义.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.特别注意:整数和正数的区别,注意0是整数,但不是正数.14.有一种运算法则用公式表示为=ad﹣bc,依此法则计算=﹣11.【分析】根据题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:﹣2×4﹣3=﹣8﹣3=﹣11.故答案为:﹣11【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.若|a+1|+|a﹣2|=5,|b﹣2|+|b+3|=7,则a+b=±1或±6.【分析】先根据绝对值的性质分类讨论求得a、b的值,再分别代入a+b计算可得.【解答】解:当a≤﹣1时,﹣a﹣1+2﹣a=5,解得a=﹣2;当﹣1<a<2时,a+1+2﹣a=3≠5,舍去;当a≥2时,a+1+a﹣2=5,解得a=3;当b≤﹣3时,2﹣b﹣b﹣3=7,解得b=﹣4;当﹣3<b<2时,﹣b﹣3+b﹣2=﹣5≠7,舍去;当b≥2时,b﹣2+b+3=7,解得b=3;综上a=﹣2或a=3,b=﹣4或b=3;当a=﹣2、b=﹣4时,a+b=﹣6;当a=﹣2、b=3时,a+b=1;当a=3、b=﹣4时,a+b=﹣1;当a=3、b=3时,a+b=6;即a+b=±1或±6;故答案为:±1或±6.【点评】本题主要考查有理数的加法和绝对值,解题的关键是根据绝对值的性质求得a、b的值及分类讨论思想的运用.16.若|﹣m|=2018,则m=±2018.【分析】由于|﹣m|=|m|,根据绝对值的意义求解即可.【解答】解:因为|﹣m|=|m|,又因为|±2018|=2018,所以m=±2018故答案为:±2018【点评】本题考查了绝对值的意义.解决本题的关键是掌握互为相反数的两个数的绝对值相等.三.解答题(共9小题,满分86分)17.(8分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a的值.【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点评】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.19.(8分)把下列各数在数轴上表示出来,并用“<”号连接﹣1,+3,0,﹣(﹣2.5),﹣|﹣5|【分析】先在数轴上表示各数,再根据数轴上右边的数大于左边的数,即可解答.【解答】解:如图,﹣(﹣2.5)=2.5,﹣|﹣5|=﹣5,﹣|﹣5|<﹣1<0<﹣(﹣2.5)<+3.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记数轴上右边的数大于左边的数.20.(8分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【分析】将代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点评】本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.21.(8分)先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.(10分)足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果;(2)求出每一段到出发点的距离,即可判断出结果;(3)利用绝对值的性质以及有理数加法法则求出即可.【解答】解:(1)(+40)+(﹣30)+(+50)+(﹣25)+(+25)+(﹣30)+(+15)+(﹣28)+(+16)+(﹣18)=+15(米);答:球员最后到达的地方在出发点的正西方向,距出发点15m;(2)第一段,40m,第二段,40﹣30=10m,第三段,10+50=60m,第四段,60﹣25=35m,第五段,35+25=60m,第六段,60﹣30=30m,第七段,30+15=45m,第八段,45﹣28=17m,第九段,17+16=33m,第十段,33﹣18=15m,∴在最远处离出发点60m;(3)∵|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=277(米),答:球员在一组练习过程中,跑了277米.【点评】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.23.(10分)a、b、c在数轴上的位置如图所示,则:(1)用“<、>、=”填空:a<0,b<0,c>0;(2)用“<、>、=”填空:﹣a>0,a﹣b<0,c﹣a>0;(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|【分析】(1)利用数轴表示数的方法进行判断;(2)利用负数的相反数为正数得到﹣a>0,利用有理数的减法判断a﹣b和c﹣a的符号;(3)先去绝对值,然后合并即可.【解答】解:(1)a<0,b<0,c>0;(2)﹣a>0,a﹣b<0,c﹣a>0;(3)|﹣a|﹣|a﹣b|+|c﹣a|=﹣a+a﹣b+c﹣a=﹣a﹣b+c.故答案为<、<、>;>、<、>.【点评】本题考查了由理数的大小比较:有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.也考查了绝对值.24.(12分)小明在学习有理数运算时发现以下三个等式:(a•b)2=a2•b2,(a•b)3=a3•b3,(a•b)4=a4•b4.(1)他把a=﹣2,b=3代入到第一个等式的左右两边验证:因为,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.请你帮他把a=﹣2,b=3代入到后两个等式的左右两边验证是否成立;(2)通过上述验证,请你猜想直接写出结果:(a•b)365=a365•b365,归纳得出:(a•b)n=a n•b n(n为正整数);(3)请应用(2)中归出的结论计算:(﹣)2017×112018【分析】(1)将a=﹣2,b=3代入(a•b)2,a2•b2的左右两边分别计算可得;(2)根据以上等式可得答案;(3)原式利用乘方的定义及所得结论变形为(﹣×11)2017×11,据此可得答案.【解答】解:(1)当a=﹣2,b=3时,左边=(﹣2×3)2=(﹣6)2=36,右边=(﹣2)2×32=4×9=36,∴左边=右边,所以等式成立;(2)根据以上验证,知:(a•b)365=a365•b365,归纳得出:(a•b)n=a n•b n,故答案为:a365•b365,a n•b n.(3)原式=(﹣)2017×112017×11=(﹣×11)2017×11=(﹣1)2017×1=﹣1×1=﹣1.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数混合运算顺序和运算法则,并根据已知等式得出运算的规律.25.(14分)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=2、b=﹣.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=7a2b﹣4a2b+5ab2﹣2a2b+3ab2=a2b+8ab2,当a=2,b=﹣时,原式=﹣2+4=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.。

相关文档
最新文档