电磁场与电磁波解答(第四版)谢处方
电磁场与电磁波(第四版)课后答案 谢处方 第二章习题
2)
3)
, 处于外导体内部,
4)
2. 一半径为R的电介质球内计划强度为 求(1)极化电荷的体密度和面密度。
2 自由电荷密度。 3 球内、外的电场分布。
, 其中k为一常数。
(1)极化电荷的体密度。 极化电荷的面密度
(2)根据高斯定律自由电荷密度。
(3)根据高斯定律求电场分布。 球内电场分布
球Байду номын сангаас电场分布
,d=
lcm,横截面积s =10cm2。
求:
x=0和x=d 区域内的总电荷量;
x=d/2和x=d区域内的总电荷量。
• 解: (1)
• (2)
2.8 一个点电荷 位于 处,
另一个点电荷
位于 处,
空间有没有电场强度
的
解:
个点电荷的电场公式为
点 ?
令
, 即有
由此可得个分量为零的方程组:
2
解之: 当
有一平行的圆柱形空腔,其横截面如图所示。 的磁感应强度, 并证明空腔内的磁场是均匀的。
试计算各部分
解: 将题中问题看做两个对称电流的叠加: 一个是密度为 均匀分布在半径为 的圆柱内, 另一个是密度为 均匀 分布在半径为 的圆柱内。
由安培环路定律在 磁场分别为
和
中分布的
b
a d
空间各区域的磁场为 圆柱外 圆柱内的空腔外 空腔内
因此, 在z>0的区域有 在z<0的区域有
表示为矢量形式
为面电流的外法 向单位矢量
2.25平行双线与一矩形回路共面,设a=0.2m,b=c=d=0.1m, 求回路中的感应电动势。 解: 先求出平行双线在回路中的磁感应强度
回路中的感应电动势为
电磁场和电磁波答案及解析[第四版]谢处方
一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)ABθ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 c o s AB θ=8==A B A B ,得 1c o s AB θ-=()135.5= (5)A 在B 上的分量 BA =A c o s AB θ==A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z-=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
电磁场与电磁波(第四版)谢处方_课后答案
第一章习题解答
给定三个矢量 A 、 B 和 C 如下: A ex ey 2 ez 3
B ey 4 ez
C ex5 ez 2 求:(1) aA ;(2) A B ;(3) A B ;(4)AB ;(5) A 在 B 上的分量;(6) AC ;
(7) A (B C) 和 (A B) C ;(8) (A B)C 和 A(B C) 。
(4)由
cosAB
AB AB
11 14 17
11 ,得 238
AB cos1 (
11 ) 135.5 238
(5) A 在 B 上的分量
AB
A
cosAB
A B B
11 17
ex (6) AC 1
5
ey ez 2 3 ex 4 ey13 ez10 0 2
ex ey ez (7)由于 BC 0 4 1 ex8 ey 5 ez 20
解 A 与 B 之间的夹角为
AB
cos1(
A A
B B
)
cos1(
31 ) 131 29 77
A 在 B 上的分量为
B 31
AB A B
3.532 77
给定两矢量 A ex 2 ey 3 ez 4 和 B ex 6 ey 4 ez ,求 A B 在 C ex ey ez 上的分量。
解 (1)在直角坐标中点 (3, 4, 5) 处, r2 (3)2 42 (5)2 50 ,故
E
er
25 r2
1 2
Ex
ex
E
E
cosrx
1 3 2 52
3 2 20
(2)在直角坐标中点 (3, 4, 5) 处, r ex 3 ey 4 ez 5 ,所以
电磁场与电磁波(第四版)谢处方_课后答案
电磁场与电磁波(第四版)谢处方 课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C g 和()⨯A B C g ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11(4)由 cos AB θ===A B A B g ,得 1cos AB θ-=(135.5=o(5)A 在B 上的分量 B A =A cos AB θ==A B B g (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()⨯=A B C g (1014)x y z ---e e e g (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(完整版)电磁场与电磁波(第四版)课后答案详解--谢处方
电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B AB ,得1cos AB θ-=(135.5= (5)A 在B 上的分 量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e(7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场与电磁波(第四版)课后答案 谢处方
电磁场与电磁波(第四版)课后答案谢处方电磁场与电磁波(第四版)课后答案--谢处方-1-共138页第三章习题答疑3.1真空中半径为a的一个球面,球的两极点处分别设置点电荷q和?q,试计算球赤道平面上电通密度的通量?(如题3.1图所示)。
求解由点电荷q和?q共同产生的电通密度为qr?r?d?[3?3]?赤道平面q4?r?r?err?ez(z?a)qerr?ez(z?a)a{2?}23222324?[r?(z?a)][r?(z?a)]则球赤道平面上电通密度的通量d?ds??d?ezz?0ds?ss?qaqa1?(?1)q??0.293q2212(r?a)023.21911年卢瑟福在实验中使用的是半径为ra 的球体原子模型,其球体内均匀分布有总电荷量为?ze的电子云,在球心有一正电荷ze (z是原子序数,e是质子电荷量),通过实验得到球体内的电通量密度表达式为ze?1r?d0?er,先行证明之。
4??r2ra3?ze解位于球心的正电荷ze球体内产生的电通量密度为d1?er4?r2ze3ze原子内电子云的电荷体密度为4?ra334?ra3电子云在原子内产生的电通量密度则为ba?4?r33zer?0d?e??e2rrc234?r4?raze?1r?故原子内总的电通量密度为d?d1?d2?er题3.3图(a)4??r2ra3?3.3电荷均匀分布于两圆柱面间的区域中,体密度为?cm3,两圆柱面半题3.1图q(?a)a[?]2?rdr?22322232?4?0(r?a)(r?a)a径分别为a和b,轴线距离为c(c?b?a),如题3.3图(a)右图。
谋空间各部分的电场。
求解由于两圆柱面间的电荷不是轴对称原产,无法轻易用高斯定律解。
但可以把半径为a的小圆柱面内看做同时具备体密度分别为??0的两种电荷分布,这样在半径为b的整个圆柱体内具备体密度为?0的光滑电荷分布,而在半径为a的整个圆柱体内则具备体密度为??0的光滑电荷分布,如题3.3图(b)右图。
电磁场与电磁波答案(第四版)谢处方之欧阳治创编
欧阳治创编 2021.03.10 一章习题解答1.1给定三个矢量A 、B 和C 如下: 求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A BC 。
解(1)23A x y z +-===+e e e A a e e e A()-=A B (23)(4)xy z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由cos AB θ=14==⨯A B A B ,得1cosAB θ-=(135.5= (5A 在B 上的分量欧阳治创编 2021.03.10B A =A cos AB θ=17=-A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e所以()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e1.2三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
解(1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e则12214x z=-=-R r r e e ,233228x y z =-=++R r r e e e ,欧阳治创编 2021.03.10 由此可见故123PP P ∆为一直角三角形。
电磁场与电磁波答案(第四版)谢处方之欧阳索引创编
一章习题解答欧阳家百(2021.03.07)1.1给定三个矢量A 、B 和C 如下:求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解(1)23A x y z+-===+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e(3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由cos ABθ=14==⨯A B AB ,得 1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=17=-A B B (6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e(7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e所以()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e(8)()⨯⨯=A B C 1014502x yz---=-e e e 2405x y z -+e e e1.2三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
解(1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e 则12214x z =-=-R r r e e ,233228x y z =-=++R r r e e e , 由此可见故123PP P ∆为一直角三角形。
电磁场与电磁波答案(第四版)谢处方
2 r
A d S = (e r
S 4 2
+ ez 2 z ) (er d Sr + e d S + ez d S z ) =
5 2
2 5 5d d z + 2 4r d r d = 1200 0 0 0 0
故有 1.13
A d = 1200 = A d S
(2)三角形的面积
S=
则
RPP = rP − rP = ex 5 − e y 3 − ez
且 RPP 与 x 、 y 、 z 轴的夹角分别为
1.4
ex RPP 5 ) = cos −1 ( ) = 32.31 RPP 35 e R −3 y = cos −1 ( y P P ) = cos −1 ( ) = 120.47 RPP 35 e R 1 z = cos −1 ( z PP ) = cos −1 (− ) = 99.73 RPP 35 给定两矢量 A = ex 2 + e y 3 − ez 4 和 B = ex 4 − e y 5 + ez 6 ,求它们之间的夹角和 A 在
在由 r = 5 、 z = 0 和 z = 4 围成的圆柱形区域,对矢量 A = er r 2 + ez 2 z 验证散度定
A=
4 2
1 (rr 2 ) + (2 z) = 3r + 2 r r z
5 0
S
A d = d z d (3r + 2)r d r = 1200
e + e 2 − ez 3 A 1 2 3 = x y = ex + ey − ez A 14 14 14 12 + 22 + (−3)2
电磁场与电磁波答案(第四版)谢处方之欧阳术创编
一章习题解答1.1给定三个矢量A 、B 和C 如下:求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C和()⨯⨯A BC 。
解(1)23A x y z +-===-e e e A a e e e A(2)-=A B (23)(4)xy z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由cos AB θ=14==⨯A B A B ,得1cos AB θ-=(135.5= (5)A 在B 上的分量 B A =Acos ABθ=17=-A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e所以()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e 1.2三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
解(1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e 则12214x z =-=-R r r e e ,233228x y z =-=++R r r e e e , 由此可见故123PP P ∆为一直角三角形。
电磁场与电磁波答案(第四版)谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A BC 和()⨯A BC ;(8)()⨯⨯AB C 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a ee e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 cos AB θ=14==⨯A B A B ,得 1cos AB θ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=17=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
电磁场与电磁波(第四版)课后答案谢处方
球内电荷不仅在球壳内表面上感应电荷 ,而且在球壳外表面上还要感应电荷 ,所以球壳外表面上的总电荷为2 ,故球壳外表面上的电荷面密度为
3.6两个无限长的同轴圆柱半径分别为 和 ,圆柱表面分别带有密度为 和 的面电荷。(1)计算各处的电位移 ;(2)欲使 区域内 ,则 和 应具有什么关系?
解电荷 在 处产生的电场为
电荷 在 处产生的电场为
故 处的电场为
2.6一个半圆环上均匀分布线电荷 ,求垂直于圆平面的轴线上 处的电场强度 ,设半圆环的半径也为 ,如题2.6图所示。
解半圆环上的电荷元 在轴线上 处的电场强度为
在半圆环上对上式积分,得到轴线上 处的电场强度为
2.7三根长度均为 ,均匀带电荷密度分别为 、 和 地线电荷构成等边三角形。设 ,计算三角形中心处的电场强度。
细圆环的半径为 ,圆环平面到球心的距离 ,利用电流圆环的轴线上的磁场公式,则该细圆环电流在球心处产生的磁场为
故整个球面电流在球心处产生的磁场为
2.11两个半径为 、同轴的相同线圈,各有 匝,相互隔开距离为 ,如题2.11图所示。电流 以相同的方向流过这两个线圈。
(1)求这两个线圈中心点处的磁感应强度 ;
解(1)
(2)连接点 到点 直线方程为
即
故
由此可见积分与路径无关,故是保守场。
1.20求标量函数 的梯度及 在一个指定方向的方向导数,此方向由单位矢量 定出;求 点的方向导数值。
解
故沿方向 的方向导数为
点 处沿 的方向导数值为
1.21试采用与推导直角坐标中 相似的方法推导圆柱坐标下的公式
。
解在圆柱坐标中,取小体积元如题1.21图所示。矢量场 沿 方向穿出该六面体的表面的通量为
电磁场与电磁波答案(第四版)谢处方之欧阳法创编
2021.03.09 欧阳法创编第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C。
解 (1)23A x y z+-===+e e e A a e e e A ()-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 cos AB θ=14==⨯A B A B ,得1cosAB θ-=(135.5= (5A在B上的分量2021.03.09 欧阳法创编B A =A cos AB θ=17=-A B B (6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e所以()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
解 (1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e则12214x z=-=-R r r e e ,233228x y z =-=++R r r e e e ,2021.03.09 欧阳法创编由此可见故123PP P ∆为一直角三角形。
电磁场与电磁波(第四版)谢处方_课后答案
电磁场与电磁波(第四版)谢处方 课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C g 和()⨯A B C g ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11(4)由 cos AB θ===A B A B g ,得 1cos AB θ-=(135.5=o(5)A 在B 上的分量 B A =A cos AB θ==A B B g (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()⨯=A B C g (1014)x y z ---e e e g (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场与电磁波答案(第四版)谢处方之欧阳与创编
欧阳与创编 第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A BC 。
解 (1)23A x y z +-===-e e e A a e e e A (2)-=A B (23)(4)xy z y z +---+=e e e e e 64x y z +-=e e e(3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 cos AB θ=14==⨯A B A B ,得1cosAB θ-=(135.5= (5A 在B 上的分量B A =A cos ABθ=17=-A B B欧阳与创编(6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e所以()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
解 (1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e , 由此可见 故123PP P ∆为一直角三角形。
电磁场与电磁波答案(第四版)谢处方精编版
一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 c o s AB θ=8==A B A B ,得 1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场与电磁波答案(第四版)谢处方
第一章习题解答1.1给定三个矢量4、〃和C 如下:A=e r +e v 2-e.3B = -e v 4 + e,C =0 5-W.2■' z求:(1) “l; 1 2 kM : (3) A ・B ;(4)0\B :(5)A 在B 上的分量:(6)AxC : (7) A>(BxC)和(Ax 〃)・C :(8) (AxB)xC 和 Ax(BxC)」A c x +e v 2—e.3 1 2 3解⑴ “「PT *+22+(_3)2 7 為《 而7 而 (2) \A-B\ = |(e x +e >.2-e.3)-(-e y 4+e.)| = |e t+e 、6_e :4| = >/53 ⑶ A ・B=(S+©.2-e :3) ・(_e 、.4 + ej = -llA ・B —1111Ax(BxC)= 12 一3 = e x 55-e, 44-eA 1_3 = -e x 10-e.\-eA1A ・(Bxf) =(€x +0尹2 —(e x S + e v 5 + e :20) = —42(A x B^C = (一£」0-0」一冬4)・(乞5-《2) = -42AxB =所以(8) (AxB)xC =务 S J一 10 -1 一 4 50 —2=e r 2-e v 40 + e,5(4)由 cos 。
” = ||||=—=_ ] ----- 得 趴R = cos -1 (— ) = 135.5曲 |A||B| 714x717V238 朋 >/238..,,z .A^B 11A 在B 上的分呈 4 = \A\ COS0A[) = =(5)(6) AxC =(7) 由于B xC =1 = e v 8 + e v 5 + ^.2O一 28 5 201.2 三角形的三个顶点为£(0,1,-2)、P2(4,1,-3)和召(6,2,5) o (1)判断\P\PR是否为一直角三角形:(2)求三角形的而积。
电磁场与电磁波答案(第四版)谢处方
一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:1A a ;2-A B ;3A B ;4AB θ;5A 在B 上的分量;6⨯A C ;7()⨯A B C 和()⨯AB C ;8()⨯⨯A BC 和()⨯⨯A B C ..解 123A x y z+-===+e e e A a e e e A 2-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e 3=A B (23)x y z +-e e e (4)y z -+=ee -114由 cos AB θ=14-==⨯A B A B ;得 1cos AB θ-=(135.5=5A 在B 上的分量 B A =A cos AB θ=1117=-A B B 6⨯=A C 123502xy z-=-e e e 41310x y z ---e e e 7由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e8()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P .. 1判断123PP P ∆是否为一直角三角形; 2求三角形的面积..解 1三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ;243x y z =+-r e e e ;3625x y z =++r e e e 则 12214x z =-=-R r r e e ; 233228x y z =-=++R r r e e e ;311367x y z =-=---R r r e e e由此可见1223(4)(28)0x z x y z =-++=R R e e e e e故123PP P ∆为一直角三角形.. 2三角形的面积122312231117.1322S =⨯=⨯==R R R R 1.3 求(3,1,4)P '-点到(2,2,3)P -点的距离矢量R 及R 的方向..解 34P x y z '=-++r e e e ;223P x y z =-+r e e e ;则 53P P P P x y z ''=-=--R r r e e e 且P P 'R 与x 、y 、z 轴的夹角分别为11cos ()cos 32.31x P P xP P φ--''===eR R 11cos ()cos 120.47y P P y P P φ'--'===e R R11cos ()cos (99.73z P P z P P φ--''===e R R1.4给定两矢量234x y z =+-A e e e 和456x y z =-+B e e e ;求它们之间的夹角和A 在B 上的分量..解 A 与B 之间的夹角为11cos ()cos 131θ--===AB A B A B A 在B 上的分量为 313.53277B A -===-B AB 1.5 给定两矢量234x y z =+-A e e e 和64x y z =--+B e e e ;求⨯A B 在x y z=-+C e e e 上的分量..解 ⨯=A B 234641x y z-=--e e e 132210x y z -++e e e所以⨯A B 在C 上的分量为 ()⨯=C A B ()2514.433⨯=-=-A B C C1.6 证明:如果A B =A C 和⨯=A B ⨯A C ;则=B C ;解 由⨯=A B ⨯A C ;则有()()⨯⨯=⨯⨯A A B A A C ;即()()()()-=-A B A A A B A C A A A C由于A B =A C ;于是得到 ()()=A A B A A C 故 =B C1.7 如果给定一未知矢量与一已知矢量的标量积和矢量积;那么便可以确定该未知矢量..设A 为一已知矢量;p =A X 而=⨯P A X ;p 和P 已知;试求X ..解 由=⨯P A X ;有()()()()p ⨯=⨯⨯=-=-A P A A X A X A A A X A A A X 故得 p -⨯=A A P X A A 1.8 在圆柱坐标中;一点的位置由2(4,,3)3π定出;求该点在:1直角坐标中的坐标;2球坐标中的坐标..解 1在直角坐标系中 4cos(22x π==-、4sin(2y π==、3z =故该点的直角坐标为(2,-..2在球坐标系中 435r =+=、1tan (453.1θ-==、23120φπ== 故该点的球坐标为(5,53.1,120)1.9 用球坐标表示的场225rr =E e ; 1求在直角坐标中点(3,4,5)--处的E 和x E ;2求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角.. 解 1在直角坐标中点(3,4,5)--处;2222(3)4(5)50r =-++-=;故22512rr ==E e1cos220x x rx E θ====-e E E2在直角坐标中点(3,4,5)--处;345x y z =-+-r e e e ;所以233452525r r -+-===e e e r E故E 与B 构成的夹角为11cos ()cos (153.63θ--===EB E B E B 1.10 球坐标中两个点111(,,)r θφ和222(,,)r θφ定出两个位置矢量1R 和2R ..证明1R 和2R 间夹角的余弦为121212cos cos cos sin sin cos()γθθθθφφ=+-解 由 111111111sin cos sin sin cos x y z r r r θφθφθ=++R e e e222222222sin cos sin sin cos x y z r r r θφθφθ=++R e e e得到 1212cos γ==R R R R1122112212sin cos sin cos sin sin sin sin cos cos θφθφθφθφθθ++=121211212sin sin (cos cos sin sin )cos cos θθφφφφθθ++= 121212sin sin cos()cos cos θθφφθθ-+1.11 一球面S 的半径为5;球心在原点上;计算: (3sin )d r Sθ⎰e S 的值..解 (3sin )d (3sin )d r r r SSS θθ==⎰⎰e S e e 2220d 3sin 5sin d 75ππφθθθπ⨯=⎰⎰1.12 在由5r =、0z =和4z =围成的圆柱形区域;对矢量22r z r z =+A e e 验证散度定理.. 解 在圆柱坐标系中 21()(2)32rr z r r r z∂∂∇=+=+∂∂A 所以 4250d d d (32)d 1200z r r r πττφπ∇=+=⎰⎰⎰⎰A 又2d (2)(d d d )rz r r z z SSrz S S S φφ=+++=⎰⎰A S e e e e e42522000055d d 24d d 1200z r r ππφφπ⨯+⨯=⎰⎰⎰⎰故有d 1200ττπ∇=⎰A d S=⎰A S 1.13 求1矢量22222324x y z x x y x y z =++A e e e 的散度;2求∇A 对中心在原点的一个单位立方体的积分;3求A 对此立方体表面的积分;验证散度定理..解 12222232222()()(24)2272x x y x y z x x y x y z x y z∂∂∂∇=++=++∂∂∂A 2∇A 对中心在原点的一个单位立方体的积分为1212122222121121d (2272)d d d 24x x y x y z x y z ττ---∇=++=⎰⎰⎰⎰A 3A 对此立方体表面的积分1212112221212121211d ()d d ()d d 22Sy z y z ----=--+⎰⎰⎰⎰⎰A S12121212222212121212112()d d 2()d d 22x x z x x z ------+⎰⎰⎰⎰1212112232231212121211124()d d 24()d d 2224x y x y x y x y ------=⎰⎰⎰⎰故有1d 24ττ∇=⎰A d S=⎰A S1.14 计算矢量r 对一个球心在原点、半径为a 的球表面的积分;并求∇r 对球体积的积分..解223d d d sin d 4r SSS aa a ππφθθπ===⎰⎰⎰⎰r S r e 又在球坐标系中;221()3r r r r∂∇==∂r ;所以 223000d 3sin d d d 4ar r a ππττθθφπ∇==⎰⎰⎰⎰r 1.15 求矢量22x y z x x y z =++A e e e 沿xy 平面上的一个边长为2的正方形回路的线积分;此正方形的两边分别与x 轴和y 轴相重合..再求∇⨯A 对此回路所包围的曲面积分;验证斯托克斯定理..解22222d d d 2d 0d 8Cx x x x y y =-+-=⎰⎰⎰⎰⎰A l又 2222x y z x z yz x x y z x x y z∂∂∂∇⨯==+∂∂∂e e e A e e 所以 2200d (22)d d 8xzzSyz x x y ∇⨯=+=⎰⎰⎰A S e e e故有d 8C=⎰A l d S=∇⨯⎰A S1.16 求矢量2x y x xy =+A e e 沿圆周222x y a +=的线积分;再计算∇⨯A 对此圆面积的积分..解2d d d CCx x xy y =+=⎰⎰A l 242422(cos sin cos sin )d 4a aa ππφφφφφ-+=⎰d ()d yx z z S SA A S x y ∂∂∇⨯=-=∂∂⎰⎰A S e e 2422200d sin d d 4a S a y S r r r ππφφ==⎰⎰⎰ 1.17 证明:13∇=R ;2∇⨯=R 0;3()∇=A R A ..其中x y z x y z =++R e e e ;A 为一常矢量..解 13x y z x y z∂∂∂∇=++=∂∂∂R 2 x y z x y z x y y∂∂∂∇⨯==∂∂∂e e e R 03设x x y y z z A A A =++A e e e ;则x y z A x A y A z =++A R ;故()()()xx y z y x y z A x A y A z A x A y A z x y ∂∂∇=++++++∂∂A R e e ()z x y z A x A y A z z∂++=∂e x x y y z z A A A ++=e e e A 1.18 一径向矢量场()r f r =F e 表示;如果0∇=F ;那么函数()f r 会有什么特点呢解 在圆柱坐标系中;由 1d [()]0d rf r r r∇==F 可得到()Cf r r=C 为任意常数.. 在球坐标系中;由 221d [()]0d r f r r r ∇==F 可得到 2()C f r r =1.19 给定矢量函数x y y x =+E e e ;试求从点1(2,1,1)P -到点2(8,2,1)P -的线积分d ⎰E l :1沿抛物线2x y =;2沿连接该两点的直线..这个E 是保守场吗 解 1 d d d x y CCE x E y =+=⎰⎰E l d d Cy x x y +=⎰2221d(2)2d y y y y +=⎰2216d 14y y =⎰ 2连接点1(2,1,1)P -到点2(8,2,1)P -直线方程为2812x x y y --=-- 即 640x y -+= 故21d d d d(64)(64)d xy CCEx E y y y y y =+=-+-=⎰⎰⎰E l 21(124)d 14y y-=⎰由此可见积分与路径无关;故是保守场..1.20 求标量函数2x yz ψ=的梯度及ψ在一个指定方向的方向导数;此方向由单位矢量xy ze e e (2,3,1)点的方向导数值.. 解 222()()()x y z x yz x yz x yz x y zψ∂∂∂∇=++=∂∂∂ee e222x y z xyz x z x y ++e e e故沿方向l x y z=e e e e 的方向导数为 22650l xyz l ψψ∂=∇=+∂e 点(2,3,1)处沿l e 的方向导数值为lψ∂==∂1.21试采用与推导直角坐标中yx zAA Ax y z∂∂∂∇=++∂∂∂A相似的方法推导圆柱坐标下的公式1()zrA ArAr r r zφφ∂∂∂∇=++∂∂∂A..解在圆柱坐标中;取小体积元如题1.21图所示..矢量场A沿re方向穿出该六面体的表面的通量为()d d d dz z z zr r r r r rz zA r r r A r rφφφφφφψφφ+∆+∆+∆+∆+∆=+∆-≈⎰⎰⎰⎰[()(,,)(,,)]r rr r A r r z rA r z zφφφ+∆+∆-∆∆≈()()1r rrA rAr zr r rφτ∂∂∆∆∆=∆∂∂同理d d d dr r z z r r z zr z r zA r z A r zφφφφφφψ+∆+∆+∆+∆+∆=-≈⎰⎰⎰⎰[(,,)(,,)]A r z A r z r zφφφφφ+∆-∆∆≈A Ar zrφφφτφφ∂∂∆∆∆=∆∂∂d d d dr r r rz z z z z zr rA r r A r rφφφφφφψφφ+∆+∆+∆+∆+∆=-≈⎰⎰⎰⎰[(,,)(,,)]z zA r z z A r z r r zφφφ+∆-∆∆∆≈z zA Ar r zz zφτ∂∂∆∆∆=∆∂∂因此;矢量场A穿出该六面体的表面的通量为()1[]r zr zArA AΨΨΨΨr r r zφφτφ∂∂∂=++≈++∆∂∂∂故得到圆柱坐标下的散度表达式()1lim r zArA Ar r r zφτψτφ∆→∂∂∂∇⋅==++∆∂∂∂A1.22方程222222x y zua b c=++给出一椭球族..求椭球表面上任意点的单位法向矢量..解由于222222x y zx y zua b c∇=++e e eu∇=故椭球表面上任意点的单位法向矢量为222(x y zu x y za b cu∇==++∇n e e e1.23现有三个矢量A、B、C为sin cos cos cos sin r θφθφθφφ=+-A e e e22sin cos 2sin r z z z rz φφφφ=++B e e e22(32)2x y z y x x z =-++C e e e1哪些矢量可以由一个标量函数的梯度表示 哪些矢量可以由一个矢量函数的旋度表示 2求出这些矢量的源分布.. 解1在球坐标系中22111()(sin )sin sin r A r A A r r r r φθθθθθφ∂∂∂∇=++=∂∂∂A22111(sin cos )(sin cos cos )(sin )sin sin r r r r r θφθθφφθθθφ∂∂∂++-=∂∂∂ 2cos 2sin cos cos sin cos 0sin sin r r r r φθφφθφθθ+--= 2sin 1sin sin r r r r r r A rA r A θφθφθθθφθ∂∂∂∇⨯==∂∂∂e e e A2sin 10sin sin cos cos cos sin sin rr r r rr r θφθθθφθφθφθφ∂∂∂=∂∂∂-e e e故矢量A 既可以由一个标量函数的梯度表示;也可以由一个矢量函数的旋度表示;在圆柱坐标系中11()z r B B rB r r r z φφ∂∂∂∇++=∂∂∂B =2211(sin )(cos )(2sin )rz z rz r r r z φφφφ∂∂∂++=∂∂∂22sin sin 2sin 2sin z z r r r r φφφφ-+= 22110sin cos 2sin r z r z r z r r r r z r r z B rB B z rz rz θθθφφφφφ∂∂∂∂∂∂∇⨯===∂∂∂∂∂∂e e e e e e B故矢量B 可以由一个标量函数的梯度表示;直角在坐标系中y x z C C C x y z∂∂∂∇++=∂∂∂C =22(32)()(2)0y x x z x y z∂∂∂-++=∂∂∂22(26)322x y z z x y x y z y x x z∂∂∂∇⨯==-∂∂∂-e e e C e故矢量C 可以由一个矢量函数的旋度表示.. 2这些矢量的源分布为0∇=A ;0∇⨯=A ;2sin r φ∇B =;0∇⨯=B ;0∇=C ;(26)z x y ∇⨯=-C e1.24 利用直角坐标;证明()f f f ∇=∇+∇A A A解 在直角坐标中()()y x z x y z A A A f f ff f f A A A x y z x y z∂∂∂∂∂∂∇+∇=+++++=∂∂∂∂∂∂A A()()()y x z x y z A A A f f ff A f A f A x x y y z z ∂∂∂∂∂∂+++++=∂∂∂∂∂∂()()()()x y z fA fA fA f x y z∂∂∂++=∇∂∂∂A 1.25 证明()∇⨯=∇⨯-∇⨯A H H A A H解 根据∇算子的微分运算性质;有()()()A H ∇⨯=∇⨯+∇⨯A H A H A H式中A ∇表示只对矢量A 作微分运算;H ∇表示只对矢量H 作微分运算..由()()⨯=⨯a b c c a b ;可得()()()A A ∇⨯=∇⨯=∇⨯A H H A H A同理 ()()()H H ∇⨯=-∇⨯=-∇⨯A H A H A H 故有 ()∇⨯=∇⨯-∇⨯A H H A A H1.26 利用直角坐标;证明()f f f ∇⨯=∇⨯+∇⨯G G G解 在直角坐标中[()()()]yy x x z z x y z G G G G G G f f y z z x x y ∂∂∂∂∂∂∇⨯=-+-+-∂∂∂∂∂∂G e e ef ∇⨯=G [()()()]x zy y x z z y x f f f f f f G G G G G G y z z x x y∂∂∂∂∂∂-+-+-∂∂∂∂∂∂e e e 所以f f ∇⨯+∇⨯=G G [()()]y z x zy G G f fG f G f y y z z∂∂∂∂+-++∂∂∂∂e [()()]x z y x z G G f fG f G f z z x x∂∂∂∂+-++∂∂∂∂e[()()]y x z y x G G f fG f G f x x y y ∂∂∂∂+-+=∂∂∂∂e()()[]y z x fG fG y z ∂∂-+∂∂e ()()[]x z y fG fG z x ∂∂-+∂∂e ()()[]y x z fG fG x y∂∂-=∂∂e ()f ∇⨯G1.27 利用散度定理及斯托克斯定理可以在更普遍的意义下证明()0u ∇⨯∇=及()0∇∇⨯=A ;试证明之..解 1对于任意闭合曲线C 为边界的任意曲面S ;由斯托克斯定理有()d d d d 0SCCCuu u l u l ∂∇⨯∇=∇===∂⎰⎰⎰⎰S l 由于曲面S 是任意的;故有()0u ∇⨯∇=2对于任意闭合曲面S 为边界的体积τ;由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示..由斯托克斯定理;有11()d d S C ∇⨯=⎰⎰A S A l ; 22()d d S C ∇⨯=⎰⎰A S A l由题1.27图可知1C 和2C 是方向相反的同一回路;则有 12d d C C =-⎰⎰A l A l所以得到1222()d d d d d 0C C C C ττ∇∇⨯=+=-+=⎰⎰⎰⎰⎰A A l A l A l A l 由于体积τ是任意的;故有 ()0∇∇⨯=A二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-;式中阴极板位于0x =;阳极板位于x d =;极间电压为0U ..如果040V U =、1cm d =、横截面210cm S =;求:10x =和x d =区域内的总电荷量Q ;22x d =和x d=区域内的总电荷量Q '..1题1.27图解 1 420004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ 2 4323004d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε---=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束;通过1000V 的电压加速后形成等速的质子束;质子束内的电荷均匀分布;束直径为2mm ;束外没有电荷分布;试求电流密度和电流..解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯..由212mv qU = 得61.3710v ==⨯ m 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷;球体以匀角速度ω绕一个直径旋转;求球内的电流密度..解 以球心为坐标原点;转轴一直径为z 轴..设球内任一点P 的位置矢量为r ;且r 与z 轴的夹角为θ;则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ;同样以匀角速度ω绕一个直径旋转;求球表面的面电流密度..解 以球心为坐标原点;转轴一直径为z 轴..设球面上任一点P 的位置矢量为r ;且r 与z 轴的夹角为θ;则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处;24C q =-位于y 轴上4y =处;求(4,0,0)处的电场强度..解 电荷1q 在(4,0,0)处产生的电场为1113014q πε'-=='-r r E r r电荷2q 在(4,0,0)处产生的电场为222302444q πε-'-=='-e e r r E r r 故(4,0,0)处的电场为122+-=+=e e e E E E2.6 一个半圆环上均匀分布线电荷l ρ;求垂直于圆平面的轴线上z a =处的电场强度(0,0,)a E ;设半圆环的半径也为a ;如题2.6 图所示..解 半圆环上的电荷元d d l l l a ρρφ''=在轴线上z a =处的电场强度为d φ'==E(cos sin )φφφ''-+'e e e在半圆环上对上式积分;得到轴线上z a =处的电场强度为(0,0,)d a ==⎰E E2[(cos sin )]d z xy ππφφφ'''-+=⎰e ee 2.7 三根长度均为L ;均匀带电荷密度分别为1l ρ、2l ρ和3l ρ地线电荷构成等边三角形..设1l ρ=22l ρ=32l ρ;计算三角形中心处的电场强度..解 建立题2.7图所示的坐标系..三角形中心到各边的距离为3tan 3026L d L == 则111003(cos30cos150)42ll yyd Lρρπεπε=-=E e e 2120033(cos30sin 30)()28l l x y y L L ρρπεπε=-+=-E e e e e 3130033(cos30sin 30)()28l lx y y L Lρρπεπε=-=E e e e e 故等边三角形中心处的电场强度为123=++=E E E E111000333()()288l l l yy y L L Lρρρπεπεπε-+=e e e e e 1034l yL ρπεe 2.8 -点电荷q +位于(,0,0)a -处;另-点电荷2q -位于(,0,0)a 处;空间有没有电场强度0=E 的点题 2.6图1lo 题2.7图解 电荷q +在(,,)x y z 处产生的电场为1222320()4[()]x y z x a y zqx a y z πε+++=+++e e e E电荷2q -在(,,)x y z 处产生的电场为2222320()24[()]x y z x a y z q x a y z πε-++=--++e e e E (,,)x y z 处的电场则为12=+E E E ..令0=E ;则有22232()[()]x y z x a y z x a y z +++=+++e e e 222322[()][()]x y z x a y z x a y z -++-++e e e由上式两端对应分量相等;可得到2223222232()[()]2()[()]x a x a y z x a x a y z +-++=-+++ ① 2223222232[()]2[()]y x a y z y x a y z -++=+++ ②222322232[()]2[()]z x a y z z x a y z -++=+++ ③当0y ≠或0z ≠时;将式②或式③代入式①;得0a =..所以;当0y ≠或0z ≠时无解; 当0y =且0z =时;由式①;有33()()2()()x a x a x a x a +-=-+解得(3x a =-±但3x a =-+不合题意;故仅在(3,0,0)a --处电场强度0=E ..2.9 一个很薄的无限大导电带电面;电荷面密度为σ..证明:垂直于平面的z 轴上0z z =处的电场强度E 中;有一半是有平面上半径为03z 的圆内的电荷产生的..解 半径为r 、电荷线密度为d l r ρσ=的带电细圆环在z 轴上0z z =处的电场强度为0223200d d 2()zr z rr z σε=+E e故整个导电带电面在z 轴上0z z =处的电场强度为002232221200000d 12()2()2z z zr z r z r z r z σσσεεε∞∞==-=++⎰E e e e 而半径为03z 的圆内的电荷产生在z 轴上0z z =处的电场强度为022320000d 12()42zz zr z r r z σσεε'==-==+⎰E e e e E 2.10 一个半径为a 的导体球带电荷量为Q ;当球体以均匀角速度ω绕一个直径旋转;如题2.10图所示..求球心处的磁感应强度B ..解 球面上的电荷面密度为24Q a σπ=题2.10图当球体以均匀角速度ω绕一个直径旋转时;球面上位置矢量r a =r e 点处的电流面密度为S z r a σσσω==⨯=⨯=J v ωr e esin sin 4Qa aφφωωσθθπ=e e将球面划分为无数个宽度为d d l a θ=的细圆环;则球面上任一个宽度为d d l a θ=细圆环的电流为 d d sin d 4S QI J l ωθθπ==细圆环的半径为sin b a θ=;圆环平面到球心的距离cos d a θ=;利用电流圆环的轴线上的磁场公式;则该细圆环电流在球心处产生的磁场为202232d d 2()z b Ib d μ==+B e 230222232sin d 8(sin cos )z Qa a a μωθθπθθ=+e 30sin d 8zQ aμωθθπe 故整个球面电流在球心处产生的磁场为 3000sin d 86z zQ Q a aπμωθμωθππ==⎰B e e 2.11 两个半径为b 、同轴的相同线圈;各有N 匝;相互隔开距离为d ;如题2.11图所示..电流I 以相同的方向流过这两个线圈..1求这两个线圈中心点处的磁感应强度x x B =B e ; 2证明:在中点处d d x B x 等于零;3求出b 与d 之间的关系;使中点处22d d x B x 也等于零.. 解 1由细圆环电流在其轴线上的磁感应强度 2022322()zIa a z μ=+B e得到两个线圈中心点处的磁感应强度为 202232(4)xNIb b d μ=+B e2两线圈的电流在其轴线上x )0(d x <<处的磁感应强度为2200223222322()2[()]x NIb NIb b x b d x μμ⎧⎫=+⎨⎬++-⎩⎭B e 所以 220022522252d 33()d 2()2[()]x B NIb x NIb d x x b x b d x μμ-=-+++- 故在中点2d x =处;有220022522252d 32320d 2[4]2[4]x B NIb d NIb d x b d b d μμ=-+=++ 3 222200222722252d 153d 2()2()x B NIb x NIb x b x b x μμ=-+++ 222002272225215()32[()]2[()]NIb d x NIb b d x b d x μμ--+-+- 令 0d d 222==d x x xB ;有 0]4[1]4[45252227222=+-+d b d b d题2.11图即 5222d b d += 故解得 b d =2.12 一条扁平的直导体带;宽为a 2;中心线与z 轴重合;通过的电流为I ..证明在第一象限内的磁感应强度为 04x I B aμαπ=-;021ln 4yI r B a r μπ= 式中α、1r 和2r 如题2.12图所示..解 将导体带划分为无数个宽度为x 'd 的细条带;每一细条带的电流x aII '=d 2d ..由安培环路定理;可得位于x '处的细条带的电流I d 在点),(y x P 处的磁场为00d d d 24I I x B R aRμμππ'===02212d 4[()]I x a x x y μπ''-+ 则 022d d d sin 4[()]x Iy x B B a x x y μθπ'=-=-'-+ 022()d d d cos 4[()]y I x x x B B a x x y μθπ''-=='-+ 所以022d 4[()]ax aIy x B a x x y μπ-'=-='-+⎰0arctan 4a aI x x a y μπ-'⎛⎫--= ⎪⎝⎭0arctan arctan 4I a x a x a y y μπ⎡⎤⎛⎫⎛⎫-----=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦0arctan arctan 4I x a x a a y y μπ⎡⎤⎛⎫⎛⎫+---=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦021()4I a μααπ--=04I aμαπ- 022()d 4[()]a y aI x x x B a x x y μπ-''-=='-+⎰220ln[()]8aa I x x y a μπ-'--+=22022()ln 8()I x a y a x a y μπ++=-+021ln 4I r a r μπ 2.13 如题2.13图所示;有一个电矩为1p 的电偶极子;位于坐标原点上;另一个电矩为2p 的电偶极子;位于矢径为r 的某一点上..试证明两偶极子之间相互作用力为121212403(sin sin cos 2cos cos )4r p p F r θθφθθπε=-式中11,θ=<>r p ;22,θ=<>r p ;φ是两个平面1(,)r p 和2(,)r p 间的夹角..并问两个偶极子在怎样的相对取向下这个力值最大解 电偶极子1p 在矢径为r 的点上产生的电场为1115303()1[]4r rπε=-p r r p E 所以1p 与2p 之间的相互作用能为1212215303()()1[]4e W r rπε=-=--p r p r p p p E题 2.12图因为11,θ=<>r p ;22,θ=<>r p ;则111cos p r θ=p r222cos p r θ=p r又因为φ是两个平面1(,)r p 和2(,)r p 间的夹角;所以有2121212()()sin sin cos r p p θθφ⨯⨯=r p r p另一方面;利用矢量恒等式可得1212()()[()]⨯⨯=⨯⨯=r p r p r p r p 2112[()]r -=p r p r p 21212()()()r -p p r p r p因此12121221()[()()()()]r=⨯⨯+=p p r p r p r p r p 1212sin sin cos p p θθφ+1212cos cos p p θθ 于是得到 =eW 12304p p r πε12sin sin cos θθφ-122cos cos θθ 故两偶极子之间的相互作用力为e r q constW F r=∂=-=∂1204p p πε-12sin sin cos θθφ-122cos cos θθ3d 1()d r r= 124034p p r πε12sin sin cos θθφ-122cos cos θθ由上式可见;当120θθ==时;即两个偶极子共线时;相互作用力值最大..2.14 两平行无限长直线电流1I 和2I ;相距为d ;求每根导线单位长度受到的安培力m F .. 解 无限长直线电流1I 产生的磁场为 0112I rφμπ=B e 直线电流2I 每单位长度受到的安培力为 1012122112d 2m z I I I z dμπ=⨯=-⎰F e B e 式中12e 是由电流1I 指向电流2I 的单位矢量..同理可得;直线电流1I 每单位长度受到的安培力为 0122112122m m I I dμπ=-=F F e 2.15 一根通电流1I 的无限长直导线和一个通电流2I 的圆环在同一平面上;圆心与导线的距离为d ;如题2.15图所示..证明:两电流间相互作用的安培力为012(sec 1)m F I I μα=- 这里α是圆环在直线最接近圆环的点所张的角..解 无限长直线电流1I 产生的磁场为0112I rφμπ=B e 圆环上的电流元22d I l 受到的安培力为0122212d d d 2m y I II xμπ=⨯=⨯F l B l e1I由题2.15图可知 2d (sin cos )d x z a θθθ=-+l e ecos x d a θ=+所以 2012(sin cos )d 2(cos )m z x aI I d a πμθθθπθ=--=+⎰F e e 20120cos d 2(cos )x aI I d a πμθθπθ-=+⎰e 0120122((sec 1)2xx aI I I I a μπμαπ--=--e e 2.16 证明在不均匀的电场中;某一电偶极子p 绕坐标原点所受到的力矩为()⨯∇+⨯r p E p E ..解 如题2.16图所示;设d q =p l (d 1)l <<;则电偶极子p 绕坐标原点所受到的力矩为2211()()q q =⨯-⨯=T r E r r E rd d d d ()()()()2222q q +⨯+--⨯-=l l l l r E r r E rd d d d [()()]d [()()]22222q q ⨯+--+⨯++-l l l lr E r E r l E r E r当d 1l <<时;有d d ()()()()22+≈+⋅∇l lE r E r E rd d ()()()()22-≈-⋅∇l lE r E r E r故得到(d )()d ()q q ≈⨯⋅∇+⨯=T r l E r l E r()⨯∇+⨯r p E p E三章习题解答3.1 真空中半径为a 的一个球面;球的两极点处分别设置点电荷q 和q -;试计算球赤道平面上电通密度的通量Φ如题3.1图所示..解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量x 题2.16 图d d zz SSS Φ====⎰⎰D S D e223222320()[]2d 4()()aq a ar r r a r a ππ--=++⎰ 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型;其球体内均匀分布有总电荷量为Ze -的电子云;在球心有一正电荷ZeZ 是原子序数;e 是质子电荷量;通过实验得到球体内的电通量密度表达式为02314r a Ze r r r π⎛⎫=- ⎪⎝⎭D e ;试证明之..解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZerπ=D e 原子内电子云的电荷体密度为333434a a Ze Zer r ρππ=-=-电子云在原子内产生的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中;体密度为30C m ρ; 两圆柱面半径分别为a 和b ;轴线相距为c )(a b c -<;如题3.3图()a 所示..求空间各部分的电场..解 由于两圆柱面间的电荷不是轴对称分布;不能直接用高斯定律求解..但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布;这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布;而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布;如题3.3图()b 所示..空间任一点的电场是这两种电荷所产生的电场的叠加..在b r >区域中;由高斯定律0d Sqε=⎰E S ;可求得大、小圆柱中的正、负电荷在点P 产生的电场分别为 2200120022rb b r r πρρπεε==r E e 2200120022r a a r r πρρπεε'-''==-''r E e 题3. 3图()a点P 处总的电场为 2211220()2b a r r ρε''=+=-'r r E E E 在b r <且a r >'区域中;同理可求得大、小圆柱中的正、负电荷在点P 产生的电场分别为220022r r r πρρπεε==r E e 22220022r a a r r πρρπεε'-''==-''r E e点P 处总的电场为 202220()2a r ρε''=+=-'r E E E r 在a r <'的空腔区域中;大、小圆柱中的正、负电荷在点P 产生的电场分别为20030022r r r πρρπεε==r E e 20030022r r r πρρπεε''-''==-'r E e 点P 处总的电场为 003300()22ρρεε''=+=-=E E E r r c 3.4 半径为a 的球中充满密度()r ρ的体电荷;已知电位移分布为32542()()r r Ar r a D a Aa r a r ⎧+≤⎪=⎨+≥⎪⎩ 其中A 为常数;试求电荷密度()r ρ..解:由ρ∇=D ;有 221d ()()d r r r D r rρ=∇=D 故在r a <区域 23220021d ()[()](54)d r r r Ar r Ar r rρεε=+=+ 在r a >区域 5420221d ()()[]0d a Aa r r r r rρε+== 3.5 一个半径为a 薄导体球壳内表面涂覆了一薄层绝缘膜;球内充满总电荷量为Q 为的体电荷;球壳上又另充有电荷量Q ..已知球内部的电场为4()r r a =E e ;设球内介质为真空..计算:1球内的电荷分布;2球壳外表面的电荷面密度..解 1 由高斯定律的微分形式可求得球内的电荷体密度为20021d [()]d r E r r ρεε=∇==E 432002441d [()]6d r r r r r a aεε=题3. 3图()b=+2球体内的总电量Q 为 3220040d 64d 4ar Q r r a a τρτεππε===⎰⎰球内电荷不仅在球壳内表面上感应电荷Q -;而且在球壳外表面上还要感应电荷Q ;所以球壳外表面上的总电荷为2Q ;故球壳外表面上的电荷面密度为 02224Qaσεπ== 3.6 两个无限长的同轴圆柱半径分别为r a =和r b =()b a >;圆柱表面分别带有密度为1σ和2σ的面电荷..1计算各处的电位移0D ;2欲使r b >区域内00=D ;则1σ和2σ应具有什么关系解 1由高斯定理d Sq =⎰DS ;当r a <时;有 010=D当a r b <<时;有 02122rD a ππσ= ;则 102ra rσ=D e 当b r <<∞时;有 0312222rD a b ππσπσ=+ ;则 1203r a b rσσ+=D e 2令 12030ra b rσσ+==D e ;则得到 12b a σσ=- 3.7 计算在电场强度x y y x =+E e e 的电场中把带电量为2C μ-的点电荷从点1(2,1,1)P -移到点2(8,2,1)P -时电场所做的功:1沿曲线22x y =;2沿连接该两点的直线..解 1d d d d x y CCCW q q E x E y ===+=⎰⎰⎰F l E l2221d d d(2)2d Cq y x x y q y y y y +=+=⎰⎰22616d 142810()q y y q J -==-⨯⎰2连接点1(2,1,1)P -到点2(8,2,1)P -直线方程为2812x x y y --=-- 即 640x y -+= 故W =21d d d(64)(64)d Cq y x x y q y y y y +=-+-=⎰⎰261(124)d 142810()q y y q J --==-⨯⎰3.8 长度为L 的细导线带有均匀电荷;其电荷线密度为0l ρ..1计算线电荷平分面上任意点的电位ϕ;2利用直接积分法计算线电荷平分面上任意点的电场E ;并用ϕ=-∇E 核对..解 1建立如题3.8图所示坐标系..根据电位的积分表达式;线电荷平分面上任意点P 的电位为2(,0)L L r ϕ-==⎰22ln(4L l L z ρπε-'=L rρ04l ρπε=02l ρπε2根据对称性;可得两个对称线电荷元z l 'd 0ρ在点P 的电场为d d r r rE θ===E e e 022320d 2()l rr z r z ρπε''+e故长为L 的线电荷在点P 的电场为20223200d d 2()L l r r z r z ρπε'==='+⎰⎰E Ee 20002L l r r ρπε=e re由ϕ=-∇E 求E ;有002l ρϕπε⎡⎢=-∇=-∇=⎢⎥⎣⎦E(00d ln 2ln 2d l rL r r ρπε⎡⎤--=⎢⎥⎣⎦e0012l r r ρπε⎧⎫⎪-=⎬⎪⎭e r e 3.9 已知无限长均匀线电荷l ρ的电场02lrr ρπε=E e ;试用定义式()d Pr rr ϕ=⎰E l 求其电位函数..其中P r 为电位参考点..解000()d d ln ln 222PPPr r rl l l P r rrr r r r r rρρρϕπεπεπε====⎰⎰E l 由于是无限长的线电荷;不能将P r 选为无穷远点..3.10一点电荷q +位于(,0,0)a -;另一点电荷2q -位于(,0,0)a ;求空间的零电位面.. 解 两个点电荷q +和2q -在空间产生的电位1(,,)4x y zϕπε=令(,,)0x y z ϕ=;则有0=即 2222224[()]()x a y z x a y z +++=-++故得 222254()()33x a y z a +++= 由此可见;零电位面是一个以点5(,0,0)3a -为球心、43a 为半径的球面..3.11 证明习题3.2的电位表达式为 2013()()422a aZe r r r r r ϕπε=+- 解 位于球心的正电荷Ze 在原子外产生的电通量密度为 124rZerπ=D e 电子云在原子外产生的电通量密度则为 32224344a r r r Zer rρπππ==-D e e 所以原子外的电场为零..故原子内电位为230011()d ()d 4aa r ra r r Ze rr D r r r r ϕεπε==-=⎰⎰2013()422a aZe r r r r πε+- 3.12 电场中有一半径为a 的圆柱体;已知柱内外的电位函数分别为2()0()()cos r r a a r A r r a rϕϕφ=≤⎧⎪⎨=-≥⎪⎩ 1求圆柱内、外的电场强度;2这个圆柱是什么材料制成的 表面有电荷分布吗 试求之..解 1由ϕ=-∇E ;可得到 r a <时; 0ϕ=-∇=Er a >时; ϕ=-∇=E 22[()cos ][()cos ]r a a A r A r r r r rφφφφ∂∂----=∂∂e e2222(1)cos (1)sin r a a A A r rφφφ-++-e e2该圆柱体为等位体;所以是由导体制成的;其表面有电荷分布;电荷面密度为0002cos r r a r a A σεεεφ=====-n E e E3.13 验证下列标量函数在它们各自的坐标系中满足20ϕ∇=1sin()sin()hz kx ly e - 其中222h k l =+; 2[cos()sin()]n r n A n φφ+ 圆柱坐标; 3cos()n r n φ- 圆柱坐标; 4cos r φ 球坐标; 52cos r φ- 球坐标..解 1在直角坐标系中 2222222x y zϕϕϕϕ∂∂∂∇=++∂∂∂而 22222[sin()sin()]sin()sin()hz hz kx ly e k kx ly e x xϕ--∂∂==-∂∂22222[sin()sin()]sin()sin()hz hzkx ly e l kx ly e y y ϕ--∂∂==-∂∂ 22222[sin()sin()]sin()sin()hz hz kx ly e h kx ly e z zϕ--∂∂==∂∂ 故 2222()sin()sin()0hzk l h kx ly e ϕ-∇=--+=2在圆柱坐标系中 2222221()r r r r r zϕϕϕϕφ∂∂∂∂∇=++∂∂∂∂而11(){[cos()sin()]}n r r r n A n r r r r r r ϕφφ∂∂∂∂=+=∂∂∂∂22[cos()sin()]n n r n A n φφ-+ 222221[cos()sin()]}n n r n A n r ϕφφφ-∂=-+∂ 2222[cos()sin()]0nr n A n z zϕφφ-∂∂=+=∂∂ 故 20ϕ∇=3 2211(){[cos()]}cos()n n r r r n n r n r r r r r rϕφφ---∂∂∂∂==∂∂∂∂222221cos()n n r n r ϕφφ--∂=-∂ 2222[cos()]0nr n z zϕφ-∂∂==∂∂ 故 20ϕ∇=4在球坐标系中 22222222111()(sin )sin sin r r r r r r ϕϕϕϕθθθθθφ∂∂∂∂∂∇=++∂∂∂∂∂ 而 2222112()[(cos )]cos r r r r r r r r r r ϕθθ∂∂∂∂==∂∂∂∂ 2211(sin )[sin (cos )]sin sin r r r ϕθθθθθθθθθ∂∂∂∂==∂∂∂∂ 2212(sin )cos sin r r rθθθθ∂-=-∂ 2222222211(cos )0sin sin r r r ϕθθφθφ∂∂==∂∂故 20ϕ∇=5 222222112()[(cos )]cos r r r r r r r r r rϕθθ-∂∂∂∂==∂∂∂∂ 22211(sin )[sin (cos )]sin sin r r r ϕθθθθθθθθθ-∂∂∂∂==∂∂∂∂222412(sin )cos sin r r rθθθθ-∂-=-∂ 22222222211(cos )0sin sin r r r ϕθθφθφ-∂∂==∂∂ 故 20ϕ∇=3.14 已知0>y 的空间中没有电荷;下列几个函数中哪些是可能的电位的解1cosh y e x -; 2x e y cos -;3cos sin e x x 4z y x sin sin sin ..解 1222222(cosh )(cosh )(cosh )y y ye x e x e x x y z---∂∂∂++=∂∂∂2cosh 0y e x -≠所以函数x e y cosh -不是0>y 空间中的电位的解;2 222222(cos )(cos )(cos )y y y e x e x e x x y z---∂∂∂++=∂∂∂cos cos 0y y e x e x ---+= 所以函数x e y cos -是0>y 空间中可能的电位的解;3222222(cos sin )(cos sin )(cos sin )e x x e x x e x x x y z∂∂∂++=∂∂∂4cos sin 2cos sin 0e x x e x x -+≠所以函数x x e y sin cos 2-不是0>y 空间中的电位的解;4 222222(sin sin sin )(sin sin sin )(sin sin sin )x y z x y z x y z x y z∂∂∂++=∂∂∂ 3sin sin sin 0x y z -≠所以函数z y x sin sin sin 不是0>y 空间中的电位的解..3.15 中心位于原点;边长为L 的电介质立方体的极化强度矢量为0()x y z P x y z =++P e e e ..1计算面束缚电荷密度和体束缚电荷密度;2证明总的束缚电荷为零..解 1 03P P ρ=-∇=-P220()22P x L x x L L L x P σ======n Pe P220()22P x L x x L L L x P σ=-=-=-==-=n P e P同理 0()()()()22222P P P P L L L L Ly y z z P σσσσ===-====-=2 320d d 3602P P P SL q S P L L P τρτσ=+=-+⨯=⎰⎰ 3.16 一半径为0R 的介质球;介电常数为0r εε;其内均匀分布自由电荷ρ;证明中心点的电位为20021()23r r R ερεε+ 解 由d Sq =⎰D S ;可得到0r R <时; 321443r r D ππρ=即 13r D ρ=; 11003r r D r E ρεεεε== 0r R >时; 3202443R r D ππρ=即 30223R D rρ= ; 30122003R D E r ρεε== 故中心点的电位为00301220000(0)d d d d 33R R r R RR r E r E r r r r ρρϕεεε∞∞=+=+=⎰⎰⎰⎰22200000021()6323r r r R R R ρρερεεεεε++= 3.17 一个半径为R 的介质球;介电常数为ε;球内的极化强度r K r =P e ;其中K 为一常数..1 计算束缚电荷体密度和面密度;2 计算自由电荷密度;3计算球内、外的电场和电位分布..解 1 介质球内的束缚电荷体密度为 2221d ()d p K Kr r r r r ρ=-∇=-=-P 在r R =的球面上;束缚电荷面密度为 p r r Rr R KRσ=====n P e P2由于0ε=+D E P ;所以 00εεε∇=∇+∇=∇+∇D E P D P 即 0(1)εε-∇=∇D P 由此可得到介质球内的自由电荷体密度为 20()p Kr εεερρεεεεεε=∇=∇=-=---D P总的自由电荷量 2200014d 4d R K RK q r r r τεπερτπεεεε===--⎰⎰ 3介质球内、外的电场强度分别为100()r Krεεεε==--P E e ()r R < 2220004()r rq RKr r επεεεε==-E e e ()r R > 介质球内、外的电位分别为112d d d RrrRE r E r ϕ∞∞==+=⎰⎰⎰E l。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 c o s AB θ=8==A B A B ,得 1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
解 (1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e 则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e , 311367x y z =-=---R r r e e e由此可见1223(4)(28)0x z x y z =-++=R R e e e e e故123PP P ∆为一直角三角形。
(2)三角形的面积12231221117.1322S =⨯=⨯=R R R R1.3 求(3,1,4)P '-点到(2,2,3)P -点的距离矢量R 及R 的方向。
解 34P x y z '=-++r e e e ,223P x y z =-+r e e e ,则 53P P P P x y z ''=-=--R r r e e e 且P P 'R 与x 、y 、z 轴的夹角分别为11cos ()cos 32.31x P P x P P φ--''===e R R11cos ()cos 120.47y P P y P P φ'--'===e R R11cos ()cos (99.73z P P z P P φ--''===e R R1.4 给定两矢量234x y z =+-A e e e 和456x y z =-+B e e e ,求它们之间的夹角和A 在B 上的分量。
解 A 与B 之间的夹角为11cos ()cos 131θ--===AB A B A B A 在B 上的分量为 3.53277B A ===-B AB 1.5 给定两矢量234x y z =+-A e e e 和64x y z =--+B e e e ,求⨯A B 在x y z=-+C e e e 上的分量。
解 ⨯=A B 234641xy z-=--e e e 132210x y z -++e e e 所以⨯A B 在C 上的分量为()⨯=C A B ()14.43⨯==-A B C C 1.6 证明:如果A B =A C 和⨯=A B ⨯A C ,则=B C ;解 由⨯=A B ⨯A C ,则有()()⨯⨯=⨯⨯A A B A A C ,即()()()()-=-A B A A A B A C A A A C由于A B =A C ,于是得到 ()()=A A B A A C 故 =B C1.7 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。
设A 为一已知矢量,p =A X 而=⨯P A X ,p 和P 已知,试求X 。
解 由=⨯P A X ,有()()()()p ⨯=⨯⨯=-=-A P A A X A X A A A X A A A X 故得 p -⨯=A A P X A A1.8 在圆柱坐标中,一点的位置由2(4,,3)3π定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。
解 (1)在直角坐标系中4c o s (23)2x π==-、4sin(23)y π==3z =故该点的直角坐标为(-。
(2)在球坐标系中5r ==、1tan (453.1θ-==、23120φπ==故该点的球坐标为(5,53.1,120)1.9 用球坐标表示的场225rr =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ;(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。
解 (1)在直角坐标中点(3,4,5)--处,2222(3)4(5)50r =-++-=,故22512rr ==E e1cos220x x rx E θ====-e E E(2)在直角坐标中点(3,4,5)--处,345x y z =-+-r e e e ,所以23345252r r -+-===e e e E故E 与B 构成的夹角为11cos ()cos (153.63θ--===EB E B E B 1.10 球坐标中两个点111(,,)r θφ和222(,,)r θφ定出两个位置矢量1R 和2R 。
证明1R 和2R 间夹角的余弦为121212cos cos cos sin sin cos()γθθθθφφ=+-解 由 111111111sin cos sin sin cos x y z r r r θφθφθ=++R e e e 222222222sin cos sin sin cos x y z r r r θφθφθ=++R e e e得到 1212cos γ==R R R R1122112212sin cos sin cos sin sin sin sin cos cos θφθφθφθφθθ++=121211212sin sin (cos cos sin sin )cos cos θθφφφφθθ++= 121212sin sin cos()cos cos θθφφθθ-+1.11 一球面S 的半径为5,球心在原点上,计算: (3sin )d r Sθ⎰e S 的值。
解 (3sin )d (3sin )d r r r SSS θθ==⎰⎰e S e e 222d 3sin 5sin d 75ππφθθθπ⨯=⎰⎰ 1.12 在由5r =、0z =和4z =围成的圆柱形区域,对矢量22r zr z =+A e e 验证散度定理。
解 在圆柱坐标系中 21()(2)32rr z r r r z∂∂∇=+=+∂∂A 所以 4250d d d (32)d 1200z r r r πττφπ∇=+=⎰⎰⎰⎰A 又2d (2)(d d d )rz r r z z SSrz S S S φφ=+++=⎰⎰A S e e e e e42522000055d d 24d d 1200z r r ππφφπ⨯+⨯=⎰⎰⎰⎰故有d 1200ττπ∇=⎰A d S=⎰A S1.13 求(1)矢量22222324x y z x x y x y z =++A e e e 的散度;(2)求∇A 对中心在原点的一个单位立方体的积分;(3)求A 对此立方体表面的积分,验证散度定理。
解 (1)2222232222()()(24)2272x x y x y z x x y x y z x y z∂∂∂∇=++=++∂∂∂A (2)∇A 对中心在原点的一个单位立方体的积分为12121222221212121d (2272)d d d 24x x y x y z x y z ττ---∇=++=⎰⎰⎰⎰A (3)A 对此立方体表面的积分1121212221212121211d ()d d ()d d 22Sy z y z ----=--+⎰⎰⎰⎰⎰A S12121212222212121212112()d d 2()d d 22x x z x x z ------+⎰⎰⎰⎰ 1211212223223121212111124()d d 24()d d 2224x y x y x y x y ------=⎰⎰⎰⎰ 故有1d 24ττ∇=⎰A d S=⎰A S1.14 计算矢量r 对一个球心在原点、半径为a 的球表面的积分,并求∇r 对球体积的积分。
解223d d d sin d 4r SSS aa a ππφθθπ===⎰⎰⎰⎰r S r e 又在球坐标系中,221()3r r r r∂∇==∂r ,所以 223000d 3sin d d d 4ar r a ππττθθφπ∇==⎰⎰⎰⎰r 1.15 求矢量22x y z x x y z =++A e e e 沿xy 平面上的一个边长为2的正方形回路的线积分,此正方形的两边分别与x 轴和y 轴相重合。
再求∇⨯A 对此回路所包围的曲面积分,验证斯托克斯定理。
解22222d d d 2d 0d 8Cx x x x y y =-+-=⎰⎰⎰⎰⎰A l又 2222x y z x z yz x x y z x x y z∂∂∂∇⨯==+∂∂∂e e e A e e 所以 2200d (22)d d 8xzzSyz x x y ∇⨯=+=⎰⎰⎰A S e e e故有d 8C=⎰A l d S=∇⨯⎰A S1.16 求矢量2x y x xy =+A e e 沿圆周222x y a +=的线积分,再计算∇⨯A 对此圆面积的积分。
解2d d d CCx x xy y =+=⎰⎰A l 242422(cos sin cos sin )d 4a a a ππφφφφφ-+=⎰d ()d yxz z S SA A S x y ∂∂∇⨯=-=∂∂⎰⎰A S e e 2422200d sin d d 4a Sa y S r r r ππφφ==⎰⎰⎰1.17 证明:(1)3∇=R ;(2)∇⨯=R 0;(3)()∇=A R A 。